
A Multivariate Divided Difference

C. de Boor

Abstract. A multivariate kth divided difference is proposed and shown
to lead to new error formulæ for polynomial interpolation on some
standard multivariate point sets.

§1. Introduction

In trying to understand what might be a reasonable way to describe the
error in interpolation by polynomials on lRd, I came upon the following
considerations:

The standard error formula

g(x) = g(a) +
∫ 1

0

Dx−ag(a + t(x − a)) dt

for the simplest possible case, that of interpolation by constant polynomials
at a point, a, can be written in the following form

g(x) = g(a) +
∑

j

〈vj , x − a〉 [a, x;ϕj ]g, (1.1)

in which

〈x, y〉 :=
d∑

j=1

x(j)y(j)

is the standard scalar product on lRd, (v1, . . . , vd) is an arbitrary basis for
lRd, with (ϕ1, . . . , ϕd) its dual basis, i.e.,

〈vi, ϕj〉 = δij ,
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and, for x, y, ξ ∈ lRd, [x, y; ξ] denotes the linear functional

[x, y; ξ] : g 7→
∫ 1

0

Dξg(x + t(y − x)) dt. (1.2)

Now, for j = 1, . . . , d, let xj 6= a be a point on the straight line common
to the d − 1 hyperplanes h−1

i {0}, i 6= j, with

hi : x 7→ 〈vi, x − a〉,
i.e., xj = αjϕj + a for some αj 6= 0. Then

p1 := g(a) +
d∑

j=1

hj [a, xj ;ϕj ]g

is a linear polynomial which, by (1.1), agrees with g at a and at x1, . . . , xd,
hence is the unique linear polynomial with that property. What about its
error?

Evidently,

g = p1 +
d∑

j=1

hj

(
[a, · ;ϕj ] − [a, xj ;ϕj ]

)
g,

and this involves the error in the interpolation at xj to the function
[a, · ;ϕj ]g, hence invites application of (1.1), giving

[a, x;ϕj ] − [a, xj ;ϕj ] =
d∑

i=1

〈vji, x − xj〉[xj , x;ϕji] [a, · ;ϕj ],

where, for different j, we are free to choose different bases (vj1, . . . , vjd) if
that suits our ultimate purpose.

It is now easy to imagine repetition of this process, i.e., the repeated
expansion of some or even all the error terms, having in hand at all times
a formula for g of the form

g = p + e,

with p a polynomial, and e an explicit expression for the error which van-
ishes at certain points, thus identifying p as a polynomial which interpolates
g at those points, and with both p and e involving terms of the form

[x1, . . . , xk, · ; ξ1, . . . , ξk]g := [x1, · ; ξ1][x2, · ; ξ2] · · · [xk, · ; ξk]g, (1.3)

evaluated at some point when occurring in the formula for p.
It is the purpose of this note to suggest that (1.3), evaluated at some

point, be called a kth divided difference, and to record its basic properties.
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§2. Historical Comments

While tensor products of univariate divided differences have long been used,
more general multivariate divided differences (in Approximation Theory;
see further comments below) all seem to be traceable to Kergin interpola-
tion [8], or, more precisely, to Micchelli’s explanation and treatment [10]
(see, also [12]) of Kergin interpolation. This treatment involves the func-
tional

f 7→
∫

[x0,...,xk]

f :=
∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

f(x0+s1∇x1+· · ·+sk∇xk)dsk · · · ds1

(2.1)
(with ∇xj := xj − xj−1) called the divided difference functional on lRd by
Micchelli in [11], and familiar from the Hermite-Genocchi formula for the
univariate divided difference which, in these terms, reads

[t0, . . . , tk]g =
∫

[t0,...,tk]

Dkg. (2.2)

In particular, it is not hard to show directly (as is done later in this
note) that, in these terms,

[x1, . . . , xk+1; ξ1, . . . , ξk]g =
∫

[x1,...,xk+1]

Dξ1 · · ·Dξk
g. (2.3)

The section entitled “Multivariate divided differences” in Dahmen [5] con-
tains such integrals, albeit with the integrand (

∏
1≤i<j≤k+1 Dxi−xj

) g in-

stead of (
∏k

i=1 Dξi
) g. Subsequently, Hakopian [6] defined a multivariate

divided difference to be something of the form of the right-hand side of
(2.3), but restricted the directions ξj to be coordinate vectors. Hence, one
message of this note is that it pays to work with the more general definition
(1.3).

