SCATTERED DATA INTERPOLATION FROM PRINCIPAL SHIFT-INVARIANT SPACES

Michael J. Johnson
Kuwait University

[^0]Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{\mathcal{S}}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$

Michael Johnson
Department of Mathematics and Computer Science
Faculty of Science
Kuwait University
P.O. Box: 5969 Safat, 13060 Kuwait

Abstract

Under certain assumptions on the compactly supported function $\phi \in C\left(\mathbb{R}^{d}\right)$, we propose two methods of selecting a function s from the scaled principal shift-invariant space $S^{h}(\phi)$ such that s interpolates a given function f at a scattered set of data locations. For both methods, the selection scheme amounts to solving a quadratic programming problem and we are able to prove errror estimates similar to those obtained by Duchon for surface spline interpolation.

1. Introduction

The scattered data interpolation problem in \mathbb{R}^{d} is the following: Given a set of scattered points $\Xi \subset \mathbb{R}^{d}$ and a function f defined at least on Ξ, one seeks a 'nice' function s which interpolates the data $f_{\left.\right|_{\Xi}}$; that is, which satisfies $s(\xi)=f(\xi) \forall \xi \in \Xi$. The reader is referred to the surveys [3] and [5] for descriptions of a variety of interpolation methods. One such method is that of surface spline interpolation (see [4]) which we now describe.

Let $m \in \mathbb{N}:=\{1,2,3, \ldots\}$ be such that $m>d / 2$, and let H^{m} denote the set of all tempered distributions f for which $D^{\alpha} f \in L_{2}:=L_{2}\left(\mathbb{R}^{d}\right)$ for all $|\alpha|=m$. For measurable $A \subset \mathbb{R}^{d}$ and $f \in H^{m}$, we define the seminorm

$$
\|\mid f\|_{H^{m}(A)}:=(2 \pi)^{d / 2} \sqrt{\sum_{|\alpha|=m} \tau_{\alpha}\left\|D^{\alpha} f\right\|_{L_{2}(A)}^{2}}
$$

where the τ_{α} 's are the positive integers determined by the equation $|x|^{2 m}=\sum_{|\alpha|=m} \tau_{\alpha} x^{2 \alpha}$, $x \in \mathbb{R}^{d}$. In case $A=\mathbb{R}^{d}$, we write simply $\||f|\|_{H^{m}}$. The surface spline interpolation method dictates that $s \in H^{m}$ be chosen to minimize $\|\|s\|\|_{H^{m}}$ subject to the interpolation conditions $\left.{ }^{s}\right|_{\Xi}=f_{\mid \Xi}$. If Ξ is finite and not contained in the zero-set of any nontrivial polynomial in $\Pi_{m-1}:=\{$ polynomials of degree $\leq m-1\}$, then the surface spline interpolant s can be realized as the unique function which interpolates the data $f_{\mid \Xi}$ and has the form $s=$ $q+\sum_{\xi \in \Xi} \lambda_{\xi} \zeta(\cdot-\xi)$, where $q \in \Pi_{m-1}$, the λ_{ξ} 's satisfy $\sum_{\xi \in \Xi} \lambda_{\xi} r(\xi)=0 \forall r \in \Pi_{m-1}$, and ζ is the radially symmetric function

$$
\zeta(x)=\left\{\begin{array}{ll}
|x|^{2 m-d} & \text { if } d \text { is odd, } \\
|x|^{2 m-d} \log |x| & \text { if } d \text { is even, }
\end{array} \quad x \in \mathbb{R}^{d} .\right.
$$

In order to discuss the error between f and s, let us assume that Ω is open, bounded, and has the cone property, and assume also that $\Xi \subset \bar{\Omega}:=\operatorname{closure}(\Omega)$. The 'fill distance' from Ξ to Ω is the quantity $\delta:=\delta(\Xi, \Omega):=\sup _{x \in \Omega} \inf _{\xi \in \Xi}|x-\xi|$. Duchon [4] has shown that if s is the surface spline interpolant to f at Ξ, then

$$
\begin{equation*}
\|f-s\|_{L_{p}(\Omega)} \leq \operatorname{const} \delta^{m-d / 2+d / p}\| \| f \|_{H^{m}} \quad \forall f \in H^{m} \tag{1.1}
\end{equation*}
$$

for $2 \leq p \leq \infty$ and δ sufficiently small. What is interesting about the proof of (1.1) is that it hinges not on the fact that s minimizes $\left\|\|s\|_{H^{m}}\right.$, but rather on the fact that $\||s| \|_{H^{m}}$
is bounded by const $\left|\|f \mid\|_{H^{m}}\right.$. The point being that the form of s is irrelevant. To obtain (1.1), all that is needed is that s interpolate $\left.f\right|_{\Xi}$ while maintaining $\left\|\|s \mid\|_{H^{m}} \leq\right.$ const $\left|\|f \mid\|_{H^{m}}\right.$. With this in mind we consider interpolation from principal shift-invariant spaces.

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be continuous and compactly supported. The semi-discrete convolution $\phi *^{\prime} c$ between ϕ and a function c (defined at least on \mathbb{Z}^{d}) is defined by

$$
\phi *^{\prime} c:=\sum_{j \in \mathbb{Z}^{d}} c(j) \phi(\cdot-j),
$$

with convergence taken uniformly on compact sets. For $A \subset \mathbb{R}^{d}$ let

$$
S(\phi, A):=\left\{\phi *^{\prime} c: c(j)=0 \text { whenever } \operatorname{supp} \phi(\cdot-j) \cap A=\emptyset\right\} .
$$

The space $S\left(\phi, \mathbb{R}^{d}\right)$ is a shift-invariant space because $s(\cdot-j) \in S\left(\phi, \mathbb{R}^{d}\right)$ whenever $s \in$ $S\left(\phi, \mathbb{R}^{d}\right)$ and $j \in \mathbb{Z}^{d}$. It is called a principal shift-invariant space because it is generated by the single function ϕ. The space $S(\phi, A)$ is refined by dilation for which we employ the dilation operator σ_{h} defined by

$$
\sigma_{h} f:=f(h \cdot)
$$

For $h>0$ and $A \subset \mathbb{R}^{d}$ let

$$
S^{h}(\phi, A):=\left\{\sigma_{1 / h} s: s \in S\left(\phi, h^{-1} A\right)\right\}
$$

In other words, $S^{h}(\phi, A)$ is the closure, in the topology of uniform convergence on compact sets, of $\operatorname{span}\left\{\phi(\cdot / h-j): j \in \mathbb{Z}^{d}\right.$, supp $\left.\phi(\cdot / h-j) \cap A \neq \emptyset\right\}$. Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. The approximation order of the scale of spaces $\left\{S^{h}(\phi, \Omega)\right\} h>0$ can be characterized in terms of the Strang-Fix conditions:
Definition 1.2. ϕ is said to satisfy the Strang-Fix conditions of order $m(m \in \mathbb{N})$ if $\widehat{\phi}(0) \neq 0$ and $D^{\alpha} \widehat{\phi}(2 \pi j)=0 \forall j \in \mathbb{Z}^{d} \backslash 0,|\alpha|<m$.

Here $\widehat{\phi}$ denotes the Fourier transform of ϕ. It is known (see [7]) that ϕ satisfies the Strang-Fix conditions of order m if and only if

$$
\inf _{s \in S^{h}\left(\phi, \mathbb{R}^{d}\right)}\|f-s\|_{L_{p}}=O\left(h^{m}\right) \text { as } h \rightarrow 0 \quad \forall f \in W_{p}^{m}, 1 \leq p \leq \infty
$$

where W_{p}^{m} denotes the Sobolev space (see [1]) of all tempered distributions f for which $D^{\alpha} f \in L_{p}:=L_{p}\left(\mathbb{R}^{d}\right) \forall|\alpha| \leq m$.

