Carl de Boor ${ }^{1}$

This talk is intended to demonstrate with the help of some examples that the quasi-interpolant of [2] is very convenient when it comes to proving even very elementary old and new facts about polynomial splines. The key is a formula which gives each B-spline expansion coefficient for a given spline in terms of the value of its derivatives at a point.

1. Definitions

Let $k \in \mathbb{N}$, let $\mathbf{t}:=\left(t_{i}\right)_{-\infty}^{\infty}$ be real, nondecreasing $t_{i}<t_{i+k}$, all i, and set

$$
a:=\inf _{i} t_{i}
$$

and

$$
b:=\sup _{i} t_{i} .
$$

For $i \in \mathbb{Z}$, the $i^{\text {th }} \mathbf{B}$-spline of order k with (or, for the) knot sequence \mathbf{t} is given by the rule

$$
\begin{gathered}
N_{i k}(t):=g_{k}\left(t_{i}, \ldots, t_{i+k} ; t\right)\left(t_{i+k}-t_{i}\right) \\
g_{k}(s ; t):=(s-t)_{+}^{k-1}
\end{gathered}
$$

taking, for each fixed t, the $k^{t h}$ divided difference of $g(s):=g_{k}(s ; t)$ at $t_{i}, \ldots t_{i+k}$ in the usual manner even when some or all of the t_{j} 's coincide. I leave unresolved any possible ambiguity when $t=t_{j}$ for some j, and concern myself only with left and right limits at such a point; i.e., I replace each $t=t_{j}$ by the "two points" t_{j}^{-}and t_{j}^{+}.

As is well known,

$$
N_{i k}>0 \text { on }\left(t_{i}, t_{i+k}\right), \text { and } N_{i k}=0 \text { off }\left[t_{i}^{+}, t_{i+k}^{-}\right]
$$

so that (since $t_{i}<t_{i+k}$, by assumption) $N_{i k}$ is not identically zero, while on the other hand, no more than k of the $N_{j k}$'s are nonzero at any particular point. Consequently, for an arbitrary $\mathbf{a} \in \mathbb{R}^{\mathbb{Z}}$, the rule

$$
f(t):=\sum_{i} a_{i} N_{i k}(t)
$$

defines a function on (a, b) if we take the sum to be pointwise. I call every such function a polynomial spline of order k with knot sequence \mathbf{t}, and denote their collection by

$$
\mathcal{S}_{k, \mathbf{t}}
$$

The "quasi-interpolator" Q of interest here is given by the rule

$$
Q f:=\sum_{i}\left(\lambda_{i} f\right) N_{i k}
$$

where

$$
\begin{gathered}
\lambda_{i} f:=\lambda_{\tau_{i}, \psi_{i k}} f:=\sum_{j<k}(-)^{k-1-j} \psi_{i k}^{(k-1-j)}\left(\tau_{i}\right) f^{(j)}\left(\tau_{i}\right) \\
\psi_{i k}(t):=\left(t_{i+1}-t\right) \ldots\left(t_{i+k-1}-t\right) /(k-1)!
\end{gathered}
$$

and τ_{i} is an arbitrary point in $\left(t_{i}, t_{i+k}\right)$. One verifies directly that [2]

$$
\lambda_{i} N_{j k}=\delta_{i j}, \quad \text { all } i, j .
$$

Consequently,
(i) Q is a linear projector with range $\mathcal{S}_{k, \mathbf{t}}$;
(ii) every $f \in \mathcal{S}_{k, \mathbf{t}}$ has a unique representation as a B -spline series;
(iii) if $f=\sum_{i} a_{i} N_{i k}$, then

$$
a_{i}=\lambda_{\tau_{i}, \psi_{i k}} f \text { for arbitrary } \tau_{i} \in\left(t_{i}, t_{i+k}\right)
$$

2. Existence and uniqueness of the B-spline expansion

The rather curious freedom in the choice of τ_{i} above leads to the following short proof of
Theorem (Curry et Schoenberg [3]). $\mathcal{S}_{k, \mathbf{t}}$ consists of exactly those f on (a,b) for which
(i) for all $i,\left.f\right|_{i} \in \mathcal{P}_{k}(:=$ polynomials of degree $<k)$; and
(ii) if $t_{s}<t_{s+1}=\cdots=t_{s+r}<t_{s+r+1}$, then jump $t_{s+1} f^{(k-j)}=0$ for all $j>r$.

In particular, any such f has exactly one B -spline expansion (in terms of the B -splines of order k with knots \mathbf{t}).

