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1. Introduction

Local re�nable �nitely generated shift-invariant spaces naturally arise in the theory
of (multi)wavelets, splines, �nite-elements, and subdivision schemes. In this paper we
introduce and begin to develop a method for constructing and studying such spaces.

Let L1
loc denote the space of all functions f : IR! IR which belong to L1(IR) locally;

that is, f 2 L1
loc provided that (f is measurable and)

R
K
jf j < 1 for every compact

K � IR. This space is topologized by the family of seminorms

jf jN :=

Z
[�N;N ]

jf j; N 2 IN:

We refer to a (row) vector � = [�1; : : : ; �n], n 2 IN, of functions in L1
loc as a generator.

A generator � = [�1; � � � ; �n] is said to be re�nable if there exists a �nitely supported
sequence b : ZZ! IRn�n (called a mask for �) for which

� =
X
j2ZZ

�(2 � �j)b(j):

We begin with a generator  = [ 1; : : : ;  m] supported in [0; 1] that is re�nable with a
two-term mask:

(1:1)  =  (2�)a(0) +  (2 � �1)a(1);

and we intend to construct more useful (read \smoother") re�nable generators by using
the shifts of  . That is, we consider generators of the form

� =
X
j2ZZ

 (� � j)c(j);

for some sequence c : ZZ ! IRm�n. The motivation for this approach is that it is much
easier to study the properties of  since it is supported on [0; 1] hence its shifts do not
`interfere' with each other. The crux is that � constructed in this way will not, in general,
be re�nable.

Let V be a subspace of L1
loc. Then we say V is shift-invariant if

f 2 V =) f(� � 1) 2 V ;

we say V is a �nitely generated shift-invariant (FSI) space if

V = S(�) := closL1
loc

spanf�i(� � j) j i = 1; : : : ; n; j 2 ZZg

for some generator �; and we say an FSI space V is local if V = S(�) for some compactly
supported generator �. Lastly, we say V is re�nable if

f 2 V =) f(�=2) 2 V:
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Evidently, S(�) is re�nable whenever � is re�nable.
The main objective of this paper is:

Given a re�nable generator  supported in [0; 1] with mask
�
a(0); a(1)

�
, charac-

terize all local re�nable FSI subspaces V � S( ).

We provide such a characterization in case a(0) is invertible.
We point out that every local re�nable FSI space is a subspace of S( ) for some

re�nable generator  supported in [0; 1]. For f 2 L1
loc and V � L1

loc, de�ne

fj := f�
[0;1]

and Vj := f fj j f 2 V g:

(As usual, �
A
denotes the characteristic function of a set A � IR.) Suppose V is a local

re�nable FSI space. Then m := dimVj is �nite. We refer to m as the local dimension of
V . Let  = [ 1; : : : ;  m] be a basis for Vj. Then  is re�nable and V � S( ).

This has been observed and exploited already by Jia in [7], [8], and [9], where the
author studied a given function � via a basis  for S(�)j. The simpler structure due to the
small supports of  and a in equation (1.1) has also been recognized by Micchelli et al. in,
for example, [11], [12], [13], and [14]. In particular, given a univariate re�nable function
� with �nite mask b, they de�ne a(0) and a(1) by a(") := [b(" + 2j � i)]i;j and study �
via the re�nable function having mask a. Among other things, this was used to provide
necessary and su�cient conditions for the convergence of a given subdivision scheme and,
in [14], to provide a fairly thorough study of regularity for re�nable function vectors.

Our approach is di�erent in that the mask a and generator  come �rst. In this paper,
we identify all local re�nable FSI subspaces S(�) of S( ). The next steps are to provide
further characterizations of the properties of S( ) in terms of a; to determine when these
properties are preserved by a subspace S(�); and to put these ideas together to construct
desirable re�nable generators.

2. Results

Throughout this paper, we assume that
�
a(0); a(1)

�
is a mask for a re�nable generator

 = [ 1; : : : ;  m] supported in [0; 1] (in particular, each  j is assumed to be in L1(IR)). We
will show that when a(0) is invertible, each local re�nable FSI subspace of S( ) corresponds
to some a(0)-invariant space (for a matrix a 2 IRk�k, a space � � IRk is a-invariant if
a� � �). Our speci�c statements will require a few more de�nitions.

We use ZZ+ to denote the set of non-negative integers and IRk to denote the set of
column vectors of length k. For any set V � L1

loc, de�ne

V + := f f 2 V j suppf � [0;1) g;

and, for V � S( ), de�ne

�(V ) := f� 2 IRm j  � 2 V +
j g:

(By convention, V +
j := (V +)j).
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Proposition 2.1. For any re�nable subspace V of S( ), �(V ) is a(0)-invariant.