Assume that ϕ satisfies the Strang-Fix conditions of order m for some $m \in \mathbb{N}$ with $m>d / 2$. We show in Section 2 that if Ξ is a finite subset of $\bar{\Omega}$, then $S^{h}(\phi, \Omega)$ contains functions which interpolate $f_{\mid \Xi}$ whenever h is sufficiently small; precisely, whenever $0<$ $h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$, where ε_{ϕ} is a positive constant depending only on ϕ and where

$$
\operatorname{sep}(\Xi):=\inf \left\{\left|\xi-\xi^{\prime}\right|: \xi, \xi^{\prime} \in \Xi, \xi \neq \xi^{\prime}\right\}
$$

denotes the separation distance in Ξ. Of course, in this case, there are infinitely many functions in $S^{h}(\phi, \Omega)$ which interpolate $f_{\left.\right|_{\Xi}}$. In light of the discussion surrounding (1.1),
a sensible way of selecting a particular interpolant $s \in S^{h}(\phi, \Omega)$ is to choose one which minimizes $\left|\left||s| \|_{H^{m}(\Omega)}\right.\right.$. In Section 7, under the additional assumptions that $\phi \in W_{2}^{m}$ and that Ω is connected and has a Lipschitz boundary, we show that if s is chosen in this manner then (1.1) holds whenever δ is sufficiently small and $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$.

The additional assumption that $\phi \in W_{2}^{m}$ is very strong, and a quick survey of 'distinguished' box-splines (see [2]) or B-splines reveals numerous examples where ϕ satisfies the Strang-Fix conditions of order m but $\phi \notin W_{2}^{m}$. For example, in the univariate case ($d=1$), the function $\phi:=(1-|\cdot|) \chi_{[-1,1]}$ satisfies the Strang-Fix conditions of order 2, but does not belong to W_{2}^{2} because $\phi^{\prime \prime}$ is not a function. A great share of the effort in the present work is devoted to replacing this assumption with the weaker assumption that $\phi \in W_{2}^{\kappa}$ where $\kappa \in \mathbb{N}$ is such that $d / 2<\kappa \leq m$. Note that this supports the abovementioned univariate example $\phi:=(1-|\cdot|) \chi_{[-1,1]}$ if we take $\kappa=1$.

Unfortunately, the 'cost' functional $\left\|\|s\|_{H^{m}(\Omega)}\right.$ is no longer meaningful when $\kappa<m$ for the simple reason that the functions in $S^{h}(\phi, \Omega)$ are not assumed to lie in H^{m}. This is very similar to the situation encountered in [9]. There, the natural choice of the cost functional was $\left|\|s \mid\|_{H^{2 m}}\right.$ but the functions s under consideration were spanned by translates of the function ζ (mentioned above) which does not locally belong to $H^{2 m}$. This difficulty was overcome in [9] by using a cost functional of the form $\left\|\left\|\delta^{-d} \eta(\cdot / \delta) * s\right\|\right\|_{H^{2 m}}$ where η is a well chosen exponentially decaying function. We employ a similar cure. In Section 3 we show that there exists a compactly supported distribution η such that $\widehat{\eta} \sim\left(1+|\cdot|^{2}\right)^{(\kappa-m) / 2}$. The cost functional

$$
\begin{equation*}
\left\|\left\|h^{-d} \eta(\cdot / h) * s\right\|_{H^{m}}\right. \tag{1.3}
\end{equation*}
$$

is now well defined because $\eta * \phi \in W_{2}^{m}$ (by Proposition 3.3). In order to obtain something like (1.1) we have to slightly adjust our approach. We assume only that Ω is open, bounded and has the cone property, and we let Ω_{0} be any open, bounded set which contains $\bar{\Omega}$. With $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$, we choose $s \in S^{h}\left(\phi, \Omega_{0}\right)$ to minimize (1.3) subject to the interpolation conditions $\left.\right|_{\Xi}=f_{\left.\right|_{\Xi}}$. In Section 6 we show that if δ is sufficiently small, then

$$
\|f-s\|_{L_{p}(\Omega)} \leq \operatorname{const} \delta^{m-d / 2+d / p}\|f\|_{W_{2}^{m}} \quad \forall 2 \leq p \leq \infty, f \in W_{2}^{m},
$$

where

$$
\|f\|_{W_{2}^{m}}:=\left\|\left(1+|\cdot|^{2}\right)^{m / 2} \widehat{f}\right\|_{L_{2}} .
$$

An outline of the paper is as follows: In Section 2 we prove that interpolants from $S^{h}(\phi, \mathcal{A})$ exist whenever $0<h \leq \operatorname{sep}(\mathcal{A}) / \varepsilon_{\phi}$, while in Section 3 we settle some technical issues relating to the convolution $\eta * f$ when f is a tempered distribution. We show in Section 4 that the error is controlled by the cost functional (1.3). The operator norm of the operator $\phi *^{\prime}$ is analyzed in various settings in Section 5. Finally, in Section 6 and Section 7, the two abovementioned interpolation schemes are described and analyzed.

Throughout this paper we use standard multi-index notation: $D^{\alpha}:=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \frac{\partial^{\alpha}{ }^{2}}{\partial x_{2}^{\alpha}} \cdots \frac{\partial^{\alpha} d}{\partial x_{d}^{\alpha d}}$. For multi-indices α, we define $|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d}$, while for $x \in \mathbb{R}^{d}$, we define $|x|:=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}$. The Fourier transform of a function f is defined formally
by $\hat{f}(w):=\int_{\mathbb{R}}^{d} e^{-i w \cdot x} f(x) d x$ and plays an important role in the sequel. One related fact which follows from the Plancherel Theorem is that $\left|\|f \mid\|_{H^{m}}\right.$ has the representation in the Fourier domain as $\|\left.|\cdot|^{m} \widehat{f}\right|_{L_{2}\left(\mathbb{R}^{d} \backslash 0\right)}$ for all $f \in H^{m}$. It follows form this that $\left\|\left\|\sigma_{h} f \mid\right\|_{H^{m}}=\right.$ $h^{m-d / 2}| | \mid f \|_{H^{m}}$ and $\mid\|f\|_{H^{m}} \leq\|f\|_{W_{2}^{m}}$. The space of compactly supported C^{∞} functions is denoted $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. The space $C_{c}(A)$ is the set of all continuous functions having compact support contained in A. If μ is a distribution and g is a test function, then the application of μ to g is denoted $\langle g, \mu\rangle$. We employ the notation const to denote a generic constant in the range $(0 \ldots \infty)$ whose value may change with each occurence. In the statement of results we specify the dependencies of any const while in proofs we omit the dependencies for the sake of brevity. Two oft employed subsets of \mathbb{R}^{d} are the open unit ball $B:=\left\{x \in \mathbb{R}^{d}:|x|<1\right\}$ and the unit cube $C:=[1 / 2 . .1 / 2)^{d}$.

2. Existence of Interpolants from $S^{h}(\phi, \mathcal{A})$

The following lemma gives sufficient conditions for the existence of interpolants to f from $S^{h}(\phi, \mathcal{A})$.

Lemma 2.1. Let $\phi \in C_{c}\left(\mathbb{R}^{d}\right)$ satisfy the Strang-Fix conditions of order $m \geq 1$. There exists $\varepsilon_{\phi}>0$ (depending only on ϕ) such that if $0<h \leq \operatorname{sep}(\mathcal{A}) / \varepsilon_{\phi}$ and $f \in \ell_{2}(\mathcal{A})$, then there exists $s \in S^{h}(\phi, \mathcal{A})$, say $s=\sigma_{1 / h}\left(\phi *^{\prime} c\right)$, such that $\left.\right|_{\left.\right|_{\mathcal{A}}}=f_{\left.\right|_{\mathcal{A}}}$ and $\|c\|_{\ell_{2}} \leq$ $\operatorname{const}(\phi)\|f\|_{\ell_{2}(\mathcal{A})}$.

