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0. Introduction. It is the purpose of this note to show that the several minimum properties of odd
degree polynomial spline functions [4, 18] all derive from the fact that spline functions are representers of
appropriate bounded linear functionals in an appropriate Hilbert space. (These results were first announced
in Notices, Amer. Math. Soc., 11 (1964) 681.) In particular, spline interpolation is a process of best approxi-
mation, i.e., of orthogonal projection, in this Hilbert space. This observation leads to a generalization of the
notion of spline function. The fact that such generalized spline functions retain all the minimum properties
of the polynomial splines, follows from familiar facts about orthogonal projections in Hilbert space.
1. Polynomial splines and their minimum properties. A polynomial spline function, s(x), of degree
m ≥ 0, having the n ≥ 1 joints x1 < x2 < · · · < xn, is by definition a real valued function of class
C(m−1)(−∞,∞), which reduces to a polynomial of degree at most m in each of the n+1 intervals (−∞, x1),
(x1, x2), . . ., (xn,+∞). The most general such function is given by

s(x) =
m∑

i=0

αix
i +

n∑
j=1

βj(x− xj)m
+ ,

where αi, i = 0, . . ., m, and βj , j = 1, . . ., n, are real numbers and

(x)m
+ =

{
xm, x ≥ 0,
0 , x < 0.

Specifically, let m = 2k− 1, and n ≥ k ≥ 1, and let S0 denote the family of polynomial spline functions
of odd degree m with joints x1, . . ., xn, which reduce to polynomials of degree at most k − 1 in each of
the two intervals (−∞, x1) and (xn,∞). Equivalently, S0 consists of all polynomial spline functions s(x) of
degree m with joints x1, . . ., xn which satisfy

(1.1)
s(j)(x1) = s(j)(xn) = 0, j = k, . . . , 2k − 2,

s(2k−1)(x) ≡ 0, all x /∈ [x1, xn].

Hence, for n = k, S0 consists just of the set {πk−1} of polynomials of degree at most k − 1. Let [a, b] be a
finite interval containing all the joints x1, . . ., xn and consider S0 as a subset of the class of functions [19]

(1.2) F (k)[a, b] =
{
f(x) | f ∈ C(k−1)[a, b], f (k−1)absolutely continuous, f (k) ∈ L2[a, b]

}
.

The elements of S0 have the following properties [4], [18]:

Interpolation property: Given f ∈ F (k)[a, b], there exists a unique element s(x) ∈ S0 satisfying

s(xi) = f(xi), i = 1, . . . , n.

Denote this unique element by Pf .

1 The work of R. E. Lynch was supported in part by the National Science Foundation through Grant GP–217 and by the

Army Research Office(Durham) through Grant DA–ARO(D)–31–124–G388, at The University of Texas.
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First minimum property: If f ∈ F (k)[a, b] and s ∈ S0, then∫ b

a

[
f (k)(x) − s(k)(x)

]2

dx ≥
∫ b

a

[
f (k)(x) − (Pf)(k)(x)

]2

dx,

with equality if and only if s = Pf + πk−1.

Second minimum property: If f ∈ F (k)[a, b], then∫ b

a

[
f (k)(x)

]2
dx ≥

∫ b

a

[
(Pf)(k)(x)

]2
dx,

with equality if and only if f = Pf .
A third minimum property concerns the linear approximation of a linear functional L on F (k)[a, b] of

the form

Lf =
k−1∑
i=0

∫ b

a

f (i)(y)dµi(y),

where the µi(x) are functions of bounded variation. For later reference, we denote by L(k) the set of all such
linear functionals.

Third minimum property: For all L ∈ L(k), and all f ∈ F (k)[a, b], the best approximation, L∗f , in
the sense of Sard [15] (see below in Section 2) to Lf by an expression of the form

∑n
i=1 αif(xi) is given by

operating with L on Pf ; for short, L∗ = LP . This approximation is exact for all f ∈ S0.

2. Representers in Hilbert space and their minimum properties. In order to relate these
minimum properties of the elements of S0 to “familiar facts about orthogonal projections in Hilbert space,”
we need the following facts:

Theorem 2.1. The linear space F (k)[a, b] is a Hilbert space with respect to the inner product

(2.1) (f, g) =
k∑

i=1

f(xi)g(xi) +
∫ b

a

f (k)(y)g(k)(y)dy, all f, g ∈ F (k)[a, b].

This Hilbert space possesses a reproducing kernel [1], [3], K(x, y), which is

(2.2)

K(x, y) =
k∑

i=1

ci(x)ci(y) + (−1)k
{

(x− y)2k−1
+

+
k∑

i=1

k∑
j=1

(xi − xj)2k−1
+ ci(x)cj(y)

−
k∑

i=1

[
(x− xi)2k−1

+ ci(y) + (xi − y)2k−1
+ ci(x)

]}/
(2k − 1)!,

where

ci(x) =
k∏

j=1,j 6=i

(x− xj)/(xi − xj), i = 1, . . . , k.

