
Doing a TEXjob
TEX is not a word processor. Rather, you use your favorite word processor or file

editor to prepare files of instructions for TEX. By and large, it doesn’t matter what word
processor you use. Since braces turn out to be important in TEX, you are better off using
a file editor like vi that will allow you to check that every closing brace (or parenthesis or
bracket) matches the opening brace (or parenthesis or bracket) you want it to match. It
is also important that the word processor leave no funny control characters in the file, as
these might confuse TEX.

How such an instruction file (traditionally carrying the suffix .tex) is converted into
pages of beautiful print need not concern you (though you will come to admire the clev-
erness that must have gone into the process). But you have to find out how, on your
computer system, you submit that instruction file to TEX. Usually, a command like tex
myfile suffices if myfile.tex is the file containing the instructions. Your system should
also allow you to have the file worked on by TEX without any final printing, since that is
the way to find out mistakes.

ordinary text
You type ordinary text as you would in any word processor, except that there are

fewer things to pay attention to.
(1) As you can see, it doesn’t matter how many spaces you leave between words or after

punctuation. TEX will choose an even and optimal spacing and leave the right number
of spaces after punctuation.

(2) As you can see, it doesn’t matter where you break lines. TEX will choose optimal line
breaks (if that is possible; it will let you know when it cannot; actually, I tried hard
to force such a situation in the next item without trickery).

(3) In particular, you (usually) need not pay attention to hyphenation. TEX is completely
familiar with all the rules and applies them automatically, if need be. (If you are
eager to supply a particular hyphenation, indicate the place by typing \- there; e.g.,
surg\-e\-ry.)
You indicate the end of a paragraph by leaving a blank line (or two or three if you

want to be generous; again, it doesn’t matter how many you leave).
You can also indicate the beginning of a new paragraph by typing \par.

Special characters
You type all characters great and small on your keyboard, except that some (altogether

ten) non-letters have special meaning for TEX and therefore must be typed in a special
way if they are actually to appear in the printed text. Here is the list of these special
characters:

\ { } $ & # ˆ % ˜
You notice that you get most of these symbols to print by typing first the backslash \. For
some, this will work only if this is (part of a text) enclosed in dollar signs (of which much
more later). The backslash itself is so important that TEX requires you to type out the
word backslash after a \ (and encase the whole thing in dollar signs) if you want to have
the backslash printed.

5

The backslash serves as an escape character, i.e., as a message to TEX that what
immediately follows the backslash is to be taken as a command (rather than as text to be
typeset).

In particular, you get all the symbols and signs not on your keyboard with the aid of
such commands. See Sam Bent’s TEX Reference Card in the Appendix for a complete,
ordered listing.

odds and ends

TEX will automatically leave more space after a period at the end of a sentence than
between words in a sentence. But since TEX has no way of understanding what you write,
it has to make a guess at what is ‘a period at the end of a sentence’. It guesses that it is
any period followed by one or more blanks as long as it is not preceded by a capital letter,
as in D. E. Knuth. Note that TEX provides an ordinary interword space after each of the
two initials, and a larger, intersentence, space after the final period.

This rule of thumb causes difficulty when a sentence ends in a capital letter, such as
this ONE. See? You can overcome it by inserting the do nothing command \null just
prior to the PERIOD. There. That does it.

This rule of thumb also causes difficulty with abbreviations, such as refs. to comp.lit.
or phys.ed. courses. You overcome this by following such abbreviation periods by a forced
blank, e.g., as in refs. to comp.lit. or phys.ed. courses. See the difference?

This rule of thumb causes difficulty with the unhappy habit and unfortunate standard
rule of ‘putting the period at the end of a quote inside the quote.’ The remedy is simple:
’Put the period outside’. But if you must keep it inside, “follow the quote with two forced
blanks.” There.

Note that the beginning quotes in the preceding paragraph were typed differently from
what you might have expected. Just to get used to this, also type the closing double quote
as ” even though ” will give the same thing.

simple math

All math within text is enclosed within dollar signs, even when it is just one letter or
symbol, such as a, b, or c, and certainly for things like E = mc2, or xi + yi = 3

4 , or abc

, or
xα

1 , or or
∫ 1

−1
x dx = 0, or

∑n
i=0 ci = (cn+1 − 1)/(c − 1) for all n ≥ 0.

It is worth studying these examples in some detail. I have not left any spaces around
symbols; TEX takes care of that, usually. But TEX cannot understand math, so sometimes
you may have to control spacing, as I have done in the integral, by putting a bit of space
(via \,) between the x and the dx. Also, one must use braces to indicate the extent of
subscripts and superscripts, but only if they involve more than one character. Braces are
also required to control what \over puts on top and below the bar.

For a complete, ordered list of all the available math symbols, see Sam Bent’s TEX
Reference Card in the appendix.

The inexperienced typist will bemoan having to type all those dollar signs. Although
I do touch-typing, sort of, I have found it more convenient to type the dollar sign (and
some other signs) piano-fashion, i.e., by hitting appropriate keys simultaneously with the

7

same hand; in this example, it’s the left hand, with the little finger hitting the shift key
while the middle finger simultaneously hits the 4/$ key.

display math

Displayed math is enclosed within double dollar signs. Here are some of the earlier
math examples, but in double dollar signs:

E = mc2, orxi + yi =
3
4
, orabc

, orxα
1 ,

or ∫ 1

−1

x dx = 0,

or
n∑

i=0

ci = (cn+1 − 1)/(c − 1), foralln ≥ 0.

