How small can one make the derivatives of an interpolating function?

Carl de Boor

Dedicated to Professor G.G. Lorentz on the occasion of his sixty-fifth birthday

1. Introduction

In his pioneering paper [3], Favard considers the problem of minimizing $f^{(k)}$ over

$$
F:=\left\{f \in \mathbb{L}_{\infty}^{(k)}: f\left(t_{i}\right)=f_{0}\left(t_{i}\right), \quad i=1, \ldots, n+k\right\}
$$

for a given f_{0} and a given strictly increasing sequence $\mathbf{t}=\left(t_{i}\right)_{1}^{n+k}$. Favard solves this problem in a rather ingenious way that is detailed and elaborated upon in [2]. Favard goes on to prove that, with

$$
\left[t_{i}, \ldots, t_{i+k}\right] f_{0}
$$

denoting the k th divided difference of f_{0} on the points t_{i}, \ldots, t_{i+k},

$$
K(k):=\sup _{f_{0}, \mathbf{t}} \frac{\inf \left\{\left\|f^{(k)}\right\|_{\infty}: f \in \mathbb{L}_{\infty}^{(k)}, f\left(t_{i}\right)=f_{0}\left(t_{i}\right), \quad \text { all } t_{i}\right\}}{\max _{i} k!\left[\left[t_{i}, \ldots, t_{i+k}\right] f_{0} \mid\right.}
$$

is finite, and that $K(1)=1, K(2)=2$. For $k>2$, Favard gives no quantitative information about $K(k)$.
An estimate for the supremum under the additional restriction that only uniform \mathbf{t} be considered can be found in Jerome and Schumaker [5]. Their argument was extended by Golomb [4] as far as it will go, viz., to include nonuniform t's whose global mesh ratio $R_{\mathrm{t}}:=\max _{i} \Delta t_{i} / \min _{i} \Delta t_{i}$ is bounded.

It is the purpose of the present paper to show how Favard's argument can be used to obtain upper bounds for $K(k)$. Further, an upper bound for $K(k)$ is also obtained by a completely different method which, incidentally, also provides a simple proof of a theorem concerning the existence of $H^{k, p}$-extensions, thereby simplifying and extending three theorems of Golomb [4]. A lower bound for $K(k)$ is also given.

The author's interest in the numbers $K(k)$ was sparked by a question about them from H-O. Kreiss, who apparently was looking for a shortcut in computing error bounds for a given finite difference approximation to the solution of an ordinary differential equation. A bound on $K(k)$ allows to bound the k th derivative (and therefore all lower derivatives) of some smooth interpolant f to given data $f\left(t_{1}\right), \ldots, f\left(t_{n+k}\right)$ in terms of the computable absolutely biggest k th divided difference without actually constructing and then bounding such an interpolant and its derivatives.

2. Favard's argument

Favard's argument consists in showing that, with p_{i} the polynomial of degree $\leq k$ that agrees with f_{0} at t_{i}, \ldots, t_{i+k}, a function f in F could be constructed by blending p_{1}, \ldots, p_{n} together without increasing the k th derivative too much. Because of some practical interest for small k, we describe Favard's construction in some detail.

Favard's construction

Given $k \geq 2$, the strictly increasing sequence $\mathbf{t}=\left(t_{i}\right)_{1}^{n+k}$, and the function f_{0}.
Step 1. For $i=1, \ldots, n$, form $p_{i}:=$ the polynomial of degree $\leq k$ that agrees with f_{0} at t_{i}, \ldots, t_{i+k}, and set $f:=p_{1}, i:=1, j(1):=0$.

Step 2. At this point, f is in $\mathbb{L}_{\infty}^{(k)}$, agrees with f_{0} at t_{1}, \ldots, t_{k+i}, and agrees with p_{i} on $t \geq t_{j(i)+1}$. If $i=n$, stop. Otherwise, increase i by 1 and continue.

Step 3. Pick $j:=j(i)$ so that $j \geq j(i-1)$ and $I:=\left(t_{j} \ldots t_{j+1}\right)$ is a largest among the $k-1$ intervals $\left(t_{i} \ldots t_{i+1}\right), \ldots,\left(t_{i+k-2} \ldots t_{i+k-1}\right)$ and set $\psi_{i}(t):=\left(t-t_{i}\right) \cdots\left(t-t_{i+k-1}\right)$.

