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On Polynomial Ideals of Finite Codimension with Applications

to Box Spline Theory

Carl de Boor & Amos Ron

1. Introduction

In this note, we examine some specific properties of multivariate polynomial ideals of

finite codimension (i.e., of transcendental dimension 0). We are interested in this topic

because such ideals play a fundamental role in the theory of box splines and exponential

box splines. In addition, the results of this investigation have applications to multivariate

polynomial interpolation which are presented in [4], and, although the discussion of poly-

nomial ideals here was stimulated by problems arise in approximation theory, some of the

results may be found to be of independent interest.

In our discussion, the interplay between a polynomial ideal I and its homogeneous

counterpart I↑ will be important. For its definition, we denote by p↑ the leading term (or

leading form) of the polynomial p, i.e., for p 6= 0, the (unique) homogeneous polynomial

for which

deg(p − p↑) < deg p.

For completeness, we take the zero polynomial to be its own leading term. With this, we

define

I↑ := span{p↑ : p ∈ I}
and verify that I↑ is again an ideal.

An ideal I is of finite codimension if its codimension in the space Π of all multivari-

ate polynomials i.e., the dimension (equivalently the length) of the quotient space Π/I,

is finite. The questions we are interested in concern the relationship between an ideal I

and the associated I↑, or between a homogeneous ideal I and a lower order perturbation

of it, i.e., an ideal generated by a set of polynomials F whose leading terms F↑ generate

I. Special emphasis is given to the kernels associated with these ideals. By definition, the

kernel of an ideal I is the set

{f ∈ D′(IRs) : p(D)f = 0, ∀p ∈ I}, (1.1)
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where D′(IRs) is the space of s-dimensional complex-valued distributions and p(D) is the

linear differential operator with constant coefficients induced by p. Kernels associated with

ideals of finite codimension are finite-dimensional exponential spaces, i.e., are spanned by

products of exponentials with polynomials.

The paper is laid out as follows. In section 2 we introduce the map H 7→ H↓ which

assigns to every finite-dimensional space of analytic functions its “limit at the origin” H↓,

a scale-invariant polynomial space of the same dimension as H. Several aspects of this map

and its range, that are needed later in the derivation of the properties of ideals’ kernels,

are reviewed. The (essentially known) background material on ideals of finite codimension

is collected in section 3, where the varieties, multiplicity spaces, primary decompositions

and the kernels of such ideals are examined. Results concerning the connection between

an ideal I and I↑ or a lower order perturbation of I are presented in section 4. These

results are used in section 5 in the examination of some aspects of box spline theory,

while the same approach is exploited in the last section in the derivation of extensions and

generalizations of various box spline results.

2. The “limit at the origin” of analytic function spaces

In this section, we consider finite-dimensional subspaces of the space

A0

of all (germs of) functions analytic at the origin. (The power series space would do here

as well). We single out the least term (or, the initial form, cf. [12;Chap. VII]) f↓ (read

‘f least’) of f ∈ A0 and mean by this

f↓ := Tjf,

with j the smallest integer for which Tjf 6= 0, with Tjf the Taylor polynomial of degree

< j for f at the origin, i.e.,

Tjf :=
∑
|α|<j

[[]]αDαf(0), (2.1)
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and with [[]]α : x 7→ xα/α! the normalized power function. Consequently, with j := deg f↓,

f↓ = lim
t→0

f(t·)/tj , (2.2)

(say, in the pointwise sense), as follows readily from L’Hôpital’s rule.

We associate with a finite-dimensional subspace H of A0 the polynomial space H↓

defined by

H↓ = span{f↓ : f ∈ H}. (2.3)

Note that H↓ is scale-invariant since it is spanned by homogeneous polynomials. The

space H↓ has been considered in [4], and in what follows we recall from there various

properties of this space of use in our subsequent discussion. For details we refer to [4],

where an algorithm for the construction of H↓ from H is presented, the continuity of the

map H 7→ H↓ is examined, and some optimality properties of H↓ are established. The

space H to which we intend to apply the results here is the kernel of a polynomial ideal,

i.e., a D-invariant (=closed under differentiation) space; yet D-invariance plays no role in

the results of this section, and therefore is not assumed.

Let H be a finite-dimensional subspace of A0. We observe that, for f ∈ H, deg f↓ = j

if and only if f ∈ (kerH Tj)\(kerH Tj+1), i.e., if and only if f↓ ∈ Tj+1(kerH Tj)\0, with

kerH Tj := ker(Tj|H). (2.4)

Since

dimTj+1(kerH Tj) = dimkerH Tj − dimkerH Tj+1,

we conclude the following.

(2.5) Proposition. H↓ is a scale-invariant space of polynomials of the same dimension

as H and admits the decomposition

H↓ =
∞∑

j=0

Tj+1(kerH Tj) =
∞⊕

j=0

Tj+1(kerH Tj).

Also, (H↓)↓ = H↓.

Next, we consider the effect of multiplying all the elements of H by some f ∈ A0.

Since (fg)↓ = f↓g↓, we deduce the following.
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(2.6) Proposition. For any f ∈ A0 satisfying f(0) 6= 0,

{fg : g ∈ H}↓ = H↓.

The interaction of differentiation with the map H 7→ H↓ is determined by the fact

that, for any p ∈ Π and any f ∈ A0,

p(D)f = p↑(D)f↓ + terms of higher degree. (2.7)

This implies that (p(D)f)↓ = p↑(D)f↓ in case p↑(D)f↓ 6= 0 and so proves the following.

(2.8) Proposition. For every p ∈ Π,

p↑(D)H↓ ⊂ (p(D)H)↓. (2.9)

Of particular importance for subsequent applications is the following

(2.10)Corollary. If p(D) annihilates H, then p↑(D) annihilates H↓.

(2.8)Proposition also leads to

(2.11) Corollary. If H is D-invariant, so is H↓.

Proof: For every homogeneous polynomial p, we have p(D)(H↓) ⊂ (p(D)H)↓ by (2.8)Propo-

sition, while (p(D)H)↓ ⊂ H↓ since p(D)H ⊂ H by assumption. ♠

Next, we show that the dual of H can be represented by H↓. For this purpose, recall

that a space Λ of linear functionals is said to be total for H if the condition λf = 0 ∀λ ∈ Λ

implies f 6∈ H\0. This implies that every µ ∈ H ′ can be represented by some λ ∈ Λ. If Λ

is minimally total over H, then this representation is unique, i.e., H ′ is represented by Λ

(cf. [4] for more details).

