
The polynomials in the linear span of integer translates of a compactly supported function

Carl de Boor
Abstract. Algebraic facts about the space of polynomials contained in the span of integer translates of a compactly supported
function are derived and then used in a discussion of the various quasi–interpolants from that span.

0. Introduction

This note was stimulated by the recent papers [CD], [CJW], and [CL] in which the authors take a
new look at the space of integer translates of box splines and, in particular, introduce and highlight the
commutator of a locally supported pp function ϕ of several variables. The intent of this note is to offer
alternative proofs of some of these results, and to point to some connections with earlier work (e.g., [BH],
[DM83], [BJ]), but also to focus more attention on the space Πϕ of all polynomials contained in the span of
the integer translates of the box spline (or other compactly supported) ϕ.

The first section collects simple algebraic facts about Πϕ and the action of the linear map

ϕ∗′ : f 7→
∑

j∈ZZd

ϕ(· − j)f(j)

on it.
The second section records that Πϕ is invariant under differentiation and translation, and brings yet

another characterization of Πϕ, this time in terms of the Fourier transform of ϕ.
The final section makes use of these facts about Πϕ in a discussion of the various quasi–interpolants

available.
Throughout, I will use standard multi–index notation. I find it convenient to use the special symbol

[[ ]]α for the normalized monomial of degree α, i.e., for the map given by the rule

[[ ]]α : IRd → IR : x 7→ xα/α!.

With this,

Πα := span([[ ]]β)β≤α

denotes the space of all polynomials of degree ≤ α, and

Πk := span([[ ]]β)|β|≤k, Π<k := span([[ ]]β)|β|<k, Π := span([[ ]]β)

have similarly obvious meaning.

1. The polynomials

Consider the span of integer translates of a compactly supported function ϕ on IRd, i.e.,

(1.1) S := Sϕ := {ϕ∗c : c ∈ IRZZd}.

Here I use the convolution product notation

(1.2) ϕ∗c :=
∑

j∈ZZd

ϕ(· − j)c(j)

since there is no danger of confusion with either the continuous or the discrete convolution product. I find
it convenient to use the special notation

(1.3) ϕ∗′f := ϕ∗f|ZZd =
∑

j∈ZZd

ϕ(· − j)f(j)
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in case f is a function on IRd, in order to stress the semidiscrete character of this product. Further, since
the restriction to ZZd of a function on IRd occurs often here, I will employ the abbreviation

f| := f|ZZd

for it.
The asymmetry in the semidiscrete convolution product (1.3) is not all that strong since, after all,

ϕ∗′f = f∗′ϕ on ZZd.

This implies, e.g., that, for f ∈ Π (hence f∗′ϕ ∈ Π),

ϕ∗′f = f∗′ϕ⇔ ϕ∗′f ∈ Π,

hence

(1.4) Πϕ := {f ∈ Π : ϕ∗′f ∈ Π} = {f ∈ Π : ϕ∗′f = f∗′ϕ}.

It also implies that

(1.5) ϕ∗′f = f∗′ϕ for all f ∈ S,

since, for f = ϕ∗c,

ϕ∗′f = ϕ∗(ϕ|∗c)
= ϕ∗(c∗ϕ|)

= (ϕ∗c)∗ϕ| = f∗′ϕ.
As a consequence, one gets the inclusion

(1.6) Π ∩ S ⊆ {f ∈ Π : ϕ∗′f = f∗′ϕ} = Πϕ,

and the conclusion that
ϕ∗′ : f 7→ ϕ∗′f

maps Πϕ into Π ∩ S. This implies that there must be equality throughout (1.6) as soon as the linear map

L := ϕ∗′|Πϕ

can be shown to be 1–1. But that is easy to do under the assumption that ϕ is normalized, i.e.,

∑
j∈ZZd

ϕ(j) = 1.