Step 4. On I, add to f the function

$$
\begin{equation*}
h_{i}(t):=\alpha_{i} \int_{t_{j}}^{t}(t-s)^{k-1} g_{i}(s) \mathrm{d} s /(k-1)! \tag{1}
\end{equation*}
$$

with

$$
\alpha_{i}:=\left(\left[t_{i}, \ldots, t_{i+k}\right]-\left[t_{i-1}, \ldots, t_{i+k-1}\right]\right) f_{0}
$$

and g_{i} the piecewise constant function with jumps only at $t_{j}+(r / k) \Delta t_{j}, r=1, \ldots, k-1$, for which

$$
\begin{equation*}
h_{i}^{(r)}\left(t_{j+1}\right)=\alpha_{i} \psi_{i}^{(r)}\left(t_{j+1}\right) \quad\left(=\left(p_{i}-p_{i-1}\right)^{(r)}\left(t_{j+1}\right)\right), \quad r=0, \ldots, k-1 \tag{2}
\end{equation*}
$$

Step 5. At this point, $f^{(r)}\left(t_{j+1}^{-}\right)=p_{i}^{(r)}\left(t_{j+1}\right), r=0, \ldots, k-1$. On $t>t_{j+1}$, redefine f to equal p_{i}, and go to Step 2.

For $k=2$, this construction is particularly simple since then, for $i=2, \ldots, n$,

$$
j(i)=i, \quad \psi_{i}(t)=\left(t-t_{i}\right)\left(t-t_{i+1}\right)
$$

and, in terms of the piecewise constant

$$
g_{i}(t):=\left\{\begin{array}{ll}
L, & t_{i}<t<t_{i+1 / 2} \\
R, & t_{i+1 / 2}<t<t_{i+1}
\end{array}, \quad t_{i+1 / 2}:=\left(t_{i}+t_{i+1}\right) / 2\right.
$$

(1) and (2) become

$$
\begin{array}{r}
-\frac{1}{2}\left(\left(\frac{\Delta t_{i}}{2}\right)^{2}-\left(\Delta t_{i}\right)^{2}\right) L+\frac{1}{2}\left(\frac{\Delta t_{i}}{2}\right)^{2} R=\psi_{i}\left(t_{i+1}\right) \quad(=0) \\
\frac{\Delta t_{i}}{2} L+\frac{\Delta t_{i}}{2} R=\psi_{i}^{(1)}\left(t_{i+1}\right) \quad\left(=\Delta t_{i}\right)
\end{array}
$$

Hence $L=-1, R=3$, independently of i. Therefore, on $\left(t_{i} \ldots t_{i+1}\right)$,

$$
f^{(2)}=p_{i-1}^{(2)}+\frac{1}{2}\left(p_{i}^{(2)}-p_{i-1}^{(2)}\right) g_{i}=\frac{1}{2} \begin{cases}3 p_{i-1}^{(2)}-p_{i}^{(2)}, & t_{i}<t<t_{i+1 / 2} \\ -p_{i-1}^{(2)}+3 p_{i}^{(2)}, & t_{i+1 / 2}<t<t_{i+1}\end{cases}
$$

$i=2, \ldots, n$, while $f^{(2)}=p_{1}^{(2)}$ on $t<t_{2}$, and $f^{(2)}=p_{n}^{(2)}$ on $t>t_{n+1}$. In particular, $K(2) \leq 2$.
The crucial step in Favard's argument is the proof that

$$
\begin{equation*}
\left\|g_{i}\right\|_{\infty, I} \leq \operatorname{const}_{k} \tag{3}
\end{equation*}
$$

for some const ${ }_{k}$ depending only on k and not on \mathbf{t} (or f_{0}). Once this is accepted, it then follows that, for the final f,

$$
\left\|f^{(k)}\right\|_{\infty} \leq\left(1+2 \frac{\text { const }_{k}}{(k-1)!}\right) k!\max _{i}\left|\left[t_{i}, \ldots, t_{i+k}\right] f_{0}\right|
$$

since, on any given interval $\left(t_{j} \ldots t_{j+1}\right), f^{(k)}=p_{i}^{(k)}+\alpha_{i+1} g_{i+1}+\cdots+\alpha_{i+r} g_{i+r}$ for some i, and some $r \in[0 \ldots k-1]$. But, rather than elaborating Favard's lapidary remarks in support of the bound (3), we prefer to discuss the following modification of Step 4 in Favard's construction: Let λ be the linear functional on \mathbb{P}_{k} that satisfies

$$
\begin{equation*}
\lambda\left(t_{j+1}-\cdot\right)^{k-1-r} /(k-1-r)!=\psi_{i}^{(r)}\left(t_{j+1}\right), \quad r=0, \ldots, k-1 \tag{4}
\end{equation*}
$$