We are interested in using linear functionals of the form

p∗ : f 7→ (
p(D)f

)
(0) =

∑
α

Dαp(0)Dαf(0)/α! (2.12)

with p ∈ Π. These are continuous linear functionals on A0 (when equipped with the topol-

ogy of pointwise convergence of the coefficients, hence a fortiori with respect to Krull’s

topology) and even on A := the space of all power series (with Dα being formal differen-

tiation). The map p 7→ p∗ is linear and one-one, hence provides a linear embedding of Π

in the dual of A0. In fact, Π (in this identification) is the continuous dual of A (hence of

its dense subspace A0).
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(2.13) Theorem. For any finite-dimensional linear subspace H of A0, the linear space

H
∗
↓ is minimally total for H.

Proof: For any f ∈ H\0, p := f↓ ∈ H↓ and p∗f = p∗p > 0. This implies that the only

f ∈ H with p∗f = 0 for all p ∈ H↓ is f = 0, i.e., H
∗
↓ is total for H. On the other hand,

since dimH
∗
↓ = dimH↓ = dimH, no proper subspace of H↓ could be total for H. ♠

The fact that H
∗
↓ can be used to represent the dual of H is of use in the determination

of the local approximation order of H (at 0). By definition, the local approximation

order of H is the largest integer d for which, for every f ∈ C∞(IRs), there exists h ∈ H

so that

(f − h)(x) = O(‖x‖d) as x → 0.

(2.14) Corollary. The local approximation order at 0 of a finite-dimensional subspace

H of A0 equals the largest integer d for which Π<d ⊂ H↓.

Proof: Let d be the local approximation order from H.

Having (f − h)(x) = O(‖x‖d) as x → 0 is the same as having deg(f − h)↓ ≥ d. If,

in particular, f ∈ Π<d, then this can only happen if h↓ = f↓. Since Π<d = (Π<d)↓, this

shows that Π<d ⊂ H↓.

For the converse, let TH be the projector on C∞(IRs) onto H with respect to H
∗
↓ (i.e.,

such that λf = λTHf, ∀λ ∈ H
∗
↓). Since we have λ(f − THf) = 0 for every f ∈ C∞(IRs)

and λ ∈ H
∗
↓, the assumption Π<k ⊂ H↓ implies (f −THf)(x) = O(‖x‖k) and hence k ≤ d.

♠

3. Ideals of finite codimension

This section is devoted to some background material on polynomial ideals of finite codi-

mension. Most of the results here are known (cf. e.g., [8; Chap. IV,§ 2, esp. pp.176ff] or

[9;Thm. 89]) and the proofs are provided primarily for the sake of completeness.
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Let I be an ideal in the ring Π of polynomials in s variables over C. The codimension

of I is the dimension of the quotient space Π/I. Equivalently, it is the dimension of its

annihilator, i.e., the dimension of {λ ∈ Π′ : λf = 0, ∀f ∈ I}. It is therefore also the

dimension of the orthogonal complement of I in the space A of all formal power series with

respect to the pairing

A × Π → C : (f, p) 7→ f∗p := p∗f (= p(D)f(0)), (3.1)

using the fact that A can be identified with Π′.

An important subset of the annihilator of any ideal I is provided by the variety of I,

i.e., the pointset

VI := {θ ∈ Cs : p(θ) = 0, ∀p ∈ I}. (3.2)

For, I ⊆ ⋂
θ∈VI

ker[θ], with [θ] : p 7→ p(θ) point-evaluation at θ, hence

codimI ≥ #VI , (3.3)

using the fact that point-evaluations at any finite set of points are linearly independent

over Π.

We now use the primary decomposition of an ideal to show that, with the appropriate

notion of ‘multiplicity’, these point-evaluations span the annihilator of I in case I has finite

codimension. Precisely, we show that

I =
⋂

θ∈VI ,p∈Pθ

ker[θ]p(D),

with Pθ := {p ∈ Π : p(D)f(θ) = 0,∀f ∈ I}.
We begin with the following observation.

(3.4) Proposition. An ideal with finite variety is primary if and only if its variety consists

of a single point. Furthermore, if VI = {θ}, then the shifted ideal EθI := {p(·+θ) : p ∈ I}
contains all monomials of sufficiently high degree.
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Proof: If #VI > 1, then one can find two polynomials p and q which do not vanish on

VI while their product does (i.e., this variety is reducible). By Hilbert’s Nullstellensatz

a power of pq lies in I while on the other hand no power of p or q lies in I, hence I is

not primary. The converse is obtained by a similar argument since a one-point variety is

trivially irreducible.

To prove the second part of the proposition, we may assume without loss that θ =

0. Thus the Nullstellensatz implies that I contains powers of each of the coordinate

polynomials, and these powers generate all monomials of sufficiently high degree. ♠
With each θ ∈ VI , we associate the polynomial space

Pθ := PI,θ := {p ∈ Π : p∗Eθf = p(D)f(θ) = 0, ∀f ∈ I}, (3.5)

where Eθ is the shift operator

Eθf = f(· + θ). (3.6)

The space Pθ, as well as its dimension, are usually referred to as the multiplicity of θ. In

words, the multiplicity (space) of θ is the orthogonal complement in Π of EθI with respect

to the pairing (3.1). Therefore

I ⊂
⋂

θ∈VI ,p∈Pθ

ker p∗Eθ. (3.7)

Since I is an ideal, Pθ is D-invariant. Indeed, using the identity

p(D)(fg) =
∑

β

([[D]]βp)(D)f [[D]]βg (3.8)

(which follows directly from Leibniz’ Formula [[D]]α(fg) =
∑

β+γ=α [[D]]βf [[D]]γg), one

finds that, for f ∈ I and g = (· − θ)α, fg ∈ I and [[D]]βg(θ) = δβ,α, hence, for any p ∈ Pθ,

(Dαp)f(θ) = p(D)(fg)(θ) = 0.