For, under this assumption,

(1.7)
for f ∈ Πϕ, ϕ∗′f = f

∑
j∈ZZd ϕ(j) − ∑

j∈ZZd(f − f(· − j))ϕ(j)

∈ f + Π<deg f

since, for each j, f − f(· − j) ∈ Π<deg f .
The salient facts of this discussion are gathered in the following.
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Proposition 1.1. If ϕ is normalized, then

(1.8)
Πϕ : = {f ∈ Π : ϕ∗′f ∈ Π} = {f ∈ Π : ϕ∗′f = f∗′ϕ}

= Π ∩ S = {f ∈ Π : ϕ∗′f ∈ f + Π<degf}.

Further, L := ϕ∗′|Πϕ
is onto, and

(1.9) U := 1 − L

is degree–reducing. In particular,

(1.10) L(Πϕ ∩ Πα) = Πϕ ∩ Πα.

As a consequence, Uk = 0 on

Πϕ,k := Πϕ ∩ Π<k.

Therefore

(1.11) (L|Πϕ,k
)−1 = (1 + U + · · · + Uk−1)|Πϕ,k

.

Note that Πϕ is necessarily finite dimensional, since ϕ is compactly supported. Precisely, for any
bounded set G, the set

A(G) := {α ∈ ZZd : ϕ(· − α)|G 6= 0}

is finite, hence if G also has interior, then

dimΠϕ = dimΠϕ|G ≤ #A(G) <∞.

The sharpest bound attainable this way for a piecewise continuous ϕ would be

(1.12) dim Πϕ ≤ max
x

#A({x}).

In any case, this implies that

L−1 = 1 + U + U2 + · · · ,

with the Neumann series actually finite.
The assumption that ϕ be normalized is no real restriction except when

∑
j∈ZZd

ϕ(j) = 0.

In this case, (1.7) shows L to be degree–reducing, hence in particular, not invertible. Consequently, Π ∩ S
may be strictly smaller than Πϕ. For example, with ϕ = 1 on [−1, 0[, = −1 on [0, 1[, and = 0 otherwise,
Πϕ = Π1 6= Π0 = Π ∩ S.
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2. Invariance

Denote by E the multivariate shift, i.e.,

Eαf := f(· + α), α ∈ ZZd.

While it is obvious that ϕ∗′ commutes with E, hence Πϕ is invariant under E, some of the other properties
of Πϕ derivable from this fact may not be as immediate.

Proposition 2.1. The linear map L = ϕ∗′|Πϕ
commutes with differentiation, hence with translation, i.e.,

(2.1) LDα = DαL, ∀α ∈ ZZd
+, EyL = LEy, ∀y ∈ IRd.

Proof: Since Πϕ is a finite–dimensional polynomial subspace, there exists, for each α ∈ ZZd
+, a

weight sequence w of finite support so that

(2.2) Dα =
∑

β∈ZZd
+

w(β)Eβ on Πϕ.

(For example, with li the Lagrange polynomials for the points 0, . . . , k := max deg Πϕ, we have

p =
∑

0≤β(j)≤k

lβEβp(0)

for all p ∈ Πk(IR) ⊗ · · · ⊗ Πk(IR) ⊇ Πϕ, hence w(β) := Dαlβ(0), all β, would do.) Thus, LE = EL implies
LD = DL. But this finishes the proof since

(2.3) Ey =
∑
α

[[y]]αDα.

Q.E.D.
Remark. The argument shows that any E–invariant polynomial subspace is D–invariant, hence even

translation–invariant, i.e., for any linear subspace P of Π,

(2.4)
∀α ∈ ZZd, EαP ⊆ P ⇒ ∀α ∈ ZZd, DαP ⊆ P

⇒ ∀y ∈ IRd, EyP ⊆ P.

Corollary. Πϕ is D–invariant and translation–invariant.

