Interpolation from spaces spanned by monomials

C. de Boor

Dedicated to Mariano Gasca on the occasion of his sixtieth birthday

Abstract

This is an extension and emendation of recent results on the use of Gauss elimination in multivariate polynomial interpolation and, in particular, ideal interpolation.

Let $\Pi \subset\left(\mathbb{F}^{d} \rightarrow \mathbb{F}\right)$ be the space of all polynomials in d real $(\mathbb{F}=\mathbb{R})$ or complex $(\mathbb{F}=\mathbb{C})$ variables. Let Q be an n-row map on Π, i.e., a linear map from Π to \mathbb{F}^{n}, and consider the task of solving

$$
Q ?=a
$$

for given $a \in \mathbb{F}^{n}$. We assume that this problem has a solution for arbitrary $a \in \mathbb{F}^{n}$, i.e., that Q is onto. Then there is a standard recipe for finding all solutions, namely Gauss elimination applied to the Gram matrix

$$
Q V=\left(\eta_{i} v_{j}: i=1: n, j \in J\right),
$$

with the linear functionals η_{i} the rows of the row map Q, i.e., $Q f=:\left(\eta_{i} f: i=1: n\right)$, and the polynomials v_{j} the columns of the invertible column map

$$
V=\left[v_{j}: j \in J\right]: \mathbb{F}_{0}^{J} \rightarrow \Pi: a \mapsto \sum_{j} v_{j} a(j)
$$

or basis for Π (indexed by some set J). Here,

$$
\mathbb{F}_{0}^{J}:=\{a: J \rightarrow \mathbb{F}: \# \operatorname{supp} a<\infty\},
$$

hence V is well-defined.
Take for V a monomial basis, i.e., the column map

$$
V=\left[()^{\alpha}: \alpha \in \mathbb{Z}_{+}^{d}\right]: \mathbb{F}_{0}^{\mathbb{Z}_{+}^{d}} \rightarrow \Pi: \widehat{p} \mapsto p:=\sum_{\alpha}()^{\alpha} \widehat{p}(\alpha),
$$

with its columns the monomials

$$
()^{\alpha}: \mathbb{F}^{d} \rightarrow \mathbb{F}: x \mapsto x^{\alpha}:=x(1)^{\alpha(1)} \cdots x(d)^{\alpha(d)}
$$

arranged in some order in which each collection of columns has a left-most one (i.e., the order must be a well-ordering). Since Q is onto, $Q V$ is of full rank, hence has exactly n bound columns, i.e., columns that are not weighted sums of columns to the left of it. This is a standard result of basic linear algebra in case V has finitely many columns but needs, perhaps, a proof in the present setting, of a V with infinitely many columns.

For this, let \preceq, \prec, etc, indicate the order on \mathbb{Z}_{+}^{d} corresponding to the order in which the monomials appear as columns in V. Further, let

$$
\beta_{j}:=\min \Gamma_{j}, \quad \Gamma_{j}:=\left\{\gamma: \operatorname{rank} Q\left[()^{\alpha}: \alpha \preceq \gamma\right] \geq j\right\}, \quad j=1: n .
$$

There is, in fact, such a minimum since Γ_{j} must be nonempty (due to the fact that $\operatorname{rank} Q V=n$), hence, by our assumption on the columns' ordering, must have a left-most element. Further, with β_{j} that left-most element, column β_{j} is necessarily bound (since its adjunction to $Q\left[()^{\alpha}: \alpha \prec \beta_{j}\right]$ raises the rank). It follows that all the columns of the square matrix $Q V_{\beta}$, with

$$
V_{\beta}:=\left[()^{\beta_{j}}: j=1: n\right],
$$

are bound, hence $Q V_{\beta}$ is invertible. This makes

$$
F:=\operatorname{ran} V_{\beta}
$$

a monomial subspace (i.e., a space spanned by monomials) that is correct for Q in the sense that Q maps it 1-1 onto \mathbb{F}^{n}, i.e., F contains, for every $a \in \mathbb{F}^{n}$, exactly one f that matches the information a in the sense that $Q f=a$. Put differently, F contains, for each $p \in \Pi$, exactly one f that agrees with p at Q in the sense that $Q f=Q p$. We can write this f in the form