Here, $\mathbb{P}_{k}:=$ the space of polynomials of degree $<k$, considered as a subspace of $\mathbb{L}_{1}(I)$. There is, clearly, one and only one such linear functional since the sequence $\left(\left(t_{j+1}-\cdot\right)^{k-1-r}\right)_{r=0}^{k-1}$ is a basis for \mathbb{P}_{k}. By the Hahn-Banach Theorem, we can now choose $g_{i} \in \mathbb{L}_{\infty}(I) \cong\left(\mathbb{L}_{1}(I)\right)^{*}$ so that $\left\|g_{i}\right\|_{\infty}=\|\lambda\|$ while $\int_{I} p g_{i}=\lambda p$ for all $p \in \mathbb{P}_{k}$. For such g_{i}, h_{i} as given by (1) satisfies (2), while $\left\|h_{i}^{(k)}\right\|_{\infty, I} \leq\left|\alpha_{i}\right|\|\lambda\|$.

It remains to bound $\|\lambda\|$. For this, observe that, for all $p \in \mathbb{P}_{k}$,

$$
p=\sum_{r=0}^{k-1}(-)^{k-1-r} p^{(k-1-r)}\left(t_{j+1}\right)\left(t_{j+1}-\cdot\right)^{k-1-r} /(k-1-r)!
$$

hence (4) implies that

$$
\begin{equation*}
\lambda p=\sum_{r=0}^{k-1}(-)^{k-1-r} p^{(k-1-r)}\left(t_{j+1}\right) \psi_{i}^{(r)}\left(t_{j+1}\right), \quad \text { all } p \in \mathbb{P}_{k} \tag{5}
\end{equation*}
$$

From this, a bound for $\|\lambda\|=\sup _{p \in \mathbb{P}_{k}}|\lambda p| / \int_{I}|p|$ could be obtained much as in the proof of the next section's lemma.

3. Some estimates for Favard's Constants

There is no difficulty in considering the slightly more general case when $\mathbf{t}=\left(t_{i}\right)_{1}^{n+k}$ is merely nondecreasing, coincidences in the t_{i} 's being interpreted as repeated or osculatory interpolation in the usual way. Precisely, with \mathbf{t} nondecreasing and f sufficiently smooth, denote by

$$
\left.f\right|_{\mathbf{t}}:=\left(f_{i}\right)
$$

the corresponding sequence given by the rule

$$
f_{i}:=f^{(j)}\left(t_{i}\right) \quad \text { with } \quad j:=j(i):=\max \left\{m: \mathbf{t}_{i-m}=t_{i}\right\} .
$$

Assuming that ran $\mathbf{t} \subseteq[a \ldots b]$ and that $t_{i}<t_{i+k}$, all $i,\left.f\right|_{\mathbf{t}}$ is defined for every f in the Sobolev space

$$
\mathbb{L}_{p}^{(k)}[a \ldots b]:=\left\{f \in C^{(k-1)}[a \ldots b]: f^{(k-1)} \text { abs.cont.; } f^{(k)} \in \mathbb{L}_{p}[a \ldots b]\right\} .
$$

Consider the problem of minimizing $\left\|f^{(k)}\right\|_{p}$ over

$$
F:=F(\mathbf{t}, \boldsymbol{\alpha}, k, p,[a \ldots b]):=\left\{f \in \mathbb{L}_{p}^{(k)}[a \ldots b]:\left.f\right|_{\mathbf{t}}=\boldsymbol{\alpha}\right\}
$$

for some given $\boldsymbol{\alpha} . F$ is certainly not empty; it is, e.g., well known that F contains exactly one polynomial of degree $<n+k$. Hence

$$
F=\left\{f \in \mathbb{L}_{p}^{(k)}[a \ldots b]:\left.f\right|_{\mathbf{t}}=\left.f_{0}\right|_{\mathbf{t}}\right\}
$$

for some fixed function $f_{0} \in F$. Favard already observes (without using the term "spline", of course) that

$$
\begin{equation*}
\inf _{f \in F}\left\|f^{(k)}\right\|_{p}=\inf _{g \in G}\|g\|_{p} \tag{6}
\end{equation*}
$$

with

$$
\begin{aligned}
& G:=G\left(\mathbf{t}, g_{0}, k, p,[a \ldots b]\right):=\left\{g \in \mathbb{L}_{p}[a \ldots b]: \int_{a}^{b} M_{i, k}\left(g-g_{0}\right)=0 \quad \text { all } i\right\}, \\
& g_{0}
\end{aligned}=f_{0}^{(k)}, ~ l i
$$

