A bound on the L_{∞} -Norm of L_2 -Approximation by Splines in Terms of a Global Mesh Ratio

Carl de Boor*

Abstract. Let $L_k f$ denote the least squares approximation to $f \in \mathbf{L}_1$ by splines of order k with knot sequence $\mathbf{t} = (t_i)_1^{n+k}$. In connection with their work on Galerkin's method for solving differential equations, Douglas, Dupont and Wahlbin have shown that the norm $||L_k||_{\infty}$ of L_k as a map on \mathbf{L}_{∞} can be bounded as follows,

$$||L_k||_{\infty} \leq \operatorname{const}_k M_t$$

with M_t a global mesh ratio, given by

$$M_{\mathbf{t}} := \max \Delta t_i / \min\{\Delta t_i : \Delta t_i > 0\}$$

Using their very nice idea together with some facts about B-splines, it is shown here that even

$$||L_k||_{\infty} \leq \operatorname{const}_k (M_t^{(k)})^{1/2}$$

with the smaller global mesh ratio $M_{\mathbf{t}}^{(k)}$ given by

$$M_{\mathbf{t}}^{(k)} := \max_{i,j} (t_{i+k} - t_i) / (t_{j+k} - t_j).$$

A mesh independent bound for L_2 -approximation by continuous piecewise polynomials is also given.

1. Introduction. This note is an addendum to the clever paper by Douglas, Dupont and Wahlbin [2] in which these authors bound the linear map of least-squares approximation by splines of order k with knot sequence $\mathbf{t} := (t_i)$, as a map on \mathbf{L}_{∞} , in terms of the particular global mesh ratio

$$M_{\mathbf{t}} := \max_{i} \Delta t_{i} / \min\{\Delta t_{i} : \Delta t_{i} > 0\}.$$

Their argument is very elegant. But their result is puzzling in one aspect: The ratio M_t is not a continuous function of **t**. If, e.g., **t** is uniform, hence $M_t = 1$, and we now let $\mathbf{t} \to \mathbf{t}^*$ by letting just one knot approach its neighbor, leaving all other knots fixed, then

$$\lim_{\mathbf{t}\to\mathbf{t}^*}M_{\mathbf{t}}=\infty, \quad \text{while } M_{\mathbf{t}^*}=2.$$

Correspondingly, their bound goes to infinity as $\mathbf{t} \to \mathbf{t}^*$, yet is again finite for the particular knot sequence \mathbf{t}^* .

This puzzling aspect is removed below. It is shown that (as asserted in a footnote to [1]) their very nice argument can be used to give a bound in terms of the smaller global mesh ratio

(1)
$$M_{\mathbf{t}}^{(k)} := \max_{i} (t_{i+k} - t_i) / \min_{i} (t_{i+k} - t_i)$$

which does depend continuously on \mathbf{t} in $\{\mathbf{t} \in \mathbb{R}^{n+k} : t_i \leq t_{i+1}, t_i < t_{i+k}, \text{ all } i\}$.

2. Least-squares approximation by splines of order k. Let $\mathbf{t} := (t_i)_1^{n+k}$ be a nondecreasing sequence, with $t_i < t_{i+k}$, all i. A spline of order k with knot sequence \mathbf{t} is, by definition, any function of the form

$$\sum_{i=1}^{n} \alpha_i N_i$$

with $\boldsymbol{\alpha} \in \mathbb{R}^n$ and N_i the normalized B-spline of order k with knots t_i, \ldots, t_{i+k} , i.e.,

$$N_i(t) := N_{i,k,\mathbf{t}}(t) := (t_{i+k} - t_i)[t_i, \dots, t_{i+k}](\cdot - t)_+^{k-1}$$

^{*} Sponsored by the United States Army under Contract No.DAAG29–75–C–0024.

In words, for each t, $N_i(t)$ is $(t_{i+k} - t_i)$ times the kth divided difference at t_i, \ldots, t_{i+k} of $(s-t)_+^{k-1}$ as a function of s.