You’ll notice that some of the display has become more expansive. For example, the
summation sign is bigger, and its limits are above and below it, rather than to the right
of it. That’s nice since TEX takes care of such things; you type it the same way, whether
in math mode or in display mode, and TEX makes the appropriate adjustments. You’ll
also notice that the last comma in the first and second display, and the period in the third
display, are now typed before the dollar sign(s) rather than after. Can you guess what
would have happened otherwise?

On the other hand, notice what happened to the ordinary word “or” and the text
“for all”. TEX treats them, not as words, but as a sequence of math symbols, hence puts
them into italics, gives them a funny spacing and ignores entirely the interword space. To
have them typeset as ordinary text, you need to switch temporarily to that font, as in the
following:

n∑
i=0

ci = (cn+1 − 1)/(c − 1), foralln ≥ 0.

This now uses ordinary (roman) type for these two words, but still isn’t right since, being
inside display mode, the interword spacing is ignored. So you have to enforce it by using
the forced blank:

n∑
i=0

ci = (cn+1 − 1)/(c − 1), for all n ≥ 0.

This is still not quite right since it is nicer to set off that last quantifier from the actual
formula. This you do by inserting some (standard) space that TEX provides with the
commands \quad and \qquad. \qquad is the right one here:

n∑
i=0

ci = (cn+1 − 1)/(c − 1), for all n ≥ 0.

9

alignment
TEX really begins to pay off when it comes to the alignment of text. Here are some

standard examples:

H(x) :=

{
x if 0 ≤ x ≤ 1;
2 − x if 1 ≤ x ≤ 2;
0 otherwise.

This is an example of the \cases statement. The description of each line has two fields.
The first field goes from the ‘beginning’ of the description to the ampersand &; it is
typeset automatically as math. The second field goes from the ampersand to the carriage
return \cr, and it is typeset automatically as text; hence any math in it must be embraced
by dollar signs. The description of the first line begins right at the opening brace of the
\cases statement. The description of subsequent lines begins right after the \cr of the
preceding line. (It doesn’t matter how many actual lines you use in your .tex file to
describe the lines to be displayed in the cases statement.)

If you prefer somewhat more space between the cases, use \noalign, as in this modi-
fication, which also shows how you could get the material in the first fields centered:

H(x) :=

x if 0 ≤ x ≤ 1;

2 − x if 1 ≤ x ≤ 2;

0 otherwise.
The next example shows how to align several lines of displayed equations. The description
of each line is terminated again by the carriage return, and, in each description, the point
of alignment is again marked by an ampersand.

M∗′f = M∗(M|∗c)
= M∗(c∗M|)

= (M∗c)∗M| = f∗′M.

Incidentally, the asterisks have all been em‘brace’d here to prevent TEX from embedding
them in extra space (a thing it would do to any symbol it recognizes as a binary operation
sign).

Many math alignments can be handled by using matrices. Here is the standard
example:

(14) A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

in which you also see various ways of entering the equivalent of etc into math formulas as
well as an equation number. The macro \pmatrix provides its own fences. If you prefer
some other kind, you use \matrix together with \left and \right, as in[

A B C
D F Γ

]
, (14)′

11

which also illustrates that you can treat each matrix entry as if it were typeset without
regards to any other entry (which it is).

Note that, once again, the ampersand & indicates the alignment points while the
carriage return \cr indicates the end of a line (description).

The use of over- and underbrace is illustrated nicely here:

{
h a′s︷ ︸︸ ︷

a, . . . , a,

k b′s︷ ︸︸ ︷
b, . . . , b︸ ︷︷ ︸

h+k elements

}.

Actually, this looks a bit crooked. To get it right, add a \mathstrut to each group to be
‘overbraced’ in order to give them the same height:

{
h a′s︷ ︸︸ ︷

a, . . . , a,

k b′s︷ ︸︸ ︷
b, . . . , b︸ ︷︷ ︸

h+k elements

}.

This is still not quite right, since we would want apostrophes rather than primes in the
overbrace material, but ’twill serve.

The next example shows the general-purpose and very useful \halign command in
action:
for f ∈ ΠM , M∗′f = f∗′M = f

∑
j∈ZZd M(j) − ∑

j∈ZZd(f − f(· − j))M(j)
∈ f + Π<degf

Here, too, we describe how each of the displayed lines should look. As before, fields
are separated by ampersands &’s, and line descriptions by carriage returns \cr’s. But the
first line description is special. It doesn’t describe a particular line; rather, it is a template
for the actual lines, i.e., it describes a general pattern to be followed by all (subsequent)
lines. This means that each field in the first line description tells how the corresponding
field in the actual lines should be handled, with the sharp sign # indicating just where in
that field the actual material in each line for that field is to appear.

In the above example, the description of the first field is simplest. It contains the
sharp sign # and nothing else. The second field starts with some space and then has the
sharp # embraced by dollar signs. Hence, for each line, the second field will start with the
same specified amount of space followed by the actual material from the second field, but
typeset in math mode. The fourth field (it is part of the trickiness of \halign to keep
proper track of which field is which) uses \hfil to put some variable space around the
material for that field, which, in effect, centers that material within the field. It also
embraces the material with dollar-signs, hence will do it in math mode. The next field is
entirely in math-mode, but embraces the sharp sign with a little space (indicated by \;
which only works in math-mode), and so puts that space around the material for that field
in each actual line. And so on.