and

$$
\begin{equation*}
M_{i, k}(t) / k!:=\left[t_{i}, \ldots, t_{i+k}\right](\cdot-t)_{+}^{k-1} /(k-1)! \tag{7}
\end{equation*}
$$

a (polynomial) B-spline of order k having the knots t_{i}, \ldots, t_{i+k}. Equation (6) follows from the observations (i) that, with $P_{1} f$ the polynomial of degree $<k$ for which

$$
\left.\left(P_{1} f\right)\right|_{\left(t_{i}\right)_{1}^{k}}=\left.f\right|_{\left(t_{i}\right)_{1}^{k}},
$$

and

$$
V g:=\int_{a}^{b}(\cdot-s)_{+}^{k-1} g(s) \mathrm{d} s /(k-1)!
$$

every $f \in \mathbb{L}_{p}^{(k)}[a \ldots b]$ can be written in exactly one way as

$$
f=p_{1}+\left(1-P_{1}\right) V g
$$

with $p_{1} \in \mathbb{P}_{k}$ (necessarily equal to $P_{1} f$) and $g \in \mathbb{L}_{p}[a \ldots b]$ (necessarily equal to $f^{(k)}$); and (ii) that

$$
\left.f\right|_{\mathbf{t}}=\left.f_{0}\right|_{\mathbf{t}} \Longleftrightarrow P_{1} f=P_{1} f_{0} \quad \text { and } \quad\left[t_{i}, \ldots, t_{i+k}\right]\left(f-f_{0}\right)=0, \quad \text { for all } i
$$

It follows that

$$
K(k)=\sup _{g_{0} \in \mathbb{L}_{\infty}, \mathbf{t}} \frac{\inf \left\{\|g\|_{\infty}: \int M_{i, k} g=\int M_{i, k} g_{0}, \text { all } i\right\}}{\max _{i}\left|\int M_{i, k} g_{0}\right|}
$$

The following lemma is therefore relevant to bounding $K(k)$.

Lemma. If $t_{i}<t_{i+k}$, then, for every largest subinterval $I:=\left(t_{r} \ldots t_{r+1}\right)$ of $\left(t_{i} \ldots t_{i+k}\right)$, there exists $h_{i} \in \mathbb{L}_{\infty}$ with support in I so that

$$
\int h_{i} M_{j, k}=\delta_{i, j}, \text { all } j, \quad \text { and }\left\|h_{i}\right\|_{p} \leq D_{k}\left(\left(t_{i+k}-t_{i}\right) / k\right) /|I|^{1-1 / p}, \quad 1 \leq p \leq \infty
$$

for some constant D_{k} depending only on k.
Proof: By [1], the linear functional λ_{i} given by the rule

$$
\begin{aligned}
\lambda_{i} f & :=\sum_{j<k}(-)^{k-1-j} \psi_{i, k}^{(k-1-j)}\left(\tau_{i}\right) f^{(j)}\left(\tau_{i}\right) \\
\psi_{i, k}(t) & :=\left(t_{i+1}-t\right) \cdots\left(t_{i+k-1}-t\right) /(k-1)!
\end{aligned}
$$

satisfies

$$
\lambda_{i} M_{j, k}=\delta_{j, k} k /\left(t_{i+k}-t_{i}\right)
$$

provided $\tau_{i} \in\left(t_{i} \ldots t_{i+k}\right)$. Let

$$
\lambda:=\left.\lambda_{i}\right|_{\mathbb{P}_{k}}
$$

with τ_{i} the midpoint of $I:=$ a largest among the k intervals $\left(t_{i} \ldots t_{i+1}\right), \ldots,\left(t_{i+k-1} \ldots t_{i+k}\right)$, and $\mathbb{P}_{k}:=$ the space of polynomials of degree $<k$ considered as a subspace of $\mathbb{L}_{1}(I)$. Then

$$
|I| \geq\left(t_{i+k}-t_{i}\right) / k
$$

Also, by the Hahn-Banach theorem, there exists $h \in \mathbb{L}_{\infty}(I)$ such that $\|h\|_{\infty}=\|\lambda\|$ and $\int_{I} h g=\lambda g$ for all $g \in \mathbb{P}_{k}$. But then, since $\left.g\right|_{I} \in \mathbb{P}_{k}$ for every g in $\mathbb{S}_{k, \mathbf{t}}:=\operatorname{span}\left(M_{1, k}, \ldots, M_{n, k}\right)$, the function h_{i} defined by

$$
h_{i}(t):= \begin{cases}h(t)\left(\left(t_{i+k}-t_{i}\right) / k\right), & t \in I \\ 0, & t \notin I\end{cases}
$$

satisfies

$$
\begin{aligned}
& \int h_{i} g=\left(\left(t_{i+k}-t_{i}\right) / k\right) \lambda_{i} g, \quad \text { for all } g \in \mathbb{S}_{k, \mathbf{t}} \\
& \left\|h_{i}\right\|_{p} \leq\left(t_{i+k}-t_{i}\right) / k\|\lambda\||I|^{1 / p}
\end{aligned}
$$