We denote the totality of all splines of order k with knot sequence t by $\mathbf{S}_{k,t}$. More detail about $\mathbf{S}_{k,t}$ is provided in [1] and its references.

Next, let L_k denote the linear projector on \mathbf{L}_1 defined by the condition that $L_k f \in \mathbf{S}_{k,\mathbf{t}}$, and, for all $g \in \mathbf{S}_{k,\mathbf{t}}, \int (f - L_k f)g = 0$, i.e., $L_k f$ is the \mathbf{L}_2 -approximation to f in $\mathbf{S}_{k,\mathbf{t}}$. We are interested in estimating the norm $\|L_k\|_p$ of L_k as a map on \mathbf{L}_p . Since

$$||L_k||_p = ||L_k||_q$$
 for $1/p + 1/q = 1$,

and $||L_k||_2 = 1$, interpolation will give a bound on $||L_k||_p$ in terms of $||L_k||_{\infty} = ||L_k||_1$, as is pointed out in [2]. It therefore suffices to consider $||L_k||_{\infty}$.

Let $L_k f = \sum \alpha_j N_j$. Then $\|L_k f\|_{\infty} \leq \|\boldsymbol{\alpha}\|_{\infty}$ since $N_i \geq 0$, all i, and $\sum_j N_j \leq 1$, while

$$\sum_{j} \int N_i N_j \alpha_j = \int N_i f \le \left[(t_{i+k} - t_i)/k \right] \|f\|_{\infty}, \quad \text{all } i$$

since $N_i \ge 0$ and $\int N_i = (t_{i+k} - t_i)/k$. Therefore,

(2)
$$||L_k||_{\infty} \le ||G^{-1}||_{\infty}$$

with

(3)
$$G := G_{\infty} = E^{1/2} G_2 E^{-1/2},$$

where E is a diagonal matrix,

(4)
$$E := \lceil k/(t_{k+1} - t_1), \dots, k/(t_{k+n} - t_n) \rfloor,$$

and G_2 is the Gramian matrix for the basis $(\overset{2}{N}_i)$ of $\mathbf{S}_{k,\mathbf{t}}$, i.e.,

(5)
$$G_2 := \left(\int_{-\infty}^{\infty} N_i N_j \right)_{i,j=1}^n$$

and

(6)
$$\sum_{i=1}^{p} N_{i} := [k/(t_{i+k} - t_{i})]^{1/p} N_{i}.$$

With this normalization, we are assured of the existence of a positive constant D_k depending only on k and not at all on t or n so that

(7)
$$D_k^{-1} \|\boldsymbol{\alpha}\|_p \le \|\sum_j \alpha_j \overset{p}{N}_j\|_p \le \|\boldsymbol{\alpha}\|_p, \quad \text{all } \boldsymbol{\alpha} \in \mathbb{R}^n$$

(see the theorem on p.539 of [1]). This inequality implies that

(8)
$$||G_2^{-1}||_{\infty} \le \operatorname{const}_k$$

for some const_k depending only on k as we will show below; and, on combining this with (2)-(4), we obtain the desired conclusion

(9)
$$||L_k||_{\infty} \le \operatorname{const}_k (M_{\mathbf{t}}^{(k)})^{1/2}.$$

3. A bound for $||G_2^{-1}||_{\infty}$. With $(\alpha_{ij})_{i,j=1}^n := G_2^{-1}$, let $f_i := \sum_j \alpha_{ij} N_j^2$. Then $\int f_i \stackrel{2}{N}_j = \delta_{ij}, \quad \text{all } j;$

hence

$$\int \alpha_{ii} \stackrel{2}{N}_i f_i + \sum_{j \neq i} \alpha_{ij} \stackrel{2}{N}_j f_i = \alpha_{ii}$$

i.e.,

 $||f_i||_2^2 = \alpha_{ii}.$ (10)