For all L ∈ L(k), for all f ∈ F (k)[a, b],

(2.3)

Lf =
k∑

i=1

L(ci)f(xi)

+
1

(k − 1)!

∫ b

a

L(x)

(
(x− y)k−1

+ −
k∑

i=1

ci(x)(xi − y)k−1
+

)
f (k)(y)dy.

Here and below, the subscript (x) [or (y)] indicates [5] that an operation is to be performed on a function
of x [or y] for fixed y [or fixed x].

This theorem is a special case of Theorem 3.1 and Lemma 3.1 proved below in Section 3.
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Corollary. The linear functionals Li, i = 1, . . ., n, given by

(2.4) Lif = f(xi), i = 1, . . . , n, all f ∈ F (k)[a, b],

are bounded; their representers [3] span S0.

Proof. A linear functional L on a real Hilbert space H with reproducing kernel K(x, y) is bounded only
if the function φ(x) = L(y)K(x, y) is in H, and in that case, φ(x) is its representer, i.e.,

Lf = (f, φ), all f ∈ H.

Since the linear functionals Li, i = 1, . . ., n, are linearly independent over F (k)[a, b], the corollary follows
from the fact that, by (2.2), K(x, xi) ∈ S0, i = 1, . . ., n.

Let now, more generally, L1, . . ., Ln be n linearly independent bounded linear functionals over a real
Hilbert space H, and let S = 〈φ1, . . ., φn〉 be the n–dimensional subspace of H spanned by the representers
φ1, . . ., φn of the Li. Given f ∈ H, an element g ∈ H is said to interpolate f with respect to L1, . . ., Ln if

Lig = Lif, i = 1, . . . , n.

Let Ps denote the orthogonal projection from H onto S, i.e., for f ∈ H, Psf is the unique best
approximation to f by an element in S with respect to the norm in H. Then Ps satisfies [7]

(2.5) (Psf, h) = (Psf, Psh) = (f, Psh), all f, h ∈ H,

and

(2.6) ‖f‖2 = ‖f − Psf‖2 + ‖Psf‖2, all f ∈ H.

By setting h = φi in(2.5), it follows that

(2.7) Li(Psf) = Li(f), all f ∈ H, i = 1, . . . , n.

This proves

Lemma 2.1. Given f ∈ H, Psf is the unique element in S which interpolates f with respect to L1,
. . ., Ln.

For illustration, if H is F (k)[a, b] with inner product (2.1), and the Li are given by (2.4), Lemma 2.1
states that the spline function Pf ∈ S0, which, by definition, interpolates f at the points x1, . . ., xn, is also
the best approximation to f with respect to the norm

‖g‖2 =
k∑

i=1

(g(xi))2 +
∫ b

a

[g(k)(y)]2dy,

thus implying the first minimum property in Section 1.
An element f ∈ H is in S if and only if f = Psf . This may be put somewhat differently. Given f ∈ H,

let Wf =
{
h | h ∈ H, Li(h) = Li(f) for i = 1, . . . , n

}
. Then, it follows from Lemma 2.1 that

(2.8) Psh = Psf, all h ∈Wf .

Hence one has from (2.6) that

(2.9) ‖Psf‖ ≤ ‖h‖, all h ∈Wf , with equality if and only if h = Psf ;

and we have proved the following
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Lemma 2.2. An element f ∈ H is in S if and only if f is the element of minimal norm in the set Wf

of all elements of H that interpolate f with respect to L1, . . ., Ln.
Specifically, if H is F (k)[a, b] with inner product (2.1) and the Li are given by (2.4), then for all h ∈Wf ,

k∑
i=1

(h(xi))2 =
k∑

i=1

(f(xi))2,

and the second minimum property of polynomial splines follows.
Returning once more to the general situation, let L be a bounded linear functional on H with representer

φ. We wish to approximate L by a linear functional of the form
∑n

i=1 αiLi in such a way that the norm

(2.10) ‖R‖ = sup
‖f‖≤1

|Rf |

of the error functional R = L− ∑n
i=1 αiLi be minimized. Since ‖R‖ = ‖φ− ∑

αiφi‖, we have

Lemma 2.3. The element φ = PSφ is the representer of the unique best approximation L to L by a
bounded linear functional of the form

∑n
i=1 αiLi with respect to the norm (2.10).

In particular, one has by (2.5) that

(2.11) L(f) = (f, PSφ) = (PSf, φ) = L(PSf), all f ∈ H.

Corollary 1. Given f ∈ H, the value of the best approximation to L at f is equal to the value of L at the
best approximation to f .