As a simple consequence, consider the polynomials gα defined in [CJW] by the recurrence

(2.5) gα(x) := xα −
∑

j∈ZZd

ϕ(j)
∑
β 6=α

(
α

β

)
(−j)α−βgβ(x)

and then shown to satisfy

(2.6) xα =
∑

j∈ZZd

gα(j)ϕ(x− j)

in case |α| < m and Π<m ⊂ Πϕ. In other words, gα = L−1()α.
Since (2.6) is, offhand, the reason for our interest in the gα, it would seem more direct to define the gα

by (2.6), i.e., to set

(2.7) gα := L−1()α,
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and then to verify that necessarily (2.5) holds for these gα, as follows:

()α = L−1(ϕ∗′()α) = L−1(()α∗′ϕ) =
∑

j

ϕ(j)
∑
β≤α

L−1()β

(
α

β

)
(−j)α−β

= gα +
∑

j

ϕ(j)
∑
β<α

gβ

(
α

β

)
(−j)α−β

using Proposition 1 and the normalization
∑

j ϕ(j) = 1. This even shows the validity of (2.6) for any α for
which ()α ∈ Πϕ, since then also ()β ∈ Πϕ for all β ≤ α, hence the definition gβ := L−1()β makes sense for
all such β.

This leaves unanswered the question of whether the two definitions, (2.5) and (2.7), are equivalent, at
least for the range of α for which they both make sense. It also raises the question as to the nature of the
polynomials gα defined by (2.5) when ()α /∈ Πϕ.

To answer these, recall that the Appell sequence for a continuous linear functional µ on C(IRd) with
µ(1) = 1 is, by definition, the sequence (gα) determined by the conditions

gα ∈ Πα, µDβgα = δβα.

There is, in fact, exactly one such sequence for given µ since the linear system

µDβ
( ∑

γ≤α

[[ ]]γaγ

)
= δβα

for the power coefficients (aγ) for gα has a unit triangular coefficient matrix. Backsubstitution therefore
provides the formula

gα = [[ ]]α −
∑
β 6=α

µ[[ ]]α−βgβ ,

whose correctness can also be verified directly by induction on α:

µDγgα = µDγ [[ ]]α − ∑
β 6=α µ[[ ]]α−β

µDγgβ

= µ[[ ]]α−γ − µ[[ ]]α−γ = 0

for γ < α, while µDαgα = µDα[[ ]]α = µ(1) = 1. With existence and uniqueness established, facts about the
Appell sequence, such as symmetries which reflect those of µ, or that Dβgα = gα−β, follow immediately.

In our case, µ : f 7→ ϕ∗′f(0), hence, for [[ ]]α ∈ Πϕ,

δβα = µDβgα = ϕ∗′(Dβgα)(0) = Dβ(ϕ∗′gα)(0),

which, together with the fact that ϕ∗′gα ∈ LΠα = Πα, shows that

(2.6′) ϕ∗′gα = [[ ]]α.

The resulting different normalization of gα as compared with (2.5) or (2.7) avoids all those factorials.
Dahmen and Micchelli [DM83] consider the polynomial space

(2.8) {p ∈ Π : p(D)ϕ̂ = 0 on 2πZZd\0},

with ϕ̂ the Fourier transform of ϕ. It seems slightly more convenient to consider instead

Π̃ϕ := {p ∈ Π : p(−iD)ϕ̂ = 0 on 2πZZd\0}.

They prove that any affinely invariant (i.e., translation– and scale–invariant) subspace of (2.8), hence of Π̃ϕ,
is contained in Πϕ. But their proof can be made to show more.
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Proposition 2.2. Πϕ is the largest E–invariant subspace of Π̃ϕ.

Proof: The proof in [DM83] is based on the observation that, by Poisson’s summation formula [
would need some assumptions, else mollify],

ϕ∗′p(x) =
∑
α

ϕ(x− α)p(α) =:
∑
α

ψ(α) =
∑
α

ψ̂(2πα),

while, for any p ∈ Π, the function ψ : y 7→ ϕ(x− y)p(y) has the Fourier transform

ψ̂(η) = e−ixη(p(x− iD)ϕ̂)(−η).

