Refinable subspaces of a refinable space

Douglas P. Hardin^{*} and Thomas A. Hogan

Department of Mathematics Vanderbilt University Nashville, Tennessee 37240

Abstract: Local refinable finitely generated shift-invariant spaces play a significant role in many areas of approximation theory and geometric design. In this paper we present a new approach to the construction of such spaces. We begin with a refinable function $\psi : \mathbb{R} \to \mathbb{R}^m$ which is supported on [0,1]. We are interested in spaces generated by a function $\phi : \mathbb{R} \to \mathbb{R}^n$ built from the shifts of ψ .

AMS (MOS) Subject Classification: 39A10, 39B62, 42B99, 41A15

Key words: Refinability, matrix subdivision, refinable function vector, multiwavelet, shift-invariant, FSI.

^{*} This work was partially supported by a grant from the NSF and a grant from the Vanderbilt University Research Council.

1. Introduction

Local refinable finitely generated shift-invariant spaces naturally arise in the theory of (multi)wavelets, splines, finite-elements, and subdivision schemes. In this paper we introduce and begin to develop a method for constructing and studying such spaces.

Let L^1_{loc} denote the space of all functions $f : \mathbb{R} \to \mathbb{R}$ which belong to $L^1(\mathbb{R})$ locally; that is, $f \in L^1_{\text{loc}}$ provided that (f is measurable and) $\int_K |f| < \infty$ for every compact $K \subset \mathbb{R}$. This space is topologized by the family of seminorms

$$|f|_N := \int_{[-N,N]} |f|, \qquad N \in \mathbb{N}.$$

We refer to a (row) vector $\phi = [\phi_1, \dots, \phi_n], n \in \mathbb{N}$, of functions in L^1_{loc} as a generator.

A generator $\phi = [\phi_1, \dots, \phi_n]$ is said to be *refinable* if there exists a finitely supported sequence $b : \mathbb{Z} \to \mathbb{R}^{n \times n}$ (called a *mask* for ϕ) for which

$$\phi = \sum_{j \in \mathbb{Z}} \phi(2 \cdot -j) b(j).$$

We begin with a generator $\psi = [\psi_1, \ldots, \psi_m]$ supported in [0,1] that is refinable with a two-term mask:

(1.1)
$$\psi = \psi(2 \cdot)a(0) + \psi(2 \cdot -1)a(1);$$

and we intend to construct more useful (read "smoother") refinable generators by using the shifts of ψ . That is, we consider generators of the form

$$\phi = \sum_{j \in \mathbb{Z}} \psi(\cdot - j) c(j),$$

for some sequence $c : \mathbb{Z} \to \mathbb{R}^{m \times n}$. The motivation for this approach is that it is much easier to study the properties of ψ since it is supported on [0, 1] hence its shifts do not 'interfere' with each other. The crux is that ϕ constructed in this way will not, in general, be refinable.

Let V be a subspace of L^1_{loc} . Then we say V is *shift-invariant* if

$$f \in V \Longrightarrow f(\cdot \pm 1) \in V;$$

we say V is a finitely generated shift-invariant (FSI) space if

$$V = S(\phi) := \operatorname{clos}_{L_{\text{loc}}} \operatorname{span} \{ \phi_i(\cdot - j) \mid i = 1, \dots, n; \ j \in \mathbb{Z} \}$$

for some generator ϕ ; and we say an FSI space V is *local* if $V = S(\phi)$ for some compactly supported generator ϕ . Lastly, we say V is *refinable* if

$$f \in V \Longrightarrow f(\cdot/2) \in V.$$

Evidently, $S(\phi)$ is refinable whenever ϕ is refinable.

The main objective of this paper is:

Given a refinable generator ψ supported in [0,1] with mask (a(0), a(1)), characterize all local refinable FSI subspaces $V \subset S(\psi)$.

We provide such a characterization in case a(0) is invertible.

We point out that every local refinable FSI space is a subspace of $S(\psi)$ for some refinable generator ψ supported in [0, 1]. For $f \in L^1_{loc}$ and $V \subset L^1_{loc}$, define

$$f_{|} := f \chi_{[0,1]}$$
 and $V_{|} := \{ f_{|} \mid f \in V \}.$

(As usual, χ_A denotes the characteristic function of a set $A \subset \mathbb{R}$.) Suppose V is a local refinable FSI space. Then $m := \dim V_{|}$ is finite. We refer to m as the *local dimension of* V. Let $\psi = [\psi_1, \ldots, \psi_m]$ be a basis for $V_{|}$. Then ψ is refinable and $V \subset S(\psi)$.