Therefore, by (7),

$$D_k^{-2} \alpha_{ii}^2 \le D_k^{-2} \sum_j |\alpha_{ij}|^2 \le ||f_i||^2 = \alpha_{ii},$$

hence, as $\alpha_{ii} = \|f_i\|_2^2 \neq 0$ (G_2^{-1} is invertible!), we have $\alpha_{ii} \leq D_k^2$; and so, $\|f_i\|_2 \leq D_k$ and

(11)
$$\left(\sum_{j} |\alpha_{ij}|^2\right)^{1/2} \le D_k ||f_i||_2 = D_k (\alpha_{ii})^{1/2} \le D_k^2.$$

This shows that

$$\|G_2^{-1}\|_{\infty} = \max_i \sum_j |\alpha_{ij}| \le n^{1/2} \max_i \left(\sum_j |\alpha_{ij}|^2\right)^{1/2} \le n^{1/2} D_k^2$$

and so bounds $||G_2^{-1}||_{\infty}$ in terms of only k and n. From this, one obtains

$$||G^{-1}||_{\infty} \le (nM_{\mathbf{t}}^{(k)})^{1/2}D_{k}^{2}$$

a bound in terms of the desired global mesh ratio, except that the bound goes to infinity with the number of mesh points. Note that we can express $M_{\mathbf{t}}^{(k)}$ in terms of n and the local mesh ratio

$$m_{\mathbf{t}}^{(k)} := \max_{|i-j|=1} (t_{i+k} - t_i) / (t_{j+k} - t_j);$$

hence, we even have a bound on $||G^{-1}||_{\infty}$ in terms of that *local* mesh ratio but, alas, involving also n.

In order to remove this dependence on n, we use the ideas of Douglas, Dupont and Wahlbin [2] to prove the following lemma.

Lemma 1. There exist const_k and $\lambda_k \in (0,1)$ independent of n or t so that, for all i and j,

$$|\alpha_{ij}| \le \operatorname{const}_k(\lambda_k)^{|i-j|}.$$

We observed earlier that the function $f_i = \sum_j \alpha_{ij} N_j^2$ is orthogonal to $\operatorname{span}(N_j)_{j \neq i}$. Hence, **Proof:** for any m > i,

$$f_{i,m} := \sum_{m \le j} \alpha_{ij} \stackrel{2}{N}_j$$

is orthogonal to f_i and, therefore, also orthogonal to $f_{i,m-k+1}$ since the latter function agrees with f_i on the support of $f_{i,m}$. This proves that

(12)
$$\|f_{i,m-k+1}\|_2^2 + \|-f_{i,m}\|_2^2 = \|f_{i,m-k+1} - f_{i,m}\|_2^2$$

from which we conclude that

$$\|\sum_{m-k < j} \alpha_{ij} \hat{N}_j \|_2^2 \le \|\sum_{m-k < j < m} \alpha_{ij} \hat{N}_j \|_2^2$$

or, with the inequality (7),

(13)
$$\sum_{m-k < j < m} |\alpha_{ij}|^2 \ge D_k^{-2} \sum_{m-k < j} |\alpha_{ij}|^2, \quad m = i+1, i+2, \dots$$

Faced with a similar inequality, Douglas, Dupont and Wahlbin [2] make use of what amounts to the following discrete Gronwall inequality:

Lemma 2. If the sequence a_0, a_1, \ldots satisfies

(14)
$$|a_m| \ge c \sum_{m \le j} |a_j|, \quad m = 0, 1, 2 \dots,$$

for some $c \in (0, 1)$, then $\lambda := 1 - c \in (0, 1)$ and

(15)
$$|a_m| \le |a_0|\lambda^m/c, \quad m = 0, 1, 2, \dots$$

Proof: Let $A_m := \sum_{m \le j} |a_j|$. Then (14) reads

$$A_m - A_{m+1} \ge cA_m, \quad \text{all } m,$$

or, $A_{m+1} \leq (1-c)A_m$, all *m*, therefore, with $\lambda := 1-c$,

$$A_{m+j} \le \lambda^j A_m$$
, all m, j ,

and so,

$$|a_m| = A_m - A_{m+1} \le A_m \le \lambda^m A_0 \le |a_0|\lambda^m/c.$$
 Q.E.D.