$$
f=P p
$$

with

$$
P:=V_{\beta}\left(Q V_{\beta}\right)^{-1} Q
$$

the linear projector on Π with $\operatorname{ran} P=F$ and $\operatorname{ker} P=\operatorname{ker} Q$.
The subspace F is minimal, among all monomial subspaces correct for Q, in the following sense.
Define the \prec-degree of $p=\sum_{\alpha}()^{\alpha} \widehat{p}(\alpha) \in \Pi$ to be the multiindex

$$
\delta(p):=\max \operatorname{supp} \widehat{p}=\max \{\alpha: \widehat{p}(\alpha) \neq 0\}
$$

with $\delta(0)$, offhand, undefined. Define, correspondingly, for any finite-dimensional subset F_{1} of Π,

$$
\delta\left(F_{1}\right):=\max _{p \in F_{1}} \delta(p) .
$$

Also, follow [S] in using the handy abbreviation

$$
p \prec q:=\delta(p) \prec \delta(q), \quad p, q \in \Pi .
$$

Now, among all subspaces F_{1} correct for Q, our F is \prec-minimal in the sense that $\delta(F) \preceq \delta\left(F_{1}\right)$ for all such F_{1}. This follows immediately from the fact that any subspace F_{1} with $\delta\left(F_{1}\right) \prec \delta(F)$ lies in $\operatorname{ran}\left[()^{\alpha}: \alpha \prec \beta_{n}\right]$ and, by the very choice of β_{n}, the rank of $Q\left[()^{\alpha}: \alpha \prec \beta_{n}\right]$ is less than n, hence Q cannot map F_{1} onto \mathbb{F}^{n}.

Actually, F is minimal in the more subtle way that it, or its corresponding linear projector P, is \prec-reducing in the sense that

$$
\begin{equation*}
\delta(P p) \preceq \delta(p), \quad \forall p \in \Pi \tag{1}
\end{equation*}
$$

Indeed, since P is linear and

$$
\delta(p)=\max _{\alpha}\left\{\delta\left(()^{\alpha}\right): \widehat{p}(\alpha) \neq 0\right\}
$$

it is sufficient to check (1) for monomials only. In the discussion, call a monomial bound or free according to whether the corresponding column of $Q V$ is bound or free (with a column free exactly when it is not bound, i.e., when it is the weighted sum of columns to the left of it). There are two cases. If ($)^{\alpha}$ is bound, then (1) holds trivially for $p=()^{\alpha}$ since then $p \in F$, hence $P p=p$. In the contrary case, ()$^{\alpha}$ is free. But this means that $Q()^{\alpha}$ is writable as a linear combination of columns to the left of it, hence of the bound columns to the left of it, and the corresponding linear combination of bound monomials is an interpolant from F to $p=()^{\alpha}$, hence must be Pp, and that verifies (1) for this case, too.

Next, consider uniqueness of such \prec-minimal or \prec-reducing monomial spaces F. If there is some free column to the left of the nth bound column, say column α, then, as we already observed, $Q()^{\alpha}$ is writable as a weighted sum of the bound columns to the left of it. This implies that the space

$$
F_{1}:=\operatorname{ran}\left[()^{\beta_{1}}, \ldots,()^{\beta_{n-1}},()^{\beta_{n}}+()^{\alpha}\right]
$$

is also correct for Q and $\delta\left(F_{1}\right)=\delta(F)$, hence F_{1} is also \prec-minimal. It is also \prec-reducing since the interpolant $P_{1} p$ it provides for any $p:=()^{\gamma}$ with $\gamma \prec \beta_{n}$ is still $P p$ while, for $\gamma \succeq \beta_{n}$,

$$
\delta\left(P_{1} p\right) \preceq \delta\left(F_{1}\right)=\beta_{n} \preceq \delta(p) .
$$