The variety of I together with the multiplicity spaces characterizes the ideal. We first

prove this claim with respect to a primary ideal:
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(3.9) Lemma. If P is a finite-dimensional D-invariant polynomial space, then

IP := IP,θ :=
⋂
q∈P

ker q∗Eθ (3.10)

is the unique ideal with variety {θ} and multiplicity P . Further,

codimIP = dimP. (3.11)

Proof: Since IP is defined as the orthogonal complement of the finite dimensional space

{q∗Eθ : q ∈ P} of linear functionals, (3.11) holds. For the rest, assume without loss

that θ = 0 (which can always be achieved by a shift). First, it follows from (3.8) and

the D-invariance of P that IP is an ideal. Also, since Π0 ⊂ P (by D-invariance and

nontriviality of P ), all polynomials in IP vanish at θ = 0, while, from the fact that P is

finite-dimensional, it follows that P ⊂ Πk for some k, hence IP contains all monomials

()α with |α| > k, and therefore 0 is the only common zero of IP . Now, we know that

IP ∩ Πk is the orthogonal complement of P in Πk (with respect to the pairing (3.1)) and

vice versa, which means that the multiplicity space of IP at 0 lies in P , while (3.10) ensures

the converse inclusion. Hence P is the multiplicity of IP ’s sole zero.

If J is an ideal with variety {0}, then by (3.4)Proposition J contains all monomials

of sufficiently high degree k. This means that f ∈ J if and only if Tk+1f ∈ J . Thus J

as well as its multiplicity space (at 0) are uniquely determined by J ∩ Πk. Reversing this

last argument, we see that the multiplicity space of J identifies J ∩ Πk and hence J in a

unique way. ♠
This last lemma is used now in the description of the primary decomposition of an

ideal with finite variety:

(3.12) Proposition. If I is an ideal with finite variety, then the primary decomposition

of I takes the form

I =
⋂

θ∈VI

Iθ, (3.13)

where Iθ is the unique primary ideal with variety {θ} and the (finite-dimensional) multi-

plicity space PI,θ.
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Proof: From (3.4)Proposition we know that the (unique irredundant) primary decom-

position of I has the form

I =
⋂

θ∈VI

Jθ (3.14)

with VJθ
= {θ}, all θ. Hence, to finish the proof of (3.13), it is, by (3.9)Lemma, sufficient

to show that the multiplicity

Qθ := PJθ,θ = {q ∈ Π : q(D)f(θ) = 0, ∀f ∈ Jθ}

for the sole zero θ of Jθ is finite-dimensional and equals PI,θ. The fact that Qθ is finite-

dimensional follows from (3.4)Proposition, since Jθ has a single-point variety. To prove

that also Qθ = PI,θ =: Pθ, we note that Qθ is contained in Pθ (since I is contained in Jθ).

If now

Qθ 6= Pθ,

then there would be a smallest j so that Qθ ∩ Πj 6= Pθ ∩ Πj , thus providing us with a

p ∈ Pθ\Qθ for which Dαp ∈ Qθ for all α 6= 0. There would, therefore, exist f ∈ Jθ for

which

p(D)f(θ) 6= 0. (3.15)

Yet, since the other primary ideals in (3.14) do not have θ in their variety, we could now

find g so that fg ∈ ∏
VI

Jτ ⊂ ∩VI
Jτ = I and g(θ) 6= 0. But now, using (3.8) one more

time,

0 = p(D)(fg)(θ) = p(D)f(θ)g(θ),

hence p(D)f(θ) = 0, contradicting (3.15). ♠
The last proposition is equivalent to the statement

Π/I =
⊕
θ∈VI

Π/Iθ,

which is no more than the fact that each Artinian ring is the sum of primary rings (cf.

[12;Thm. 3, p.205]).

Note that (3.9)Lemma implies that, for each Iθ in (3.13),

Iθ =
⋂

q∈PI,θ

ker q∗Eθ,
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and hence (3.12)Proposition yields that

I =
⋂

θ∈VI ,q∈Pθ

ker q∗Eθ, (3.16)

which shows in particular that I is of finite codimension. We have thus proved

(3.17) Corollary. A polynomial ideal I has a finite variety if and only if it has finite

codimension. Also

codimI ≤
∑
θ∈VI

dimPI,θ =
∑
θ∈VI

codimIθ.

Equation (3.16) is a special case of the following result [10]: if I is a polynomial ideal

and Θ ⊂ VI intersects each of the varieties of the primary ideals in a primary decomposition

of I, then I =
⋂

θ∈Θ,q∈Pθ
ker q∗Eθ.

Each ideal I induces a set

I(D) := {p(D) : p ∈ Π}

of differential operators with constant coefficients. The kernel of I is the set

{f ∈ D′(IRs) : p(D)f = 0, ∀p ∈ I}

of all distributions that are being annihilated by I(D). Note that the kernel is D-invariant.

As we show later, the finite codimension of I implies that its kernel lies in A0. We

therefore find it more convenient to focus now on the space

I⊥ := {f ∈ A0 : p(D)f = 0, ∀p ∈ I}, (3.18)

i.e, on the intersection of the kernel with A0.

Since, for any f ∈ A0, p(D)f = 0 if and only if (()αp(D))f(0) = 0 for all α, and since

I = {()αp : α ∈ ZZs, p ∈ I}, we conclude that (with f∗ as in (3.1))

I⊥ = {f ∈ A0 : f∗p = 0,∀p ∈ I}.

This, together with the identity

(q(D)p)(θ) = q∗Eθp = p∗(eθq) = p(D)(eθq)(0) (3.19)

valid for any polynomials q and p, implies the following
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(3.20) Proposition. f ∈ A0 lies in I⊥ if and only if f∗ ∈ Π′ annihilates I. In particular,

the exponential eθq lies in I⊥ if and only if the linear functional q∗Eθ annihilates I.

(3.21) Corollary. An ideal I has a finite variety if and only if I⊥ is finite-dimensional.

In this case (with Iθ as in (3.13))

dim I⊥ = codimI =
∑
θ∈VI

codimIθ, (3.22)

I⊥ =
⊕
θ∈VI

eθPI,θ, (3.23)

and

I = (I⊥)⊥ := {p ∈ Π : p(D)f = 0 ∀f ∈ I⊥}. (3.24)

Proof: Since A0 is embedded in Π′, (3.20)Proposition implies that there is an isomor-

phism between I⊥ and the orthogonal complement of I, a space which was identified in

(3.16). The dimension of this latter space matches the codimension of I, hence indeed

dim I⊥ = codimI. Since exponentials of different frequencies are linearly independent, we

conclude that (3.23) holds, hence dim I⊥ =
∑

θ∈VI
dim Pθ, and the rest of (3.22) follows

from (3.9)Lemma.