In order to apply this lemma to (12), we pick $m_0 > i$ and let

$$J_m := \{ j \in \mathbb{Z} : m_0 + (k-1)(m-1) \le j < m_0 + (k-1)m \}, \quad m = 0, 1, \dots$$

Then, with

$$a_m := \sum_{j \in J_m} |\alpha_{ij}|^2$$
, all m ,

we obtain from (12) that

$$a_m \ge D_k^{-2} \sum_{m \le j} a_j, \quad m = 0, 1, 2, \dots;$$

hence, from the lemma,

$$\max_{j \in J_m} |\alpha_{ij}| \le a_m^{1/2} \le D_k (1 - D_k^{-2})^{m/2} a_0^{1/2}$$

while, by (11),

$$a_0^{1/2} \le \left(\sum_j |\alpha_{ij}|^2\right)^{1/2} \le D_k^2.$$

This proves the asserted exponential decay of $|\alpha_{ij}|$ for j > i; but G_2 is symmetric.

It follows at once that

(16)
$$||G_2^{-1}||_{\infty} \leq \operatorname{const}_k 2/(1-\lambda_k).$$

In view of the discussion at the end of Section 2, we have therefore proved the following theorem.

Theorem 1. There exists a constant *c* depending only on *k* so that the norm $||L_k||_{\infty}$ of \mathbf{L}_2 -approximation by splines of order *k* with knot sequence **t**, as a map on \mathbf{L}_{∞} , satisfies

$$||L_k||_{\infty} \le c(M_{\mathbf{t}}^{(k)})^{1/2}$$

with the global mesh ratio $M_{\mathbf{t}}^{(k)}$ given by

$$M_{\mathbf{t}}^{(k)} := \max_{i,j} (t_{i+k} - t_i) / (t_{j+k} - t_j).$$

Q.E.D.

There seems to be little hope that this argument would even support a bound in terms of $m_{\mathbf{t}}^{(k)}$, let alone a bound independent of the mesh \mathbf{t} .

4. A mesh independent bound for \mathbf{L}_2 -approximation by C^0 -piecewise polynomials. Pick k > 1. Let $\boldsymbol{\xi} = (\xi_i)_1^r$ in (a, b) with $a =: \xi_0 < \cdots < \xi_{r+1} := b$, and let Pf be the \mathbf{L}_2 -approximation to f by elements of $\mathbf{P}_{k,\boldsymbol{\xi}} \cap C^0 := \{f \in C[a,b] : f|_{(\xi_i,\xi_{i+1})} \in \mathbf{P}_k\}$. Todd Dupont [3] has shown some time ago that P can be bounded as a map on \mathbf{L}_∞ independently of $\boldsymbol{\xi}$ by constructing a basis for ran P for which a certain matrix related to the Gramian is strictly diagonally dominant. We take the occasion to give a proof in terms of B-splines.

If $\mathbf{t} = (t_i)_1^{n+k}$ is the nondecreasing sequence which contains a and b exactly k times and each of ξ_1, \ldots, ξ_r , exactly k-1 times (and nothing else), then

$$\mathbf{P}_{k,\boldsymbol{\xi}} \cap C^0 = \mathbf{S}_{k,\mathbf{t}},$$

hence then $P = L_k$ introduced in Section 2, therefore, $||P|| \le ||G^{-1}||$ with G given by (3)-(6) in terms of **t** as determined from $\boldsymbol{\xi}$.