In fact, Kergin interpolation involves the even more general functionals

g 7→
∫

[x0,...,xk]

qk(D)g,

with qk a homogeneous polynomial (of degree k). While these are not, in
general, kth divided differences in the sense of (1.3), they do make up the
linear span of all such kth divided differences. A more thorough discussion
of the literature on multivariate divided differences, together with a detailed
discussion of a rather different notion of multivariate divided difference, can
be found in [9].
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Finally, Micchelli’s analysis of the simplex spline M( · |x0, . . . , xk) is
based on his observation that M( · |x0, . . . , xk)/k! represents the functional∫
[x0,...,xk]

. This has led others to derive facts about this functional from
facts about its representer. However, for many purposes, it seems simpler
to work directly with the functional; compare, e.g., [3] with [14].

I am grateful to Florian Potra for having reminded me that the lit-
erature concerning the numerical solution of functional equations has, for
many years, used the notion of a divided difference of operators in Banach
spaces. Specifically, J. Schröder [15] in 1956 proposed to call, for a given
map f : X → Z with X and Z normed linear spaces, any linear map

f{x,y} : X → Z

with the property
f{x,y}(x − y) = f(x) − f(y)

a divided difference of f at x and y. While this definition fits, in general,
many linear maps, Byelostotskij [1] seems to have been the first to have
used specifically the linear map

f{x,y} :=
∫ 1

0

f (1)(x + t(y − x))dt,

with f (1) the Fréchet derivative of f . With this definition, if f is a scalar-
valued map on some domain of lRd, hence f{x,y} is a linear functional,
then

[x, y; ξ]f = f{x,y}ξ.

The first to have defined and used higher-order divided differences of
operators on normed linear spaces seems to have been Serge’ev [16] who,
in 1961, introduced the second divided difference as a divided difference of
a divided difference, in a study of Steffensen iteration.

The same idea was used by Potra and Ptak, in [13: Appendix B], to
define a kth order divided difference [x1, . . . , xk+1; f ] of f : D ⊂ X → Z as
a divided difference [xk, xk+1; [x1, . . . , xk−1, · ; f ]] of a (k−1)st divided dif-
ference. Moreover, they point out (without mentioning Hermite-Genocchi
and in a different but equivalent formulation of (2.1)) that

∫
[x1,...,xk+1]

f (k)

is such a kth divided difference, with f (k) the kth Fréchet derivative of
f . The value of this k-linear map at the k-sequence (ξ1, . . . , ξk) is ex-
actly what I denoted here, for the special case X = lRd, Z = lR, by
[x1, . . . , xk+1; ξ1, . . . , ξk]f .
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§3. Basic Properties

The divided difference [x, y; ξ] defined in (1.2) is linear in ξ and satisfies

[x, y; y]g − [x, y;x]g = [x, y; y − x]g = g(y) − g(x). (3.1)

In particular, if d = 1, then [x, y; 1] is the ordinary divided difference:

[x, y; 1]g = [x, y; y − x]g/(y − x) = (g(y) − g(x))/(y − x) = [x, y]g. (3.2)

However, for d > 1 and general ξ, [x, y; ξ]g is not a scaled difference of val-
ues of g, hence the use of the term ‘divided difference’ might be misleading.
Still, as we hope to illustrate here and explore in more detail elsewhere,
this ‘divided difference’ can be made to play the same role in multivari-
ate polynomial interpolation that (3.2) plays so successfully in the classic,
univariate context, hence deserves the name for that reason.

[x, y; ξ] is a linear functional; also, it is symmetric in x and y. On
smooth functions, it is continuous in x and y and reduces to g 7→ Dξg(x)
when x = y.