It is this property which makes L so attractive for use in computational work: any computational scheme
which solves the interpolation problem also solves the problem of computing the best approximation to any
bounded linear functional.

For f ∈ S, PSf = f ; therefore, by (2.11), L(f) = L(f), for f ∈ S.

Corollary 2. The approximation L to L is exact for f ∈ S.

Once again, let H be, in particular, F (k)[a, b] with inner product (2.1), and let the Li be given by (2.4).
Then Corollaries 1 and 2 of Lemma 2.3 imply the third minimum property of polynomial splines. To see
this, we need to recall the definition of L∗, the best approximation to L in the sense of Sard [15], [18] by a
linear combination of the Li.

Since n ≥ k, it is possible to choose numbers α1, . . ., αn so that Rf = 0 whenever f ∈ {πk−1}. The set

M =

{
L′ =

k∑
i=1

αiLi | Lf = L′f for f ∈ {πk−1}
}

is therefore not empty. By Peano’s theorem [3], [11], or by (2.3) in Theorem 2.1, we can write Rf as

Rf = (L− L′)f =
∫ b

a

K(t)f (k)(t)dt, all L′ ∈ M,

where
K(t) = R(x)(x− t)k−1

+ /(k − 1)!,

provided that L ∈ L(k). With this, L∗ is defined as the unique element in M which minimizes

∫ b

a

(
K(t)

)2
dt.
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But this is just the demand that L∗ minimize ‖L − L′‖ over all L′ ∈ M. It is now immediate that
L and L∗ agree. First, the assumption that L ∈ L(k) is sufficient (though not necessary) to insure that
L(y)K(x, y) ∈ F (k)[a, b], so that L is defined. Also, by Corollary 2 of Lemma 2.3, L ∈ M. Hence, since L
minimizes ‖L− L′‖ over all L′ =

∑
αiLi, we have L = L∗, and the third minimum property follows.

Finally, we mention some estimates for the error Rf = Lf − Lf . Since

Lf − Lf = (φ− φ, f) =
(
φ, (I − PS)f

)
,

use of Schwarz’s inequality gives

(2.12) |Lf − Lf | ≤ ‖φ− φ‖ ‖f‖, and |Lf − Lf | ≤ ‖φ‖ ‖f − PSf‖.

But since, by (2.5), ((I − PS)φ, f) = ((I − PS)φ, (I − PS)f), we have the better estimate

(2.13) |Lf − Lf | ≤ ‖φ− φ‖ ‖f − PSf‖.

Hence if ‖f‖ ≤ r, which implies ‖f − PSf‖ ≤ (r2 − ‖PSf‖2)1/2, then

(2.14) Lf − ‖φ− φ‖ (r2 − ‖PSf‖2)1/2 ≤ Lf ≤ Lf + ‖φ− φ‖ (r2 − ‖PSf‖2)1/2.

The importance of the fact that this estimate depends only on the bound r and the numbers Li(f), i = 1,
. . ., n, and is optimal with respect to this information, is rightfully stressed in [5].

3. The Hilbert space F (k)[a, b]. The linear space F (k)[a, b] can be made into a Hilbert space in
various ways, thus providing various classes of functions which, due to the fact that they are representers of
suitable linear functionals, have all the minimum properties of polynomial splines.

Specifically, let M be a k–th order ordinary linear differential operator in normal form,

(3.1) M = (dk/dxk) +
k−1∑
i=0

ai(x)(di/dxi),

and let L1, . . ., Lk be k linear functionals. Under suitable conditions on the ai(x) and the Li,

(3.2) (e, f) =
k∑

i=1

Li(e)Li(f) +
∫ b

a

(Me)(y)(Mf)(y)dy, all e, f ∈ F (k)[a, b],

is an inner product defined on F (k)[a, b], which makes F (k)[a, b] into a Hilbert space with reproducing kernel.
This is proved in the following theorem, which provides facts necessary to define and describe generalized

splines and their minimum properties.

Theorem 3.1. Let M be any k–th order ordinary linear differential operator in normal form, (3.1),
where k ≥ 1 and and ai ∈ C[a, b], i = 0, . . ., k−1. Let N (M) denote the k–dimensional linear subspace of all
functions f in C(k)[a, b] for which Mf = 0. Let L1, . . ., Lk be any set of k linear functionals in L(k), which is
linearly independent over N (M). Then F (k)[a, b] is a Hilbert space with respect to the inner product (3.2),
and has a reproducing kernel. This reproducing kernel, K, is given by

(3.3) K(x, y) =
k∑

i=1

ci(x)ci(y) +
∫ b

a

G(x, t)G(y, t)dt, x, y ∈ [a, b],

where ci, . . ., ck is the dual basis to L1, . . ., Lk in N (M), and G(x, y) is the Green’s function for the
differential equation (Mf)(x) = e(x) with Li(f) = 0, i = 1, . . ., k.
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Proof. The assumptions on the coefficients of the differential operator M are sufficient to insure [2, p.
117] that N (M) is indeed of dimension k. Moreover, for each x ∈ [a, b] and each f ∈ F (k)[a, b] there exists
a unique element s ∈ N (M) such that

s(j)(x) = f (j)(x), j = 0, . . . , k − 1.