The only thing not quite right about the above display is lack of centering and lack of
proper surrounding space. But that can be arranged, using \noalign to put some space
between the lines, and things called \hbox and \vbox to center it all, as you see here:

13

for f ∈ ΠM , M∗′f = f∗′M = f
∑

j∈ZZd M(j) − ∑
j∈ZZd(f − f(· − j))M(j)

∈ f + Π<degf

I have to admit that getting an alignment of such complexity right takes some doing
and some patience, and some struggle with TEX’s often inscrutable error messages.

This particular example might actually be easier to handle with the \matrix com-
mand, which gives:

for f ∈ ΠM , M∗′f = f∗′M = f
∑

j∈ZZd M(j) − ∑
j∈ZZd

(
f − f(· − j)

)
M(j)

∈ f + Π<degf

Here is a simple use of \halign which also demonstrates the use of \hbox and \vbox,
well, of its cousin \vtop (see the section on boxes for details).

Michael G. Crandall
Department of Mathematics
University of Wisconsin-Madison
Madison WI 53706

and Pierre-Louis Lions
Ceremade
Université Paris-Dauphine
Place de Lattre de Tassigny
75775 Paris Cedex 16

The function served here by \halign is to permit the name-and-address information
to be entered in line, separated only by the carriage returns, and to make sure that all these
lines are left-adjusted, and to supply a box that is exactly large enough to contain all that
information, hence makes it possible to align these two boxes properly on the page. But it
makes it also very easy to center the information instead, by adding another \hfill to
the template in \halign:

Michael G. Crandall
Department of Mathematics

University of Wisconsin-Madison
Madison WI 53706

and Pierre-Louis Lions
Ceremade

Université Paris-Dauphine
Place de Lattre de Tassigny

75775 Paris Cedex 16
Table construction is also easily done with the aid of \halign. Here is a simple table.

Table 1
x sin(x)
0 0

π/2 1

Note the use of rules to draw lines. Note in particular how that vertical line is
drawn for each line with the aid of the second field in the pattern. Note that the pattern
description for that second field must contain a sharp even though you have no intention
of ever putting anything into that field (other than the \vrule specified by the pattern).

But it’s a miserable table otherwise. The heading line and the first line in the table
are right on top of each other, yet there’s some skip between the two lines in the table,
and the columns are just big enough to contain the widest item in each.

15

We fix the crowding of the lines by putting a \strut into the pattern (i.e., a \vrule
of zero width but of sufficient height and depth that the resulting lines of type can be
allowed to be contiguous without any interlineskip and still look well separated). This will
also fix the problem with the skip between the lines; for, with the \strut making all lines
a little bit larger, we can turn off the interlineskip inside the box that is to contain the
table by saying \offinterlineskip. Finally, we can make the columns a little bit wider
by adding some forced blanks in the patterns. Here is the result:

Table 1
x sin(x)
0 0

π/2 1

For the more demanding consumer, here is a more sophisticated table in which re-
peated \hrules have given some lines greater thickness, and in which some entries actually
go across several columns.

Table 2

θ = 2 deg Flight data Computation
R∗ τ∗ b Clrm Clsm Clrm Clsm

10.0 .091 4.32 -.025 .020 -.02375 .02437
20.0 .087 5.20 -.040 .040 -.02984 .03571
45.2 .123 4.23 -.055 .050 -.04454 .04714

Note the use of \hbox to \hsize and \hfill to center the table. By the way, in typing
in the description, I made extensive use of the fact that, in vi, it is very easy to duplicate
and repeatedly use a word, or phrase, or entire line, and that vi will automatically show
me matching braces, so I would be sure which grouping I was closing. As a result, the
table came out perfect the first time I ran TEX on it, – except that I had typed Fight
rather than Flight, and had typed C_{\rm} rather than C_{lrm}. Immerhin.

TEX also makes available the main tool for vertical alignment on a typewriter, the tab
key. I have never used it since I find \halign so much more versatile and I don’t have
to count spaces beforehand. (In fact, TEX implements tabbing with the aid of \halign.)
Tabbing is useful for horizontal alignments that run over many pages since, in contrast
to \halign, tabbed material can be typeset line by line. By contrast, \halign must first
look at all the columns before it can settle column width and spaces between columns.

Finally, there are occasions when you want to locate material just so. For example,
you might have a graph you wish to label. (TEX makes available the macro \special
which allows you to include, e.g., graphic material right with the TEXed material. Details
depend on the printer you are using and on the particular software that converts the dvi
file TEX produces into a file that makes sense to your printer.) For this, look for the macros
\gridbox and \point in the section headed ‘including and labelling figures’, which are also
useful for precise placement without any figure involved.

We now use \vfill\eject to generate a clean page break.

17

page layout
The size of the overall area on a page to be filled with print can be controlled

by setting \hsize and \vsize.
The placement of this rectangle of printed text is controlled by setting \hoff-

set and \voffset.

The space between paragraphs is controlled by \parskip.

The amount of indentation is controlled by \parindent.