It remains to show that $\|\lambda\| \leq D_{k} /|I|$ for some constant D_{k} depending only on k. For this,

$$
\psi_{i, k}^{(k-1-j)}(t)=\frac{(-)^{k-1-j}}{(k-1)!}(k-1-j)!\sum_{\substack{J \subseteq\{1, \ldots, k-1\} \\|J|=j}} \prod_{r \in J}\left(t_{i+r}-t\right)
$$

hence, by choice of I, and of τ_{i} in I, we have

$$
\left|\psi_{i, k}^{(k-1-j)}\left(\tau_{i}\right)\right| \leq\binom{ k-1}{j}|I|^{j}
$$

Also,

$$
\sup _{g \in \mathbb{P}_{k}}\left|g^{(j)}\left(\tau_{i}\right)\right| / \int_{I}|g|=\operatorname{const}_{j, k}(2 /|I|)^{j+1}
$$

with

$$
\text { const }_{j, k}:=\sup _{g \in \mathbb{P}_{k}}\left|g^{(j)}(0)\right| / \int_{-1}^{1}|g(t)| \mathrm{d} t \leq(k-1)^{j} k(2 k+1) / 2
$$

Hence, the number

$$
D_{k}:=\sum_{j<k} \operatorname{const}_{j, k} 2^{j+1}\binom{k-1}{j} \leq k(2 k+1)(2 k-1)^{k-1}
$$

depends only on k, while

$$
|\lambda g|=\left|\lambda_{i} g\right| \leq D_{k} \int_{I}|g| /|I|, \quad \text { for all } g \in \mathbb{P}_{k}
$$

If now the numbers

$$
c_{j}:=k!\left[t_{j}, \ldots, t_{j+k}\right] f_{0}, \quad j=1, \ldots, n,
$$

are given, then

$$
g:=\sum_{j=1}^{n} c_{j} h_{j}
$$

satisfies

$$
\int M_{i, k} g=c_{i}=\int M_{i, k} g_{0}, \quad i=1, \ldots, n,
$$

while

$$
\|g\|_{\infty} \leq \max _{j}\left|c_{j}\right|\left\|\sum_{j}\left|h_{j}\right|\right\|_{\infty} .
$$

But since at most k of the h_{j} 's can have any particular interval in their support, it follows that

$$
\begin{equation*}
K(k) \leq\left\|\sum_{j} \mid h_{j}\right\|_{\infty} \leq k^{2}(2 k+1)(2 k-1)^{k-1} . \tag{8}
\end{equation*}
$$

The construction of g is entirely local: On $\left(t_{i} . . t_{i+1}\right), g$ is the sum of all those terms $c_{j} h_{j}$ that have their support in that interval. For each such $h_{j},\left(t_{i} \ldots t_{i+1}\right)$ must be a largest interval of that form in $\left(t_{j} \ldots t_{j+k}\right)$, hence in particular $j \in(i-k \ldots i]$; i.e.,

$$
\|g\|_{\infty,\left(t_{i . .}, t_{i+1}\right)} \leq k D_{k} \max _{i-k<j \leq i}\left|\int M_{j, k} g_{0}\right| .
$$

In terms of the original problem of finding $f \in \mathbb{L}_{\infty}^{(k)}[a \ldots b]$ that agrees with f_{0} on \mathbf{t} and has a "small" k th derivative, the above lemma has therefore the
Corollary. For given $f_{0} \in \mathbb{L}_{\infty}^{(k)}[a \ldots b]$ and given $\mathbf{t}=\left(t_{i}\right)_{1}^{n+k}$ in $[a . . b]$, nondecreasing with $t_{i}<t_{i+k}$, all i, there exists $f \in \mathbb{L}_{\infty}^{(k)}[a \ldots b]$ such that $\left.f\right|_{\mathbf{t}}=\left.f_{0}\right|_{\mathbf{t}}$, and, for all i,

$$
\left\|f^{(k)}\right\|_{\infty,\left[t_{i} . . t_{i+1}\right]} \leq D_{k}^{\prime} \max _{i-k<j \leq i} k!\left|\left[t_{j}, \ldots, t_{j+k}\right] f_{0}\right|
$$