Proof. It suffices to consider the case $h=1$ since the general case can then be obtained by scaling. It is known [8] that $\phi *^{\prime} 1=\widehat{\phi}(0)$. Put $\mathcal{N}:=\left\{j \in \mathbb{Z}^{d}: \operatorname{supp} \phi(\cdot-j) \cap C \neq \emptyset\right\}$. Let $b: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ be given by $b:=\chi_{\mathcal{N}} / \widehat{\phi}(0)$, and put $\psi:=\phi *^{\prime} b$. Note that $\psi=1$ on C. Put $r:=\max \{|x|: x \in \mathcal{N} \cup \operatorname{supp} \psi\}$ and $\varepsilon_{\phi}:=2 r+\sqrt{d}$. Assume $\operatorname{sep}(\mathcal{A}) \geq \varepsilon_{\phi}$. For $x \in \mathbb{R}^{d}$, let $[x] \in \mathbb{Z}^{d}$ be defined by $x \in[x]+C$. Put $\tilde{c}:=\sum_{a \in \mathcal{A}} f(a) b(\cdot-[a])$ and $\tilde{s}:=\phi *^{\prime} \tilde{c}$. The choice of ε_{ϕ} ensures that the supports of the sequences $\{b(\cdot-[a])\}_{a \in \mathcal{A}}$ are pairwise disjoint. Consequently, $\|\widetilde{c}\|_{\ell_{2}}^{2}=\sum_{a \in \mathcal{A}}|f(a)|^{2}\|b(\cdot-[a])\|_{\ell_{2}}^{2}=\|b\|_{\ell_{2}}^{2}\|f\|_{\ell_{2}(\mathcal{A})}^{2}$. The choice of ε_{ϕ} also ensures that the supports of the functions $\{\psi(\cdot-[a])\}_{a \in \mathcal{A}}$ are pairwise disjoint. Hence, if $a \in \mathcal{A}$, then $\widetilde{s}(a)=\sum_{a^{\prime} \in \mathcal{A}} f\left(a^{\prime}\right) \psi\left(a-\left[a^{\prime}\right]\right)=f(a) \psi(a-[a])=f(a)$. It may be the case that $\widetilde{s} \notin S(\phi, \mathcal{A})$, so define $c: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ by $c(j):=\widetilde{c}(j)$, if supp $\phi(\cdot-j) \cap \mathcal{A} \neq \emptyset$, and $c(j)=0$ otherwise. Put $s:=\phi *^{\prime} c$. Then $s(a)=\widetilde{s}(a)=f(a)$ for all $a \in \mathcal{A}$ and $\|c\|_{\ell_{2}} \leq\|\tilde{c}\|_{\ell_{2}}=$ const $\|f\|_{\ell_{2}}$.

3. Convolution with the distribution η

In this section we settle some technical issues related to our cost funcitonal (1.3). We begin by proving the existence of the compactly supported distribution η mentioned in the introduction.

Lemma 3.1. Let $\kappa, m \in \mathbb{N}$ be such that $d / 2<\kappa \leq m$. There exists a compactly supported distribution η such that

$$
\begin{equation*}
\operatorname{const}(m, d)\left(1+|w|^{2}\right)^{(\kappa-m) / 2} \leq \widehat{\eta}(w) \leq \operatorname{const}(m, d)\left(1+|w|^{2}\right)^{(\kappa-m) / 2} \quad \forall w \in \mathbb{R}^{d} \tag{3.2}
\end{equation*}
$$

Proof. Define the tempered distribution η_{1} by $\widehat{\eta}_{1}:=\left(1+|\cdot|^{2}\right)^{(\kappa-m) / 2} \in \mathcal{M}$, and let $\zeta \in$ $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $\zeta(0)=1$ and $\widehat{\zeta} \geq 0$. Put $\eta:=\eta_{1} \zeta$. Then η is compactly supported and $\widehat{\eta}=(2 \pi)^{-d} \widehat{\zeta} * \widehat{\eta}_{1}$. Since $\widehat{\zeta}$ decays rapidly and is non-negative (and not identically 0), we obtain (3.2).

With the existence of η settled, we turn now to the issue of defining the convolution $\eta * f$ assuming only that f is a tempered distribution. Our definition is valid not just for η, but for any tempered distribution whose Fourier transform lies in the space \mathcal{M} defined below.

Let \mathcal{S} denote the 'rapidly decreasing functions' (the test functions associated with tempered distributions) topologized (as usual) by the seminorms $\left\{p_{n}\right\}_{n \in \mathbb{N}}$, where

$$
\rho_{n}(g):=\max _{|\alpha| \leq n}\left\|(1+|\cdot|)^{n} D^{\alpha} g\right\|_{L_{\infty}} .
$$

Let \mathcal{M} denote the set of all $g \in C^{\infty}\left(\mathbb{R}^{d}\right)$ which satisfy

$$
\forall N \in \mathbb{N} \exists n \in \mathbb{N} \quad \max _{|\alpha| \leq N}\left\|(1+|\cdot|)^{-n} D^{\alpha} g\right\|_{L_{\infty}}<\infty
$$

For example, if u is a compactly supported distribution, then it follows from a theorem of Paley-Wiener that $\widehat{u} \in \mathcal{M}$. If $g \in \mathcal{M}$, then it is a consequence of Leibniz' formula that $g \zeta \in \mathcal{S} \forall \zeta \in \mathcal{S}$, and it is a consequence of the closed graph theorem that the mapping $\zeta \mapsto g \zeta$ is a continuous operator on \mathcal{S}. Consequently, the mapping $f \mapsto g f$ is a continuous operator on \mathcal{S}^{\prime} (the space of tempered distributions) whenever $g \in \mathcal{M}$.

Definition. Let u and v be tempered distributions with $\widehat{u} \in \mathcal{M}$ or $\widehat{v} \in \mathcal{M}$. The convolution $u * v$ is defined as the inverse Fourier transform of the tempered distribution $\widehat{u} \hat{v}$:

$$
u * v:=(\widehat{u} \widehat{v})^{\vee} .
$$

If $\widehat{u} \in \mathcal{M}$, then it follows that $u *$ is a continuous operator on \mathcal{S}^{\prime}. We collect in the following proposition several properties of the convolution operator $\eta *$ which will be used in the sequel.

Proposition 3.3. Let κ, m, η be as in Lemma 3.1, and let $\phi \in W_{2}^{\kappa}$ be compactly supported. Put $\psi:=\eta * \phi$. Then $\psi \in W_{2}^{m}$ and $\operatorname{supp} \psi \subset \operatorname{supp} \eta+\operatorname{supp} \phi$. Let $c: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ have at most polynomial growth and for $n \in \mathbb{N}$ define $c_{n} \in \ell_{0}$ by $c_{n}(j):=\left\{\begin{array}{ll}c(j) & \text { if }|j| \leq n, \\ 0 & \text { else }\end{array}\right.$. Then

$$
\begin{align*}
& \phi *^{\prime} c_{n} \rightarrow \phi *^{\prime} c \text { in } \mathcal{S}^{\prime} \quad \text { and } \tag{i}\\
& \eta *\left(\phi *^{\prime} c\right)=\psi *^{\prime} c . \tag{ii}
\end{align*}
$$

Proof. To see that $\psi \in W_{2}^{m}$ note that by (3.2)

$$
\|\psi\|_{W_{2}^{m}}=\left\|\left(1+|\cdot|^{2}\right)^{m / 2} \widehat{\eta} \hat{\phi}\right\|_{L_{2}} \leq \mathrm{const}\left\|\left(1+|\cdot|^{2}\right)^{\kappa / 2} \widehat{\phi}\right\|_{L_{2}}=\mathrm{const}\|\phi\|_{W_{2}^{\kappa}}<\infty .
$$