Theorem 2. Let $\widehat{G} := (k \int_0^1 \widehat{N}_i \widehat{N}_j)_{i,j=1}^k$ be the matrix G in the special case r = 0, [a, b] = [0, 1]. Then, for all $\boldsymbol{\xi}$, $\|G^{-1}\|_{\infty} = \|\widehat{G}^{-1}\|_{\infty}$. In particular, $\|P\| \leq \|\widehat{G}^{-1}\|_{\infty}$ for all $\boldsymbol{\xi}$. Hence (T.Dupont) $\sup_{\boldsymbol{\xi}} \|P\| < \infty$.

Proof: Let $\xi_{-1} = a$, $\xi_{r+2} = b$. Then, for $m = 0, \ldots, r+1$, $N_{m(k-1)+1}$ has its support on the two intervals (ξ_{m-1}, ξ_{m+1}) of $\boldsymbol{\xi}$. All other N_i have their support in just one interval. Correspondingly, the matrix G is almost block diagonal, with r+1 $k \times k$ blocks overlapping in just one row and column. For k = 4 (the cubic case) and r = 2 this looks like

Since the linear change of the independent variable taking $[\xi_m, \xi_{m+1}]$ to [0, 1] carries

$$N_{m(k-1)+i}$$
 on $[\xi_m, \xi_{m+1}]$ to \widehat{N}_i on $[0, 1]$, $i = 1, \dots, k$,

we have

(17)
$$G_{m(k-1)+i,m(k-1)+j} = \begin{cases} (\Delta \xi_m / (\xi_{m+1} - \xi_{m-1})) \widehat{G}_{1,j}, & i = 1 \\ \widehat{G}_{ij}, & i = 2, \dots, k-1 \\ (\Delta \xi_m / (\xi_{m+2} - \xi_m)) \widehat{G}_{kj}, & i = k \end{cases}, \quad j = 1, \dots, k,$$

for $m = 0, \ldots, r$. This says that each of the r + 1 blocks of G is essentially equal to \widehat{G} .

G is totally positive by [1]. Its inverse is therefore a checkerboard matrix, hence (see [1, p. 541])

But such a **y** is easily constructed. Take $\mathbf{x} = (x_1, \ldots, x_k)$ so that

(19)
$$\sum_{j} \widehat{G}_{ij}(-)^{i+j} x_j = 1, \quad \text{all } i$$

and extend **x** to a (k-1)-periodic function $\mathbf{y} = (y_i)_1^n$ on all of $(1, \ldots, n)$. This is possible since $x_k = x_1$ by symmetry. Then, for i = m(k-1) + I, we have from (17) and (19) that

$$\sum_{j} G_{ij}(-1)^{i+j} y_j = \sum_{j=1}^{k} \widehat{G}_{Ij}(-)^{I+j} x_j = 1, \quad I = 2, \dots, k-1; \quad m = 0, \dots, r,$$

and also

$$\sum_{j} G_{ij}(-)^{i+j} y_j = (\Delta \xi_{m-1} / (\xi_{m+1} - \xi_{m-1})) \sum_{j} \widehat{G}_{kj}(-)^{k+j} x_j + (\Delta \xi_m / (\xi_{m+1} - \xi_{m-1})) \sum_{j} \widehat{G}_{1j}(-)^{1+j} x_j = 1$$
for $I = 1; \quad m = 0, \dots, r+1.$

This proves with (18) that

$$||G^{-1}||_{\infty} = ||\mathbf{y}||_{\infty} = ||\mathbf{x}||_{\infty} = ||\widehat{G}^{-1}||_{\infty}.$$
 Q.E.D.

References

- C. DE BOOR, "Bounding the error in spline interpolation", SIAM Rev., v.16, 1974, pp. 531–544. MR 50 # 13976.
- [2] JIM DOUGLAS JR., TODD DUPONT, AND LARS WAHLBIN, "Optimal L_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems", *Math. Comp.*, v.29, 1975, pp. 475–483. MR 51 # 7298.
- [3] T. DUPONT, Private Communication.