with D_{k}^{\prime} some constant depending only on k.
It seems likely that $K(k)$ is much closer to its lower bound

$$
\begin{equation*}
(\pi / 2)^{k-1} \leq K(k) \tag{9}
\end{equation*}
$$

than to the rather fast growing upper bound (8). One obtains (9) with the aid of Schoenberg's Euler spline [6]: With $t_{i}=i$, all i, the k th degree Euler spline

$$
\mathcal{E}_{k}(t):=\gamma_{k} \sum_{i}(-)^{i} M_{i, k+1}(t+(k+1) / 2)
$$

satisfies

$$
\mathcal{E}_{k}(i)=(-)^{i}, \quad \text { all } i,
$$

hence

$$
k!\left[[i, \ldots, i+k] \mathcal{E}_{k} \mid=2^{k},\right.
$$

with

$$
\gamma_{k}:=1 / \sum_{j}\left(\frac{\sin (2 j+1) \pi / 2}{(2 j+1) \pi / 2}\right)^{k+1}=(\pi / 2)^{k+1} / \sum_{j}\left((-1)^{j} /(2 j+1)\right)^{k+1} \geq(\pi / 2)^{k-1}
$$

In fact,

$$
\lim _{k \rightarrow \infty} \gamma_{k} /(\pi / 2)^{k+1}=1 / 2
$$

We claim that $\gamma_{k} \leq K(k)$, which then implies (9). Suppose, by way of contradiction, that $\gamma_{k}>K(k)$. Then there would exist, for $n=1,2, \ldots, f_{n} \in \mathbb{L}_{\infty}^{(k)}[1 \ldots k+n]$ so that $f_{n}(i)=(-)^{i}, i=1, \ldots, n+k$, while

$$
\left\|f_{n}^{(k)}\right\|_{\infty} \leq K(k) 2^{k}<\gamma_{k} 2^{k}=\left\|\mathcal{E}_{k}^{(k)}\right\|_{\infty}
$$

The function

$$
e_{n}:=\mathcal{E}_{k}^{(k)}-f_{n}^{(k)}
$$

would then alternate in sign, changing sign only at the points $i+(k+1) / 2$, and

$$
\text { ess. inf }\left|e_{n}\right| \geq-\left(K(k)-\gamma_{k}\right) 2^{k}>0
$$

while

$$
\begin{equation*}
\int M_{i, k} e_{n}=0, \quad \text { for } i=1, \ldots, n \tag{10}
\end{equation*}
$$

But then, using the fact that the scalar multiple

$$
g_{k}(t):=\sum_{i}(-)^{i} M_{i, k}(t+k / 2)
$$

of \mathcal{E}_{k-1} changes sign only at $(i+(k+1) / 2)$, all i, we would have that

$$
\begin{aligned}
\left|\int_{1}^{n+k} e_{n} g_{k}\right| & \geq \text { ess.inf }\left|e_{n}\right|\left\|g_{k}\right\|_{1,[1 . . n+k]} \\
& \geq\left(\gamma_{k}-K(k)\right) 2^{k}(n+k)\left\|g_{k}\right\|_{1,[0 . .1]} \underset{n \rightarrow \infty}{\longrightarrow} \infty
\end{aligned}
$$

while also

$$
\left|\int_{1}^{n+k} e_{n} g_{k}\right|=\left|\int_{1}^{n+k} e_{n} \sum_{i \notin[1 . . n]}(-)^{i} M_{i, k}\right| \leq\left\|\mathcal{E}_{k}^{(k)}\right\|_{\infty} 2 k<\infty
$$

a contradiction.
It is possible to compute better upper bounds for $K(k)$, at least for small values of k, simply by estimating the constant D_{k} in the lemma above more carefully, e.g., by computing explicitly a piecewise constant h (with appropriately placed jumps) that represents an extension of λ to all of $\mathbb{L}_{1}(I)$. To give an example, it is possible to show in this way that $D_{3}<12$, whereas the estimate in the lemma merely gives $D_{3}<525$. These and other such computations will be reported on elsewhere (cf. remark at paper's end).

For $k=2, \gamma_{k}=2$, hence $K(2) \geq 2$, therefore $K(2)=2$, as we saw already in Section 2 that $K(2) \leq 2$. This was already observed by Favard, using a variant of the Euler spline.