For the last equality, let p ∈ (I⊥)⊥. Then, by the above arguments (when applied to

the ideal pΠ rather than I) and (3.20)Proposition, the ideal pΠ is being annihilated by all

the functionals in the orthogonal complement of I, thus pΠ ⊂ I. ♠

The question whether the exponentials in the kernel of I are dense in it is a fundamen-

tal one in the theory of linear differential operators with constant coefficients (cf. [11]). In

the special case of interest here, viz. when I has a finite variety, the kernel contains only

exponentials, hence coincides with I⊥:

(3.25) Corollary. The kernel of an ideal of finite variety is a finite-dimensional exponen-

tial space admitting the direct sum decomposition (3.23).
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Proof: let I be the ideal in question. By (3.23) we only need to prove that the kernel K

of I lies in A0 (and hence coincides with I⊥). Furthermore, since every finite-dimensional

D-invariant space of distributions is an exponential space (cf. [3; Th. 1.3]), it is sufficient

to prove that K is finite-dimensional. This will be established the moment we show that

dim(K ∩ C∞(IRs)) < ∞, since by [3; Lem. 3.2], it ensures that K ⊂ C∞(IRs).

Since VI is finite, we can choose, for each j, a polynomial which is constant in all

variables but the jth and which vanishes on VI . By the Nullstellensatz, some power pj of

this polynomial must lie in I, and hence K lies in the kernel of pj(D), a constant coefficient

differential operator involving only differentiation in the jth variable. It follows that every

element of K ∩ C∞(IRs) is in the span of the exponentials ()αeθ, where θj is a root of pj

of multiplicity > αj , all j. In particular, dim(K ∩ C∞(IRs)) < ∞. ♠
Because of the above result, we do not distinguish in the sequel between the kernel

of an ideal of finite codimension I and I⊥ and use the same notation and terminology for

both.

We conclude this section with another corollary of the results here of use subsequently:

(3.26) Corollary. Let G be a generating set for the ideal J , let θ be some zero of J , and

let I be the ideal generated by {ghg : g ∈ G}, with each hg nonzero at θ. Then PJ,θ = PI,θ.

In particular, J = Iθ (cf. (3.13)) in case θ is the only zero of J .

Proof: Since I ⊂ J , we only need to show that PI,θ ⊂ PJ,θ. For this, let p ∈ PI,θ. By

D-invariance, Dβp ∈ PI,θ for all β, while, for each g, 1/hg is analytic near θ. Therefore,

by (3.8), (with θ = 0 for notational convenience)

p∗g = p∗((ghg)/hg) =
∑

β

(Dβp)∗(ghg) ([[D]]β)∗(1/hg) = 0 ∀g ∈ G.

♠

4. Ideals with finite codimension: perturbation

We call the ideal J in Π a perturbation of the ideal I in case F↑ = G↑ for some generating

sets F and G of I and J , respectively.
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Here we are mainly interested in two types of perturbations:

(a) I is an arbitrary ideal and the perturbed ideal is the corresponding homogeneous ideal

I↑ = span{p↑ : p ∈ I}.
(b) I is a homogeneous ideal, and the perturbed ideal J is generated by a perturbation

of a (finite) set of homogeneous generators for I.

Here and elsewhere, a homogeneous ideal is an ideal admitting a homogeneous set

of generators. Note that I is homogeneous if and only if it stratifies (or is graded) i.e.,

is the sum of its homogeneous components. Also, an ideal is homogeneous if and only if it

is scale-invariant if and only if its kernel is scale-invariant.

The first result here characterizes homogeneous ideals of finite codimension:

(4.1) Proposition. An ideal I of finite codimension is homogeneous if and only if its

kernel I⊥ is a finite-dimensional scale-invariant polynomial space.

Proof: Since we assume that I is of finite codimension, (3.21)Corollary yields that its

kernel is a finite-dimensional exponential space. Since the only exponentials that can lie

in a finite-dimensional scale-invariant space are polynomials, our claim follows. ♠
Employing (3.21)Corollary, we conclude

(4.2) Corollary. An ideal I of finite codimension is homogeneous if and only if 0 is its

only zero and the corresponding multiplicity space is scale-invariant.

In particular, every homogeneous ideal of finite codimension is primary.

We turn now to the main part of the discussion here.

(4.3) Theorem. Let I be an ideal of finite codimension. Then

(a) codimI = codimI↑;

(b) I↑⊥ = (I⊥)↓.

Proof: By (2.5)Proposition and (3.22)

dim(I⊥)↓ = dim I⊥ = codimI, (4.4)

while

dim I↑⊥ = codimI↑, (4.5)
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hence (b) implies (a). To prove (b), we first show that (I⊥)↓ ⊂ (I↑)⊥. For this, it is

sufficient to show that p(D)(I⊥)↓ = {0} for every homogeneous p ∈ I↑. But, for such p,

there exists q ∈ I with q↑ = p, while by definition of I⊥, q(D) annihilates I⊥ and hence

by (2.10)Corollary (when applied to H = I⊥) p(D) = q↑(D) annihilates (I⊥)↓.

To complete the proof of (b), it suffices to show that dim(I⊥)↓ ≥ dim I↑⊥, which, in

view of (4.4), is equivalent to

codimI ≥ dim I↑⊥. (4.6)

To prove (4.6), let p ∈ I\0. Then p↑ ∈ I↑ and therefore p↑ annihilates I↑⊥. Since p↑ does

not annihilate p↑, we conclude that p↑ 6∈ I↑⊥, and hence neither is p. We have shown that

I ∩ I↑⊥ = {0}, and (4.6) thus follows. ♠
We cannot expect to maintain the equality codimI = codimJ for an arbitrary lower

order perturbation J of I (see the Example below). Still, we have:

(4.7) Theorem. Let I be a homogeneous ideal of finite codimension. Let J be an ideal

obtained by perturbing a set of homogeneous generators of I. Then

codimI ≥ codimJ ; (4.8)

J⊥↓ ⊂ I⊥. (4.9)

Proof: Let G be the finite set of (homogeneous) generators of I, whose perturbation F

generates J . Then G = F↑ ⊂ J↑, hence

I ⊂ J↑, (4.10)

which yields that

codimI ≥ codimJ↑, (4.11)

and

J↑⊥ ⊂ I⊥. (4.12)

Application of (4.3)Theorem (a) (resp. (b)) to (4.11) (resp. (4.12)) thus yields (4.8) (resp.