If now p ∈ P , with P an E–invariant (hence D–invariant) subspace of Π̃ϕ, then

ψ̂(2πα) = (p(x− iD)ϕ̂)(2πα) =
∑

β

[[x]]β(Dβp(−iD)ϕ̂)(2πα) = 0

for α 6= 0, hence

(2.9)

ϕ∗′p(x) = (p(x− iD)ϕ̂)(0)

=
∑
α

Dαp(x)[[ − iD]]αϕ̂(0)

= p(x)ϕ̂(0) +
∑
|α|>0

Dαp(x)[[ − iD]]αϕ̂(0),

showing that ϕ∗′p ∈ Π, i.e., p ∈ Πϕ.
On the other hand, if p ∈ Πϕ, then

ϕ∗′p =
∑
α

e−2πiα()(p(· − iD)ϕ̂)(−2πα)

is a polynomial, and this is possible only if

p(· − iD)ϕ̂(2πα) = 0, ∀α 6= 0,

showing that p ∈ Π̃ϕ. Q.E.D
While Πϕ has been shown in [BH] to be dilation–invariant in case ϕ is a box spline, it is not clear

that Πϕ is necessarily dilation–invariant for arbitrary ϕ. For this, I note that a polynomial subspace P is
dilation–invariant if and only if P stratifies, i.e., P =

∑
k P ∩ Π0

k, with

Π0
k := span([[ ]]α)|α|=k.

Hence, span{[[ ]]2,0 + [[ ]]0,1
, [[ ]]1,0

, 1} provides a simple example of an E–invariant polynomial subspace which
is not dilation–invariant.

3. Quasi–interpolants

The space Πϕ is of interest because it characterizes the local approximation order obtainable from S,
or, more precisely, from the ladder (Sh) associated with S. To recall,

Sh := σh(S),

with
σhf : x 7→ f(x/h).
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Further, the local approximation order of S is the largest k for which

dist (f, Sh) = O(hk)

for all smooth f , with the distance measured in some norm, e.g., the max–norm on some bounded domain,
and the support of the approximation to f within h of the support of f .

In [FS], Fix and Strang give a characterization of the local approximation order from the ladder (Sh)
which, in the terms of Section 1, can be phrased thus: it is the largest k for which

(3.1) U := 1 − ϕ∗′ is degree-reducing on Π<k.

Proposition 1.1 shows that we can state this condition more simply as

(3.2) Π<k ⊆ Πϕ.

To be precise, [FS] consider the “controlled” approximation order, which turns out to be the same as the
local approximation order; cf. [BJ].

Fix and Strang use in their proof a quasi–interpolant whose construction relies on Fourier transform
arguments which, in a univariate context, can already be found in Schoenberg’s basic spline paper [S] and
which appear in the proof of Proposition 2.2. This makes it easy to recall their construction here.

Define the quasi–interpolant Q on Π by the rule

Qf := ϕ∗′Ff

with
Ff :=

∑
α

aα(−iD)αf

and aα := [[D]]α(1/ϕ̂)(0) the Taylor coefficients for 1/ϕ̂. Dahmen and Micchelli [DM83] prove that Q
reproduces any affinely invariant subspace of (2.8), but, again, their argument supports a stronger claim,
namely that

(3.3) Q|Πϕ
= 1.

For, if p ∈ Πϕ, then also Fp ∈ Πϕ since Πϕ is D–invariant, hence, by (2.9),

Qp =
∑
α

(DαFp)[[ − iD]]αϕ̂(0)

=
∑
α

∑
β

aβ(−iD)α+βp[[D]]αϕ̂(0)

=
∑

γ

(−iD)γp
∑

α+β=γ

[[D]]β(1/ϕ̂)(0)[[D]]αϕ̂(0)

=
∑

γ

(−iD)γpδ0γ = p.