That supp $\psi \subset \operatorname{supp} \eta+\operatorname{supp} \phi$ is proved in [6, Th. 4.9 and p. 87]. Let r be the smallest positive real number for which $\operatorname{supp} \phi \subset r \bar{B}$. There exists a polynomial q, say of degree k, such that $|c(j)| \leq q(j) \forall j \in \mathbb{Z}^{d}$. If $g \in \mathcal{S}$, then

$$
\begin{aligned}
& \left|\left\langle g, \phi *^{\prime} c\right\rangle-\left\langle g, \phi *^{\prime} c_{n}\right\rangle\right|=\left|\left\langle g, \phi *^{\prime}\left(c-c_{n}\right)\right\rangle\right| \leq \sum_{|j|>n}|c(j)||\langle g, \phi(\cdot-j)\rangle| \\
& \leq \sum_{|. j|>n} q(j)\|\phi\|_{L_{1}}\|g\|_{L_{\infty}(j+r B)} \leq \mathrm{const}\left(\sum_{|. j|>n} q(j)(1+|j|)^{-k-d-1}\right) \rho_{k+d+1}(g) .
\end{aligned}
$$

Since $\sum_{|, j|>n} q(j)(1+|j|)^{-k-d-1} \rightarrow 0$ as $n \rightarrow \infty$, we obtain (i). Since $\psi \in W_{2}^{m}$ has compact support, we have by (i) that $\psi *^{\prime} c_{n} \rightarrow \psi *^{\prime} c$ in \mathcal{S}^{\prime}. Since $\eta *$ is a continuous operator on \mathcal{S}^{\prime}, it follows from (i) that $\eta *\left(\phi *^{\prime} c_{n}\right) \rightarrow \eta *\left(\phi *^{\prime} c\right)$ in \mathcal{S}^{\prime}. Noting that $\eta *\left(\phi *^{\prime} c_{n}\right)=\psi *^{\prime} c_{n}$ $\forall n \in \mathbb{N}$, we obtain (ii).

4. An Error Estimate

The following theorem contains our basic error estimate. In practice, the function g will be the error $f-s$. Of course, if s interpolates f at Ξ, then $f-s$ will vanish on Ξ.
Theorem 4.1. Let κ, m, η be as in Lemma 3.1. Let Ω be an open, bounded subset of \mathbb{R}^{d} having the cone property and let $\Xi \subset \bar{\Omega}$. There exists $\delta_{0}>0$ such that if $\delta:=\delta(\Xi ; \Omega) \leq \delta_{0}$, then for $2 \leq p \leq \infty$ $\|g\|_{L_{p}(\Omega)} \leq \operatorname{const}(\eta, m, \Omega) \delta^{m-d / 2+d / p}\| \| \delta^{-d} \eta(\cdot / \delta) * g \|_{H^{m}} \quad \forall g \in H^{m}+H^{\kappa}$ satisfying $g_{\Xi}=0$.

We mention that in the case $\kappa=m$, the above conclusion reduces to

$$
\|g\|_{L_{p}(\Omega)} \leq \operatorname{const}(m, \Omega) \delta^{m-d / 2+d / p}\|g\| \|_{H^{m}} \quad \forall g \in H^{m} \text { which vanish on } \Xi,
$$

which is known [4]. Our proof of this theorem requires two supporting lemmas. The proof of the first is essentially the same as the proof of [9, Prop. 3.1] if one replaces $\left\|\|f\|_{H^{m}}\right.$ with $\left|\left||f|\left\|_{H^{\kappa}},\left|\left||f| \|_{H^{2 m}} \text { with }\right|\right||f|\right\|_{H^{m}}\right.\right.$, and $\left.|\right||f| \|_{*}$ with $\left|\left||\eta * f| \|_{H^{m}}\right.\right.$.
Lemma 4.2. Let κ, m, η be as in Lemma 3.1, and let $r>0$. For each $j \in \mathbb{Z}^{d}$, let \mathcal{N}_{j} be a finite subset of $j+r B$. If $\left\{b_{j, \xi}\right\}_{j \in \mathbb{Z}^{d}, \xi \in \mathcal{N}_{j}}$ is such that

$$
\begin{aligned}
& \sum_{\xi \in \mathcal{N}_{j}} b_{j, \xi} q(\xi)=0 \quad \forall q \in \Pi_{m-1}, j \in \mathbb{Z}^{d} \quad \text { and } \\
& M:=\sup _{j \in \mathbb{Z}^{d}} \sum_{\xi \in \mathcal{N}_{j}}\left|b_{j, \xi}\right|<\infty
\end{aligned}
$$

then

$$
\sum_{j \in \mathbb{Z}^{d}}\left|\sum_{\xi \in \mathcal{N}_{j}} b_{j, \xi} f(\xi)\right|^{2} \leq \operatorname{const}(\eta, m, r) M^{2}\| \| \eta * f \|_{H^{m}}^{2} \quad \forall f \in H^{m}+H^{\kappa}
$$

The following lemma is taken from [9, Lemma 4.2].

Lemma 4.3. Let $n \geq 0$. If $\Omega \subset \mathbb{R}^{d}$ is bounded, open, and has the cone property, then there exists $\delta_{0}, r_{0} \in(0 \ldots \infty)$ (depending only on n and Ω) such that if Ξ is a finite subset of $\bar{\Omega}$ with $\delta:=\delta(\Xi ; \Omega) \leq \delta_{0}$, then for all $x \in \Omega / \delta$ there exists a finite $\mathcal{N} \subset(\Xi / \delta) \cap\left(x+r_{0} B\right)$ and $\left\{b_{\xi}\right\}_{\xi \in \mathcal{N}}$ such that

$$
\begin{aligned}
& q(x)+\sum_{\xi \in \mathcal{N}} b_{\xi} q(\xi)=0 \quad \forall q \in \Pi_{n} \quad \text { and } \\
& \sum_{\xi \in \mathcal{N}}\left|b_{\xi}\right| \leq \operatorname{const}(n, \Omega)
\end{aligned}
$$

Proof of Theorem 4.1. Let δ_{0}, r_{0} be as in Lemma 4.3 with $n=m-1$. Put $\mathcal{A}:=\{j \in$ $\left.\mathbb{Z}^{d}:(j+C) \cap(\Omega / \delta) \neq \emptyset\right\}$. For each $j \in \mathcal{A}$, let $x_{j} \in(j+C) \cap(\Omega / \delta)$ be such that $\left\|\sigma_{\delta}\right\|_{L_{\infty}((j+C) \cap(\Omega / \delta))} \leq 2\left|g\left(\delta x_{j}\right)\right|$. By Lemma 4.3, for each $j \in \mathcal{A}$, there exists $\mathcal{N}_{j} \subset$ $(\Xi / \delta) \cap\left(x_{j}+r_{0} B\right)$ and $\left\{b_{j, \xi}\right\}_{\xi \in \mathcal{N}_{j}}$ such that

$$
\begin{aligned}
& q\left(x_{j}\right)+\sum_{\xi \in \mathcal{N}_{j}} b_{j, \xi} q(\xi)=0 \quad \forall q \in \Pi_{m-1} \text { and } \\
& \sum_{\xi \in \mathcal{N}_{j}}\left|b_{j, \xi}\right| \leq \operatorname{const}(m, \Omega)
\end{aligned}
$$

