In ODEs, it is important to understand the solutions to the first-order ODE

$$
D x(t)=A x(t), \quad x(0)=c,
$$

in which A is a linear map on some finite-dimensional vector space, V, and, correspondingly, $x: \mathbb{R} \rightarrow V$ is a V-valued function to be determined.

The formal solution is

$$
x(t)=\exp (t A) c,
$$

with

$$
\exp (B):=\sum_{j=0}^{\infty} B^{j} / j!
$$

well-defined for every linear map B on V, but such a formal expression doesn't give much insight.

Let $\oplus_{j} V_{j}$ be a finest A-invariant direct sum decomposition for V, and let A_{j} be the restriction of A to V_{j}. Assuming the underlying field to be algebraically closed, there is some λ_{j} in the spectrum of A_{j}, hence $B:=A-\lambda_{j}$ has a nontrivial kernel, while the sequence (ker $B^{r}: r=0,1, \ldots$) is increasing, hence must become stationary. If q is the smallest natural number for which $\operatorname{ker} B^{q}=\operatorname{ker} B^{q+1}$, then $\operatorname{ran} B^{q} \cap \operatorname{ker} B^{q}$ is trivial, hence V_{j} is the direct sum of $\operatorname{ker} B^{q}$ and $\operatorname{ran} B^{q}$ and, the direct sum decomposition being finest, it follows that $\operatorname{ran} B^{q}$ must be trivial, i.e., B is nilpotent. Thus, on $V_{j}, A=\lambda_{j}+B$, the sum of a constant (hence diagonable trivially and also commuting with any linear map on V_{j}) and a nilpotent. Since the direct sum decomposition is A-invariant, it follows that $A=D+N$, with D diagonable, and N nilpotent, and $D N=N D$.

It follows that, on V_{j} and with $N_{j}:=A_{j}-\lambda_{j}$ nilpotent of order q_{j},

$$
\exp (t A)=\exp \left(t \lambda_{j}+t N_{j}\right)=\exp \left(t \lambda_{j}\right) \exp \left(t N_{j}\right)=\exp \left(t \lambda_{j}\right) \sum_{i<q_{j}}\left(t N_{j}\right)^{i} / i!
$$

In particular, if $q_{j}=1$, then $\exp (t A)$ reduces on V_{j} to multiplication by the number $\exp \left(t \lambda_{j}\right)$.

To this, Mike Crandall has the following to say.
Let p be any monic polynomial that annihilates A and factor it, i.e.,

$$
p=: \prod_{j=1}^{m}\left(\cdot-\lambda_{j}\right)^{m_{j}}=: p_{1} \cdots p_{m}
$$

(If p is of minimal degree, then the spectrum of A is necessarily the set $\left\{\lambda_{j}: j=1: m\right\}$, but that matters only when we are looking for m and the m_{j} here to be as small as possible). Define

$$
V_{j}:=\operatorname{ker} p_{j}(A), \quad j=1: m,
$$

and

$$
\ell_{i}:=\prod_{j \neq i} p_{j}, \quad i=1: m
$$

Since the ℓ_{i} have no zeros in common, any nontrivial polynomial of minimal degree in

$$
\mathcal{I}\left(\ell_{i}: i=1: m\right):=\sum_{i} \ell_{i} \Pi
$$

must be of degree 0 (since, otherwise, by the Euclidean algorithm, there would be a polynomial of positive degree dividing each of the ℓ_{i}, hence its zeros (sure to exist since we are over \mathbb{C}) would be common to all the ℓ_{i}). In particular,

$$
1=\sum_{i} \ell_{i} q_{i}
$$

for some $q_{i} \in \Pi$.
It follows that

$$
1=P_{1}+\cdots+P_{m}
$$

with

$$
P_{i}:=\ell_{i}(A) q_{i}(A), \quad i=1: m
$$

linear maps that commute with $r(A)$ for any $r \in \Pi$. Further, P_{i} vanishes on each $V_{j}=$ $\operatorname{ker} p_{j}(A)$ for $j \neq i$ (since ℓ_{i} contains the factor p_{j} for each such j), hence $P_{i}=1$ on V_{i}. On the other hand, $\operatorname{ran} P_{i} \subset V_{i}$ since

$$
p_{i}(A) P_{i}=p(A) q_{i}(A)=0
$$

Consequently, $\operatorname{ran} P_{i}=V_{i}$ and $P_{i}=1$ on its range, hence P_{i} is a linear projector, onto V_{i}, all i, and so,

$$
P_{i} P_{j}=\delta_{i j}
$$

It follows that

$$
V=\oplus_{i} V_{i}
$$

Further,

$$
N:=A-\sum_{i} \lambda_{i} P_{i}=\sum_{i}\left(A-\lambda_{i}\right) P_{i}
$$

is nilpotent since $P_{i} P_{j}=0$ for $i \neq j$, hence

$$
N^{q}=\sum_{i}\left(A-\lambda_{i}\right)^{q} P_{i}=0
$$

for $q \geq \max _{i} m_{i}$.