If � = [�1; : : : ; �k] is a generator supported in [0;1), then the sum

� �0 c :=
1X
j=0

�(� � j)c(j)

is locally �nite for any sequence c : ZZ+ ! IRk. In particular, the set

R(�) := f� �0 c j c : ZZ+ ! IRkg;

spanned by the right shifts of �, is a subset of S(�)+.
We say a subspace � of IRm is preserved by a(0) if a(0)� = �, and a matrix � 2 IRm�n

is preserved by a(0) if its columns form a basis for a space that is preserved by a(0). Note
that a matrix � 2 IRm�n is preserved by a(0) if and only a(0)� = ��� for a unique
invertible �� 2 IRn�n. Suppose that � 2 IRm�n is preserved by a(0). Set

(2:1) `(0) := � and `(2j + ") := a(")`(j)��1� for " 2 f0; 1g; 2j + " > 0:

We de�ne the generalized truncated power e� by

e� :=  �0 `:

Proposition 2.2. Suppose that � 2 IRm�n is preserved by a(0). Then
(i) e� = e�(2�)��;
(ii) if �0 2 IRm�n has the same column space as �, then S(e�) = S(e�0); and
(iii) S(e�) is a local re�nable FSI subspace of S( ).

The property (2.2.ii) above allows us to unambiguously de�ne, for any � preserved by
a(0), the space S� := S(e�) where the columns of � form a basis for �.

Theorem 2.3. Suppose V is a local re�nable FSI subspace of S( ). If �(V ) is preserved
by a(0) then V = S�(V ).

If a(0) is invertible then every a(0)-invariant subspace is, in fact, preserved by a(0). So we
have the following corollary | one of the main results of this paper.

Corollary 2.4. Suppose a(0) is invertible. Then V is a local re�nable FSI subspace of
S( ) if and only if V = S� for some a(0)-invariant �.

So, in the case a(0) is invertible, every local re�nable FSI subspace of S( ) is of the
form S� for some a(0)-invariant space �. The a(0)-invariant spaces are easily identi�ed
from the Jordan-Canonical form of a(0). By Theorem 2.3, S� = S�(S�). So, if a(0) is
invertible and  is linearly independent (meaning the entries of  are linearly independent),
the local re�nable FSI subspaces of S( ) are in one-to-one correspondence with those a(0)-
invariant spaces � satisfying � = �(S�). Our next result provides a characterization of
such �.

4



First, de�ne

A0 :=

�
a(1) 0
0 a(0)

�
; A1 :=

�
0 a(0)
0 a(1)

�
:

Then H� is de�ned to be the minimal subspace of IR2m that contains�
0
�

�
:= f

�
0
v

�
j v 2 � g

and is fA0; A1g-invariant, i.e., A"-invariant for " = 0; 1.

Theorem 2.5. Suppose � is an a(0)-invariant subspace of IRm. Let the columns of
� 2 IRm�n form a basis for �. If a(0) is invertible and  is linearly independent, then the
following are equivalent.
(i) � = �(S�).
(ii) � = �(V ) for some local re�nable FSI subpace V � S( ).
(iii) S+

� = R(e�)

(iv) The set H0
� := fv 2 IRm j

�
0
v

�
2 H�g is equal to �.

It is clear that S�j is always a subset of spanf 1; : : : ;  mg. We now give a character-
ization of when these sets are actually equal.

Theorem 2.6. Suppose  is linearly independent. Suppose � � IRm is preserved by a(0).
De�ne L� to be the minimal fa(0); a(1)g-invariant subspace of IRm containing �. Then
S�j = spanf 1; : : : ;  mg if and only if L� = IRm.

Among the premises of Theorems 2.5 and 2.6 is the statement that  is linearly
independent. A characterization of this property is provided for completeness.

De�ne
T := a(0) + a(1):

Then a necessary condition for the generator  to be linearly independent is that 2 be a
simple eigenvalue of the matrix T with left eigenvector  ̂(0) and that all other eigenvalues
have modulus strictly less than 2 (cf., e.g., [2], [3], [10]). In this case,  is the unique
(up to constant multiple) generator satisfying Eq. (1.1). With this in mind, we o�er the
following theorem ([4] provides a generalization of this result).

Theorem 2.7. Let W be the smallest subspace of IRm satisfying

 ̂(0) 2 W; Wa(0) � W; Wa(1) � W:

Then the generator  is linearly independent if and only if
(i) 2 is a simple eigenvalue of T ;
(ii) all other eigenvalues have modulus strictly less than 2; and
(iii) W = IRm.
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3. Proofs

Throughout this section, we write � � V to mean that the entries of the generator �
are elements of V .