This has been observed and exploited already by Jia in [7], [8], and [9], where the author studied a given function ϕ via a basis ψ for $S(\phi)_{|}$. The simpler structure due to the small supports of ψ and a in equation (1.1) has also been recognized by Micchelli et al. in, for example, [11], [12], [13], and [14]. In particular, given a univariate refinable function ϕ with finite mask b, they define a(0) and a(1) by $a(\varepsilon) := [b(\varepsilon + 2j - i)]_{i,j}$ and study ϕ via the refinable function having mask a. Among other things, this was used to provide necessary and sufficient conditions for the convergence of a given subdivision scheme and, in [14], to provide a fairly thorough study of regularity for refinable function vectors.

Our approach is different in that the mask a and generator ψ come first. In this paper, we identify all local refinable FSI subspaces $S(\phi)$ of $S(\psi)$. The next steps are to provide further characterizations of the properties of $S(\psi)$ in terms of a; to determine when these properties are preserved by a subspace $S(\phi)$; and to put these ideas together to construct desirable refinable generators.

2. Results

Throughout this paper, we assume that (a(0), a(1)) is a mask for a refinable generator $\psi = [\psi_1, \ldots, \psi_m]$ supported in [0, 1] (in particular, each ψ_j is assumed to be in $L^1(\mathbb{R})$). We will show that when a(0) is invertible, each local refinable FSI subspace of $S(\psi)$ corresponds to some a(0)-invariant space (for a matrix $a \in \mathbb{R}^{k \times k}$, a space , $\subset \mathbb{R}^k$ is *a*-invariant if a, \subset ,). Our specific statements will require a few more definitions.

We use \mathbb{Z}_+ to denote the set of non-negative integers and \mathbb{R}^k to denote the set of column vectors of length k. For any set $V \subset L^1_{loc}$, define

$$V^+ := \{ f \in V \mid \operatorname{supp} f \subset [0, \infty) \};$$

and, for $V \subset S(\psi)$, define

$$\Sigma(V) := \{ \sigma \in \mathbb{R}^m \mid \psi \sigma \in V_{|}^+ \}.$$

(By convention, $V_{\mid}^+ := (V^+)_{\mid}$).

Proposition 2.1. For any refinable subspace V of $S(\psi)$, $\Sigma(V)$ is a(0)-invariant.

If $\phi = [\phi_1, \dots, \phi_k]$ is a generator supported in $[0, \infty)$, then the sum

$$\phi \ast' c := \sum_{j=0}^{\infty} \phi(\cdot - j) c(j)$$

is locally finite for any sequence $c: \mathbb{Z}_+ \to \mathbb{R}^k$. In particular, the set

$$R(\phi) := \{ \phi *' c \mid c : \mathbb{Z}_+ \to \mathbb{R}^k \},\$$

spanned by the right shifts of ϕ , is a subset of $S(\phi)^+$.

We say a subspace Λ of \mathbb{R}^m is preserved by a(0) if $a(0)\Lambda = \Lambda$, and a matrix $\lambda \in \mathbb{R}^{m \times n}$ is preserved by a(0) if its columns form a basis for a space that is preserved by a(0). Note that a matrix $\lambda \in \mathbb{R}^{m \times n}$ is preserved by a(0) if and only $a(0)\lambda = \lambda\beta_{\lambda}$ for a unique invertible $\beta_{\lambda} \in \mathbb{R}^{n \times n}$. Suppose that $\lambda \in \mathbb{R}^{m \times n}$ is preserved by a(0). Set

(2.1)
$$\ell(0) := \lambda$$
 and $\ell(2j + \varepsilon) := a(\varepsilon)\ell(j)\beta_{\lambda}^{-1}$ for $\varepsilon \in \{0, 1\}, 2j + \varepsilon > 0.$

We define the generalized truncated power e_{λ} by

$$e_{\lambda} := \psi *' \ell$$

Proposition 2.2. Suppose that $\lambda \in \mathbb{R}^{m \times n}$ is preserved by a(0). Then

(i) $e_{\lambda} = e_{\lambda}(2\cdot)\beta_{\lambda};$

(ii) if $\lambda' \in \mathbb{R}^{m \times n}$ has the same column space as λ , then $S(e_{\lambda}) = S(e_{\lambda'})$; and

(iii) $S(e_{\lambda})$ is a local refinable FSI subspace of $S(\psi)$.

The property (2.2.ii) above allows us to unambiguously define, for any Λ preserved by a(0), the space $S_{\Lambda} := S(e_{\lambda})$ where the columns of λ form a basis for Λ .

Theorem 2.3. Suppose V is a local refinable FSI subspace of $S(\psi)$. If $\Sigma(V)$ is preserved by a(0) then $V = S_{\Sigma(V)}$.