(4.9)). ♠
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It is known that equality holds in (4.8) and (4.9) (for small perturbations) in case

I is a homogeneous ideal generated by s generators (cf. [1; Chap. 5]). For an arbitrary

homogeneous ideal, though, the inequality (4.8) (or, equivalently, the inclusion (4.9)) is

strict. Here is an illustration.

(4.13) Example. Let I be the bivariate ideal generated by the monomials ()2,0, ()0,2, ()1,1.

Then codimI = 3. Yet if we perturb the given generators by adding a non-zero constant

to each of them, the resulting perturbed ideal will generically have codimension 0; in any

case, it will always have codimension < 3.

The map I 7→ I↑ sets up an equivalence relation between ideals. (4.3)Theorem shows

this to be the same equivalence relation as the one set up by the map I 7→ I⊥↓. Each

resulting equivalence class contains exactly one homogeneous ideal. If this ideal is trivial

(i.e., I = {0} or I = Π), then there are no other elements in the equivalence class. At

this moment we do not know whether there exist other isolated homogeneous ideals (in

the sense that they comprise their entire equivalence class). A closely related question is

whether the equivalence class of a given homogeneous ideal contains an ideal with only

simple zeros (whose kernel therefore is spanned by pure exponentials). In this connection

we note the following

(4.14) Proposition. Let I1, I2 be two ideals with only simple zeros. If the zeros of one

can be obtained from the zeros of the other by translations and dilations, then the ideals

are equivalent.

Proof: First, let us assume that VI1 is obtained from VI2 by a translation by a. Set

Hj := Ij⊥, j = 1, 2. From (3.23) we infer that each Hj is spanned by pure exponentials

and that H1 = eaH2. Applying (2.6)Proposition, we conclude that

H1↓ = H2↓,

and (4.3)Theorem thus yields the desired result. The proof for the dilation case is the

same, with (2.2) replacing (2.6)Proposition. ♠
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The same results hold also for the non-simple case provided that the multiplicity

spaces together with the variety of one of the ideals are obtained from the other by a

translation or dilation. Note also that, due to their D-invariance, a translation will not

change the multiplicity spaces of an ideal.

5. Applications to box splines

As mentioned before, our discussion of the correspondence between ideals and homogeneous

ideals of finite codimension was primarily stimulated by the theory of box splines and aimed

at getting a better insight into that theory. Indeed, the results of the previous sections

do provide painless proofs for some of the highlights of box spline theory, as well as invite

natural extensions of them.

Box splines will not be defined here or elsewhere in this paper. The object of our

investigation here is an ideal and its corresponding kernel which are associated with a box

spline. To define these ideals, let Γ be a finite multiset of linear polynomials. We use the

notation

γ(x) =: xγ · x − λγ (5.1)

to indicate the linear and constant terms of γ ∈ Γ and assume that, for all γ ∈ Γ,

xγ ∈ IRs\0, λγ ∈ C, (5.2)

and that

span{xγ}γ∈Γ = IRs;

in particular, #Γ ≥ s.

With

xK := {xγ : γ ∈ K}

for K ⊂ Γ, we define the set of “bases” in Γ by

IB(Γ) := {B ⊂ Γ : xB is a basis for IRs}. (5.3)
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Each B ∈ IB(Γ) is associated with the unique common zero θB ∈ Cs of the polynomials in

B. This gives rise to the map

b : IB(Γ) → C : B 7→ θB, (5.4)

whose image

Θ(Γ) := ran b

strongly depends on the sequence

λΓ := (λγ)γ∈Γ

of constant terms, while the cardinality of this map’s domain does not. Every choice of λΓ

provides a decomposition

IB(Γ) =
⋃̇

θ∈Θ(Γ)
IB(Γθ) (5.5)

of that domain, with

Γθ := {γ ∈ Γ : γ(θ) = 0}. (5.6)

Note that for each B ∈ IB(Γθ) we have θB = θ and hence

Θ(Γθ) = {θ}, (5.7)

which shows that

IB(Γθ) = b−1(θ).

In general we have

#Θ(Γ) ≤ #IB(Γ);

yet (for fixed xΓ and variable λΓ) the map b is generically 1-1, hence generically

#Θ(Γ) = #IB(Γ). (5.8)

For reasons to be discussed soon, we refer to this generic situation as “the simple case”.

We now construct an ideal IΓ with variety Θ(Γ) and multiplicity at each θ equal to

#b−1(θ). For this let

IK(Γ) := {K ⊂ Γ : K ∩ B 6= ∅, ∀B ∈ IB(Γ)}. (5.9)
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Setting

pK :=
∏
γ∈K

γ (5.10)

for K ⊂ Γ, we define IΓ to be the ideal generated by

{pK : K ∈ IK(Γ)}. (5.11)

Our first aim is to analyze the variety of IΓ: given θ ∈ Θ(Γ), the set Γθ contains

at least one “basis” and thus has a non-empty intersection with each K ∈ IK(Γ); hence

θ ∈ VIΓ . Conversely, if θ 6∈ Θ(Γ), then Γθ contains no basis, hence Γ\Γθ intersects every

basis and thus lies in IK(Γ), while on the other hand pΓ\Γθ
(θ) 6= 0; hence θ 6∈ VIΓ . We

conclude that

VIΓ = Θ(Γ). (5.12)

More information about IΓ is recorded in the following theorem.

(5.13) Theorem. The ideal IΓ is of finite codimension. Its primary decomposition takes

the form

IΓ =
⋂

θ∈Θ(Γ)

IΓθ
. (5.14)

Furthermore, if for some θ ∈ VI , #Γθ = s, then θ is a simple zero of the variety.

Proof: Combining (5.12) with the fact that Θ(Γ) is a finite set, we see that VIΓ is finite.

Application of (3.17)Corollary thus yields that IΓ is indeed of finite codimension.