The amount of space between lines can be controlled by setting

\baselineskip, as I have just done. All these parameters have default values. You

set them only to change those default values. Their new values are used as soon as

you set them and until you come to the end of the current grouping. After that,

they revert to what they were before entering that grouping.
If you want to restrict these changes to a particular part of the text,

put that text into braces that also embrace those changes, as I have done
for the preceding three paragraphs (and also for the entire material on
this page).

The preceding paragraph has had its margins widened by use
of \narrower. Also, the indentation for the present paragraph
has been suppressed by a \noindent, and the paragraph made
yet narrower by a \narrower\narrower. But, in each case,
the effect of the narrowing command has been restricted to the
paragraph by embracing the completed paragraph.

It is important to note that parameters that only affect entire paragraphs
(such as \baselineskip or \narrrower) only affect those paragraphs that are
completed before the end of the grouping within which they occur is reached. For
example, leaving off the \par near the end of the description of the preceding
paragraph would have prevented the \narrower\narrower at its beginning from
taking effect.
\parindent has just been made quite small. Also, \hang has been used to indent
the entire paragraph. The amount of indenting is determined by the current value
of \parindent.

• You can get the same effect with \item, except that \item gives you the oppor-
tunity to put something to the left of the indent on the first line, as I have done
here.
Note the effects of

a \leftline
a \centerline

and a \rightline
and of a \line with some \hfill

19

a sample headline -3

On this page, you see some heading and some footing. Also, the page number also
occurs at the upper right corner. All of this is the result of setting two built-in macros
called \headline and \footline. As you read the definitions, you will appreciate the
possibility of having the left-page headline differ from the right-page headline, or of having
the page number appear at the bottom center as long as it is a roman numeral (indicated
by having \pageno negative), and at the outer upper page corner otherwise.

For this, you need to know that \folio gives you the decimal digits of the current page
number (i.e., the value of \pageno) in the current font, in case that number is nonnegative,
and gives you the roman numerals of the negative of \pageno otherwise. That works out
fine for the title matter in a book (and since the Romans didn’t have a zero). You also want
to know that \pageno is something that TEX will increase by one every time it finishes a
page (or decrease by one if it was negative). But, if you don’t like the current number and
rather have it be the number 1937, you could say \pageno=1937 and that would take care
of it.

In fact, if you don’t want page numbers at all, say \nopagenumbers. This is the same
as saying \footline{\hfil}, but makes the purpose clearer.

I’ll restore all of this (including \pageno) back to what it was at the beginning of the
next page. Look there for how it is done.

More complicated schemes are available. E.g., it is possible to have the footline contain
the latest marked expression in the text prior to the page break. But for such things, you
had better consult the book.

It is also good to know how to do a

Table of Contents

Disclaimer and Exhortation . 1
A page of TEX –> –> –> –> –> –> –> –> –> –> –> –> –> 3
Doing a TEXjob . 5
ordinary text . 5
Special characters . 5
odds and ends . 7
simple math . 7
display math . 9
alignment . 11
tables –> –> –> –> –> –> –> –> –> –> –> –> –> –> 15
page layout . 19
Table of Contents . iii
commands, macros, definitions . 23
commands with arguments . 23
indexing and labelling figures . 27
sequencing equations and other items . 2

9 boxes . 30
errors . 33

iii

commands, macros, definitions
TEX commands (also called macros, or definitions) begin with a backslash and are

followed either by exactly one non-letter, or else by one or more letters. There is no
limitation on how many letters such a command ‘word’ is made up from. TEX will read
the letters until it comes to a non-letter and then take all the letters read together as being
the command word. If that terminating non-letter is a blank (or space), then it (and all
blanks following it) will be lost.

For example, you have been seeing the TEX logo. The instruction for its typing is such
a command, but you see the command being followed by another backslash and a space.
The latter command is of the non-letter variety, the non-letter being the blank. It tells
TEXto put a blank space in. Can you tell why that is necessary? Look also for earlier
examples, in which the command for the logo is not followed by the blank command.

Available commands are either primitive commands, or else macros, i.e., an abbre-
viation for a sequence of commands. The description of the heading for the next section
contains an example of such a macro, defined just prior to it to combine the three com-
mands used in the description of earlier headings.

Sam Bent’s TEX Reference Card in the Appendix contains a complete, ordered listing
of all the primitive commands as well as the plainTEXsupplied macros. But the fact that
you can make up your own macros to suit your own purposes is one of the major attractions
of TEX.

For example, I have collected a file consisting entirely of macro definitions. The file
happens to be called format.tex. To make certain that these macros are available to
me when I work on a .tex file, I start the .tex file with the command \input format.
This instructs TEX to become familiar with all those macros in the file format.tex before
starting to work on the instructions in the .tex file. The full file is available by anonymous
ftp at ftp.cs.wisc.edu/Approx and includes definitions like

\def\ga{\alpha} for greek alpha; or
\def\gO{\Omega} for greek Capital Omega, so I only have to type \ga and \gO

to get ‘α and Ω’; or
\def\bs{\backslash} for the printed backsslash, so I only have to type \bs to get a

backslash in the text (instead of the long word backslash).
(Please admire the actual instructions for the typing of the last item. The great

convenience brought on by making ten characters special brings much inconvience when
you actually want to print those characters. (The difficulty is compounded by writing it
all in typewriter font.) Fortunately, you seldom need to type these special characters. My
trip-up is usually the dollar or percent sign in a letter, or the sharp sign in math-mode
(where it denotes cardinality), or the ampersand in a list of names or a reference.)