If a(0) is invertible then every a(0)-invariant subspace is, in fact, preserved by a(0). So we have the following corollary — one of the main results of this paper.

Corollary 2.4. Suppose a(0) is invertible. Then V is a local refinable FSI subspace of $S(\psi)$ if and only if $V = S_{\Lambda}$ for some a(0)-invariant Λ .

So, in the case a(0) is invertible, every local refinable FSI subspace of $S(\psi)$ is of the form S_{Λ} for some a(0)-invariant space Λ . The a(0)-invariant spaces are easily identified from the Jordan-Canonical form of a(0). By Theorem 2.3, $S_{\Lambda} = S_{\Sigma(S_{\Lambda})}$. So, if a(0) is invertible and ψ is linearly independent (meaning the entries of ψ are linearly independent), the local refinable FSI subspaces of $S(\psi)$ are in one-to-one correspondence with those a(0)invariant spaces Λ satisfying $\Lambda = \Sigma(S_{\Lambda})$. Our next result provides a characterization of such Λ . First, define

$$A_0 := \begin{bmatrix} a(1) & 0 \\ 0 & a(0) \end{bmatrix}, \quad A_1 := \begin{bmatrix} 0 & a(0) \\ 0 & a(1) \end{bmatrix}.$$

Then \mathcal{H}_{Λ} is defined to be the minimal subspace of \mathbb{R}^{2m} that contains

$$\begin{bmatrix} 0\\\Lambda \end{bmatrix} := \left\{ \begin{bmatrix} 0\\v \end{bmatrix} \mid v \in \Lambda \right\}$$

and is $\{A_0, A_1\}$ -invariant, i.e., A_{ε} -invariant for $\varepsilon = 0, 1$.

Theorem 2.5. Suppose Λ is an a(0)-invariant subspace of \mathbb{R}^m . Let the columns of $\lambda \in \mathbb{R}^{m \times n}$ form a basis for Λ . If a(0) is invertible and ψ is linearly independent, then the following are equivalent.

- (i) $\Lambda = \Sigma(S_{\Lambda}).$ (ii) $\Lambda = \Sigma(V)$ for some local refinable FSI subpace $V \subset S(\psi).$ (iii) $S_{\Lambda}^{+} = R(e_{\lambda})$
- (iv) The set $\mathcal{H}^{0}_{\Lambda} := \{ v \in \mathbb{R}^{m} \mid \begin{bmatrix} 0 \\ v \end{bmatrix} \in \mathcal{H}_{\Lambda} \}$ is equal to Λ .

It is clear that $S_{\Lambda|}$ is always a subset of span $\{\psi_1, \ldots, \psi_m\}$. We now give a characterization of when these sets are actually equal.

Theorem 2.6. Suppose ψ is linearly independent. Suppose $\Lambda \subset \mathbb{R}^m$ is preserved by a(0). Define \mathcal{L}_{Λ} to be the minimal $\{a(0), a(1)\}$ -invariant subspace of \mathbb{R}^m containing Λ . Then $S_{\Lambda} = \operatorname{span}\{\psi_1, \ldots, \psi_m\}$ if and only if $\mathcal{L}_{\Lambda} = \mathbb{R}^m$.

Among the premises of Theorems 2.5 and 2.6 is the statement that ψ is linearly independent. A characterization of this property is provided for completeness.

Define

$$T := a(0) + a(1).$$

Then a necessary condition for the generator ψ to be linearly independent is that 2 be a simple eigenvalue of the matrix T with left eigenvector $\hat{\psi}(0)$ and that all other eigenvalues have modulus strictly less than 2 (cf., e.g., [2], [3], [10]). In this case, ψ is the unique (up to constant multiple) generator satisfying Eq. (1.1). With this in mind, we offer the following theorem ([4] provides a generalization of this result).

Theorem 2.7. Let \mathcal{W} be the smallest subspace of \mathbb{R}^m satisfying

$$ilde{\psi}(0)\in\mathcal{W},\quad\mathcal{W}a(0)\subset\mathcal{W},\quad\mathcal{W}a(1)\subset\mathcal{W}.$$

Then the generator ψ is linearly independent if and only if

- (i) 2 is a simple eigenvalue of T;
- (ii) all other eigenvalues have modulus strictly less than 2; and

(iii) $\mathcal{W} = \mathbb{R}^m$.

3. Proofs

Throughout this section, we write $\phi \subset V$ to mean that the entries of the generator ϕ are elements of V.

We recall some results from [1].