¿From the fact that VIΓθ
= Θ(Γθ) = {θ}, we obtain that the right hand of (5.14) is

indeed a primary decomposition. Now, for K ∈ IK(Γ) we have pK\(K∩Γθ)(θ) 6= 0, while

{pK∩Γθ
: K ∈ IK(Γ)} = {pK : K ∈ IK(Γθ)}. Hence (3.26) (with I replaced by IΓθ

,

G = {pK∩Γθ
: K ∈ IK(Γ)} and hpK∩Γθ

= pK\K∩Γθ
) together with (3.12)Proposition shows

that (5.14) is indeed the primary decomposition of IΓ.

We prove the last statement only for θ = 0; the general case is obtained by shifting

the ideal. Assuming that θ = 0 ∈ Θ(Γ), we suppose that #Γθ = s. This means that

Γθ comprises the unique element of IB(Γθ) and hence each of the s homogeneous linearly

independent linear polynomials in Γθ lies in IΓθ
. It follows that the ideal IΓθ

contains all

homogeneous linear polynomials, hence the zero at the origin (of IΓθ
, and hence of IΓ) is

indeed simple. ♠
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Note that in the simple case (see (5.8) above) every Γθ (with θ ∈ Θ(Γ)) consists of

s elements. Hence, for “simple” Γ, the variety of IΓ consists of #Θ(Γ) = #IB(Γ) simple

zeros (therefore the epithet “simple” for such Γ). Combining this with (3.21)Corollary, we

conclude

(5.15) Corollary. Assume that Γ is simple. Then

codimIΓ = #Θ(Γ) = #IB(Γ), (5.16)

and

IΓ⊥ = span{eθ}θ∈Θ(Γ). (5.17)

We now use (5.15)Corollary to derive the following result about the general ideal IΓ.

The simple proof this result admits is striking when compared to the original proofs (cf.

[5;§2], [3;§2], [6;§3]).*

(5.18) Theorem.

codimIΓ ≥ #IB(Γ). (5.19)

Proof: Combining the primary decomposition (5.14) with (5.5) and (3.22), it suffices to

prove the theorem with respect to each Γθ. So we may assume without loss that IΓ admits

a single-point variety and, by shifting this zero to the origin, that Γ is homogeneous.

We now consider perturbations of IΓ induced by lower order perturbations of the

polynomials in Γ (which means adding constant terms to some of the γ’s in Γ). Generically,

each such perturbation results in a “simple” set Γ̃, hence, in view of (5.15), application of

(4.7)Theorem yields the desired result. ♠
As a matter of fact, it is known [6], [7] that equality holds in (5.19), yet that does not

seem to follow easily from the type of arguments we employ here. For completeness, we

provide here a proof for the converse inequality of (5.19), which is a specialization of the

argument given in [6;Th. 3.1] to the present situation.

* Actually, the theory of box splines focuses on IΓ⊥ rather than on IΓ itself. The proofs

in the references are therefore of the equivalent inequality dim IΓ⊥ ≥ #IB(Γ).
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(5.20) Result.

codimIΓ ≤ #IB(Γ). (5.21)

Proof: The proof is done by induction on #Γ ≥ s. In case #Γ = s, Γ is simple, hence

(5.21) follows from from (5.15).

For notational convenience, we set H(Γ) for the kernel of IΓ, and also assume through-

out this proof that IK(Γ) consists of the minimal subsets K ⊂ Γ with the property

K ∩ B 6= ∅, ∀B ∈ IB(Γ).

Now, in view of (3.22), (5.21) is equivalent to

dimH(Γ) ≤ #IB(Γ). (5.22)

Assume #Γ > s. Then there exists γ ∈ Γ such that

spanxΓγ
= IRs,

where Γγ := Γ\γ. With this define the map

T : H(Γ) → ×K∈IK(Γγ)H(Γ\K) : f 7→ (pK(D)f)K∈IK(Γγ),

where by convention H(Γ\K) = {0} in case K ∈ IK(Γ). One checks that pK(D)H(Γ) ⊂
H(Γ\K) to verify that the map is well defined.

Now,

kerT =
⋂

K∈IK(Γγ)

ker pK(D)|H(Γ) ⊂ H(Γγ),

and so, by the induction hypothesis, (when applied to each one of the sets Γ\K, K ∈ IK(Γγ),

and to Γγ),
dimH(Γ) =dimkerT + dim ranT

≤dimH(Γγ) +
∑

K∈IK(Γγ)

dim H(Γ\K)

≤#IB(Γγ) +
∑

K∈IK(Γγ)

#IB(Γ\K)

=#IB(Γ).
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The last equality follows from the fact that each element B of IB(Γ) either lies in IB(Γγ)

(i.e., in case γ 6∈ B), or belongs to exactly one of the sets IB(Γ\K) (take K = {γ̃ ∈ Γγ :

x
γ̃
6∈ spanxB\γ}). ♠

Combining (5.19) and (5.21) we conclude that indeed

codimIΓ = #IB(Γ). (5.23)

To elaborate more on the connection between an ideal IΓ and its homogeneous counterpart,

we define Γ↑ to be the multiset of linear homogeneous polynomials obtained when replacing

λΓ by 0. Then IΓ is a lower order perturbation of IΓ↑ . Since #IB(Γ) = #IB(Γ↑), we see

that the perturbation IΓ of IΓ↑ preserves codimension, and hence, in view of (4.3)Theorem

and (4.10),

I(Γ↑) = (IΓ)↑. (5.24)

The results of the previous sections provide us with further important information about

the kernel H(Γ) = IΓ⊥ of IΓ. First, (3.23) together with (5.14) shows that

H(Γ) =
⊕

θ∈Θ(Γ)

H(Γθ), (5.25)

with each H(Γθ) being of the form eθPθ, and Pθ the multiplicity space for both IΓ and

IΓθ
, and in particular a polynomial space. By (3.22) and (5.23), dimH(Γ) = #IB(Γ).

A result of special significance follows from (5.24) when combined with (4.3)Theo-

rem(b):

H(Γ)↓ = H(Γ↑). (5.26)

This result describes the (usually very complicated) kernel of a homogeneous IΓ in terms

of the “limit at the origin” of the exponentials in the kernel of a “simple” perturbation

of IΓ, thus allowing us to introduce an algorithm for the construction of the kernel of a

homogeneous ideal.

(5.27) Algorithm. Assume Γ is homogeneous. The following two-step algorithm would

compute H(Γ) = IΓ⊥:

Step 1. Pick a “simple” lower order perturbation Γ̃ and compute Θ(Γ̃).
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Step 2. Construct (exp
Θ(Γ̃)

)↓ with

exp
Θ(Γ̃)

:= span{eθ}θ∈Θ(Γ̃)
= H(Γ̃).