Thus, unless the bound columns of $Q V$ are its first n columns, there are many \prec-reducing spaces F_{1} other than F. But any such F_{1} fails to be monomial, and this is as it should be because of the following

Proposition 2. F is the unique monomial \prec-reducing space for Q.
Proof: If

$$
F_{1}:=\operatorname{ran}\left[()^{\gamma_{1}}, \ldots,()^{\gamma_{n}}\right]
$$

is a monomial \prec-reducing space correct for Q and $\gamma_{1} \prec \cdots \prec \gamma_{n}$, then, for any $\alpha, Q()^{\alpha}$ must be in $\operatorname{ran}\left[Q()^{\gamma_{j}}: \gamma_{j} \preceq \alpha\right]$. This implies, for any α not equal to one of the γ_{j}, that $Q()^{\alpha}$ is a free column of $Q V$, hence the only columns that can be bound are those n columns $Q()^{\alpha}$ with $\alpha \in\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, and these must all be bound since we know there to be n bound columns. In other words, $F_{1}=F$.

For the special case that \prec is a monomial ordering (see below for the definition) and $\operatorname{ker} Q$ is an ideal, this proposition is Theorem 4 of $[\mathrm{S}]$, and the earlier assertion concerning the existence of other \prec-reducing spaces is, essentially, Proposition 2 of [S] in that setting.

It is also possible to prove the following emended and extended version of Theorem 3 of $[\mathrm{S}]$, in which

$$
\Lambda(p):=()^{\delta(p)} \widehat{p}(\delta(p))
$$

denotes the leading term of $p \in \Pi$.
Proposition 3. The n-dimensional linear subspace F_{1} of Π is \prec-reducing for Q if and only if it has a spanning sequence $p_{1} \prec \cdots \prec p_{n}$ so that (a)

$$
\eta_{i} p_{j}=\delta_{i j}, \quad 1 \leq i \leq j \leq n,
$$

for some suitable ordering $\eta_{1}, \ldots, \eta_{n}$ of the rows of Q; and, (b) for some elements q_{1}, \ldots of $\operatorname{ker} Q$,

$$
\begin{equation*}
\left[\Lambda\left(p_{1}\right), \ldots, \Lambda\left(p_{n}\right), \Lambda\left(q_{1}\right), \ldots\right] \tag{4}
\end{equation*}
$$

is a basis for $\Pi_{\preceq \delta\left(p_{n}\right)}$, with

$$
\Pi_{\preceq \gamma}:=\operatorname{ran}\left[()^{\alpha}: \alpha \preceq \gamma\right] .
$$

Proof: Assume that F_{1} is \prec-reducing and let P_{1} be the corresponding linear projector. As before, let $\beta_{1} \prec \cdots \prec \beta_{n}$ be the indices of the bound columns of $Q V$ and set

$$
r_{j}:=P_{1}()^{\beta_{j}}, \quad j=1: n .
$$

Then, necessarily, $\delta\left(r_{j}\right)=\beta_{j}$, all j, since, otherwise, $\delta\left(r_{j}\right) \prec \beta_{j}$ and, since $Q r_{j}=Q()^{\beta_{j}}$, this would imply that column β_{j} were free. Since the r_{j} are in F_{1} and satisfy $\delta\left(r_{1}\right) \prec \cdots \prec \delta\left(r_{n}\right)$, it follows that $\left[r_{1}, \ldots, r_{n}\right]$ is a basis for F_{1}. Then, for some ordering $\eta_{1}, \ldots, \eta_{n}$ (determinable by applying Gauss elimination with row interchanges to the invertible matrix $Q\left[r_{1}, \ldots, r_{n}\right]$), there is an upper triangular matrix U such that, for that ordering of the rows of $Q, Q\left[r_{1}, \ldots, r_{n}\right] U^{-1}$ is unit lower triangular, hence $\left[p_{1}, \ldots, p_{n}\right]:=\left[r_{1}, \ldots, r_{n}\right] U^{-1}$ is a basis for F_{1} with $p_{1} \prec \cdots \prec p_{n}$ that satisfies (a). Now, for any $\alpha \in\left\{\gamma \preceq \beta_{n}\right\} \backslash\left\{\beta_{1}, \ldots, \beta_{n}\right\}$, set