Denote this element by Q(x)f and define a function h on [a, b] × [a, b] by

(3.4) h(x, y) = Q(y)
(x)(x− y)k−1/(k − 1)!.

Then

(3.5) M(x)h(x, y) = 0, all x, y ∈ [a, b],

(3.5′) ∂jh(x, y)/∂xj |x=y = ∂j,k−1, j = 0, . . . , k − 1,

and [2, p. 89] for all f ∈ C(k)[a, b],

(3.6) f(x) = (Q(a)f)(x) +
∫ x

a

h(x, y)(Mf)(y)dy, all x ∈ [a, b].

Thus, the function

(3.7) g(x, y) =
{
h(x, y), x ≥ y,

0 , x < y,

is just the Green’s function for the initial value problem

Mf = e, f (j)(a) = 0, j = 0, . . . , k − 1.

For the proof of Theorem 3.1, we need to know that (3.6) holds not only for f ∈ C(k)[a, b], but also for
all f ∈ F (k)[a, b].

Lemma 3.1. Under the hypotheses of Theorem 3.1, the identy

(3.8) f(x) = (Q(a)f)(x) +
∫ b

a

g(x, y)(Mf)(y)dy

is valid for all f ∈ F (k)[a, b] and all x ∈ [a, b]. More generally, for any linear functional L ∈ L(k),

(3.9) Lf = L(Q(a)f) +
∫ b

a

L(x)g(x, y)(Mf)(y)dy, all f ∈ F (k)[a, b].

We were unable to find a reference for this lemma. We defer its proof to the Appendix and continue
with the proof of Theorem 3.1.

By hypothesis, the linear functionals Li, i = 1, . . ., k, form a maximal linearly independent set over
N (M). There exist, therefore, k functions, ci ∈ N (M), i = 1, . . ., k, such that

Licj = δij , i, j = 1, . . . , k.

With these, define a projection operator P from F (k)[a, b] onto N (M) by

(3.10) (Pf)(x) =
k∑

i=1

(Lif)ci(x), all f ∈ F (k)[a, b].

6



Then, in particular, Pf = f for f ∈ N (M), and, by Lemma 3.1,

(Pf)(x) =
(
P (Q(a)f)

)
(x) + P

∫ b

a

g(x, y)(Mf)(y)dy

= (Q(a)f)(x) +
∫ b

a

P(x)g(x, y)(Mf)(y)dy, all f ∈ F (k)[a, b],

where, by Lemma 3.1, the interchange of integration and the operator P is justified by the assumption that
the Li are in L(k). Therefore, with the definition

(3.11) G(x, y) = (I − P )(x)g(x, y), x, y ∈ [a, b],

it follows that

(3.12) f(x) = (Pf)(x) +
∫ b

a

G(x, y)(Mf)(y)dy, x ∈ [a, b], all f ∈ F (k)[a, b].

Hence, if for some e ∈ L2[a, b] and some f0 ∈ N (M),

(3.13) f(x) = f0(x) +
∫ b

a

G(x, y)e(y)dy,

then
f ∈ F (k)[a, b], Lif = Lif0, i = 1, . . . , k, and Mf = e a.e.,

which also shows that G is the Green’s function for Mf = e, Lif = 0, i = 1, . . ., k. With these facts
established, all assertions of the theorem follow.

First, one checks that (3.2) indeed defines an inner product, i.e., a symmetric positive definite bilinear
form on F (k)[a, b].

Secondly, F (k)[a, b] is complete with respect to the norm ‖f‖ = (f, f)1/2. For if {fj}∞1 is a Cauchy
sequence in F (k)[a, b] with respect to this norm, then {Lifj}∞j=1 is a Cauchy sequence of real numbers, so
γi = limj→∞(Lifj) exists, i = 1, . . ., k; furthermore, {Mfj}∞j=1 is a Cauchy sequence in L2[a, b] which,
therefore, converges in L2 to some e ∈ L2[a, b]. But then,

f(x) =
k∑

i=1

γici(x) +
∫ b

a

G(x, y)e(y)dy

is the limit point of the sequence {fj}∞1 in F (k)[a, b].
Finally, let K be the function on [a, b] × [a, b] defined by (3.3). Then, by the remarks following (3.12),

K(x, y), as a function of x, is in F (k)[a, b] for each y ∈ [a, b], and

(3.14)
M(y)K(x, y) = G(x, y), x, y ∈ [a, b],

Li(y)K(x, y) = ci(x), i = 1, . . . , k, x ∈ [a, b].