The discussion in the Introduction motivated the definition (1.3) of a
multivariate kth divided difference. We now prove its identification (2.3).
For this, it is convenient to start off with the following alternative defini-
tion (which differs from (1.3) in the order in which the first-order divided
differences appear on the right): For smooth functions g and for arbitrary
sequences (x1, . . . , xk) and (ξ1, . . . , ξk), we define

[x1, . . . , xk, · ; ξ1, . . . , ξk]g := [xk, · ; ξk] · · · [x1, · ; ξ1]g. (3.3)

For k = 0, this defines [x1; ] to be evaluation at x1, hence (2.3) holds
for k = 0 with the reasonable definition

∫
[x0]

g := g(x0) (which should have
been part of (2.1)). Assuming (2.3) to hold for k = n−1, we conclude that

[x1, . . . , xn, · ; ξ1, . . . , ξn]g = [xn, · ; ξn][x1, . . . , xn−1, · ; ξ1, . . . , ξn−1]g =∫ 1

0

Dξn

[∫ 1

0

∫ s1

0

· · ·
∫ sn−2

0

F (s1, . . . , sn−1, ·)dsn−1 · · · ds1

]
(xn + t(· − xn))dt,

(3.4)
with

F (s1, . . . , sn−1, ·) := (Dξ1 · · ·Dξn−1g)(x1 + s1∆x1 + · · · + sn−1(· − xn−1))

(and ∆xj := xj+1 − xj), hence

Dξn
F (s1, . . . , sn−1, ·) = (DΞg)(x1 + s1∆x1 + · · · + sn−1(· − xn−1))sn−1,
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with
DΞg := Dξ1 · · ·Dξn

g.

Therefore, interchanging, in (3.4), Dξn
with the integrals, we find that

[x1, . . . , xn, · ; ξ1, . . . , ξn]g equals
∫ 1

0

∫ 1

0

∫ s1

0

· · ·
∫ sn−2

0

(DΞg)(x1 + s1∆x1 + · · · + sn−1((xn + t(· − xn)) − xn−1))

sn−1dsn−1 · · · ds1dt.

Now, interchange integration with respect to t with all the other integra-
tions and introduce the new variable sn := sn−1t, hence dsn = sn−1dt, to
obtain, finally,

[x1, . . . , xn, · ; ξ1, . . . , ξn]g =∫ 1

0

∫ s1

0

· · ·
∫ sn−1

0

(DΞg)(x1 + s1∆x1 + · · · + sn−1∆xn−1 + sn(· − xn))

dsn · · · ds1,

which, evaluated at xn+1, gives (2.3) for k = n.
It follows from (2.3) that the divided difference [x1, . . . , xk+1; ξ1 . . . , ξk]

is symmetric and continuous in its points, x1, . . . , xk+1, and is symmetric,
continuous and multilinear in its directions, ξ1, . . . , ξk (as long as it is ap-
plied to smooth functions). In particular, the order reversal in the definition
(3.3), while convenient for the proof of (2.3), is ultimately irrelevant. This
permits use of the convenient shorthand

[X; Ξ] := [x1, . . . , xk+1; ξ1, . . . , ξk]

in which x1, . . . , xk+1 are the entries, written in any particular order, of the
k +1-sequence X and ξ1, . . . , ξk are the entries, in any convenient order, of
the k-sequence Ξ.

For example, it follows that, for any (point) sequences X, X ′, and
corresponding (direction) sequences Ξ, Ξ′,

[X; Ξ][X ′, · ; Ξ′] = [X,X ′; Ξ,Ξ′]. (3.5)

As another example, (3.1) has the generalization

[X, a, b; Ξ, a − b] = [X, a; Ξ] − [X, b; Ξ], (3.6)

which, as Vladimir Yegorov has pointed out to me, does not require the
proof I gave for it since it follows directly from (3.5) and the observation
that [X, a; Ξ] − [X, b; Ξ] = [a, b; a − b][X, · ; Ξ], by (3.1).

The technique of lifting proposed and used in [11] is a ready means
for deriving multivariate divided difference identities from their univariate
case, and (2.3), (3.5), (3.6) could have been so derived (cf. [11:Thm 3]).
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§4. Some Illustrations

Here are three error formulas for multivariate polynomial interpolation.
The first one is well known, the other two are new; one is led to them by
the construction outlined in the Introduction.

Kergin interpolation. The identity

[x; ] = [x0; ] + [x0, x;x − x0]

is the standard error formula (for interpolation at some point) with which
I started this note. If it is applied to its last term as a function of the first
occurrence of x there, i.e., to the function z 7→ [x0, z;x − x0], we obtain

[x; ] = [x0; ] + [x0, x1;x − x0] + [x0, x1, x;x − x0, x − x1].