$$
q_{\alpha}:=()^{\alpha}-P_{1}()^{\alpha} .
$$

Then $q_{\alpha} \in \operatorname{ker} Q$, and $\delta\left(q_{\alpha}\right)=\alpha$ since the fact that F_{1} is \prec-reducing implies that $\delta\left(P_{1}()^{\alpha}\right) \preceq \alpha$, hence $P_{1}()^{\alpha} \in \operatorname{ran}\left[p_{j}: \delta\left(p_{j}\right)=\beta_{j} \preceq \alpha\right] \subset \Pi_{\prec \alpha}$. Thus this choice of the q_{α} satisfies (b).

Conversely, assume that we have in hand a spanning sequence $p_{1} \prec \cdots \prec p_{n}$ for F_{1} satisfying (a) and (b). Then, by (a), the matrix $Q\left[p_{1}, \ldots, p_{n}\right]$ is unit lower triangular for some ordering of the rows of Q, hence, since $\left(p_{1}, \ldots, p_{n}\right)$ spans F_{1}, it must be a basis for F_{1}. Also, by (b), all columns $\alpha \preceq \delta\left(p_{n}\right)$ with $\alpha \notin\left\{\delta\left(p_{1}\right), \ldots, \delta\left(p_{n}\right)\right\}$ are free (since each such ()$^{\alpha}$ is the leading term of an element of ker Q). Therefore, necessarily, $\left(\delta\left(p_{1}\right), \ldots, \delta\left(p_{n}\right)\right)=\left(\beta_{1}, \ldots, \beta_{n}\right)$, the indices of the bound columns of $Q V$. We will continue to use the notation

$$
F=\operatorname{ran}\left[()^{\beta_{j}}: j=1: n\right]
$$

for the space spanned by the corresponding monomials, i.e., by the leading terms of the p_{j}, and use P for the corresponding projector. Since each of the monomials not in F corresponds to a free column of $Q V$, we can write each p_{j} as

$$
p_{j}=: f_{j}+q_{j}
$$

with

$$
f_{j} \in F, \quad \delta\left(f_{j}\right)=\beta_{j}, \quad q_{j} \in \operatorname{ker} Q, \quad \delta\left(q_{j}\right) \prec \beta_{j} .
$$

Then

$$
Q\left[p_{1}, \ldots, p_{n}\right]=Q\left[f_{1}, \ldots, f_{n}\right]
$$

hence, for any $p \in \Pi$,

$$
P_{1} p=\sum_{j} p_{j} a(j) \quad \Longleftrightarrow \quad P p=\sum_{j} f_{j} a(j),
$$

and therefore, in particular,

$$
\delta\left(P_{1} p\right)=\max \left\{\beta_{j}: a(j) \neq 0\right\}=\delta(P p) \preceq \delta(p),
$$

the inequality since, as we saw earlier, F is \prec-reducing. In other words, F_{1} is \prec-reducing.
We note that Theorem 3 of $[\mathrm{S}]$ has, in the equation corresponding to (4) here, the polynomials p_{j} and q_{j} rather than their leading terms. Also, with the assumption that $p_{1} \prec \cdots \prec p_{n}$ spans F_{1}, the assumption (a) really plays no role in the above proof other than to ensure that $Q\left[p_{1}, \ldots, p_{n}\right]$ is invertible, hence there is a linear projector P_{1} with $\operatorname{ran} P_{1}=F_{1}$ and $\operatorname{ker} P_{1}=\operatorname{ker} Q$. This is not surprising in view of the fact that every n-dimensional subspace of Π has a graded basis, i.e., a basis $\left[r_{1}, \ldots, r_{n}\right]$ with $\delta\left(r_{1}\right) \prec \cdots \prec \delta\left(r_{n}\right)$, and that, as we saw in the first part of the above proof, Gauss elimination derives from this a basis $\left[p_{1}, \ldots, p_{n}\right]=$ $\left[r_{1}, \ldots, r_{n}\right] U^{-1}$ with U some upper triangular matrix, hence $\delta\left(p_{j}\right)=\delta\left(r_{j}\right)$, all j, for which $Q\left[p_{1}, \ldots, p_{n}\right]$ is unit lower triangular with respect to some ordering of the rows of Q. In fact, the proof of Proposition 3 also establishes the following simpler characterization.