Why would use of the macro \deadly defined by \def\deadly{\deadly} be deadly?

commands with arguments

The heading of this section is put in with the aid of the macro \heading. Have a look
at it. It uses an argument, namely the material that is to appear in the heading. Now look
at its definition, just above its use. You can tell from the definition that it is intended to

23

use an argument because you see the symbols #1 right between the name of the macro and
the opening brace of its ‘body’. Also, you see within the body the symbols #1 repeated
right at the spot where the material that makes up the argument is to be placed.

Here is how such a macro is understood by TEX. After TEX has read the macro’s
name (TEX will know that the name is heading and not something longer because the
character following the g in \heading either is a blank or else a non-letter), TEX will look
up the definition, find that it requires an argument and now look for it. It expects to find
an opening brace as the next character. If that is indeed the case, it will take everything
between this opening brace and the corresponding closing brace as the argument. In this
particular example, this means that everything between that opening and corresponding
closing brace will end up centered, with the centerline preceded and followed by some
vertical space.

TEX also allows for a shortcut. If an argument consists of just one character, then it
is not necessary to enclose it in braces. In other words, if TEX does not find an opening
brace as the next character, then it takes that next character as the whole argument.

A macro may have up to nine separate arguments. In the definition of the macro,
they are listed, between the macro’s name and the opening brace of the macro’s ‘body’,
as #1#2.... They should also (but don’t have to) appear at least once inside the macro’s
body, exactly at the spot at which the material that forms the argument is to appear. The
intent is to have the macro provide a template with certain places left open, to be filled in
with particulars when the macro is actually used.

At first glance, this list of #1#2#3... between macro name and body looks a bit silly;
why not simply say 5 if five arguments are expected? But this is yet another cleverness
of TEX. For, you are permitted to put any one character after each of those numbers, for
example, #1,#2|#3#4/..., and these very characters are used later by TEX to decide when
one argument ends and the next one begins. For example, I have a friend (not a piano
player) who hates typing dollar signs. He has a macro that he defined as follows:

\def\m#1:{$#1$}
If he has to type something in math-mode, e.g. α = 1/γ, he would type

\m\alpha=1/\gamma:
TEX will pick up the m as the name of a macro, look it up and find that it has one argument
and that the extent of the argument is all the stuff following that \m until it comes across
a colon. So it picks up all that stuff and, following instructions, puts it between dollar
signs and then processes it in the usual way. The colon itself will not be printed; it was
used up as the delimiter or terminator of the first (and only) argument of the macro.

What is he going to do when his math-stuff contains a colon, e.g., he wants to type
{x : f(x) = 0}? Then he hides that colon in braces! I.e., he types

\m\{x{:} f(x)=0\}:
For, as TEX reads the stuff following \m, it skips over any groupings, i.e. over any stuff
between braces in its search for the delimiting or terminating colon.

25

including and labelling figures

Here are the definitions of \gridbox and \point. These macros are useful for the precise
placement of material. I illustrate their use in labelling a simple graph. The actual graph
is specified with the aid of PostScript, the same language that is used on many Laser
writers to print TEX. Different printers or different converters from dvi-file to printer file
would require different statements to get the graphic combined with text. A popular (free)
means for placing figures into TEX text is \epsf.

We start with the graphic, put into the gridbox, with the grid drawn, to help us later
on to place the labels.

Next we take a stab at placing the labels.

A C

R

That looks ok, except that the R should be a little bit more to right and down, say
.35cm down and .4 cm to the right. So we change these ‘coordinates’. We also get rid
of the grid (which we can do by saying \showgridfalse or by saying \gridwidth=0pt),
center the whole figure, and put a Figure description underneath.

A C

R

Figure 3. A labelled graph

There, that wasn’t so bad. – One would usually work on this in a separate file and
only insert the finished material appropriately, perhaps using \midinsert or \topinsert.

27

At times, it is convenient to pack it all in. This is one of those times, I think. (You
might try to modify the macro \boxit used here to get a double box line.)

sequencing equations and other items

(1) Here is the macro \label which is useful for an automatic sequencing of equations
and other items. It is so simple that it wouldn’t be hard for you to modify them to fit the
particular needs of a particular paper.

(2) \label will increment the value of \equationno by one and then print it out, and
will enclose it in parentheses if called in display-math mode, as in the following.

(3) e = mc1/2

(4) In order to refer to these numbers later, you give them names. For example, I gave
the name \listequ to the number that starts the paragraph (2) (check how I typed
the preceding number) by saying \label\listequ there.

(38) You can always change \equationno to any value you like. For example, I just
changed it to 37 by typing \equationno=37 prior to this paragraph.

(39) If you find that you have trouble remembering the names you gave to earlier“memory

items (and you don’t want to search for it in the .tex file), you can say \showlabeltrue
and from then on the name you used will appear, quite small, nearby in the left margin of
the printed document.

(40) Guess what you type to turn off this feature?
(41), (42),
(∞) Finally, you may wish to refer to the very equation- or item-numbers named

in this .tex file in other files. You would want to write them as definitions into a file
〈filename〉 which you would then \input 〈filename〉 in the other file. For this to work
here, you would first say something like

\rememberchaptertrue \newwrite\chpaux
\immediate\openout\chpaux=〈filename〉

when you make all those other definitions in this section. The macro \label then takes
care of the rest.