Lemma 3.1. For any closed shift-invariant space V of finite local dimension, there exists r > 0 such that if $f \in V$ vanishes on [-r, 0] then $f_{\parallel} \in V_{\parallel}^+$.

Lemma 3.2. For any closed shift-invariant space V of finite local dimension, there is a compactly supported generator $\phi = [\phi_1, \ldots, \phi_k] \subset V$ such that ϕ_{\parallel} is basis for V_{\parallel}^+ and $V^+ = R(\phi)$.

Actually, the topology used in [1] is that of uniform convergence on compact sets. However the arguments used there also apply to the topology of L^1_{loc} .

Proof of Proposition 2.1: Suppose $\sigma \in \Sigma(V)$. Then there exists $f \in V^+$ such that $f_{|} = \psi \sigma$. Since V is refinable, $f(\cdot/2) \in V^+$. But, $f(\cdot/2) = \psi(\cdot/2)\sigma = \psi a(0)\sigma$ on [0, 1]. So $a(0)\sigma \in \Sigma(V)$.

Proof of Proposition 2.2:

(i)
$$e_{\lambda}\left(\frac{\cdot}{2}\right) = \sum_{j} \psi\left(\frac{\cdot - 2j}{2}\right) \ell(j) = \sum_{j,\varepsilon} \psi(\cdot - 2j - \varepsilon)a(\varepsilon)\ell(j)$$

$$= \sum_{j,\varepsilon} \psi\left(\cdot - (2j + \varepsilon)\right)\ell(2j + \varepsilon)\beta_{\lambda} = e_{\lambda}\beta_{\lambda}.$$

(ii) There exists $\gamma \in \mathbb{R}^{n \times n}$ such that $\lambda = \lambda' \gamma$. Set $\beta := \beta_{\lambda}$ and $\beta' := \beta_{\lambda'}$. Then

$$\lambda'\gamma\beta = \lambda\beta = a(0)\lambda = a(0)\lambda'\gamma = \lambda'\beta'\gamma$$

Since the columns of λ' form a basis, $\gamma = \beta' \gamma \beta^{-1}$. Define ℓ by Eq. (2.1) and ℓ' similarly, but with λ' in place of λ . Then, $\ell(0) = \lambda = \lambda' \gamma = \ell'(0)\gamma$. Now, suppose $2j + \varepsilon > 0$ and $\ell(j) = \ell'(j)\gamma$. Then

$$\ell(2j+\varepsilon) = a(\varepsilon)\ell(j)\beta^{-1} = a(\varepsilon)\ell'(j)\gamma\beta^{-1} = \ell'(2j+\varepsilon)\beta'\gamma\beta^{-1} = \ell'(2j+\varepsilon)\gamma.$$

It follows that $e_{\lambda} = e_{\lambda'} \gamma$.

(iii) Set $V := S(e_{\lambda})$ and let ϕ be as guaranteed by Lemma 3.2. Since $\phi \subset V$, we have $S(\phi) \subset S(e_{\lambda})$. Conversely, since $e_{\lambda} \in V^+ = R(\phi) \subset S(\phi)$, we have $S(e_{\lambda}) \subset S(\phi)$.

The proof of Theorem 2.3 will require the following lemma.

Lemma 3.3. Let V be a local FSI space. Suppose $\phi = [\phi_1, \ldots, \phi_n] \subset V^+$ is such that $\operatorname{span}\{\phi_1, \ldots, \phi_n\} = V_1^+$. Then $V^+ = S(\phi)^+ = R(\phi)$.

Proof: Let $f \in V^+$. We recursively construct a sequence $c : \mathbb{Z}_+ \to \mathbb{R}^n$ so that

$$f = f_N := \sum_{j=0}^N \phi(\cdot - j)c(j)$$
 on $[0, N]$.

This is the so-called "peeling-off argument" from [1]. Since $f \in V^+$ and ϕ_{\parallel} spans V_{\parallel}^+ , $f = \phi c(0)$ on [0,1] for some $c(0) \in \mathbb{R}^n$. Now suppose we have $c(0), \ldots, c(N)$ such that $f = f_N$ on [0,N]. Then $(f - f_N)(\cdot + N) \in V^+$. So there exists c(N + 1) such that $(f - f_N)(\cdot + N) = \phi c(N + 1)$ on [0,1]. For this value for c(N + 1), $f = f_{N+1}$ on [0, N + 1). So V^+ is contained in $R(\phi)$ which is a subset of $S(\phi)^+$.

Since $\phi \subset V$ and $S(\phi)$ is the smallest closed shift-invariant space containing ϕ , $S(\phi)$ is a subspace of V. This, in turn, implies that $S(\phi)^+ \subset V^+$.