Repetition provides Micchelli’s (see [10], also Micchelli and Milman [12])
formula

[x; ] =
k∑

j=0

[x0, . . . , xj ;x−x0, . . . , x−xj−1]+[x0, . . . , xk, x;x−x0, . . . , x−xk]

for Kergin’s interpolation [8], in which, because of the multilinearity of the
divided difference in its directions, we recognize

x 7→ [x0, . . . , xj ;x − x0, . . . , x − xj−1]

as a polynomial of degree j which vanishes at x0, . . . , xj−1.

Chung-Yao interpolation. By this I mean interpolation from Πk (the
space of d-variate polynomials of degree ≤ k) at the points

ΘIH := {θH : H ∈
(

IH
d

)
},

with IH a set of d + k hyperplanes in lRd in general position and θH the
unique point common to the d hyperplanes in such an H ∈ (

IH
d

)
. Chung

and Yao [4] were the first to show that such interpolation is possible and
uniquely so, by exhibiting the interpolant PIHg to g in Lagrange form.
The following error formula (see [2]) is, in effect, the Newton form for this
interpolant:

g(x) − PIHg(x) =
∑

K∈( IH
d−1)

pK(x) [ΘK , x;nK , . . . , nK ]g. (4.1)
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Here,

pK(x) :=
∏

h∈IH\K

h(x)
h↑(nK)

,

with h denoting a particular hyperplane as well as a particular linear poly-
nomial whose zero set coincides with that hyperplane, and h↑ its leading
term, i.e., its linear homogeneous part; with

ΘK := Θ ∩
⋂

K

the k + 1 points from Θ on the unique straight line

∩K := ∩h∈Kh

common to the d − 1 hyperplanes in K; and with

nK

some nontrivial vector parallel to ∩K.
For k = 1, (4.1) reduces to an error formula due to S. Waldron [17].

This would be the formula reached if the procedure outlined in the Intro-
duction were applied with the choice of the directions

(ϕji : i = 1, . . . , d) := (xi − xj : i 6= j),

where x0 := a. The general formula (4.1) is proved from this by induction
on k, as is natural for the procedure outlined in the Introduction.

It is intriguing to explore the behavior of (4.1) as IH approaches non-
generic configurations.

Tensor product interpolation. Because of lack of space, only the sim-
plest case, of interpolation at the points of a bivariate mesh

(x0, . . . , xk) × (y0, . . . , yh),

is given here.
We write the interpolant to given g in the standard form (P⊗Q)g, with

P and Q the corresponding maps of univariate polynomial interpolation.
All error formulæ in the literature involve Dk+1

1 Dh+1
2 g in addition to Dk+1

1 g
and Dh+1

2 g. However, the process outlined in the Introduction (when,
in contrast to the preceding example, one chooses always the coordinate
vectors ij as the directions in the expansions (1.1) used) leads ultimately
to the following formula for the error at the point (x, y) ∈ lR2:

(g − (P ⊗ Q)g)(x, y) = p(x) (Q[(x0, ·), . . . , (xk, ·), (x, y); i1, . . . , i1]g)(y)
+ q(y) (P [(·, y0), . . . , (·, yh), (x, y); i2, . . . , i2]g)(x),
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in which only the two pure derivatives, p↑(D)g = Dk+1
1 g and q↑(D)g =

Dh+1
2 g, appear. In this formula, the term multiplying, e.g., p(x) is the

value at y of the (polynomial) interpolant, at y0, . . . , yh, to the univariate
function

t 7→ [(x0, t), . . . , (xk, t), (x, y); i1, . . . , i1]g.

It can be shown (see [2]) that such an error formula, in terms of an
H-basis (p, q, . . .) for the ideal of the polynomials vanishing at the set Θ
of interpolation points, is available in the more general situation when Θ
consists of a lower set of grid points from a rectangular grid in lRd (as it is
for Chung-Yao interpolation; see (4.1)). Two extreme special cases are (i)
the whole grid, i.e., tensor product interpolation, in which case the ideal
is generated by just d polynomials, each the unique monic polynomial of
minimal degree in one variable which vanishes on the entire grid; and (ii)
the simplex grid, corresponding to interpolation from Πk, in which case one
H-basis for the ideal is (pα : |α| = k + 1), with pα the unique polynomial
with leading term ()α which vanishes on Θ (but this case has surely been
done before; see, e.g., [7:p.298] for the bivariate case).
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