On Ptak's derivation of the Jordan normal form

Carl de Boor
Department of Computer Sciences, University of Wisconsin-Madison
1210 W. Dayton St., Madison WI 53706

Some readers of [1] might appreciate the following comments that make more explicit how Ptak's beautiful insight there leads to a trivial proof of (the basics of) the Jordan normal form.

The proof of Theorem 1 of [1] can also be based on the observation that, X being finite-dimensional, the sequence $\{0\} \subseteq \operatorname{ker} A \subseteq \operatorname{ker} A^{2} \subseteq \cdots$, must eventually be stationary, i.e., $\operatorname{ker} A^{q}=\operatorname{ker} A^{q+p}$ for some q and all $p>0$. For such q, let X_{r} and X_{s} be the range and the kernel, respectively, of A^{q}, hence $\operatorname{dim} X=\operatorname{dim} X_{r}+\operatorname{dim} X_{s}$. Further, for any $x \in X_{r} \cap X_{s}, x=A^{q} z$ for some z, and so $z \in \operatorname{ker} A^{2 q}=\operatorname{ker} A^{q}$, hence $x=0$. Therefore, X is the direct sum of the two A-invariant subspaces X_{s} and X_{r}, and A is regular on X_{r} (since A^{q} is) and is nilpotent on X_{s}.

In the setup and notation of Theorem 2 of [1], there must be, by duality, some y_{0} in Y for which $\left\langle x_{0} A^{q-1}, y_{0}\right\rangle \neq 0$, hence the q-order matrix ($\left\langle x_{0} A^{j-1}, y_{0} A^{* q-i}\right\rangle: i, j=1, \ldots, q$) is triangular with nonzero diagonal entries, therefore invertible, and this guarantees that X is the direct sum $X_{0}+X^{\prime}$, with X_{0} the linear span of $\left(x_{0} A^{j-1}: j=1, \ldots, q\right)$ and X^{\prime} the annihilator of $\left\{y_{0} A^{* q-i}: i=1, \ldots, q\right\}$, both of which are A-invariant. Moreover, it shows $\left(x_{0} A^{j-1}: j=1, \ldots, q\right)$ to be a basis for X_{0}, and the matrix representation, with respect to this basis, of A restricted to X_{0} has the familiar form of a Jordan block (for the eigenvalue 0).

Now, X being finite-dimensional, there are A-invariant direct sum decompositions $X=X_{1}+\cdots+X_{m}$ that are minimal in the sense that none of its summands is the direct sum of two nontrivial A-invariant subspaces. Take any one such. Then the matrix representation for A with respect to any basis made up from bases for the summands X_{i} is block diagonal, with the i th block the matrix representation of the restriction A_{i} of A to X_{i} with respect to the chosen basis for X_{i}.

Assuming the underlying field to be algebraically closed, the restriction A_{i} of A to X_{i} has some eigenvalue, λ_{i}, and, in view of the minimality of X_{i}, Theorem 1 ensures that $B_{i}:=A_{i}-\lambda_{i}$ is nilpotent, while Theorem 2 then ensures that, for some $x \in X_{i}$ and some $q,\left(x B_{i}^{j-1}: j=1, \ldots, q\right)$ is a basis for X_{i}, and the matrix representation of A_{i} with respect to that basis is a Jordan block with λ_{i} as its diagonal element.

Theorems 1 and 2 of [1] don't seem to assist in the proof that the Jordan normal form is unique (up to reordering of the blocks), although such uniqueness is readily established by the observation that

$$
n_{j}:=\operatorname{dim} \operatorname{ker}(A-\lambda)^{j}=\sum_{\lambda_{i}=\lambda} \min \left(\operatorname{dim} X_{i}, j\right)
$$

hence $\Delta n_{j}:=n_{j+1}-n_{j}$ equals the number of blocks for λ of order $>j$, giving the decomposition-independent number $-\Delta^{2} n_{j-1}$ for the number of Jordan blocks for λ of order j.
[1] V. Ptak, A remark on the Jordan normal form of matrices, Linear Algebra Appl. (this issue, i.e., vol. 310,2000 , $\mathrm{xxx}-\mathrm{xxx}$)