We recall some results from [1].

Lemma 3.1. For any closed shift-invariant space V of �nite local dimension, there exists
r > 0 such that if f 2 V vanishes on [�r; 0] then fj 2 V

+
j .

Lemma 3.2. For any closed shift-invariant space V of �nite local dimension, there is a
compactly supported generator � = [�1; : : : ; �k] � V such that �j is basis for V +

j and

V + = R(�).

Actually, the topology used in [1] is that of uniform convergence on compact sets.
However the arguments used there also apply to the topology of L1

loc.
Proof of Proposition 2.1: Suppose � 2 �(V ). Then there exists f 2 V + such

that fj =  �. Since V is re�nable, f(�=2) 2 V +. But, f(�=2) =  (�=2)� =  a(0)� on [0; 1].
So a(0)� 2 �(V ).

Proof of Proposition 2.2:

(i) e�

� �
2

�
=
X
j

 

�
� � 2j

2

�
`(j) =

X
j;"

 (� � 2j � ")a(")`(j)

=
X
j;"

 
�
� �(2j + ")

�
`(2j + ")�� = e���:

(ii) There exists  2 IRn�n such that � = �0. Set � := �� and �0 := ��0 . Then

�0� = �� = a(0)� = a(0)�0 = �0�0:

Since the columns of �0 form a basis,  = �0��1. De�ne ` by Eq. (2.1) and `0 similarly,
but with �0 in place of �. Then, `(0) = � = �0 = `0(0). Now, suppose 2j + " > 0 and
`(j) = `0(j). Then

`(2j + ") = a(")`(j)��1 = a(")`0(j)��1 = `0(2j + ")�0��1 = `0(2j + "):

It follows that e� = e�0.
(iii) Set V := S(e�) and let � be as guaranteed by Lemma 3.2. Since � � V , we have
S(�) � S(e�). Conversely, since e� 2 V + = R(�) � S(�), we have S(e�) � S(�).

The proof of Theorem 2.3 will require the following lemma.

Lemma 3.3. Let V be a local FSI space. Suppose � = [�1; : : : ; �n] � V + is such that
spanf�1j; : : : ; �njg = V +

j . Then V + = S(�)+ = R(�).

Proof: Let f 2 V +. We recursively construct a sequence c : ZZ+ ! IRn so that

f = fN :=
NX
j=0

�(� � j)c(j) on [0;N ]:
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This is the so-called \peeling-o� argument" from [1]. Since f 2 V + and �j spans V
+
j ,

f = �c(0) on [0; 1] for some c(0) 2 IRn. Now suppose we have c(0); : : : ; c(N) such that
f = fN on [0;N ]. Then (f � fN )(� + N) 2 V +. So there exists c(N + 1) such that
(f � fN )(�+N) = �c(N +1) on [0; 1]. For this value for c(N +1), f = fN+1 on [0;N +1).
So V + is contained in R(�) which is a subset of S(�)+.

Since � � V and S(�) is the smallest closed shift-invariant space containing �, S(�)
is a subspace of V . This, in turn, implies that S(�)+ � V +.

Proof of Theorem 2.3: Let the columns of � form a basis for �(V ). We �rst
show that V + = S(e�)+. By Lemma 3.3, it is su�cient to show that e� � V + since
e�j =  �, which spans V +

j .

Let � = [�1; : : : ; �n] � V + be such that �j is a basis for V
+
j . Then e�j = �j for some

 2 IRn�n. Since e� = e�(2�)�, e� = e�(2�k�)��k = �(2�k�)��k on [0; 2k]. Since V is
re�nable, �(2�k�)��k � V +. And since �j is a basis for V +

j , it follows that V + = R(�).

So, for each n 2 IN, there exists a sequence ck such that

e� =
2kX
j=0

�(� � j)ck(j) on [0; 2k]:

Since �j is a basis, the set f�(� � j)j[0;2k] j j = 0; 1; : : : ; 2k � 1 g is linearly independent. It

follows that the sequence

c(j) := ck(j) for j 2 ZZ+; 2
k > j

is well-de�ned and satis�es e� = � �0 c.
Since V is a local FSI space, it follows that V = S(�) for some compactly supported

generator �. Without loss of generality, supp� � [0;1). Since V + = S(e�)+, we have
� 2 S(e�) and e� 2 V . Thus, V = S(e�).

Proof of Theorem 2.5: First note that, since a(0) is invertible, � is preserved
by a(0). We show that property (i) is equivalent to each of the others.