Proof of Theorem 2.3: Let the columns of λ form a basis for $\Sigma(V)$. We first show that $V^+ = S(e_{\lambda})^+$. By Lemma 3.3, it is sufficient to show that $e_{\lambda} \subset V^+$ since $e_{\lambda|} = \psi \lambda$, which spans $V_{|}^+$.

Let $\phi = [\phi_1, \ldots, \phi_n] \subset V^+$ be such that ϕ_{\mid} is a basis for V_{\mid}^+ . Then $e_{\lambda\mid} = \phi_{\mid}\gamma$ for some $\gamma \in \mathbb{R}^{n \times n}$. Since $e_{\lambda} = e_{\lambda}(2 \cdot \beta)$, $e_{\lambda} = e_{\lambda}(2^{-k} \cdot \beta^{-k}) = \phi(2^{-k} \cdot \gamma\beta^{-k})$ on $[0, 2^k]$. Since V is refinable, $\phi(2^{-k} \cdot \gamma\beta^{-k} \subset V^+$. And since ϕ_{\mid} is a basis for V_{\mid}^+ , it follows that $V^+ = R(\phi)$. So, for each $n \in \mathbb{N}$, there exists a sequence c_k such that

$$e_{\lambda} = \sum_{j=0}^{2^k} \phi(\cdot - j) c_k(j)$$
 on $[0, 2^k].$

Since $\phi_{|}$ is a basis, the set $\{\phi(\cdot - j)_{|_{[0,2^k]}} | j = 0, 1, \dots, 2^k - 1\}$ is linearly independent. It follows that the sequence

$$c(j) := c_k(j)$$
 for $j \in \mathbb{Z}_+, 2^k > j$

is well-defined and satisfies $e_{\lambda} = \phi *' c$.

Since V is a local FSI space, it follows that $V = S(\nu)$ for some compactly supported generator ν . Without loss of generality, $\operatorname{supp} \nu \subset [0, \infty)$. Since $V^+ = S(e_{\lambda})^+$, we have $\nu \in S(e_{\lambda})$ and $e_{\lambda} \in V$. Thus, $V = S(e_{\lambda})$.

Proof of Theorem 2.5: First note that, since a(0) is invertible, Λ is preserved by a(0). We show that property (i) is equivalent to each of the others.

(i) \Longrightarrow (ii) is obvious. To see that (ii) \Longrightarrow (i), let V be a local refinable FSI subspace of $S(\psi)$ such that $\Lambda = \Sigma(V)$. By Theorem 2.3, $V = S_{\Lambda}$. So $\Lambda = \Sigma(S_{\Lambda})$.

(iii) \Longrightarrow (i) is obvious. To see that (i) \Longrightarrow (iii), by Lemma 3.3, it is enough to point out that $e_{\lambda|} = \psi \lambda$ is a basis for $S_{\Lambda|}^+ = \psi \Lambda$.

To deal with property (iv), we define

$$h(0) := \begin{bmatrix} 0\\\lambda \end{bmatrix}$$
 and $h(2j+\varepsilon) := A_{\varepsilon}h(j)$ for $\varepsilon \in \{0,1\}, 2j+\varepsilon > 0.$

Then \mathcal{H}_{Λ} is the column space of $[h(0), h(1), h(2), \ldots]$. Also, with $\ell(-1) := 0$ for consistency,

$$h(j) = \begin{bmatrix} \ell(j-1) \\ \ell(j) \end{bmatrix} \text{ for all } j \in \mathbb{Z}_+$$

by Eq. (2.1). It follows that $\begin{bmatrix} u \\ v \end{bmatrix} \in \mathcal{H}_{\Lambda}$ if and only there exists an $f \in S_{\Lambda}$ which agrees with $u\psi(\cdot+1) + v\psi$ on [-1,1].

We show that (iv) implies (i) by contraposition. Suppose $\Lambda \neq \Sigma(S_{\Lambda})$. Then there exists $f \in S_{\Lambda}^+$ such that $f_{\parallel} \notin \psi \Lambda$. That is, f agrees with $u\psi(\cdot + 1) + v\psi$ on [-1, 1] where u = 0 and $v \notin \Lambda$. It follows from the above remarks that $v \in \mathcal{H}_{\Lambda}^0 \setminus \Lambda$.