Put $r:=r_{0}+\sqrt{d} / 2$ and note that $\left\{x_{j}\right\} \cup \mathcal{N}_{j} \subset j+r B$ for all $j \in \mathcal{A}$. Now,

$$
\begin{align*}
& \|g\|_{L_{p}(\Omega)}=\delta^{d / p}\left\|\sigma_{\delta} g\right\|_{L_{p}(\Omega / \delta)} \\
& \leq \delta^{d / p}\|j \mapsto\| \sigma_{\delta} g\left\|_{L_{\infty}((j+C) \cap(\Omega / \delta))}\right\|_{\ell_{p}(\mathcal{A})} \\
& \leq 2 \delta^{d / p}\left\|j \mapsto g\left(\delta x_{j}\right)\right\|_{\ell_{p}(\mathcal{A})} \leq 2 \delta^{d / p}\left\|j \mapsto g\left(\delta x_{j}\right)\right\|_{\ell_{2}(\mathcal{A})}, \quad \text { since } 2 \leq p, \tag{4.4}\\
& =2 \delta^{d / p} \sqrt{\sum_{j \in \mathcal{A}}\left|g\left(\delta x_{j}\right)\right|^{2}} .
\end{align*}
$$

Since $g(\delta \xi)=0$ for all $\xi \in \Xi / \delta$, we have

$$
\left|g\left(\delta x_{j}\right)\right|=\left|g\left(\delta x_{j}\right)+\sum_{\xi \in \mathcal{N}_{j}} b_{j, \xi} g(\delta \xi)\right|, \quad \forall j \in \mathcal{A}
$$

We thus obtain from (4.4) and Lemma 4.2 that

$$
\|g\|_{L_{p}(\Omega)} \leq \operatorname{const}^{d / p}\left\|\mid \eta *\left(\sigma_{\delta} g\right)\right\|\left\|_{H^{m}}=\mathrm{const} \delta^{m-d / 2+d / p}\right\|\left\|\delta^{-d} \eta(\cdot / \delta) * g\right\| \|_{H^{m}} .
$$

5. An analysis of $\phi *^{\prime}$

As mentioned just prior to the statement of Theorem 4.1, our error estimates will employ Theorem 4.1 with $g=f-s$. Roughly speaking, the factor $\left\|\left\|\delta^{-d} \eta(\cdot / \delta) *(f-s)\right\|\right\|_{H^{m}}$ will be estimated by $\left|\left|\left|\delta^{-d} \eta(\cdot / \delta) * f\right|\left\|_{H^{m}}+\right\|\left\|\delta^{-d} \eta(\cdot / \delta) * s \mid\right\|_{H^{m}}\right.\right.$, where the first term will be shown to be bounded by a constant times $\mid\|f\| \|_{H^{m}}$. The second term is our cost functional (1.3) with δ in place of h. Although this second term involves the parameter δ, its action on any $s \in S^{\delta}\left(\phi, \mathbb{R}^{d}\right)$ exhibits a certain stationarity. Namely, if $s=\sigma_{1 / \delta}\left(\phi *^{\prime} c\right)$, then

$$
\begin{equation*}
\delta^{m-d / 2}\| \| \delta^{-d} \eta(\cdot / \delta) * s\left|\left\|_{H^{m}}=\right\|\left\|\eta *\left(\phi *^{\prime} c\right) \mid\right\|_{H^{m}}\right. \tag{5.1}
\end{equation*}
$$

Thus, the right side of (5.1) is an important quantity. Two estimates of this quantity are given in the following proposition.

Proposition 5.2. Let κ, m, η be as in Lemma 3.1, and let $\phi \in W_{2}^{\kappa}$ be compactly supported. Then

$$
\begin{equation*}
\left\|\mid \eta *\left(\phi *^{\prime} f\right)\right\|_{H^{m}} \leq \operatorname{const}(\eta, m, \phi)\|f\|_{\ell_{2}} \quad \forall f \in \ell_{2} \tag{5.2}
\end{equation*}
$$

If, in addition, ϕ satisfies the Strang-Fix conditions of order m, then

$$
\begin{equation*}
\left\|\eta *\left(\phi *^{\prime} f\right)\right\|\left\|_{H^{m}} \leq \operatorname{const}(\eta, m, \phi)\right\| f \|_{H^{m}} \quad \forall f \in H^{m} . \tag{5.3}
\end{equation*}
$$

Our proof of this proposition requires the following lemma which is a consequence of [10, Théorème 1.6] and the Sobolev embedding theorem [1, p. 97].
Lemma 5.4. Let $y \in \mathbb{R}^{d}, r>0$, and $m \in \mathbb{N}$ with $m>d / 2$. For all $f \in H^{m}$ there exists $q \in \Pi_{m-1}$ such that

$$
\|f-q\|_{L_{\infty}(y+r B)} \leq \operatorname{const}(d, m, r)\|f\|_{H^{m}(y+r B)}
$$

Proof of Propositon 5.2. Put $\psi:=\eta * \phi$. By Proposition 3.3, $\psi \in W_{2}^{m}$ is compactly supported and

$$
\begin{equation*}
\eta *\left(\phi *^{\prime} f\right)=\psi *^{\prime} f \tag{5.5}
\end{equation*}
$$

Put $\mathcal{N}:=\left\{j \in \mathbb{Z}^{d}: \operatorname{supp} \psi(\cdot-j) \cap C \neq \emptyset\right\}$, and note that $\# \mathcal{N}<\infty$. In consideration of (5.2), assume $f \in \ell_{2}$. Then

$$
\begin{aligned}
& \left\|\psi * ^ { \prime } f \left|\left\|_{H^{m}}^{2}=\sum_{\ell \in \mathbb{Z}^{d}}\right\|\left\|\psi *^{\prime} f \mid\right\|_{H^{m}(\ell+C)}^{2}=\sum_{\ell \in \mathbb{Z}^{d}}\left\|\sum_{j \in \mathcal{N}} f(\ell+j) \psi(\cdot-j)\right\| \|_{H^{m}(C)}^{2}\right.\right. \\
& \leq \mathrm{const} \sum_{\ell \in \mathbb{Z}^{d}}\|\psi \psi\|_{H^{m}}^{2} \sum_{j \in \mathcal{N}}|f(\ell+j)|^{2} \leq \mathrm{const}\|f\|_{\ell_{2}}^{2}
\end{aligned}
$$

which, in view of (5.5), proves (5.2). In consideration of (5.3), assume ϕ satisfies the Strang-Fix conditions of order m, and let $f \in H^{m}$. Since $\widehat{\psi}=\widehat{\eta} \hat{\phi}$, it follows that ψ
also satisfies the Strang-Fix conditions of order m. Consequently, $\psi *^{\prime} q \in \Pi_{m-1}$ for all $q \in \Pi_{m-1}$ (see [8]). Let r be the least positive real number such that $\mathcal{N} \subset r \bar{B}$. By Lemma 5.4 , for each $\ell \in \mathbb{Z}^{d}$ there exists $q_{\ell} \in \Pi_{m-1}$ such that

$$
\left\|f-q_{\ell}\right\|_{L_{\infty}(\ell+r B)} \leq \operatorname{const}\left|\|f \mid\|_{H^{m}(\ell+r B)} .\right.
$$

This yields the estimate

$$
\begin{aligned}
& \left\|\left\|\psi * ^ { \prime } f \left|\left\|_{H^{m}(\ell+C)}=\right\|\left\|\psi *^{\prime}\left(f-q_{\ell}\right)\right\|\left\|_{H^{m}(\ell+C)}=\mid\right\| \sum_{j \in \mathcal{N}}\left(f(\ell+j)-q_{\ell}(\ell+j)\right) \psi(\cdot-j)\| \|\right.\right.\right. \\
& \leq \# \mathcal{N}\left\|f-q_{\ell}\right\|_{L_{\infty}(\ell+r B)}\| \| \psi\| \|_{H^{m}} \leq \mathrm{const} \mid\|f\|_{H^{m}(\ell+r B)} .
\end{aligned}
$$

Therefore,

$$
\left\|\left\|\psi *^{\prime} f\right\|\right\|_{H^{m}}^{2}=\sum_{\ell \in \mathbb{Z}^{d}}\| \| \psi *^{\prime} f\left|\left\|_{H^{m}(\ell+C)}^{2} \leq \mathrm{const} \sum_{\ell \in \mathbb{Z}^{d}}\right\|\|f\|_{H^{m}(\ell+r B)}^{2} \leq \operatorname{const}\right|\|f\|_{H^{m}}^{2}
$$

which, in view of (5.5), proves (5.3).
Our proof of the following result uses the standard quasi-interpolation argument (see $[2$, Ch. III]) which greatly simplifies when $m>d / 2$.