Therefore, using (3.12) once more, we get

f(x) =
k∑

i=1

ci(x)(Lif) +
∫ b

a

G(x, y)(Mf)(y)dy

=
k∑

i=1

Li(y)K(x, y)Lif +
∫ b

a

M(y)K(x, y)(Mf)(y)dy

=
(
K(x, y), f(y)

)
(y)
, x ∈ [a, b], all f ∈ F (k)[a, b].
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But this shows that K is the reproducing kernel for F (k)[a, b], which concludes the proof.

Remark. Lemma 3.1 has as a consequence many classical integral representations for the error of
formulas for interpolation, quadrature, and numerical differentiation, e.g. those of Peano [11], [12], Radon
[13], Remes [14], Milne [10], Golomb and Weinberger [5], Weinberger [23], and others. Explicitly, if n + 1
linear functionals L0, . . ., Ln from L(k) are given, and if the error functional, R = L0 −

∑n
i=1 αiLi, vanishes

on the null space N (M) of the ordinary k–th order linear differential operator M , (3.1), then

(3.15) Rf =
∫ b

a

R(x)g(x, y)(Mf)(y)dy, all f ∈ F (k)[a, b],

where g(x, y) is the Green’s function associated with the initial value problem

(Mf)(x) = e(x), f (j)(a) = 0, j = 0, . . . , k − 1.

By Schwarz’s inequality, this results in the error estimate

(3.16) |Rf |2 ≤
∫ b

a

[R(x)g(x, y)]2dy
∫ b

a

[(Mf)(y)]2dy,

which corresponds to (2.12) and supplies the motivation for Sard’s proposal to choose the approximation∑n
i=1 αiLi to L0 in such a way that

∫ b

a
[R(x)g(x, y)]2dy be minimized.

4. Polynomial spline functions. As an illustration for the use of Theorem 3.1 and Lemmas 2.1–2.3
and their corollaries, we consider once more polynomial splines. Accordingly, we choose M = (dk/dxk), so
that N (M) = {πk−1}. In this case, g(x, y) in (3.7) is

(4.1) g(x, y) = (x− y)k−1
+ /(k − 1)!

so that the reproducing kernel (see (3.3) and (3.14)) is indeed given by (2.2), provided Lif = f(xi), i = 1,
. . ., k. By the corollary to Theorem 2.1, the space S0 is spanned by the representers of the linear functionals
Li, . . ., Ln, given by Lif = f(xi), i = 1, . . ., n.

As noted above, because of the condition (1.1), the elements of S0 restricted to the interval [x1, xn] do
not constitute all polynomial spline functions of degree 2k− 1 with joints x2, . . ., xn−1 in that interval. But
the subspace S1 spanned by the representers φ1, . . ., φm of L1, . . ., Lm does have this property in case the
Li are given by

Lif = f (i−1)(x1), i = 1, . . . , k,

Lk−1+if = f(xi), i = 2, . . . , n− 1,

Lm+1−if = f (i−1)(xn), i = 1, . . . , k,

where, as before, a ≤ x1 < · · · < xn ≤ b, while only n ≥ 2. So m = 2k + n− 2.
We omit the straightforward verification of this fact and note only that with this choice for the Li,

Lemma 2.1 implies the remark following Lemma 2 of [4] as well as Theorem 2 of [4]; Lemma 2.2 implies
Lemma 2’ of [4].

The first two minimum properties of polynomial splines were first pointed out explicitly* by Walsh,
Ahlberg, and Nilson [21] in the special case k = 2 of cubic periodic splines. In the remainder of this section,
we derive the three minimum properties for periodic polynomial splines of degree 2k − 1. The statement of
the first two will be somewhat more general than as given in [22].

The linear functionals

L1f = f(a), Lif = f (i−2)(b−) − f (i−2)(a+), i = 2, . . . , k,

are linearly independent over {πk−1}, and are in L(k). Their dual basis c1, . . ., cn in {πn−1} can be computed

∗ All the minimum properties as listed in Section 1 are contained implicitly already in [5].
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recursively by
c1(x) ≡ 1, ci(x) = di(x) − di(a), i = 2, . . . , k,

where d1(x) ≡ 1/(b− a),

di+1(x) =
∫ x

a

di(y)dy − 1
b− a

∫ b

a

∫ x

a

di(y)dydx, i = 1, . . . , k − 1.

F (k)[a, b] is, therefore, a Hilbert space with respect to the inner product (3.2) (with M = dk/dxk), and
has a reproducing kernel, K(x, y), given by

(4.2)

K(x, y) =
k∑

i=1

ci(x)ci(y) + γ(x, y),

γ(x, y) =(−1)k

{
(x− y)2k−1

+ /(2k − 1)!