Finally, suppose there is some $v \in \mathcal{H}^0_{\Lambda} \setminus \Lambda$. Then there exists $f \in S_{\Lambda}$ such that f vanishes on [-1,0] and $f_{\parallel} = \psi \sigma$ for some $\sigma \notin \Lambda$. By Lemma 3.1, there is an $n \in \mathbb{N}$ such that if $g \in S_{\Lambda}$ vanishes on $[-2^k, 0]$, then $g_{\parallel} \in S^+_{\Lambda \parallel}$. We show $a(0)^k \sigma \in \Sigma(S_{\Lambda}) \setminus \Lambda$ for this n. First, note that

$$f(2^{-k}\cdot)_{|} = \psi(2^{-k}\cdot)_{|}\sigma = \psi a(0)^{k}\sigma.$$

Since $f(2^{-k}\cdot)$ vanishes on $[-2^k, 0]$, it follows that $a(0)^k \sigma \in \Sigma(S_\Lambda)$. But, $a(0)^k \sigma$ is not in Λ since $\sigma \notin \Lambda$, Λ is a(0)-invariant, and a(0) is invertible.

Proof of Theorem 2.6: Let the columns of λ form a basis for Λ and recall that $e_{\lambda} = \psi *' \ell$ where ℓ is given by Eq. (2.1). Then $e_{\lambda}(\cdot + j)_{|} = \psi \ell(j)$. Let L be the column space of $[\ell(0), \ell(1), \ell(2), \ldots]$. Then $S(e_{\lambda})_{|} = \operatorname{span}\{\psi_1, \ldots, \psi_m\}$ if and only if $L = \mathbb{R}^m$. We show that $L = \mathcal{L}_{\Lambda}$.

Clearly $\Lambda \subset L$, since $\lambda = \ell(0)$. Also, by Eq. (2.1) and since β is invertible, $a(\varepsilon)L \subset L$ for $\varepsilon = 0, 1$. So $\mathcal{L}_{\Lambda} \subset L$.

Now, the columns of $\ell(0) = \lambda$ are obviously in \mathcal{L}_{Λ} . And if \mathcal{L}_{Λ} contains the columns of $\ell(m)$ then it must contain the columns of $\ell(2m + \varepsilon)$ for $\varepsilon = 0, 1$. Hence $L \subset \mathcal{L}_{\Lambda}$.

Proof of Theorem 2.7: Let the columns of $w \in \mathbb{R}^{k \times m}$ form a basis for \mathcal{W} . Then there exists $\tilde{v} \in \mathbb{R}^{1 \times k}$ and $\tilde{a}(\varepsilon) \in \mathbb{R}^{k \times k}$ such that $v = \tilde{v}w$ and $wa(\varepsilon) = \tilde{a}(\varepsilon)w$ for $\varepsilon = 0, 1$. With $\tilde{T} := \tilde{a}(0) + \tilde{a}(1)$, it follows that $\tilde{v}\tilde{T} = 2\tilde{v} \neq 0$, since the columns of w are linearly independent and

$$\tilde{v}\tilde{T}w = \tilde{v}wT = vT = v = \tilde{v}w.$$

So there exists a unique $\tilde{\psi} \subset \mathcal{D}'(\mathbb{R})$ supported in [0, 1] satisfying

$$\widehat{\psi}(0) = \widetilde{v} \quad ext{and} \quad \widetilde{\psi} = \widetilde{\psi}(2 \cdot) \widetilde{a}(0) + \widetilde{\psi}(2 \cdot -1) \widetilde{a}(1).$$

Multiplying each of these equations on the right by w, we see that $\tilde{\psi}w(0) = v$ and $\tilde{\psi}w$ satisfies Eq. (1.1). Hence $\tilde{\psi}w = \psi$. It follows that $\sigma \in \mathcal{W}^{\perp} \Longrightarrow \psi \sigma = 0$.

Now, let the entries of $\tilde{\psi} = [\tilde{\psi}_1, \ldots, \tilde{\psi}_k]$ form a basis for $\operatorname{span}\{\psi_1, \ldots, \psi_m\}$. Then there exists $w \in \mathbb{R}^{k \times m}$ such that $\psi = \tilde{\psi}w$. Let row w denote the row space of w, that is, row $w := \{uw \mid u \in \mathbb{R}^{1 \times k}\}$. Evidently, $v \in \operatorname{row} w$. We will show that $(\operatorname{row} w)a(\varepsilon) \subset \operatorname{row} w$ for $\varepsilon = 0, 1$. Consequently, $W \subset \operatorname{row} w$. So $\psi\sigma = 0 \Longrightarrow \sigma \in W^{\perp}$.