A simple Gram-Schmidt-like algorithm for the construction of a basis for H↓ (which is or-

thogonal with respect to the pairing (3.1), and with H being an arbitrary finite-dimensional

subspace of A0) is described in [4; §5].
The construction above easily extends to a general (i.e., non-homogeneous) Γ. One

only has to make use of the direct sum decomposition of H(Γ) in (5.25) and the fact that,

for each Γθ, H(Γθ) = eθH(Γθ↑). The algorithm above can then be applied to construct

each H(Γθ↑), i.e., each of the multiplicity spaces {Pθ}θ∈Θ(Γ).

The local approximation order of the space H(Γ) can also be deduced from (5.26).

Indeed, an application of (2.14) to (5.26) yields

(5.28) Corollary. The local approximation of H(Γ) equals the largest d for which Π<d ⊂
H(Γ↑). In particular, the local approximation order of H(Γ) matches that of H(Γ↑).

We remark that, although the structure of H(Γ↑) may be quite involved, the number d in

(5.28)Corollary can be easily determined in terms of the geometry induced by xΓ (cf. [2]

and the discussion of this issue in the next section).

6. Extensions

Here we introduce a generalization of the box spline ideals and discuss to what an extent

the results about box splines ideals remain valid in this more general setting. The notations

and terminology used in the previous section are retained here as well. We mention that

the type of generalization here is in some sense opposite to the one discussed in [6]: here

(5.19) is the inequality that holds in the more general setting, where there (5.21) is the

one which is valid in general.

Let IB1 be a subset of IB(Γ), and define correspondingly

IK1 := {K ⊂ Γ : K ∩ B 6= ∅, ∀B ∈ IB1}. (6.1)
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Let IΓ(IB1) be the ideal generated by

{pK : K ∈ IK1}.

Note that IK(Γ) ⊂ IK1, and hence

IΓ(IB1) ⊃ IΓ, (6.2)

and

IΓ(IB1)⊥ ⊂ IΓ⊥.

Is it still true that

codimIΓ(IB1) = #IB1 ?

For a “simple” Γ, the answer is affirmative:

(6.3) Proposition. Assume Γ is simple. Let IB1 be an arbitray subset of IB(Γ). Then,

with IΓ(IB1) as above,

codimIΓ(IB1) = #IB1.

Proof: Since Γ is simple, then, by (5.13)Theorem and (5.15)Corollary, VIΓ consists of

finitely many simple zeros, and hence, by (6.2), the same is true for VIΓ(IB1). Thus, by

(3.21)Corollary, the codimension of IΓ(IB1) coincides with the cardinality of its variety.

Now, one checks that this variety consists exactly of the #IB1 points

b(IB1) = {θB : B ∈ IB1}. (6.4)

♠
Yet, for non-simple Γ, the answer in general is negative, as shown by the following

example:

(6.5) Example. Assume that Γ consists of four bivariate linear homogeneous polynomials

p1, p2, p3, p4, such that the pairs {pj , pj+1}, j = 1, 3, are linearly independent. Define

IB1 := {{p1, p2}, {p3, p4}}.
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Here, #IB1 = 2, yet each element of IK1 (i.e., each subset of Γ that intersects both of

the “bases” in IB1) has cardinality ≥2, and thus each of the generators of IΓ(IB1) is a

homogeneous polynomial of degree ≥2. We conclude that Π1 is perpendicular to IΓ(IB1),

hence

codimIΓ(IB1) ≥ dimΠ1 = 3.

Therefore codimIΓ(IB1) > #IB1.

However, a result like (5.19) does hold in this general setting, with the idea of lower order

perturbations still providing a quite simple proof:

(6.6) Theorem. Let IB1 be an arbitrary subset of IB(Γ), and let IK1 and IΓ(IB1) be as

above. Then

codimIΓ(IB1) = dim IΓ(IB1)⊥ ≥ #IB1.

Proof: The equality in the statement of the theorem is merely (3.22), so we need only

to prove the inequality claim. As in (5.14), one recognizes ∩θ∈Θ(Γ)IΓθ
(IB1 ∩ IB(Γθ)) to be

the primary decomposition of IΓ(IB1), hence, by the same arguments as in (5.18)Theorem,

we may assume that Γ is homogeneous.

Given a homogeneous Γ, we use a lower-order perturbation γ 7→ perγ (which is ob-

tained by adding a constant term to each of the γ’s). Since generically per(Γ) is simple

(in the sense of (5.8)), we may assume that our perturbed set per(Γ) is simple. Also

K ∈ IK1 if and only if per(K) ∈ per(IK1) and hence Iper(Γ)(per(IB1)) is indeed a lower

order perturbation of the homogeneous ideal IΓ(IB1). By (6.3)Proposition

codimIper(Γ)(per(IB1)) = #per(IB1) = #IB1,

and application of (4.7)Theorem thus yields the desired result. ♠
This last result can be applied to various homogeneous and non-homogeneous ideals,

provided that their generators can be factored into linear polynomials. A typical example

is discussed at the end of this section.
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Although in general the inequality in (6.6)Theorem may be strict, we now identify in

the following special settings when equality is guaranteed to hold. For this purpose, we

impose a (total) order on Γ. This order induces a partial ordering on IB(Γ) as follows:

(γ1, ..., γs) ≤ (γ̃1, ..., γ̃s) ⇐⇒ γj ≤ γ̃j , j = 1, ..., s, (6.7)

where the elements in the sequences in (6.7) are arranged in, say, an increasing order. We

say that IB1 ⊂ IB(Γ) is an order-closed subset of IB(Γ) if the condition

B1 ∈ IB1, B2 ≤ B1 =⇒ B2 ∈ IB1 (6.8)

holds with respect to all pairs of bases B1, B2.

(6.9) Theorem. If IB1 is an order-closed subset of IB(Γ), then codimIΓ(IB1) = #IB1.

In view of (6.6)Theorem, we need only prove the inequality

codimIΓ(IB1) ≤ #IB1.