Proposition 5.6. Let $\psi \in C_{c}\left(\mathbb{R}^{d}\right)$ and $m \in \mathbb{N}$ with $m>d / 2$ be such that $\psi *^{\prime} q=q$ $\forall q \in \Pi_{m-1}$. If $\operatorname{sep}(\mathcal{A}) \geq$ const, then

$$
\left\|f-\psi *^{\prime} f\right\|_{\ell_{2}(\mathcal{A})} \leq \operatorname{const}(m, \psi)\|f f\|_{H^{m}} \quad \forall f \in H^{m} .
$$

Proof. Let \mathcal{N}, r, and $\left\{q_{\ell}\right\}_{\ell \in \mathbb{Z}^{d}}$ be as defined in the proof of Proposition 5.2. Then for $\ell \in \mathbb{Z}^{d}$

$$
\begin{aligned}
& \left\|f-\psi *^{\prime} f\right\|_{L_{\infty}(\ell+C)}=\left\|f-q_{\ell}-\psi *^{\prime}\left(f-q_{\ell}\right)\right\|_{L_{\infty}(\ell+C)} \\
& \leq\left\|f-q_{\ell}\right\|_{L_{\infty}(\ell+C)}+\left\|\sum_{j \in \mathcal{N}}\left(f(\ell+j)-q_{\ell}(\ell+j)\right) \psi(\cdot-j)\right\|_{L_{\infty}(C)} \\
& \leq\left(1+\# \mathcal{N}\|\psi\|_{L_{\infty}}\right)\left\|f-q_{\ell}\right\|_{L_{\infty}(\ell+(r+1) B)} \leq \operatorname{const} \mid\|f\|_{H^{m}(\ell+(r+1) B)}
\end{aligned}
$$

Since $\operatorname{sep}(\mathcal{A}) \geq$ const, we have
$\left\|f-\psi *^{\prime} f\right\|_{\ell_{2}(\mathcal{A})}^{2} \leq \operatorname{const} \sum_{\ell \in \mathbb{Z}^{d}}\left\|f-\psi *^{\prime} f\right\|_{L_{\infty}(\ell+C)}^{2} \leq \operatorname{const} \sum_{\ell \in \mathbb{Z}^{d}}\| \| f\left\|_{H^{m}(\ell+(r+1) B)}^{2} \leq \operatorname{const}\right\|\|f\|_{H^{m}}^{2}$.

6. An Interpolation Method for the Case $\kappa \leq m$

In the following, the phrase nearly minimize means to bring to within a constant of its minimal value.

Interpolation Method 6.1. Let κ, m, η be as in Lemma 3.1. Let $\phi \in W_{2}^{\kappa}$ be compactly supported and satisfy the Strang-Fix conditions of order m, and let ε_{ϕ} be as in Lemma 2.1. Let Ω be an open, bounded subset of \mathbb{R}^{d} having the cone property, and let Ω_{0} be an open, bounded set which contains $\bar{\Omega}$. Let Ξ be a finite subset of $\bar{\Omega}$ and let $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$. Choose $s \in S^{h}\left(\phi, \Omega_{0}\right)$ to nearly minimize $\left\|h^{-d} \eta(\cdot / h) * s\right\|_{H^{m}}$ subject to the interpolation conditions $s_{\Xi}=f_{\left.\right|_{\Xi}}$. There exists $\delta_{1}>0$ such that if $\delta:=\delta(\Xi, \Omega) \leq \delta_{1}$, then for all $f \in W_{2}^{m}$

$$
\begin{align*}
& \left\|h^{-d} \eta(\cdot / h) * s\right\|_{H^{m}} \leq \operatorname{const}\left(\eta, m, \Omega, \Omega_{0}, \phi\right)\|f\|_{W_{2}^{m}} \quad \text { and } \tag{i}\\
& \|f-s\|_{L_{p}(\Omega)} \leq \operatorname{const}\left(\eta, m, \Omega, \Omega_{0}, \phi\right) \delta^{m-d / 2+d / p}\|f\|_{W_{2}^{m}} \quad \forall 2 \leq p \leq \infty \tag{ii}
\end{align*}
$$

Remark 6.2. The interpolant s can be found by nearly solving a quadratic programming problem. To see this, let s be written as $s=\sum_{j=1}^{M} c_{j} \phi\left(\cdot / h-k_{j}\right)$, where $\left\{k_{1}, k_{2}, \ldots, k_{M}\right\}:=$ $\left\{k \in \mathbb{Z}^{d}: \operatorname{supp} \phi(\cdot / h-k) \cap \Omega_{0} \neq \emptyset\right\}$, and put $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right\}:=\Xi$. The interpolation conditions become $A c=F$ where A is the $N \times M$ matrix having (i, j)-entry $\phi\left(\xi_{i} / h-k_{j}\right)$ and $F=\left[f\left(\xi_{i}\right)\right]_{1 \leq i \leq N}$. Put $\psi:=\eta * \phi$ and let G be the $M \times M$ matrix having $(i, j)-$ entry $\left(\psi, \psi\left(\cdot+k_{j}-k_{i}\right)\right)_{H^{m}}$, where $(,)_{H^{m}}$ denotes the semi-inner product associated with $\|\|\cdot\|\|_{H^{m}}$. The cost functional can then be written as

$$
\left\|h^{-d} \eta(\cdot / h) * s\right\| \|_{H^{m}}=h^{-m+d / 2} \sqrt{c^{*} G c}
$$

where c^{*} denotes the complex conjugate of the transpose of c. Thus c is any near solution of the quadratic programming problem

$$
\begin{aligned}
& \operatorname{minimize} c^{*} G c \\
& \text { subject to } A c=F .
\end{aligned}
$$

We mention that the matrices A and G are sparse in the sense that the number of nonzero entries in each row or column is bounded independently of M and N.

Proof of 6.1 . Let $\varepsilon>0$ be the largest positive real number for which $\Omega+\varepsilon B \subset \Omega_{0}$, and let $\zeta \in C_{c}^{\infty}(\Omega+(\varepsilon / 2) B)$ be such that $\zeta=1$ on Ω. The assumptions on ϕ ensure (see [8]) that there exists a finitely supported sequence $a: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ such that $\psi:=\phi *^{\prime} a$ satisfies the Strang-Fix conditions of order m and the condition $\psi *^{\prime} q=q$ for all $q \in \Pi_{m-1}$. Let δ_{0} be as in Theorem 4.1, and let $\delta_{1} \in\left(0, \delta_{0}\right]$ be sufficiently small to ensure that
$\delta(\Xi, \Omega) \leq \delta_{1}, 0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$ and supp $g \subset h^{-1}(\Omega+(\varepsilon / 2) B) \Rightarrow \psi *^{\prime} g \in S\left(\phi, h^{-1} \Omega_{0}\right)$.