For any $\sigma \in \mathbb{R}^m$,

$$\tilde{\psi}w\sigma = \psi\sigma = \psi(2\cdot)a(0)\sigma + \psi(2\cdot-1)a(1)\sigma = \tilde{\psi}(2\cdot)wa(0)\sigma + \tilde{\psi}(2\cdot-1)wa(1)\sigma.$$

And, since the entries of $\tilde{\psi}$ are linearly independent, $w\sigma = 0 \implies wa(\varepsilon)\sigma = 0$ for $\varepsilon = 0, 1$. Since $\sigma \in \mathbb{R}^m$ was arbitrary, it follows that $(\operatorname{row} w)a(\varepsilon) \subset \operatorname{row} w$ for $\varepsilon = 0, 1$.

4. Examples

Example 4.1. In this example, we present all local refinable FSI spaces of piecewise polynomials with integer breakpoints and show that the list is complete.

For any $r, m \in \mathbb{Z}$ satisfying $-1 \leq r < m$, the space S_r^m of all r times continuously differentiable piecewise polynomials of degree at most m with integer breakpoints is defined by

 $\mathcal{S}_r^m := \{ f \in C^r(\mathbb{R}) \mid f|_{(j,j+1)} \text{ is polynomial of degree at most } m \text{ for all } j \in \mathbb{Z} \}.$

Note that $S_r^m = \sum_{j=r+1}^m S_{j-1}^j$. In fact, we will show that every local refinable shift-invariant subspace of S_{-1}^m is of the form

$$\sum_{j \in J} S_{j-1}^j \text{ for some } J \subset \{0, \dots, m\}$$

In particular, every local refinable shift-invariant subspace of S_{-1}^m is a sum of refinable PSI spaces. This is not true of shift-invariant spaces in general. For example, the only refinable PSI subspace of the space generated by $\chi_{[0,1)}$ and $\chi_{[0,1/2)}$ is (the proper subspace) S_{-1}^0 .

Define $\psi := [\pi_{0|}, \ldots, \pi_{m|}]$, where $\pi_j(x) := x^j$. Then the elements of ψ are linearly independent, $\mathcal{S}_{-1}^m = S(\psi)$, and ψ is refinable with mask a(0) = d, a(1) = cd, where

$$c := \left[\binom{j-1}{i-1} \right]_{i,j=0}^{m}$$
 and $d := \operatorname{diag}(2^{-j})_{j=0}^{m}$.

Since a(0) is diagonal with distinct eigenvalues, the eigenvectors are

$$\lambda_0 := [1, 0, \dots, 0]^T, \ \lambda_1 = [0, 1, 0, \dots, 0]^T, \ \dots, \ \lambda_m = [0, \dots, 0, 1]^T$$

and the a(0)-invariant spaces are $\Lambda_J := \operatorname{span}\{\lambda_j \mid j \in J\}, J \subset \{0, \ldots, m\}$. It is easy to verify that, for each j, the function e_{λ_j} is the well-known truncated power function

$$e_{\lambda_j}: x \mapsto x^j_+ := \left(\max(0, x)\right)^j$$

and $S(e_{\lambda_j}) = S_{j-1}^j$. It follows that for any $J \subset \{0, \ldots, m\}$,

$$S_{\Lambda_J} = \sum_{j \in J} S(e_{\lambda_j}) = \sum_{j \in J} \mathcal{S}_{j-1}^j.$$

Example 4.2. We consider the case of local dimension m = 2 with a(0) invertible in order to illustrate the main results of this paper.

Let $\psi = [\psi_1, \psi_2]$ be a linearly independent generator supported in [0, 1] which is refinable with mask (a(0), a(1)). Then $S(\psi)$ must contain all constant functions and we can assume, without loss of generality, that $\psi_1 = \chi_{[0,1)}$ (cf. [3], [5], [6]). It is also assumed that a(0) is invertible.

First, suppose a(0) is diagonalizable, in which case we may assume (by a change of basis for ψ) that a(0) and a(1) are of the form

$$a(0) = \begin{bmatrix} 1 & 0 \\ 0 & s \end{bmatrix}, \qquad a(1) = \begin{bmatrix} 1 & u \\ 0 & t \end{bmatrix},$$

where $s \neq 0$, since a(0) is invertible. Then $T = a(0) + a(1) = \begin{bmatrix} 2 & u \\ 0 & s+t \end{bmatrix}$.

Since ψ is linearly independent, Theorem 2.7 implies s + t < 2. Then the left 2eigenspace of T is spanned by [2-s-t, u]. If u = 0 then the invariant space \mathcal{W} is spanned by [1, 0]; and if s = 1, then \mathcal{W} is spanned by [1 - t, 1]. In either case, Theorem 2.7 implies that ψ is linearly dependent. So $S(\psi) = S(\psi_1)$ which has no proper local refinable FSI subspaces. So we assume $s \neq 0$, $s \neq 1$, and $u \neq 0$. By rescaling ψ_2 , we may assume u = 1.