Here and below, we denote by $\left.f\right|_{i}$ the restriction of f to $\left(t_{i}, t_{i+1}\right)$. For the proof, I show that $Q f=f$ for all such f :
(a) For all such f, and all i,

$$
g(\tau):=\lambda_{\tau, \psi_{i k}} f=\sum_{j<k}(-)^{k-1-j} \psi_{i k}^{(k-1-j)}(\tau) f^{(j)}(\tau)
$$

is constant on $\tau \in\left(t_{i}, t_{i+k}\right)=$ support $N_{i k}$, since
(α) for $\psi \in \mathcal{P}_{k}$ and smooth f,

$$
\left(\lambda_{\tau, \psi}-\lambda_{\sigma, \psi}\right) f=\int_{\sigma}^{\tau} \psi d f^{(k-1)} \quad\left(=0 \text { if }\left.f\right|_{[\sigma, \tau]} \in \mathcal{P}_{k}\right)
$$

hence, as $\left.f\right|_{\left(t_{j}, t_{j+1}\right)} \in \mathcal{P}_{k}, g$ is constant on each $\left(t_{j}, t_{j+1}\right)$; and
(β) if $t_{i} \leq t_{s}<t_{s+1}=\cdots=t_{s+r}<t_{s+r+1} \leq t_{i+k}$, then t_{s+1} is an r-fold zero of $\psi_{i k}$, hence

$$
\psi_{i k}^{(k-1-j)}\left(t_{s+1}\right)=0, \quad \text { for } j=k-1, k-2, \ldots, k-r
$$

while, by assumption on f,

$$
\operatorname{jump}_{t_{s+1}} f^{(j)}=0, \quad \text { for } j=k-r-1, \ldots, 0
$$

hence g is continuous across each t_{s+1} with $t_{i}<t_{s+1}<t_{i+k}$.
(b) For all such f, and all j with $t_{j}<t_{j+1}$,

$$
\left.(Q f)\right|_{j}=\left.f\right|_{j}
$$

For, $\left.(Q f)\right|_{j}=\left.\sum_{i=j+1-k}^{j}\left(\lambda_{\tau_{i}, \psi_{i k}} f\right)\left(N_{i k}\right)\right|_{j}$. But I can assume by (a) without loss that $\tau_{i} \in\left(t_{j}, t_{j+1}\right)$, $i=j+1-k, \ldots, j$; hence

$$
\left.(Q f)\right|_{j}=\left.\sum_{i=j+1-k}^{j} \lambda_{\tau_{i}, \psi_{i k}}\left(\left.f\right|_{j}\right)\left(N_{i k}\right)\right|_{j}
$$

while

$$
\delta_{i r}=\lambda_{\tau_{i}, \psi_{i k}} N_{r k}=\lambda_{\tau_{i}, \psi_{i k}}\left(\left.N_{r k}\right|_{j}\right), \quad r=j+1-k, \ldots, j
$$

shows the k-sequence $\left.N_{i k}\right|_{j}, i=j+1-k, \ldots, j$, in \mathcal{P}_{k} to be independent, hence a basis for P_{k}. Consequently,

$$
\left.\sum_{i=j+1-k}^{j}\left(\lambda_{\tau_{i}, \psi_{i k}} h\right)\left(N_{i k}\right)\right|_{j}=h, \quad \text { for all } h \in \mathcal{P}_{k}
$$

3. Uniqueness of odd-degree spline interpolation

In discussing the smooth extension of a real valued function defined on some closed subset of \mathbb{R} to all of \mathbb{R}, Golomb et Schoenberg [4] prove that, for \mathbf{t} strictly increasing, every $f \in \mathcal{S}_{2 k, \mathbf{t}}$ which vanishes at the points of \mathbf{t} and has square-integrable $k^{t h}$ derivative must vanish identically. Their proof is not simple. In particular, the straightforward argument
$\forall_{i} f\left(t_{i}\right)=0$, hence, $\forall_{i} 0=f\left(t_{i}, \ldots, t_{i+k}\right)=\int N_{i k}(t) f^{(k)}(t) d t / c_{i k}$ with $c_{i k}:=(k-1)!\left(t_{i+k}-\right.$
t_{i}); i.e., $f^{(k)}$ is orthogonal to every $N_{i k}$, while at the same time being in $S_{k, \mathbf{t}}$ which is spanned by the $N_{i k}$'s; hence $f^{(k)}=0$, and so $f=0$.
was not open to them since it requires $\left(N_{i k}\right)$ to be a Schauder basis for $\mathcal{S}_{k, \mathbf{t}} \cap L_{2}$, a fact they did not know.
Theorem. Let $1 \leq p \leq \infty$, and $N_{i k p}:=\left(k /\left(t_{i+k}-t_{i}\right)\right)^{1 / p} N_{i k}$. Then

$$
\sum_{i} b_{i} N_{i k p} \in L_{p}(a, b) \text { iff }\|\mathbf{b}\|_{p}<\infty
$$