The construction is finished by noting that (3.3) only depends on the action of F on Πϕ, hence a local
quasi–interpolant on smooth functions which reproduces Πϕ can be obtained in the form

(3.4) Qf := ϕ∗′(λ∗f),

with

(3.5) (λ∗f)(x) := λf(· + x),
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and λ any locally supported linear functional which agrees on Πϕ with p 7→ Fp(0).
The construction idea in [BH] seems more direct. There the locally supported bounded linear functional

(on whatever normed linear space X you may wish to carry out approximation from S ∩X) is constructed
as an extension of the linear functional

(3.6) p 7→ (L−1p)(0).

Since L = ϕ∗′|Πϕ
commutes with E, so does L−1. Thus, for p ∈ Πϕ,

(λ∗p)(j) = (L−1p)(j) = (L−1p(· + j))(0),

hence
Qp = ϕ∗′(L−1p) = p.

In order to obtain a quasi–interpolant of the optimal order k, the extension λ only needs to match (3.6)
on Π<k. For example, one obtains the Strang–Fix quasi–interpolant by expressing the extension as a linear
combination of the linear functionals

(3.7) f 7→ (−iD)αf(0), |α| < k,

i.e., in the form
λf =

∑
|α|<k

aα(−iD)αf(0).

The weights aα are uniquely determined by the requirement that this linear functional match (3.6) on Π<k

since (3.7) is maximally linearly independent over Π<k. In particular,

aα = L−1[[i · ]]α(0) = iαgα(0),

by (2.6’). This shows, incidentally, that

[[D]]α(1/ϕ̂)(0) = iαgα(0).

If point evaluation is continuous onX, then the linear functional λ can be written as a linear combination
of evaluations at the integer points near 0. For, by (1.11),

(L−1)|Π<k
= (1 + U + · · · + Uk−1)|Π<k

,

while, from (1.9),
(Uf)(j) = (c∗f|)(j),

with
c := δ − ϕ|

and δ the unit sequence, i.e., δ(j) = δ0j . Hence

(L−1p)(0) = p[k](0)

with p[k] obtained inductively in the following computation:

(3.8) p[r] :=
{

0 if r = 0;
p| + c∗p[r−1] if r > 0.

This gives
(L−1p)(0) =

∑
j∈ZZd

C(j)p(j) all p ∈ Π<k,
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with the weight sequence C of finite support since c has finite support.
This construction was arrived at by different means by Chui and Diamond [CD], who added the following

very useful observation. If ϕ is symmetric, then U reduces the degree by at least 2, since (1.7) can be written
in the form

(1.7′) for f ∈ Πϕ, ϕ∗′f = f
∑

j∈ZZd

ϕ(j) +
∑

j∈ZZd

(f(· + j) − 2f + f(· − j))ϕ(j)/2.

This implies that, on Πϕ ∩ Πk, Ubk/2c already vanishes, hence only half the iteration (3.8) is necessary in
this case.

Even for a symmetric ϕ, the support of the resulting λ may be far from minimal. Since we are only
interested in extending a linear functional from Πϕ, a support consisting of (dimΠϕ) points is sufficient.
These points can be chosen from ZZd since ZZd is total for Π. It would be interesting to find out whether
they could be chosen as neighbors.

Such questions of minimal support for λ have been answered quite elegantly by Dahmen and Micchelli
in case ϕ is a box spline. They find in [DM85] that the (dimΠϕ) integer points in the (right–continuous)
support of ϕ are linearly independent over Πϕ, and so conclude the existence of an extension from Πϕ

involving just these (dimΠϕ) point evaluations.
I note that the quasi–interpolant construction in [BJ] takes the opposite tack. Instead of constructing

an appropriate λ as a linear combination of certain point evaluations, a compactly supported function ψ ∈ S
is constructed there so that ψ∗′ already reproduces Πϕ.
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