4. Existence of $H^{k, p}$-extensions

In this last section, we take advantage of the lemma just proved in the preceding section to give a very simple proof of a theorem that extends and unifies the three theorems in Section 3 of [4]. In that paper, Golomb discusses (among other things) the existence of $f \in H^{k, p}:=\mathbb{L}_{p}^{(k)}(\mathbb{R})$ for which $\left.f\right|_{\mathbf{t}}=\boldsymbol{\alpha}$ for given possibly biinfinite \mathbf{t} with $t_{i}<t_{i+k}$, all i, and a corresponding real sequence $\boldsymbol{\alpha}$.

Denote by

$$
\left[t_{i}, \ldots, t_{i+k}\right] \boldsymbol{\alpha}
$$

the k th divided difference $\left[t_{i}, \ldots, t_{i+k}\right] g$ of any function g for which

$$
\left.g\right|_{\left(t_{r}\right)_{j}^{i+k}}=\left(\alpha_{r}\right)_{j}^{i+k}
$$

with $t_{j-1}<t_{j} \leq t_{i}$. While it is easy to see that $f \in \mathbb{L}_{p}^{(k)}(\mathbb{R})$ implies

$$
\sum_{i}\left(t_{i+k}-t_{i}\right)\left|\left[t_{i}, \ldots, t_{i+k}\right] f\right|^{p}<\infty
$$

Golomb proves the converse statement, viz. that

$$
\begin{equation*}
\left\|\left(\left(t_{i+k}-t_{i}\right)^{1 / p}\left[t_{i}, \ldots, t_{i+k}\right] \boldsymbol{\alpha}\right)_{i}\right\|_{p}<\infty \text { implies the existence of } f \in \mathbb{L}_{p}^{(k)}(\mathbb{R}) \text { with }\left.f\right|_{\mathbf{t}}=\boldsymbol{\alpha} \tag{11}
\end{equation*}
$$

only in three special cases [4, Theorems 3.1, 3.2, 3.3] in which \mathbf{t} satisfies some global mesh ratio restrictions. The lemma in the preceding section allows to prove (11) without any restriction on \mathbf{t} (other than that $t_{i}<t_{i+k}$, all i, which quite reasonably prevents values of $f^{(k)}$ from being prescribed).

In view of the discussion in Section 3, (11) is equivalent to the statement
$\left\|\left(\left(t_{i+k}-t_{i}\right)^{1 / p}\left[t_{i}, \ldots, t_{i+k}\right] \boldsymbol{\alpha}\right)_{i}\right\|_{p}<\infty$ implies the existence of $g \in \mathbb{L}_{p}(\mathbb{R})$ such that

$$
\begin{equation*}
\int M_{i, k} g=k!\left[t_{i}, \ldots, t_{i+k}\right] \boldsymbol{\alpha}, \quad \text { all } i . \tag{12}
\end{equation*}
$$

For all i, let now h_{i} be the $\mathbb{L}_{\infty^{-}}$-function constructed for the lemma. Since h_{i} has support in some subinterval $\left(t_{r} \ldots t_{r+1}\right)$ of $\left(t_{i} \ldots t_{i+k}\right)$, no more than k of the h_{j} 's are nonzero at any particular point. Hence, the sum

$$
\sum_{i} c_{i} h_{i}
$$

makes sense as a pointwise sum for arbitrary $\left(c_{i}\right)$. Since

$$
\int h_{i} M_{j, k}=\delta_{i, j}
$$

it follows that the function

$$
g:=k!\sum_{i}\left(\left[t_{i}, \ldots, t_{i+k}\right] \boldsymbol{\alpha}\right) h_{i}
$$

satisfies (12). It remains to bound g. For $1 \leq p<\infty$,

$$
\begin{aligned}
& \int_{t_{i}}^{t_{i+1}}\left|\sum_{j} c_{j} h_{j}\right|^{p} \leq \int_{t_{i}}^{t_{i+1}}\left(\sum_{\operatorname{supp} h_{j} \subseteq\left[t_{i} . . t_{i+1}\right]}\left|c_{j}\right| D_{k} \frac{t_{j+k}-t_{j}}{k \Delta t_{i}}\right)^{p} \\
&=\left(\sum_{\operatorname{supp}}^{h_{j} \subseteq\left[t_{i} . . t_{i+1}\right]}\right. \\
&\left.\left|c_{j}\right|\left(\frac{t_{j+k}-t_{j}}{k}\right)^{1 / p}\left(\frac{t_{j+k}-t_{j}}{k \Delta t_{i}}\right)^{1-1 / p}\right)^{p} D_{k}^{p} \\
& \leq\left(\sum_{\operatorname{supp} h_{j} \subseteq\left[t_{i} . . t_{i+1}\right]}\left|c_{j}\right|^{p} \frac{t_{j+k}-t_{j}}{k}\right) k^{p-1} D_{k}^{p}
\end{aligned}
$$