Corollary. A linear subspace of Π is \prec-reducing for Q if and only if it has a basis whose leading terms correspond to the bound columns of $Q V$.

Now we raise the stakes by assuming, in addition, that P is an ideal projector in the sense of [B], i.e., that $\operatorname{ker} Q$ is a (polynomial) ideal. This means that $\operatorname{ker} Q$ contains, for any $q \in Q$ and any $p \in \Pi$, also their (pointwise) product

$$
q p: x \mapsto q(x) p(x)
$$

and the ordering of the columns of V should be sensitive to that. Specifically, we assume from now on that the ordering is also monomial, meaning that it is consistent with addition on \mathbb{Z}_{+}^{d}, i.e.,

$$
\alpha \preceq \beta \quad \Longrightarrow \quad \alpha+\gamma \preceq \beta+\gamma, \quad \text { all } \alpha, \beta, \gamma \in \mathbb{Z}_{+}^{d},
$$

and

$$
0 \preceq \alpha, \quad \text { all } \alpha \in \mathbb{Z}_{+}^{d}
$$

Any such ordering refines the partial order given by divisibility, i.e., ($)^{\alpha}$ dividing ($)^{\beta}$ implies that $\alpha \preceq \beta$ since it implies that $\beta-\alpha \in \mathbb{Z}_{+}^{d}$, hence $0 \preceq \beta-\alpha$ and therefore $\alpha \preceq \beta$.
Proposition 5. Under the given assumptions, F is D-invariant, i.e., closed under differentiation.
Proof: $\quad()^{\alpha}$ is free iff

$$
Q()^{\alpha}=Q p
$$

for some

$$
p \in \Pi_{\prec \alpha} .
$$

Hence, if ()$^{\alpha}$ is free, and therefore ()$^{\alpha}-p \in \operatorname{ker} Q$ for some $p \in \Pi_{\prec \alpha}$, then also, for any $\gamma \in \mathbb{Z}_{+}^{d},()^{\gamma}\left(()^{\alpha}-p\right) \in$ $\operatorname{ker} Q$, i.e.,

$$
Q()^{\gamma+\alpha}=Q\left(()^{\gamma} p\right)
$$

with ()$^{\gamma} p \in \Pi_{\prec \gamma+\alpha}$, hence also ($)^{\gamma+\alpha}$ is free. In other words, any monomial that divides a bound monomial must itself be bound, i.e., must lie in F.

More than that and as pointed out in [S] and certainly already used in [MB], we also get immediately a reduced Gröbner basis for the ideal $\operatorname{ker} Q$, namely the set