(∞ + 1) Actually, the way it is set up in this section, the name saved is given the
suffix \chapterno, with the assumption that \chapterno is some word identifying this
particular file. Furthermore, the number saved is prefixed by \chapterno. . This means
that you can safely use names in the present file without worrying about the fact that you
might use the same name for something else in the other file. Enough already.

29

boxes

A box has three dimensions: height, width, and depth. These measure the extent
of the box in reference to its reference point. height is its height above, width its
extent to the right of, and depth its depth below, its reference point. This reference point
serves as a means of alignment when boxes are put together. See Knuth, page 63, for a
beautiful picture.

Boxes are put together to make (more complicated) boxes. They can be put together
vertically or horizontally. Either way, they are lined up by their reference points. In a
vertical list, each box is stacked below its predecessor so as to align their reference points,
while, in a horizontal list, each box is placed to the right of its predecessor so as to align
their reference points.

Once a list has been used to make a box, the list is forgotten, and only the box
remains. It is just a box. You can’t tell whether the box was made by stringing boxes
together vertically or horizontally. Neither can you take it apart again.

TEX is in vertical or horizontal mode, depending on whether it is putting together a
vertical or a horizontal list of boxes.

TEX switches from one mode to the other when it comes across an item that doesn’t
allow it to go on in the present mode.

In the most simple setup, TEX is putting together letters and blanks to make up a
line. In terms of boxes, it is making up a horizontal list. The resulting box is a line of
type.

Even when TEX is in vertical mode, if it comes across a letter, a (forced) blank or
other character, it will temporarily suspend vertical mode and start making a line of type.
As this is the first line (of possibly several lines), it will begin with an indent (whose length
is specified by \parindent). Subsequent items in the list all will contribute to that line of
type and possibly further lines of type, just as if TEX had been asked to make up a page.

A list of such boxes, each a line of type, forms the basic vertical list. The resulting
box is a page of text.

The simplest boxes are those consisting of just one letter or other character. Their
dimensions are determined by the font designer. This information is available to TEX in
appropriate .fnt files.

TEX makes up automatically the boxes that represent a line of type and the boxes
that represent a page, and the sizes of these boxes are determined by default or by certain
parameters that are set by default but could be set by the user.

A box made up automatically from a horizontal list of character boxes (and perhaps
others) has \hsize as its default width, as do other boxes intended to be a line of type,
i.e., the boxes made with the aid of the \...line macros (like \leftline, \centerline,
and the like). Its height is the biggest of the heights of the boxes in its list, and the depth
is the biggest depth of the boxes in it.

The box made up from a vertical list of boxes to give a page has default width \hsize
and the sum of its height and depth is \vsize.

TEX can be asked explicitly to make up a box, by saying \hbox{...} if boxes are to
be assembled horizontally, or saying \vbox{...} if boxes are to be assembled vertically,

30

with the material ... in braces providing the details. While being made, a box is only
dimly aware of the context within which it is made.

When making up a box this way, you can explicitly specify its dimensions. For ex-
ample, \hbox to〈dimen〉{...} will give you a box whose width is 〈dimen〉, while \vbox
to〈dimen〉{...} will give you a box whose height and depth add up to 〈dimen〉. If the
material ... cannot be accomodated within that size, you’ll get a complaint. If you are
looking for a dimension that will just fit the given material plus the amount 〈dimen〉 extra,
use \hbox spread〈dimen〉{...} (or \vbox spread〈dimen〉{...}) instead.

You can also let default determine the dimension of these made-up boxes. If the box
was made from a horizontal list, then, much as with a line of type, its height is the biggest
height among its boxes, and its depth is the biggest depth among its boxes, and its width
is the sum of the widths of its boxes plus whatever glue was used in between. If the box
was made from a vertical list, then the sum of its height and depth is the sum of the
heights and depths of the boxes in its list, plus whatever interlineglue was used between
these boxes. Further, its depth is that of its last (lowest) box, and its width is the width
of its widest box. (If you prefer to have its height that of its first (topmost) box, don’t ask
for a \vbox but ask for a \vtop{...} instead.)

There are some perhaps surprising things implied by what I have described so far.
Consider, for example, the command

\vbox{be}
which asks for a box to be made from a vertical list. The description of the list is quite
short, it’s just be. In particular, the list begins with a character (box), hence TEX switches
from the vertical mode you asked it to be in to making a line of type, in horizontal mode.
Further, since this is the first line of type it is making for the present vertical list, it will
start it with an indent (whose size is determined by \parindent). Then it will put in the
b and then the e. With that, it reaches the end of the list, hence will finish off the line of
type, making its width equal to \hsize, put the resulting box as the first and only box in
the vertical list started by the command, and finish off the resulting box (whose width will
also be \hsize; in fact, all its dimensions will be that of the line of type inside it). You can
test just how wide the resulting box is by giving TEX the instruction \hbox{\vbox{be}?}
as I am doing now, in a display:

be ?

The question mark is so far to the right, TEX complains about an overfull box, putting
a black mark(!) into the right margin. Using a reasonable \hsize inside that \vbox will
reduce that box’s size, as in

be ?