−
k∑

i=2

[
(b− y)2k−i+1ci(x) − (x− a)2k−i+1ci(y)

]
/(2k − i+ 1)!

−
k∑

i=2

k∑
j=2

(b− a)2k−i−j+3ci(x)cj(y)/(2k − i− j + 3)!

}
.

Let Lk+1f = f (k−1)(b−) − f (k−1)(a+), and set ck+1(x) = Lk+1(y)K(x, y). The closed subspace

F (k)
p [a, b] =

{
f ∈ F (k)[a, b] | Lif = 0, i = 2, . . . , k + 1

}
of F (k)[a, b] is also a Hilbert space with respect to (3.2), and one checks that Kp(x, y), given by

(4.3)
Kp(x, y) = K(x, y) −

k+1∑
i=2

ci(x)ci(y)

= 1 − ck+1(x)ck+1(y) + γ(x, y),

is its reproducing kernel. On F (k)
p [a, b], (3.2) simplifies to

(4.4) (e, f) = e(a)f(a) +
∫ b

a

e(k)(y)f (k)(y)dy, all e, f ∈ F (k)
p [a, b].

Let a = x1 < x2 < · · · < xn = b, n ≥ 2. Then, the linear functionals N1, . . ., Nn−1, given by
Nif = f(xi), i = 1, . . ., n − 1, are linearly independent and bounded over F (k)

p [a, b]. Their representers,
Kp(x, xi), i = 1, . . ., n− 1, span therefore an (n− 1)–dimensional subspace, S2, of F (k)

p [a, b]. By (4.2) and
(4.3), S2 consists of piecewise polynomial functions in C(2k−2)[a, b] of degree 2n − 1 with joints at x1, . . .,
xn. Also, along with any other element of F (k)

p [a, b], any s ∈ S2 satisfies

s(j)(a+) = s(j)(b−), j = 0, . . . , k − 1.

But, in fact, if d ∈ [a, b] and φd(x) = Kp(x, d), then also

(4.5) φ
(j)
d (a+) = φ

(j)
d (b−), j = k, . . . , 2k − 2,

which implies that S2 is the set of periodic polynomial splines with period (b−a) of degree 2k−1 with joints
x1, . . ., xn−1 (considered as functions defined on [a, b] only).
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To verify (4.5), we observe that, in the notation of Theorem 3.1 (see (3.10), (3.11)),

(4.6)

P(y)G(x, y) = P(y)(I − P )(x)g(x, y) = (I − P )(x)P(y)g(x, y)

=
k∑

i=1

(I − P )(x)

(
Li(y)g(x, y)

)
ci(y).

Since in this particular case, g(x, y) = (x− y)k−1
+ /(k − 1)!, we have

L1(y)g(x, y) ≡ 0, Li(y)g(x, y) = −(x− a)k−i+1/(k − i+ 1)!, i = 2, . . . , k,

hence
Li(y)g(x, y) ∈ {πk−1}, i = 1, . . . , k,

so that the coefficient of ci(y) in (4.6) vanishes indentically for each i = 1, . . ., k. Hence P(y)G(x, y) ≡ 0 on
[a, b] × [a, b]. But as (∂k/∂xk)K(x, y) ≡ G(x, y), this implies that ψ(j)

d (a+) = ψ
(j)
d (b−), j = k, . . ., 2k − 2,

where ψd(x) = K(x, d). Hence, as φ(k)
d (x) ≡ ψ

(k)
d (x) + constant, while

φ
(j)
d (x) ≡ ψ

(j)
d (x), j = k + 1, . . . , 2k − 2,

equation (4.5) follows.
We proved

Theorem 4.1. Let S2 be the set of polynomial spline functions of degree 2k − 1 with joints x1, . . .,
xn−1, where a = x1 < · · · < xn = b, which are periodic with period (b − a). For i = 1, . . ., n− 1, let φi(x)
be the representer in F

(k)
p [a, b] with respect to (4.4) of the linear functional Ni, given by Nif = f(xi). Then

S2, considered as a subset of F
(k)
p [a, b], is spanned by φ1, . . ., φn−1.

Corollary. For all f ∈ F
(k)
p [a, b], (i) there exists a unique element sf ∈ S2 satisfying sf (xi) = f(xi), i = 1,

. . ., n− 1; (ii) for all s ∈ S2,∫ b

a

[
f (k)(x) − s(k)(x)

]2
dx ≥

∫ b

a

[
f (k)(x) − s

(k)
f (x)

]2
dx

with equality if and only if s(x) − sf (x) ≡ constant; (iii)

∫ b

a

[f (k)(x)]2dx ≥
∫ b

a

[s(k)
f (x)]2dx

with equality if and only if f = sf ; (iv) if L is any linear functional in L(k), and L is that element of the set

{
N =

n−1∑
i=1

αiNi | (L−N)(1) = 0, αi real, i = 1, . . . , n− 1
}

which minimizes ∫ b

a

[
(L−N)(y)(x− y)k−1

+ /(k − 1)!
]2
dx,

then Lf = Lsf .