Let $f \in W_{2}^{m}$ and put $\tilde{f}:=\zeta f$. Then $\|\tilde{f}\|_{W_{2}^{m}} \leq \operatorname{const}\|f\|_{W_{2}^{m}}$. Assume $\delta:=\delta(\Xi, \Omega) \leq \delta_{1}$. Put $s_{1}:=\sigma_{1 / h}\left(\psi *^{\prime} \sigma_{h} \tilde{f}\right) \in S^{h}\left(\phi, \Omega_{0}\right)$. Since $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$, it follows by Lemma 2.1 that there exists $s_{2} \in S^{h}(\phi, \Xi)$, say $s_{2}=\sigma_{1 / h}\left(\phi *^{\prime} c\right)$, such that $\|c\|_{\ell_{2}} \leq$ const $\left\|\tilde{f}-s_{1}\right\|_{\ell_{2}(\Xi)}$ and $s_{2}(\xi)=\tilde{f}(\xi)-s_{1}(\xi)$ for all $\xi \in \Xi$. Put $\widetilde{s}:=s_{1}+s_{2} \in S^{h}\left(\phi, \Omega_{0}\right)$, and note that $\widetilde{s}(\xi)=s_{1}(\xi)+\widetilde{f}(\xi)-s_{1}(\xi)=f(\xi)$ for all $\xi \in \Xi$. Consequently,

$$
\begin{align*}
& \left\|\mid h^{-d} \eta(\cdot / h) * s\right\|\left\|_{H^{m}} \leq \operatorname{const}\right\|\left\|h^{-d} \eta(\cdot / h) * \widetilde{s}\right\|_{H^{m}}=\operatorname{consth}^{-m+d / 2}\| \| \eta * \sigma_{h} \widetilde{s} \|_{H^{m}} \\
& \leq \mathrm{consth} h^{-m+d / 2}\left(\| \| \geqslant \sigma_{h} s_{1}\| \|_{H^{m}}+\left\|\eta * \sigma_{h} s_{2}\right\| \|_{H^{m}}\right) . \tag{6.2}
\end{align*}
$$

By Proposition 5.2, we have

$$
\left|\| \eta * \sigma _ { h } s _ { 1 } \| \left\|_{H^{m}}=\left|\left\|\eta * (\psi * ^ { \prime } \sigma _ { h } \tilde { f }) \left|\left\|_{H^{m}} \leq \operatorname{const}\left|\left\|\sigma_{h} \tilde{f} \mid\right\|_{H^{m}}\right.\right.\right.\right.\right.\right.\right.
$$

and

$$
\begin{aligned}
& \left\|\left\|\eta * \sigma_{h} s_{2}\right\|\right\|_{H^{m}}=\| \| \eta *\left(\phi *^{\prime} c\right)\| \|_{H^{m}} \leq \mathrm{const}\|c\|_{\ell_{2}} \\
& \leq \mathrm{const}\left\|\tilde{f}-s_{1}\right\|_{\ell_{2}(\Xi)}=\mathrm{const}\left\|\sigma_{h} \tilde{f}-\psi *^{\prime} \sigma_{h} \tilde{f}\right\|_{\ell_{2}(\Xi / h)} \leq \operatorname{const}\left\|\sigma_{h} \tilde{f}\right\| \|_{H^{m}}
\end{aligned}
$$

by Proposition 5.6. Therefore, by (6.2),

$$
\begin{aligned}
& \left\|h^{-d} \eta(\cdot / h) * s\right\|\left\|_{H^{m}} \leq \operatorname{consth}^{-m+d / 2}\right\|\left\|\sigma _ { h } \tilde { f } \left|\left\|_{H^{m}}=\operatorname{const}\left|\|\tilde{f} \mid\|_{H^{m}}\right.\right.\right.\right. \\
& \leq \mathrm{const}\|\tilde{f}\|_{W_{2}^{m}} \leq \mathrm{const}\|f\|_{W_{2}^{m}}
\end{aligned}
$$

which proves (i). Since $h \leq$ const δ, it follows that $\left\|\left\|\delta^{-d} \eta(\cdot / \delta) * s\right\|\right\|_{H^{m}} \leq \operatorname{const} \mid\left\|h^{-d} \eta(\cdot / h) * s\right\| \|_{H^{m}}$. Hence, by Theorem 4.1,

$$
\begin{aligned}
& \|f-s\|_{L_{p}(\Omega)} \leq \mathrm{const} \delta^{m-d / 2+d / p}\| \| \delta^{-d} \eta(\cdot / \delta) *(f-s)\| \|_{H^{m}} \\
& \leq \mathrm{const} \delta^{m-d / 2+d / p}\left(\| \| \delta^{-d} \eta(\cdot / \delta) * f\left|\left\|_{H^{m}}+\right\|\left\|\delta^{-d} \eta(\cdot / \delta) * s \mid\right\|_{H^{m}}\right) \leq \operatorname{const} \delta^{m-d / 2+d / p}\|f\|_{W_{2}^{m}}\right.
\end{aligned}
$$

which proves (ii).

7. An Interpolation Method for the case when $\phi \in W_{2}^{m}$

The conclusion of the following result is an improvement over that of 6.1 as $\left||f| \|_{H^{m}(\Omega)}\right.$ has taken the place of $\|f\|_{W_{2}^{m}}$ in (i) and (ii). To obtain this improvement, we have assumed further that $\phi \in W_{2}^{m}$ and that Ω is connected and has a Lipschitz boundary.

Interpolation Method 7.1. Let $m \in \mathbb{N}$ with $d / 2<m$, and let $\phi \in W_{2}^{m}$ be compactly supported. Let Ω be an open, bounded, connected subset of \mathbb{R}^{d} having the cone property and a Lipschitz boundary (in the sense of [10]), and let δ_{0} and ε_{ϕ} be as in Theorem 4.1 and Lemma 2.1, respectively. Let Ξ be a finite subset of $\bar{\Omega}$ and let $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$. Let Ω_{h} be any measurable set which contains Ω, and let $s \in S^{h}\left(\phi, \Omega_{h}\right)$ be chosen to nearly minimize $\left|\|s \mid\|_{H^{m}\left(\Omega_{h}\right)}\right.$ subject to the interpolation conditions $s_{\Xi}=f_{\Xi}$. If $\delta:=\delta(\Xi, \Omega) \leq \delta_{0}$, then for all $f \in H^{m}$

$$
\begin{align*}
& \|s\|_{H^{m}\left(\Omega_{h}\right)} \leq \operatorname{const}(m, \Omega, \phi)\| \| f \|_{H^{m}(\Omega)} \quad \text { and } \tag{i}\\
& \|f-s\|_{L_{p}(\Omega)} \leq \operatorname{const}(m, \Omega, \phi) \delta^{m-d / 2+d / p}\|f\|_{H^{m}(\Omega)} \quad \forall 2 \leq p \leq \infty \tag{ii}
\end{align*}
$$

Remark. The interpolant s can be found by nearly solving the same quadratic programming problem described in Remark 6.2 excepting that $\left\{k_{1}, k_{2}, \ldots, k_{M}\right\}:=\left\{k \in \mathbb{Z}^{d}: \operatorname{supp} \phi(\cdot / h-\right.$ $\left.k) \cap \Omega_{h} \neq \emptyset\right\}$ and $G(i, j):=\left(\phi, \phi\left(\cdot+k_{j}-k_{i}\right)\right)_{H^{m}\left(h^{-1} \Omega_{h}\right)}$. If Ω_{h} is a complicated set, then the computation of G will likely be difficult. One way to ease this task is to choose Ω_{h} as

$$
\Omega_{h}:=\cup_{\ell \in \mathcal{A}_{h}} h(\ell+C),
$$

where $\mathcal{A}_{h}:=\left\{\ell \in \mathbb{Z}^{d}: \Omega \cap h(\ell+C) \neq \emptyset\right\}$. Using the auxillary function $u: \mathbb{Z}^{d} \times \mathbb{Z}^{d} \rightarrow \mathbb{C}$ given by $u(k, \ell):=(\phi, \phi(\cdot-k))_{H^{m}(\ell+C)}$ (which has a fixed number of nonzero entries), we can compute $G(i, j)$ as

$$
G(i, j)=\sum_{\ell \in \mathcal{A}_{h}} u\left(k_{i}-k_{j}, \ell\right) .
$$

Our proof of 7.1 requires the following result which comes out of [4, p. 331].
Theorem 7.2. Let $m \in \mathbb{N}$ with $m>d / 2$. If Ω is an open, bounded, connected subset of \mathbb{R}^{d} having the cone property and a Lipschitz boundary (in the sense of [10]), then for all $f \in H^{m}$ there exists $f_{\Omega} \in H^{m}$ such that
(i) $\quad f_{\Omega}=f$ on Ω and

$$
\begin{equation*}
\left\|\left\|f_{\Omega} \mid\right\|_{H^{m}} \leq \operatorname{const}(m, \Omega)\right\|\|f\|_{H^{m}(\Omega)} \tag{ii}
\end{equation*}
$$