Hence

$$
\left\|\sum_{j} c_{j} h_{j}\right\|_{p}^{p} \leq k^{p-1} D_{k}^{p} \sum_{j}\left|c_{j}\right|^{p}\left(t_{j+k}-t_{j}\right) / k
$$

i.e.,

$$
\|g\|_{p} \leq k!k^{1-1 / p} D_{k}\left\|\left(\left(\frac{t_{j+k}-t_{j}}{k}\right)^{1 / p}\left[t_{j}, \ldots, t_{j+k}\right] \boldsymbol{\alpha}\right)_{j}\right\|_{p}
$$

and this holds for $p=\infty$, too, as one checks directly.

Theorem. For given nondecreasing \mathbf{t} (finite, infinite or biinfinite) with $t_{i}<t_{i+k}$, all i, and given corresponding real sequence $\boldsymbol{\alpha}$, and given p with $1 \leq p \leq \infty$, there exists $f \in \mathbb{L}_{p}^{(k)}(\mathbb{R})$ such that $\left.f\right|_{\mathbf{t}}=\boldsymbol{\alpha}$ if and only if $\left\|\left(\left(\left(t_{j+k}-t_{j}\right) / k\right)^{1 / p}\left[t_{j}, \ldots, t_{j+k}\right] \boldsymbol{\alpha}\right)_{j}\right\|_{p}<\infty$.

We note that the above argument (as well as the argument for (8)) is based on the linear projector $P:=\sum_{i} h_{i} \otimes M_{i, k}$ given on \mathbb{L}_{p} by the rule

$$
P f:=\sum_{i}\left(\int M_{i, k} f\right) h_{i}, \quad \text { all } f \in \mathbb{L}_{p}
$$

and shows this projector to satisfy

$$
\|P f\|_{p,\left(t_{i} . . t_{i+1}\right)} \leq D_{k} k^{1-1 / p}\left(\sum_{\operatorname{supp} h_{j} \subseteq\left[t_{i} . . t_{i+1}\right]}\left|\int M_{j, k} f\right|^{p} \frac{t_{j+k}-t_{j}}{k}\right)^{1 / p}
$$

This implies the local bound

$$
\begin{equation*}
\|P f\|_{p,\left(t_{i} . . t_{i+1}\right)} \leq k D_{k}\|f\|_{p,\left(t_{i+1-k} . . t_{i+k}\right)} \tag{13}
\end{equation*}
$$

as well as the global bound $\|P\| \leq k D_{k}$. The dual map for P, i.e., the linear projector $P^{*}:=\sum_{i} M_{i, k} \otimes h_{i}$ on \mathbb{L}_{q} (with $1 / p+1 / q=1$) with range equal to $\mathbb{S}_{k, \mathbf{t}}$, is therefore also bounded by $k D_{k}$. In addition, direct application of the Lemma in Section 3 gives the local bound

$$
\begin{equation*}
\left\|P^{*} f\right\|_{q,\left(t_{i} . . t_{i+1}\right)} \leq k^{1 / q} D_{k}\|f\|_{q,\left(t_{i+1-k} . . t_{i+k}\right)} . \tag{14}
\end{equation*}
$$

Note added in proof. The computations alluded to in Section 3 have been reported on in [C. de Boor, A smooth and local interpolant with "small" k-th derivative, MRC TSR\#1466; to appear in "Numerical Solutions of Boundary Problems for Ordinary Differential Equations," (A.K. Aziz, Ed.), Academic Press, New York, 1974], and show that $K(k)$ grows "initially" no faster than 2^{k}. The same reference contains a proof that $K(k) \leq(k-1) 9^{k}$ for all k.

References

1. C. de Boor and G. J. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory 8 (1973), 19-45.
2. C. de Boor, On 'best' interpolation, J. Approx. Theory 16 (1976), 28-42.
3. J. Favard, Sur l'interpolation, J. Math. Pures Appl. 19 (1940), 281-306.
4. M. Golomb, $H^{m, p}$-extensions by $H^{m, p}$-splines, J. Approx. Theory 5 (1972), 238-275.
5. J. Jerome and L. L. Schumaker, Characterization of functions with higher order derivatives in L^{p}, Trans. Amer. Math. Soc. 143 (1969), 363-371.
6. I. J. Schoenberg, "Cardinal Spline Interpolation", CBMS, SIAM, Philadelphia, 1973.