As another example of how dimensions of a box are determined, consider the rules.
A \vrule is a box (entirely filled with black) whose width is, by default, 0.4pt, and whose
height and depth is, by default, that of the box in whose horizontal list it occurs. By
contrast, an \hrule is a box (entirely filled with black) whose width is that of the box in
whose vertical list it occurs while its height is .4pt and its depth is 0, by default. (In either
case, it is possible to specify these dimensions arbitrarily, by saying things like \hrule
width〈dimen〉 height〈dimen〉 etc.)

31

While we are on the subject of rules, they are often used with one of their dimension
equal to 0. This means that you never see them printed. Such empty rules are useful
nevertheless since they force the box within which they occur to have certain minimum
size. For example, a \mathstrut is such a \vrule of 0 width, but of the same height
and depth as a parenthesis. Hence any box made from a horizontal list containing such
a \mathstrut will have height and depth at least that of a parenthesis. Such an empty
\hrule is also useful at the beginning or the end of page, to give a \vfill something to
push against (when trying to center material vertically on the page).

When making up a box from a list of boxes, the boxes are aligned (horizontally or
vertically, depending on the mode) according to their reference points. You can change
the alignment of an individual box by using \raise〈dimen〉 or \lower〈dimen〉 in front of
it when in horizontal mode, and using \moveright〈dimen〉 or \moveleft〈dimen〉 when in
vertical mode.

There are other box-making modes that TEX gets into, e.g., the math mode (single
dollar signs) or the display mode (double dollar signs). Also, the vertical mode comes in
two forms, the basic one when making up a page, and the internal vertical mode when
acting on a \vbox command. The horizontal mode has two analogous versions.

In making up a page, lines are actually put together into paragraphs first, with the
spacing between paragraphs controlled by a different parameter (viz. \parskip) than the
spacing between lines (which is controlled by \baselineskip). Further, the first line of a
paragraph is indented (according to the parameter \parindent).

If a line of text is meant to be a paragraph all by itself (such as a title or other dis-
played line), then it is good to so identify it by putting its material ... into \line{...}.
If the text in this line should be left-flush, use \leftline{...}, if right-flush, use \right-
line{...}, and if centered, use \centerline{...}. The material ... is expected to give
a list of things suitable for a horizontal list.

TEST: If you were to submit the following two-line .tex file to TEX:

\hbox{this}\hbox{should}\vbox{be} \hbox{stacked} \ \hbox{this\ }\hbox{not}
\bye

what would the outcome be?
Did you predict the indents?

32

errors

Dealing with one’s errors is perhaps the hardest and most frustrating part of TEX use.

One difficulty is TEX’s very efficiency: There is little redundancy, hence one mis-
placed character can give a totally different (and often unexpected) interpretation to all
subsequent instructions.

You defend yourself against this efficiency by checking out TEX instructions in small
chunks. This means that you have a working file, in addition to the polished file that
is to contain the finished set of instructions. The working file has the same formating
material as the polished file. As you type your document, you would type a paragraph or
two in the working file, submit that working file to TEX, and deal with the errors that TEX
might point out to you. When the material is finally error-free, move it from the working
file and add it to the material in the polished file.

You are bound to change that polished file later on (it is one of the attractions of using
computer typesetting that it makes it so easy to change things!). Whenever you cannot
really understand the resulting error(message)s, take the offending material from the
polished file back into the working file and try to figure it out in that simpler environment.

In any case, TEX will give you error messages and expect some kind of response from
you. Unfortunately, many of these error messages require a detailed understanding of the
inner workings of TEX if they are to be understood fully. Fortunately, you can often deal
with the problem without understanding the message fully.

For example, if TEX tells you that it is inserting a dollar sign or a brace, you can be
sure that you need a dollar sign or a brace somewhere, and you can go looking for that
place. Some editors (like vi) can help with that, as described below.

At times, it helps to ask for further explanations (by responding to the error message
with an h). But often it requires an expert. If you are lucky, you know someone with
that knowledge, and I’d exploit that situation. (You’ll find that true TEXperts are often
immensely proud of their hardwon knowledge and eager to show it off.)

If you and those around you don’t understand an error message, simply tell TEX to
continue, by hitting the RETURN or ENTER key.

On the other hand, there may be an error so confusing to TEX that it keeps complaining
more or less about the same lines or things. Then you might as well give up and type an
e to end the session. In any case, TEX keeps a running file of all these error messages (the
file usually has the same name as your .tex file, but a different suffix, e.g., it might be a
.log file or a .lis file). This means that you can look at these errors at leisure later on
once TEX is finished with your file.

If you have a window system on your computer, you would have the .tex file in an
editor in one window, and the .log file in another to look at while you try to take care of
all the errors. Without a window system, you would jump between the .tex file and the
.log file, reading in the .log file about the next error, then jumping to the .tex file to
correct it.

33

You will know just where TEX has difficulty because any error message always refers
to a line number in your .tex file. But, because of the aforementioned efficiency, this may
only be the first place where an earlier error actually has some effect.

As an example, consider the very common error of forgetting to type the concluding
dollar sign for some math expression. TEX will cruise along and interpret all subsequent
instructions in math-mode terms until it comes to something that cannot be reasonably
interpreted that way. It will then complain about that rather than about the dollar sign
you forgot earlier. You can understand why it has to be that way: There is really no way
of guessing just where that dollar sign should have been.