$$
G:=\left\{()^{\alpha}-P()^{\alpha}: \alpha \in \mathrm{A}\right\}
$$

with A the indices of all the free monomials not divisible by some other free monomial.
Indeed, G is reduced, i.e., no term of an element of G is divisible by the leading term of any other element of G, as is clear from the definition of A and from the fact that any monomial having a free monomial as a factor must be free while $\operatorname{ran} P$ is spanned by bound monomials. To show that every $p \in \operatorname{ker} Q \backslash 0$ is in ideal (G) (the ideal generated by G), proceed by induction on $\delta(p)$, assuming without loss of generality that $p \in()^{\delta(p)}+\Pi_{\prec \delta(p)}$. If $p \in \operatorname{ker} Q$, then, necessarily, ()$^{\delta(p)}$ is free. If it is not divisible by any other free monomial, then, for some $g \in G, p-g \in \Pi_{\prec \delta(p)}$ and in $\operatorname{ker} Q$, hence in $\operatorname{ideal}(G)$ by induction. Otherwise, $\delta(p)=\gamma+\beta$ for some some free ()$^{\beta}$, hence, by induction, $p-()^{\gamma} q \in \Pi_{\prec \delta(p)}$ for some $q \in \operatorname{ideal}(G) \subseteq \operatorname{ker} Q$, hence that difference is in $\operatorname{ker} Q$ and so, by induction, in ideal (G). Hence, either way, $p \in \operatorname{ideal}(G)$. More than that, it shows that p is writable as $\sum_{g \in G} g q_{g}$ with $\delta\left(g q_{g}\right) \leq \delta(p)$ for all $g \in G$, hence G is a Gröbner basis for $\operatorname{ker} Q$.

Finally, both [MB] and [S] provide an algorithm for the construction of F and G, and both choose to do, in effect, Gauss elimination by columns, but working with polynomials rather than with the Gram matrix $Q V$. But there seems to be no reason to deviate from the standard approach, of applying Gauss elimination by rows to $Q V$, since it is just as easy there to introduce columns one at a time, hence to ignore any column known a priori to be free since its monomial is divisible by some monomial known to be free. In particular, as already pointed out in [S], it is sufficient to consider only columns α with $|\alpha|:=\sum_{j} \alpha(j) \leq n$, i.e., to consider the finite matrix $Q V_{n}$ with $V_{n}:=\left[()^{\alpha}:|\alpha| \leq n\right]$. The resulting factorization of $Q V_{n}$, as $C L U$ with C a permutation matrix, L unit lower triangular, and U in row echelon form, provides just as readily the set G and even a Newton basis for F, as follows.

Assume without loss that the rows of Q are so ordered that no row interchanges were necessary, hence $C=\mathrm{id}$, and that, as before, the bound columns are $\beta_{1} \prec \cdots \prec \beta_{n}$. Then, as already used in the proof of Proposition 3,

$$
\left[p_{j}: j=1: n\right]:=\left[()^{\beta_{j}}: j=1: n\right] U\left(:,\left(\beta_{1}, \ldots, \beta_{n}\right)\right)^{-1}
$$

is a Newton basis for F in the sense that $Q\left[p_{1}, \ldots, p_{n}\right]$ is unit lower triangular. Also, for each free ($)^{\alpha}$ not divisible by some other free monomial,

$$
q_{\alpha}:=()^{\alpha}-\left[p_{1}, \ldots, p_{n}\right] U(:, \alpha)
$$

is an element of G, and G has no other elements than these.

Acknowledgements This note was written while the author was a very contented guest at the Institute for Mathematical Sciences of the National University of Singapore. The final version of this note reflects some e-mail discussion with Tomas Sauer and helpful referees' comments.

References

[B] G. Birkhoff, The algebra of multivariate interpolation, in "Constructive approaches to mathematical models" (C. V. Coffman and G. J. Fix Eds.), pp. 345-363, Academic Press, New York, 1979.
[MB] H. M. Möller and B. Buchberger, The construction of multivariate polynomials with preassigned zeros, in "Computer Algebra, EUROCAM '82, European Computer Algebra Conference (Springer Lecture Notes in Computer Science 144)" (G. Goos, J. Hartmanis Eds.), pp. 24-31, Springer-Verlag, Heidelberg, 1982.
[S] T. Sauer, Polynomial interpolation of minimal degree and Gröbner bases, in "Groebner Bases and Applications (Proc. of the Conf. 33 Years of Groebner Bases), volume 251 of London Math. Soc. Lecture Notes" (B. Buchberger, F. Winkler Eds.), pp. 483-494, Cambridge University Press, Cambridge, 1998.