Precisely, there exists $D_{k p}>0$ (independent of \mathbf{t}) so that

$$
D_{k p}^{-1}\|\mathbf{b}\|_{p} \leq\left\|\sum_{i} b_{i} N_{i k p}\right\|_{p} \leq\|\mathbf{b}\|_{p}, \quad \text { for all } \mathbf{b} \in \mathbb{R}^{\mathbb{Z}}
$$

The second inequality is straightforward. As to the first, let $f:=\sum_{i} a_{i} N_{i k}=\sum_{i} b_{i} N_{i k p}$, so that $a_{i}\left(\left(t_{i+k}-t_{i}\right) / k\right)^{1 / p}=b_{i}$, all i. Then, from Sec. 1, $\left|a_{i}\right| \leq \sum_{j<k}\left|\psi_{i k}^{(k-1-j)}\left(\tau_{i}\right)\right|\left|f^{(j)}\left(\tau_{i}\right)\right|$.

Take I to be a largest interval among $\left(t_{i}, t_{i+1}\right), \ldots,\left(t_{i+k-1}, t_{i+k}\right)$, and choose $\tau_{i} \in I$. Then $\left|\psi_{i k}^{(k-1-j)}\left(\tau_{i}\right)\right|<$ $A_{j k}|I|^{j}$ for some constants $A_{j k}$, while $\left|f^{(j)}\left(\tau_{i}\right)\right| \leq B_{j k p}|I|^{-j-1 / p} \cdot\left(\int_{I}|f(t)|^{p} d t\right)^{1 / p}$ since $\left.f\right|_{I} \in \mathcal{P}_{k}$. Hence

$$
\begin{aligned}
&\left|b_{i}\right|^{p}=\left|a_{i}\right|^{p}\left(t_{i+k}-t_{i}\right) / k \leq\left|a_{i}\right|^{p}|I| \leq\left(\sum_{j} A_{j k} B_{j k p}\right)^{p} \int_{I}|f|^{p} \\
& \leq C_{k p} \int_{t_{i}}^{t_{i+k}}|f|^{p}
\end{aligned}
$$

which, after summing over i, gives the required inequality with $D_{k p}=\left(k C_{k p}\right)^{1 / p}$.
For a uniform knot sequence \mathbf{t}, this theorem has already been proved by Schoenberg in [5] using a special case of the above formula for the B-spline coefficients.

Corollary. For $1 \leq p<\infty,\left(N_{i k p}\right)_{-\infty}^{\infty}$ is a Schauder basis for $\mathcal{S}_{k, \mathbf{t}} \cap L_{p}(a, b)$.
Bolstered by this Corollary, the earlier argument establishes uniqueness of odd-degree spline interpolation even in the limiting case of repeated or osculatory interpolation at multiple knots.

4. Bounds for least-squares approximation by splines

An attempt to bound the error in odd-degree spline interpolation to a smooth function in the uniform norm leads to the problem of bounding least-squares approximation by splines, considered as a map on L_{∞}, independently of the knot sequence (cf. [1]), a question of interest in itself.

Let $n \in \mathbb{N}, \mathcal{S}=\operatorname{span}\left\{N_{1 k}, \ldots, N_{n k}\right\}$, and denote by $L f$ the least-squares approximation to an $f \in$ $L_{\infty}\left[t_{1}, t_{n+k}\right]$ by elements of \mathcal{S}. Then, L is a linear projector, characterized by the fact that

$$
\begin{equation*}
L f \in \mathcal{S}, \text { and }, \text { for all } \lambda \in \Lambda, \lambda L f=\lambda f \tag{*}
\end{equation*}
$$

with the "interpolation conditions"

$$
\Lambda:=\left\{\lambda \in L_{\infty}^{*} \mid \text { for some } \varphi \in \mathcal{S} \text { and all } f, \lambda f=\int \varphi f\right\}
$$

one verifies that $(*)$ implies

$$
\|L\|=\sup _{x \in \mathcal{S}} \inf _{\lambda \in \Lambda}\|\lambda\|\|x\| /|\lambda x|
$$

But, in order to compute, one needs to coordinatize. Letting $\left(\lambda_{i}\right)$ and $\left(\varphi_{i}\right)$ be bases for Λ and \mathcal{S}, respectively, we get that

$$
\|L\|=\sup _{\mathbf{a}} \inf _{\mathbf{b}}\left\|\sum_{i} b_{i} \lambda_{i}\right\|\left\|\sum_{j} a_{j} \varphi_{j}\right\| /\left|\sum_{i j} b_{i} \lambda_{i} \varphi_{j} a_{j}\right|
$$