(i) =) (ii) is obvious. To see that (ii) =) (i), let V be a local re�nable FSI subspace
of S( ) such that � = �(V ). By Theorem 2.3, V = S�. So � = �(S�).

(iii) =) (i) is obvious. To see that (i) =) (iii), by Lemma 3.3, it is enough to point
out that e�j =  � is a basis for S+

�j =  �.

To deal with property (iv), we de�ne

h(0) :=

�
0
�

�
and h(2j + ") := A"h(j) for " 2 f0; 1g; 2j + " > 0:

ThenH� is the column space of [h(0); h(1); h(2); : : :]. Also, with `(�1) := 0 for consistency,

h(j) =

�
`(j � 1)
`(j)

�
for all j 2 ZZ+
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by Eq. (2.1). It follows that

�
u
v

�
2 H� if and only there exists an f 2 S� which agrees

with u (�+ 1) + v on [�1; 1].
We show that (iv) implies (i) by contraposition. Suppose � 6= �(S�). Then there

exists f 2 S+
� such that fj =2  �. That is, f agrees with u (�+ 1) + v on [�1; 1] where

u = 0 and v =2 �. It follows from the above remarks that v 2 H0
�n�.

Finally, suppose there is some v 2 H0
�n�. Then there exists f 2 S� such that f

vanishes on [�1; 0] and fj =  � for some � =2 �. By Lemma 3.1, there is an n 2 IN such

that if g 2 S� vanishes on [�2k; 0], then gj 2 S
+
�j. We show a(0)k� 2 �(S�)n� for this n.

First, note that
f(2�k �)j =  (2�k�)j� =  a(0)k�:

Since f(2�k�) vanishes on [�2k; 0], it follows that a(0)k� 2 �(S�). But, a(0)k� is not in
� since � =2 �, � is a(0)-invariant, and a(0) is invertible.

Proof of Theorem 2.6: Let the columns of � form a basis for � and recall that
e� =  �0 ` where ` is given by Eq. (2.1). Then e�(� + j)j =  `(j). Let L be the column
space of [`(0); `(1); `(2); : : :]. Then S(e�)j = spanf 1; : : : ;  mg if and only if L = IRm. We
show that L = L�.

Clearly � � L, since � = `(0). Also, by Eq. (2.1) and since � is invertible, a(")L � L
for " = 0; 1. So L� � L.

Now, the columns of `(0) = � are obviously in L�. And if L� contains the columns
of `(m) then it must contain the columns of `(2m+ ") for " = 0; 1. Hence L � L�.

Proof of Theorem 2.7: Let the columns of w 2 IRk�m form a basis for W.
Then there exists ~v 2 IR1�k and ~a(") 2 IRk�k such that v = ~vw and wa(") = ~a(")w for
" = 0; 1. With ~T := ~a(0) + ~a(1), it follows that ~v ~T = 2~v 6= 0, since the columns of w are
linearly independent and

~v ~Tw = ~vwT = vT = v = ~vw:

So there exists a unique ~ � D0(IR) supported in [0; 1] satisfying

b~ (0) = ~v and ~ = ~ (2�)~a(0) + ~ (2 � �1)~a(1):

Multiplying each of these equations on the right by w, we see that c~ w(0) = v and ~ w
satis�es Eq. (1.1). Hence ~ w =  . It follows that � 2 W? =)  � = 0.

Now, let the entries of ~ = [ ~ 1; : : : ; ~ k] form a basis for spanf 1; : : : ;  mg. Then
there exists w 2 IRk�m such that  = ~ w. Let roww denote the row space of w, that is,
roww := fuw j u 2 IR1�kg. Evidently, v 2 roww. We will show that (roww)a(") � roww
for " = 0; 1. Consequently, W � roww. So  � = 0 =) � 2 W?.

For any � 2 IRm,

~ w� =  � =  (2�)a(0)� +  (2 � �1)a(1)� = ~ (2�)wa(0)� + ~ (2 � �1)wa(1)�:

And, since the entries of ~ are linearly independent, w� = 0 =) wa(")� = 0 for " = 0; 1.
Since � 2 IRm was arbitrary, it follows that (roww)a(") � roww for " = 0; 1.
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4. Examples

Example 4.1. In this example, we present all local re�nable FSI spaces of piecewise
polynomials with integer breakpoints and show that the list is complete.