5. General spline functions. We have proved Theorem 3.1 in all its generality since, practical
considerations aside, there seems to be nothing inherently special about the use of the seminorm

(5.1)
∫ b

a

[f (k)(x)]2dx

10



as compared with the seminorm

(5.2)
∫ b

a

[Mf(x)]2dx,

where M is the k–th order ordinary differential operator (3.1). Moreover, there is no mathematical reason
to single out the point functionals

(5.3) Li(f) = f(xi), i = 1, . . . , n,

from the more general set of bounded linear functionals over the Hilbert space F (k)[a, b]. It would, therefore,
seem acceptable to define a general set of spline functions S on [a, b] belonging to the differential operator M
and the set L1, . . ., Ln of linearly independent bounded linear functionals over F (k)[a, b] as the n–dimensional
subspace S spanned by functions φ1, . . ., φn which are the representers of the linear functionals L1, . . ., Ln

with respect to the inner product (3.2). (M. Atteia in a note to appear in Comptes Rendus Acad. Sci. Paris
has gone even farther and given a definition of “spline function” entirely in the setting of abstract Hilbert
space.) According to Section 2, these splines retain all the (appropriately worded) minimum properties of
polynomial splines.

But in order not to dilute the notion of spline function too much, we prefer to follow Greville’s definition
of general spline function [6].

Definition. Let S be an m–dimensional subspace of C(m)[a, b], where [a, b] is a finite interval and let
a ≤ x1 < · · · < xn ≤ b. A real valued function f on [a, b] is a spline function with respect to S of order m
with joints x1, . . ., xn, provided that f ∈ C(m−2)[a, b] and f coincides in each interval (a, x1), (x1, x2), . . .,
(xn, b) with some element in S.

If the coefficients ai of the differential operator M in (3.1) are such that ai ∈ C(i)[a, b], i = 0, . . ., k− 1,
(i.e., if the coefficients are smoother than required in Theorem 3.1), then M possesses an adjoint differential
operator M∗ given by

(5.4) M∗ = (−1)k(dk/dxk) +
k−1∑
i=0

(−1)i(diai(x)/dxi),

which, after carrying out the differentiation and rearranging the terms, can be written as

(5.4′) M∗ = (−1)k
[
(dk/dxk) +

k−1∑
i=0

bi(x)(di/dxi)
]
,

for appropriate bi ∈ C(i)[a, b]. As we now show, in this case the representers of the point functionals (5.3) in
the Hilbert space F (k)[a, b] with inner product (3.2) are spline functions of order 2k with respect to the null
space N (M∗M) of M∗M .

Let u1, . . ., uk be a basis in N (M). The function h(x, y) which satisfies (3.5)–(3.5’) can be written as

h(x, y) =
k∑

i=1

vi(y)ui(x),

where the coefficients vi are the solution of the system

k∑
i=1

vi(y)djui/dx
j = δj,k−1 for x = y and j = 0, . . . , k − 1.

Consequently [8, p. 78], the functions vi form a basis for N (M∗). Hence as a function of y, h(x, y) ∈ N (M∗).
It then follows that as a function of y, G(x, y) in (3.11) satisfies M∗

(y)G(x, y) = 0, y 6= x. But then, because
of (3.14),

M∗
(y)M(y)K(xj , y) = 0, y 6= xj , j = 1, . . . , n,
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which shows that in the intervals (a, x1), (x1, x2), . . ., (xn, b),

K(xj , y) ∈ N (M∗M), j = 1, . . . , n.

Since as a function of y, G(x, y) ∈ Ck−2, it follows from (3.14) that as a function of y, K(x, y) ∈ C2k−2.
Finally, since K(x, y) ≡ K(y, x), the representers φi of the point functionals (5.3) are, φi(x) = K(xi, x),
which completes the demonstration.

Remark added in 1976. The argument just given assumes implicitly that the coefficients aj are
smoother than explicitly assumed. That being so, it seems strange that the smoothness of the adjoined
coefficients, bj , does not seem to play a role in the next theorem.