This inequality will be proved by introducing a basis S for Π/IΓ together with a bijective

map R from S to IB(Γ). Then we will show that

R−1(IB(Γ)\IB1) ⊂ IΓ(IB1)

in case IB1 is an order-closed subset of IB(Γ) and Γ is homogeneous. Proving the desired

inequality by such an approach demands of course a very careful construction of S which

in particular takes into account the order defined on Γ. The specific basis used here is

borrowed from [7] and is introduced below. We refer to [7] for the proof that this indeed

is a basis for Π/IΓ.*

Given an ordered Γ and an element B ∈ IB(Γ), define

ΓB = {γ̃ ∈ Γ\B : x
γ̃
6∈ span{xγ}γ∈B,γ<γ̃

}. (6.10)

* The proof in [7] shows that the elements of that set are minimally total over IΓ⊥
which is equivalent to the statement here.
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The basis for Π/IΓ is then

{pΓB↑ =
∏

γ∈ΓB

γ↑ : B ∈ IB(Γ)}. (6.11)

Proof of the Theorem: We prove here the theorem only for homogeneous Γ. The

extension to general Γ is done exactly as in the proof of (6.6)Theorem.

By the preceding arguments we need only show that if B ∈ IB(Γ)\IB1, then the

polynomial pΓB
lies in IΓ(IB1). This will be obtained the moment we verify that ΓB

intersects all the elements of IB1, or, equivalently, that IB1 ∩ IB(Γ\ΓB) = ∅. Examination

of the construction of ΓB reveals that B is the unique minimal element of IB(Γ\ΓB), and

since IB1 is order-closed and B 6∈ IB1, we conclude that every basis B̃ ∈ IB(Γ\ΓB) is

excluded from IB1. Consequently, the set ΓB does intersect all elements of IB1, and the

desired result follows. ♠

The above theorem allows us to deduce, as in (5.24), that, whenever IB1 is order-closed,

one has

IΓ↑(IB1↑) = IΓ(IB1)↑, (6.12)

where

IB1↑ := {B↑ : B ∈ IB1} ⊂ IB(Γ↑).

We can now use this last result to conclude:

(6.13) Theorem. Let IB1 be an order-closed subset of IB(Γ). Then the local approxima-

tion order of

H := IΓ(IB1)⊥

equals the least cardinality of the elements of IK1.

Proof: By (2.14)Corollary, the local approximation order of H is determined by H↓.

From (6.12) and (4.3)Theorem, we conclude that

H↓ = IΓ↑(IB1↑)⊥. (6.14)
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Let d be the least cardinality of the elements of IK1, which is the same as the least cardi-

nality of the elements of IK1↑. This last set generates the ideal IΓ↑(IB1↑). This means that

each generator of this ideal annihilates Π<d but one of these generators does not annihilate

Πd. We may therefore apply (6.14) to conclude that d is the maximal integer satisfying

Π<d ⊂ H↓, and (2.14)Corollary thus yields the desired result. ♠
Remark. In case IB1 is not order-closed, the above result need not be valid. (An explicit

example follows by an application of (6.3)Proposition to a “simple” perturbation of the

example before (6.6)Theorem). Yet, the sort of arguments used in the above proof show

that the least cardinality of the elements of IK1 always provides an upper bound for the

local approximation power from IΓ(IB1)⊥.

In the rest of this section, we discuss an example that illustrates possible applications

of (6.6)Theorem.

(6.15) Example. Assume that Γ = δ1 ∪ δ2 ∪ ... ∪ δn is an arbitrary fixed partition of

Γ. Define ∆ := (δj)n
j=1 (δj will be used here to denote the subset δj of Γ as well as

the polynomial pδj
). In this way, we obtain a certain (multi)set of polynomials δj , each

factorizable into linear factors. We construct ideals I∆ analogous to the ideals IΓ, i.e.,

investigate the case when the set Γ of linear polynomials is replaced by the set ∆ of

products of linear polynomials.

First, the role of the set IB(Γ) of “bases” is now being played by the collection

ID(∆) := {D ⊂ ∆ : #D = s} (6.16)

of all subsets of ∆ with cardinality s. Each D ∈ ID(∆) gives rise to

IBD := {B ∈ IB(Γ) : B ∩ δ 6= ∅, ∀δ ∈ D};

in words, the elements of IBD are those “bases” in IB(Γ) which are obtained by choosing

one γ from each δ ∈ D. As in the case of Γ we use

IK(∆) := {K ⊂ ∆ : K ∩ D 6= ∅, ∀D ∈ ID(∆)},

and set I∆ for the ideal generated by {pK : K ∈ IK(∆)}.
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Our claim is that

codimI∆ ≥
∑

D∈ID(∆)

#IBD. (6.17)

The above claim follows directly from (6.6)Theorem by an appropriate choice of IB1 ⊂
IB(Γ). Indeed, we take here

IB1 :=
⋃̇

D∈IB(∆)

IBD, (6.18)

and note that for every K ∈ IK(∆), ∪δ∈Kδ intersects all the “bases” from IB1, and hence

every generator of I∆ is also a generator of IΓ(IB1). We conclude that I∆ ⊂ IΓ(IB1) and

thus codimI∆ ≥ codimIΓ(IB1). Combining this last observation with (6.6)Theorem, we

finally obtain

codimI∆ ≥ #IB1,

and (6.17) follows now from (6.18).

We note that the same argument supports more general statements when the set

ID(∆) is replaced by a subset ID1(∆) and a corresponding ideal I∆(ID1(∆)) is constructed.

The bound for the codimension of this ideal will be the same as in (6.17), with ID(∆)

replaced by ID1(∆). The fact that only I∆ was investigated here was merely for notational

convenience.

As a special case of (6.17) one can choose ∆ to consist of any bivariate homogeneous

polynomials. Then, if some δ1, δ2 ∈ ∆ share a common factor, I∆ will have infinite

codimension (since its variety will contain all the zeros of this common factor). Otherwise,

one has #IBD = deg δ1 deg δ2 for every D = (δ1, δ2). Similar statements can be made for

homogeneous I∆ in more than two variables.

Comparing the example with the results of [6], it is not clear, even in the special case

when a matroid structure is imposed on ∆, whether the sufficient condition [6; Th. 3.2]

can be applied to derive (6.17). However, in such a case (under further mild restrictions)

[6; Th. 3.1] would guarantee the validity of the converse inequality.

13dec01 corrected the Hörmander-Leibniz formula (3.8) and changed π to Π through-

out.
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