Because dollar signs go missing so often, TEX does add them at times just to avoid
misinterpreting the entire remaining file. It will add a dollar sign if, while in math mode, it
comes to the end of a grouping or of a paragraph that began before it entered the current
math mode. And it will tell you about it.

If you have trouble finding the missing dollar sign, try to look for it systematically.
Go to the beginning of your .tex file, set up your file editor to find the next dollar sign,
then go systematically through the file from dollar sign to dollar sign, verifying that each
intended beginning dollar sign has its appropriate ending dollar sign and vice versa. This
procedure is not so hard when you only work on a little piece of the file at a time.

You might find that you are actually missing a beginning dollar sign. Those generate
a different kind of error message since they are detected by TEX because something you
intended to be in math-mode TEX is interpreting in text mode. There are all kinds of
things (Greek letters and other math symbols, thin spaces like \,,\;, and math accents)
which only make sense in math-mode. As soon as TEX comes across one of these in text
mode, it puts in a dollar sign just prior to it, and tells you so. Unfortunately, this is often
not exactly the right place. But you should be able to find the right place.

Even worse are the error messages due to misplaced or missing braces. Since
TEX uses braces to indicate groupings, and all kinds of things depend on groupings, such
mishandled braces can produce the most amazing error messages. TEX will put in a
closing brace when it becomes clear that something is seriously wrong, just to close off
that difficulty, and go on looking at the rest of the file. And it will tell you so.

The best defense against misplaced braces is to use an editor like vi. The .exrc
file (which customizes vi) can be set up (by having in it the instruction set sm) so that,
every time you type a closing brace, the editor will move the cursor temporarily to the
matching opening brace. If it finds none, it will beep, and you are now alert to a mistake
and in good position to do something about it. If it finds the match, you have a chance
to see whether that is the match you intended and, again, you are in good position to do
something about it. (There is a bonus here: once set up in this way, vi will also check for
matching parentheses and brackets.)

The same facility gives you a chance for an additional check when you are done
typing the file. Go to the end of the file and insert a closing brace. You expect a beep
since all braces should already be matching; there should not be a opening brace matching

34

this one. But, if the cursor moves to a brace, you now know that something is wrong
about that (or some other) brace, and you can do something about it. To check for an
unmatched closing brace, go to the beginning of the file and insert an opening brace.
Of course, nothing will happen, since vi only checks when you type a closing fence. But,
with the cursor on the brace you have just typed (and back in command mode), type %,
and vi will look for the matching closing brace. You hope for the beep that says it can’t
find one. But if it does find one, there is another brace to do something about.

It is more efficient to look for misplaced braces in this way before submitting the file
to TEX since you actually know the intentions of the instructions in your file, hence have
a much easier time correcting misplaced braces and dollar signs than TEX does, as TEX is
restricted to having to divine your intentions.

Missing or misplaced dollar signs cause TEX to switch between math and text mode
in unintended ways. Not surprisingly, unintended switching between any two modes can
be a source of seemingly strange errors (due to TEX’s efficiency). (Mode switching, from
ground to air or from air to ground, is also the most dangerous moment for airplanes.)

TEX is always in one of six possible modes. The primary four are: horizontal mode
(when it puts together a line of text), vertical mode (when it puts together lines of text into
paragraphs and pages), math-mode, and display mode. In addition, there are: restricted
horizontal mode (when it assembles a list of boxes horizontally) and restricted vertical
mode (when it assembles a list of boxes vertically).

Whenever TEX is in horizontal mode and it comes across an instruction incompatible
with that (e.g., a \par or \halign), it will try to revert to a previous vertical mode by
finishing the box it is presently assembling and adding it to the previously started vertical
list. The trouble comes when there is no previously active vertical list. It will usually try to
insert some brace (making a guess at the proper grouping), but you may have no idea what
that is all about. But, once you diagnose the problem as one of unintended mode switching,
i.e., an oversight on your part, then the remedy is simple. Start an encompassing vertical
list by encasing the present context in a \vbox{...}. Whether in horizontal or vertical
mode, TEX is always ready to start another box and, once that box is finished, it will
simply add it to the list it was building when it came across the box-building instruction.

There is an analogous difficulty with unintended switching from vertical to horizontal
mode, and, if due to an oversight, it is repaired by making the switch intentionally, i.e., by
encasing the relevant material in an \hbox{...}.

35

TEXnicalities

Carl de Boor

Disclaimer and Exhortation

The statements about TEX made here are probably not completely true, but they are
true enough to get you started. Knuth’s TEXbook is the (seemingly inexhaustible) source
for the complete information. My copy has several pages (e.g., 52, 135, 145, 147, 427,
etc.) marked with paperclips. In fact, I have a copy of pages 434–438 handy to look up
available standard symbols. You are urged to consult that book any time you feel ready.
When you first do, follow the book’s advice: Read it first from cover to cover ignoring
ALL paragraphs marked with a dangerous bend sign. After that, you are ready for the
more detailed stuff hidden in the rest of the book. You are also urged to look at the left
pages of these notes to see how TEX was instructed to typeset what you read.

You might also want to secure a list of all the fonts available to TEX for your printer.

Appended to these notes is Sam Bent’s TEX Reference Card which provides a superb
ordered listing of the available commands in plain TEX.

c©1987-1999 Carl de Boor