Theorem 5.1. Let M be any k–th order ordinary linear differential operator in normal form, (3.1),
where k ≥ 1, ai ∈ Ci[a, b], i = 0, . . ., k, and [a, b] is a finite interval. Let a ≤ x1 < x2 < · · · < xn ≤ b,
with n ≥ k and assume that the first k of the n linear functionals L1, . . ., Ln given by (5.3) are linearly
independent over N (M). Then the space S spanned by the representers φi of the Li with respect to the
inner product (3.2) consists of all spline functions with respect to N (M∗M) of order 2k with joints x1, . . .,
xn. For all f ∈ F (k)[a, b], there exists a unique element s ∈ S denoted by Pf which interpolates f with
respect to L1, . . ., Ln. For all f ∈ F (k)[a, b] and all h ∈ S,

∫ b

a

[
(Mf)(y) − (M(Pf))(y)

]2

dy ≤
∫ b

a

[
(Mf)(y) − (Mh)(y)

]2

dy

with equality if and only if h−Pf ∈ N (M). For all f ∈ F (k)[a, b] and all h ∈ F (k)[a, b] interpolating f with
respect to L1, . . ., Ln, ∫ b

a

[M(Pf)(y)]2dy ≤
∫ b

a

[(Mh)(y)]2dy

with equality if and only if h = Pf . For all L ∈ L(k), Sard’s best formula L∗ =
∑n

i=1 αiLi for L (with
respect to M) satisfies L∗f = LPf , for all f ∈ F (k)[a, b].

Appendix
Proof of Lemma 3.1. The assumptions on the differential operator M are sufficient [8, pp. 72–75] to

insure that the function h defined in (3.4) has all partial derivatives with respect to x up to and including
the k–th, and that these partial derivatives are continuous on [a, b] × [a, b] in x and y jointly. Therefore,
there exists a constant N such that

|∂jh(x, y)/∂xj | ≤ N, all x, y ∈ [a, b], j = 0, . . . , k.

Furthermore, if e ∈ C[a, b], then, using Leibniz’s rule [9] and (3.5’), one computes

dj

dxj

∫ x

a

h(x, y)e(y)dy = δkje(x) +
∫ x

a

∂j

∂xj
h(x, y)e(y)dy, j = 1, . . . , k.

Let e ∈ L2[a, b], then there exists a sequence {ei}∞1 , ei ∈ C[a, b], such that as i→ ∞,

‖e − ei‖2 =
[ ∫ b

a

|e(y) − ei(y)|2dy
]1/2

→ 0.

Set
fi(x) =

∫ x

a

h(x, y)ei(y)dy, i = 1, 2, . . . ,

and

sj(x) = δkje(x) +
∫ x

a

∂j

∂xj
h(x, y)e(y)dy j = 0, . . . , k.
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Note that sk is defined only almost everywhere. We have for all x ∈ [a, b], j = 0, . . ., k, and i = 1, 2, . . .,

∣∣∣ ∫ x

a

∂j

∂xj
h(x, y)e(y)dy −

∫ x

a

∂j

∂xj
h(x, y)ei(y)dy

∣∣∣
≤

∫ x

a

∣∣∣ ∂j

∂xj
h(x, y)

∣∣∣ |e(y) − ei(y)|dy

≤
[∫ x

a

∣∣∣ ∂j

∂xj
h(x, y)

∣∣∣2dy
]1/2

‖e − ei‖2

≤ (b− a)1/2N‖e − ei‖2.

Therefore, f (j)
i → sj uniformly on [a, b], for j = 0, . . ., k − 1, and f (k)

i → sk in the L2 norm. Hence setting
f = s0, we have f (j) = sj , j = 0, . . ., k, where for j = k, the equality again holds only almost everywhere.
In particular, f (j)(a) = 0, j = 0, . . ., k − 1, and

(Mf)(x) =
k−1∑
i=0

ai(x)f (i)(x) + f (k)(x)

=
∫ x

a

M(x)h(x, y)e(y)dy + e(x) = e(x).

Therefore, if f ∈ F (k)[a, b], then

f(x) − (Q(a)f)(x) =
∫ x

a

h(x, y)M(f −Q(a)f)(y)dy =
∫ x

a

h(x, y)(Mf)(y)dy,

which proves the first part of Lemma 3.1.
Let L be the linear functional on F (k)[a, b] defined by

Lf =
∫ b

a

f (j)(x)dµ(x),

where µ is a function of bounded variation and 0 ≤ j ≤ k − 1. If

f(x) =
∫ x

a

h(x, y)e(y)dy,

where e ∈ L2[a, b], then by the above and by Fubini’s Theorem,

Lf =
∫ b

a

∫ x

a

∂j

∂xj
h(x, y)e(y)dydµ(x)

=
∫ b

a

∫ b

y

∂j

∂xj
h(x, y)dµ(x)e(y)dy

=
∫ b

a

L(x)g(x, y)e(y)dy,

which implies the second part of Lemma 3.1.

Remark added in 1976. To be sure, r(y) := L(x)g(x, y) is, at times, only defined almost everywhere,
but equals

∫ b

y
g(x, y)dµ(x) a.e.
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