For any r;m 2 ZZ satisfying �1 � r < m, the space Smr of all r times continuously
di�erentiable piecewise polynomials of degree at mostm with integer breakpoints is de�ned
by

Smr := f f 2 Cr(IR) j f j(j;j+1) is polynomial of degree at most m for all j 2 ZZ g:

Note that Smr =
Pm

j=r+1 S
j
j�1. In fact, we will show that every local re�nable shift-

invariant subspace of Sm�1 is of the formX
j2J

Sjj�1 for some J � f0; : : : ;mg:

In particular, every local re�nable shift-invariant subspace of Sm�1 is a sum of re�nable PSI
spaces. This is not true of shift-invariant spaces in general. For example, the only re�nable
PSI subspace of the space generated by �

[0;1)
and �

[0;1=2)
is (the proper subspace) S0�1.

De�ne  := [�0j; : : : ; �mj], where �j (x) := xj . Then the elements of  are linearly
independent, Sm�1 = S( ), and  is re�nable with mask a(0) = d; a(1) = cd, where

c :=

��
j � 1

i� 1

��m
i;j=0

and d := diag(2�j)mj=0:

Since a(0) is diagonal with distinct eigenvalues, the eigenvectors are

�0 := [1; 0; : : : ; 0]T ; �1 = [0; 1; 0; : : : ; 0]T ; : : : ; �m = [0; : : : ; 0; 1]T

and the a(0)-invariant spaces are �J := spanf�j j j 2 Jg, J � f0; : : : ;mg. It is easy to
verify that, for each j, the function e�j is the well-known truncated power function

e�j : x 7! xj+ :=
�
max(0; x)

�j
and S(e�j ) = Sjj�1. It follows that for any J � f0; : : : ;mg,

S�J
=
X
j2J

S(e�j ) =
X
j2J

Sjj�1:

Example 4.2. We consider the case of local dimension m = 2 with a(0) invertible in
order to illustrate the main results of this paper.

Let  = [ 1;  2] be a linearly independent generator supported in [0; 1] which is
re�nable with mask

�
a(0); a(1)

�
. Then S( ) must contain all constant functions and we
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can assume, without loss of generality, that  1 = �
[0;1)

(cf. [3], [5], [6]). It is also assumed

that a(0) is invertible.
First, suppose a(0) is diagonalizable, in which case we may assume (by a change of

basis for  ) that a(0) and a(1) are of the form

a(0) =

�
1 0
0 s

�
; a(1) =

�
1 u
0 t

�
;

where s 6= 0, since a(0) is invertible. Then T = a(0) + a(1) =

�
2 u
0 s + t

�
.

Since  is linearly independent, Theorem 2.7 implies s + t < 2. Then the left 2-
eigenspace of T is spanned by [2� s� t; u]. If u = 0 then the invariant space W is spanned
by [1; 0]; and if s = 1, then W is spanned by [1� t; 1]. In either case, Theorem 2.7 implies
that  is linearly dependent. So S( ) = S( 1) which has no proper local re�nable FSI
subspaces. So we assume s 6= 0, s 6= 1, and u 6= 0. By rescaling  2, we may assume u = 1.

There are three possible choices for an a(0)-invariant space �:
1. � := spanf� := [1; 0]Tg. Then e� = �

[0;1)
and S� = S( 1) is the space of piecewise

constant polynomials with integer breakpoints.
2. � := IR2. Then S� = S( ).
3. (The interesting case) � := spanf� := [0; 1]Tg. Calculating h(0) = [0; 0; 0; 1]T , h(1) =
A1h(0), h(2) = A0h(1), and h(3) = A1h(1), we �nd that the span of h(0); : : : ; h(3) is
fA0; A1g-invariant and so equals H�. By a simple reduction, we �nd that H� is also
spanned by the four vectors

2
64
0
0
0
1

3
75 ;

2
64

0
0

s+ t� 1
0

3
75 ;

2
64
0
s
1
0

3
75 ;

2
64
1
0
1
0

3
75 :

Hence H0
� is spanf[0; 1]T ; [s + t � 1; 0]Tg. By Theorem 2.5, � is a proper subset of

�(S�) whenever s+ t 6= 1. It follows that S( ) and S( 1) are the only local re�nable
FSI subspaces of S( ) when s + t 6= 1; but, when s + t = 1, there is a third local
re�nable FSI subspace, S(e�). Lastly, since a(1)� = [1; t]T , we see that L� = IR2 and
so, by Theorem 2.6, S�j = spanf 1;  2g for any values of s and t.
When a(0) is not diagonalizable, we may assume (by a change of basis for  2) that

a(0) =

�
1 1
0 1

�
:

The only choices for �, in this case, are � = spanf[1; 0]Tg, and � = IR2. So the only local
re�nable FSI spaces are S( 1) (which is the space of all piecewise constant polynomials
with integer breakpoints) and S( ).
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