Take $\varphi_{i}:=N_{i k}, \lambda_{i}:=k \int \cdot N_{i k} /\left(t_{i+k}-t_{i}\right), i=1, \ldots n$. From the earlier theorem,

$$
D_{k 1}^{-1} D_{k \infty}^{-1}\|\mathbf{b}\|_{1}\|\mathbf{a}\|_{\infty} \leq\left\|\sum_{i} b_{i} \lambda_{i}\right\|\left\|\sum_{j} a_{j} \varphi_{j}\right\| \leq\|\mathbf{b}\|_{1}\|\mathbf{a}\|_{\infty}
$$

while

$$
\sup _{\mathbf{a}} \inf _{\mathbf{b}}\|\mathbf{b}\|_{1}\|\mathbf{a}\|_{\infty} /\left|\sum_{i j} b_{i} \lambda_{i} \varphi_{j} a_{j}\right|=\left\|\left(\lambda_{i} \varphi_{j}\right)^{-1}\right\|_{\infty}
$$

with $\|A\|_{p}$ denoting the norm for the matrix A induced by the p-norm on vectors. This proves
Proposition. For some positive C_{k} (independent of \mathbf{t} and n),

$$
C_{k}\left\|\left(\lambda_{i} \varphi_{j}\right)^{-1}\right\|_{\infty} \leq\|L\| \leq\left\|\left(\lambda_{i} \varphi_{j}\right)^{-1}\right\|_{\infty}
$$

(considering L as a map on $L_{\infty}\left[t_{1}, t_{n+k}\right]$), with

$$
\begin{equation*}
\lambda_{i} \varphi_{j}=k \int N_{i k} N_{j k} /\left(t_{i+k}-t_{i}\right), \quad i, j=1, \ldots, n \tag{**}
\end{equation*}
$$

It has been known for some time that L could be bounded if only the Gramian $\left(\lambda_{i} \varphi_{j}\right)$ could be bounded below (in the max-norm). This proposition adds that such bounding below of the Gramian is also necessary for bounding L. For this reason, I offer the modest sum of $m-1972$ ten dollar bills to the first person who communicates to me a proof or a counterexample (but not both) of his or her own making for the following conjecture (known to be true when $k=2$ or $k=3$):
Conjecture. For given n and \mathbf{t}, let $\left(\lambda_{i} \varphi_{j}\right)$ be the $n \times n$ matrix whose entries are given by ($* *$). Then

$$
\sup _{n, \mathbf{t}}\left\|\left(\lambda_{i} \varphi_{j}\right)^{-1}\right\|_{\infty}<\infty
$$

Here, m is the year A.D. of such communication.

5. Estimates for $\operatorname{dist}\left(f, \mathcal{S}_{k, \mathbf{t}}\right)$

Let $Q f$ be the quasi-interpolant to f as defined in Section 1. For a sufficiently smooth f,

$$
f(t)-(Q f)(t)=\int E(t, s) d f^{(k-1)}(s)
$$

with $E(t, \cdot)$ a nonnegative function of small support. This makes $Q f$ a convenient approximation when it comes to estimating the distance of such f from splines with fixed and with variable knots. Lack of space precludes, unfortunately, any discussion of this important aspect of the quasi-interpolant here.
${ }^{1}$ Supported by the United States Army under Contract DA-31-124-ARO-D-462.

References

[1] C. de Boor (1968), "On the convergence of odd-degree spline interpolation", J. Approx. Theory 1, 452-463.
[2] C. de Boor and G. J. Fix (1973), "Spline approximation by quasi-interpolants", J. Approx. Theory 8, 19-45.
[3] H. B. Curry and I. J. Schoenberg (1966), "On Pólya frequency functions IV: the fundamental spline functions and their limits", J. Analyse Math. 17, 71-107.
[4] M. Golomb and I. J. Schoenberg (1968), "On \mathcal{H}^{m}-extension of functions and spline interpolation", MRC, U.Wisconsin-Madison.
This paper exists only as a reference in other papers, e.g., in [I. J. Schoenberg, On spline interpolation at all integer points of the real axis, Mathematica $\mathbf{1 0}(33)$, (1968), 151-170] where its proposed content is outlined, and in [M. Golomb and J. Jerome, Linear ordinary differential equations with boundary conditions on arbitrary point sets, Trans. AMS 153, (1971), 235-264] in which it is incorrectly specified as a MRC TSR and where its proposed content is generalized.
[5] I. J. Schoenberg (1972), "Cardinal interpolation and spline functions: II. Interpolation of data of power growth", J. Approx. Theory 6, 404-420.