Proof of 7.1. Let a, ψ be as in the proof of 6.1. Let $f \in H^{m}$ and let f_{Ω} be as in Theorem 7.2. Put $s_{1}:=\sigma_{1 / h}\left(\psi *^{\prime} \sigma_{h} f_{\Omega}\right)$. By Proposition 5.2, $s_{1} \in H^{m}$ and

$$
\begin{equation*}
\left\|\left|\left\|\sigma _ { h } s _ { 1 } \left|\left\|_{H^{m}} \leq \mathrm{const} \mid\right\| \sigma_{h} f_{\Omega}\| \|_{H^{m}}\right.\right.\right.\right. \tag{7.3}
\end{equation*}
$$

Since $0<h \leq \operatorname{sep}(\Xi) / \varepsilon_{\phi}$, it follows by Lemma 2.1 that there exists $s_{2} \in S^{h}(\phi, \Xi)$, say $s_{2}=\sigma_{1 / h}\left(\phi *^{\prime} c\right)$, such that $\|c\|_{\ell_{2}} \leq \mathrm{const}\left\|f_{\Omega}-s_{1}\right\|_{\ell_{2}(\Xi)}$ and $s_{2}(\xi)=f_{\Omega}(\xi)-s_{1}(\xi)$ for all $\xi \in \Xi$. Put $s_{3}:=s_{1}+s_{2} \in S^{h}\left(\phi, \mathbb{R}^{d}\right)$. Then $\left.s_{3}\right|_{\Xi}=\left.f_{\Omega}\right|_{\Xi}=f_{\left.\right|_{\Xi}}$, and

$$
\begin{aligned}
& \left|\| s _ { 3 } \| \left\|_{H^{m}} \leq\left|\left\|s _ { 1 } \left|\left\|_{H^{m}}+\left|\left\|s_{2} \mid\right\|_{H^{m}}=h^{-m+d / 2}\left(\| \| \sigma _ { h } s _ { 1 } \left|\left\|_{H^{m}}+\left|\left\|\sigma_{h} s_{2} \mid\right\|_{H^{m}}\right)\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \\
& =h^{-m+d / 2}\left(\left|\left\|\psi * ^ { \prime } \sigma _ { h } f _ { \Omega } \left|\left\|_{H^{m}}+\left|\left\|\phi *^{\prime} c \mid\right\|_{H^{m}}\right) \leq \operatorname{consth}^{-m+d / 2}\left(\left\|\sigma_{h} f_{\Omega} \mid\right\|_{H^{m}}+\|c\|_{\ell_{2}}\right)\right.\right.\right.\right.\right.
\end{aligned}
$$

by Proposition 5.2. Since $\|c\|_{\ell_{2}} \leq \mathrm{const}\left\|f_{\Omega}-s_{1}\right\|_{\ell_{2}(\Xi)}=$ const $\left\|\sigma_{h} f_{\Omega}-\psi *^{\prime} \sigma_{h} f_{\Omega}\right\|_{\ell_{2}(\Xi / h)}$, we have by Proposition 5.6, that $\|c\|_{\ell_{2}} \leq$ const $\left|\left\|\sigma_{h} f_{\Omega} \mid\right\|_{H^{m}}\right.$. Therefore,

$$
\begin{equation*}
\left|\left\|s _ { 3 } \left|\left\|_{H^{m}} \leq \mathrm{consth}^{-m+d / 2}\left|\left\|\sigma _ { h } f _ { \Omega } \left|\left\|_{H^{m}}=\mathrm{const}\left|\left\|f _ { \Omega } \left|\left\|_{H^{m}} \leq \mathrm{const}\left|\|f \mid\|_{H^{m}(\Omega)}\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \tag{7.4}
\end{equation*}
$$

by Theorem 7.2. Let $s_{4} \in S^{h}\left(\phi, \Omega_{h}\right)$ be such that $s_{4}=s_{3}$ on Ω_{h}. Then $\left.s_{4}\right|_{\Xi}=\left.s_{3}\right|_{\Xi}=f_{\left.\right|_{\Xi}}$. Hence,

$$
\left\|\left|| s | \left\|_{H^{m}\left(\Omega_{h}\right)} \leq \mathrm{const}\left|\| s _ { 4 } \| \left\|_{H^{m}\left(\Omega_{h}\right)}=\operatorname{const}| | s_{3}\left|\left\|_{H^{m}\left(\Omega_{h}\right)} \leq \mathrm{const}\left|\left\|s _ { 3 } \left|\left\|_{H^{m}} \leq \operatorname{const}\left|\|f| |\|_{H^{m}(\Omega)}\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

which proves (i). By Theorem 7.2, there exists $s_{\Omega} \in H^{m}$ such that $s_{\Omega}=s$ on Ω and $\left\|\left\|s_{\Omega} \mid\right\|_{H^{m}} \leq\right.$ const $\left|\|s \mid\|_{H^{m}(\Omega)}\right.$. Hence, by Theorem 4.1,

$$
\begin{aligned}
& \|f-s\|_{L_{p}(\Omega)}=\left\|f_{\Omega}-s_{\Omega}\right\|_{L_{p}(\Omega)} \leq \operatorname{const} \delta^{m-d / 2+d / p}| | f_{\Omega}-s_{\Omega} \mid \|_{H^{m}} \\
& \leq \operatorname{const} \delta^{m-d / 2+d / p}\left(\left|\| f _ { \Omega } \| \left\|_{H^{m}}+\left|\left|\left|s_{\Omega}\right| \|_{H^{m}}\right) \leq \operatorname{const} \delta^{m-d / 2+d / p}\|f \mid\|_{H^{m}(\Omega)}\right.\right.\right.\right.
\end{aligned}
$$

which proves (ii).

References

1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
2. C. de Boor, K. Höllig and S. Riemenschneider, Box Splines, Springer-Verlag, New York, 1993.
3. M.D. Buhmann, New developments in the theory of radial basis function interpolation, Multivariate Approximation: From CAGD to Wavelets (K. Jetter, F.I. Utreras, eds.), World Scientific, Singapore, 1993, pp. 35-75.
4. J. Duchon, Sur l'erreur d'interpolation des fonctions de plusieur variables par les D^{m}-splines, RAIRO Analyse Numerique 12 (1978), 325-334.
5. T.A. Foley and H. Hagen, Advances in scattered data interpolation, Surv. Math. Ind. 4 (1994), 71-84.
6. M. A. Al-Gwaiz, Theory of Distributions, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1992.
7. R.-Q. Jia, The Toeplitz theorem and its applications to approximation theory and linear PDE's, Trans. Am. Math. Soc. 347 (1995), 2585-2594.
8. R.-Q. Jia and J. Lei, Approximation by Multiinteger Translates of Functions Having Global Support, J. Approx. Theory 72 (1993), 2-23.
9. M.J. Johnson, Overcoming the boundary effects in surface spline interpolation, IMA J. Numer. Anal. (to appear).
10. J. Nečas, Les Methodés Directes en Theéorie des Equations Elliptiques, Masson, Paris, 1967.

[^0]: This work was supported by Kuwait University Research Grant SM-175