- There are three possible choices for an a(0)-invariant space Λ : $\Lambda := \operatorname{span}(\lambda) := \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ Then $a = \lambda$ and $S = S(a|\lambda)$ is the space
- 1. $\Lambda := \operatorname{span}\{\lambda := [1,0]^T\}$. Then $e_{\lambda} = \chi_{[0,\infty)}$ and $S_{\Lambda} = S(\psi_1)$ is the space of piecewise constant polynomials with integer breakpoints.
- 2. $\Lambda := \mathbb{R}^2$. Then $S_{\Lambda} = S(\psi)$.
- 3. (The interesting case) $\Lambda := \operatorname{span}\{\lambda := [0,1]^T\}$. Calculating $h(0) = [0,0,0,1]^T$, $h(1) = A_1h(0)$, $h(2) = A_0h(1)$, and $h(3) = A_1h(1)$, we find that the span of $h(0), \ldots, h(3)$ is $\{A_0, A_1\}$ -invariant and so equals \mathcal{H}_{Λ} . By a simple reduction, we find that \mathcal{H}_{Λ} is also spanned by the four vectors

۲0٦		F 0	7	Γ0-		ך 1 ק	
0		0		s		0	
0	,	s + t - 1	,	1	,	1	•
1		0		0_		0	

Hence \mathcal{H}^0_{Λ} is span{ $[0,1]^T$, $[s+t-1,0]^T$ }. By Theorem 2.5, Λ is a proper subset of $\Sigma(S_{\Lambda})$ whenever $s+t \neq 1$. It follows that $S(\psi)$ and $S(\psi_1)$ are the only local refinable FSI subspaces of $S(\psi)$ when $s+t \neq 1$; but, when s+t = 1, there is a third local refinable FSI subspace, $S(e_{\lambda})$. Lastly, since $a(1)\lambda = [1,t]^T$, we see that $\mathcal{L}_{\Lambda} = \mathbb{R}^2$ and so, by Theorem 2.6, $S_{\Lambda} = \operatorname{span}\{\psi_1, \psi_2\}$ for any values of s and t.

When a(0) is not diagonalizable, we may assume (by a change of basis for ψ_2) that

$$a(0) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

The only choices for Λ , in this case, are $\Lambda = \text{span}\{[1,0]^T\}$, and $\Lambda = \mathbb{R}^2$. So the only local refinable FSI spaces are $S(\psi_1)$ (which is the space of all piecewise constant polynomials with integer breakpoints) and $S(\psi)$.

Acknowledgement. The authors would like to thank Mike Neamtu for several helpful discussions during the preparation of this paper.

- C. de Boor and R. DeVore (1985), "Partitions of unity and approximation", Proc. Amer. Math. Soc. 93, 705-709.
- [2] W. Dahmen and C. A. Micchelli (1997), "Biorthogonal wavelet expansions", Constr. Approx. 13, 293–328.
- [3] T. A. Hogan (to appear), "A note on matrix refinement equations", SIAM J. Math. Anal.
- [4] T. A. Hogan and R.-Q. Jia (in preparation), "Dependency relations among the shifts of a multivariate refinable distribution"
- [5] R.-Q. Jia (1995), "The Toeplitz theorem and its applications to approximation theory and linear PDE's", *Trans. Amer. Math. Soc.* **347**, 2585–2594.
- [6] R.-Q. Jia (1997), "Shift-invariant spaces on the real line", Proc. Amer. Math. Soc. 125, 785-793.
- [7] R.-Q. Jia (to appear), "Shift-invariant spaces and linear operator equations", Israel J. Math.
- [8] R.-Q. Jia (to appear), "Stability of the shifts of a finite number of functions", J. Approx. Theory
- [9] R.-Q. Jia (184), "Multiresolution of L_p spaces", J. Math. Anal. Appl.1994; 620–639;
- [10] Q. Jiang and Z. Shen (to appear), "On existence and weak stability of matrix refinable functions", Constr. Approx.
- [11] C. A. Micchelli (1995), Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Mathematics v.65, SIAM (Philadelphia PA).
- [12] C. A. Micchelli and H. Prautzsch (1989), "Uniform refinement of curves", Linear Algebra Appl. 114/115, 841–870.
- [13] C. A. Micchelli and H. Prautzsch (1987), "Refinement and subdivision for spaces of integer translates of a compactly supported function", in *Numerical Analysis 1987* (D. F. Griffiths and G. A. Watson, eds.), Longman Scientific and Technical (Essex), 192-222.
- [14] C. A. Micchelli and T. Sauer (1997), "Regularity of multiwavelets", Advances in Comp. Math. 7, 455-545.