Refinable subspaces of a refinable space

Douglas P. Hardin* and Thomas A. Hogan
Department of Mathematics
Vanderbilt University
NashvilleГTennessee 37240

Abstract

Local refinable finitely generated shift-invariant spaces play a significant role in many areas of approximation theory and geometric design. In this paper we present a new approach to the construction of such spaces. We begin with a refinable function $\psi: \mathbb{R} \rightarrow \mathbb{R}^{m}$ which is supported on $[0,1]$. We are interested in spaces generated by a function $\phi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ built from the shifts of ψ.

AMS (MOS) Subject Classification: 39A10Г39B62Г42B99Г41A15
Key words: Refinability Γ matrix subdivision Γ refinable function vector Γ multiwavelet Γ shift-invariantГFSI.

[^0]
1. Introduction

Local refinable finitely generated shift-invariant spaces naturally arise in the theory of (multi)wavelets Γ splines Γ finite-elements Γ and subdivision schemes. In this paper we introduce and begin to develop a method for constructing and studying such spaces.

Let L_{loc}^{1} denote the space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which belong to $L^{1}(\mathbb{R})$ locally; that is $\Gamma f \in L_{\text {loc }}^{1}$ provided that (f is measurable and) $\int_{K}|f|<\infty$ for every compact $K \subset \mathbb{R}$. This space is topologized by the family of seminorms

$$
|f|_{N}:=\int_{[-N, N]}|f|, \quad N \in \mathbb{N}
$$

We refer to a (row) vector $\phi=\left[\phi_{1}, \ldots, \phi_{n}\right] \Gamma n \in \mathbb{N} \Gamma$ of functions in L_{loc}^{1} as a generator.
A generator $\phi=\left[\phi_{1}, \cdots, \phi_{n}\right]$ is said to be refinable if there exists a finitely supported sequence $b: \mathbb{Z} \rightarrow \mathbb{R}^{n \times n}$ (called a mask for ϕ) for which

$$
\phi=\sum_{j \in \mathbb{Z}} \phi(2 \cdot-j) b(j) .
$$

We begin with a generator $\psi=\left[\psi_{1}, \ldots, \psi_{m}\right]$ supported in $[0,1]$ that is refinable with a two-term mask:

$$
\begin{equation*}
\psi=\psi(2 \cdot) a(0)+\psi(2 \cdot-1) a(1) \tag{1.1}
\end{equation*}
$$

and we intend to construct more useful (read "smoother") refinable generators by using the shifts of ψ. That is Γ we consider generators of the form

$$
\phi=\sum_{j \in \mathbb{Z}} \psi(\cdot-j) c(j)
$$

for some sequence $c: \mathbb{Z} \rightarrow \mathbb{R}^{m \times n}$. The motivation for this approach is that it is much easier to study the properties of ψ since it is supported on $[0,1]$ hence its shifts do not 'interfere' with each other. The crux is that ϕ constructed in this way will not Γ in general Γ be refinable.

Let V be a subspace of L_{loc}^{1}. Then we say V is shift-invariant if

$$
f \in V \Longrightarrow f(\cdot \pm 1) \in V
$$

we say V is a finitely generated shift-invariant (FSI) space if

$$
V=S(\phi):=\operatorname{clos}_{L_{\mathrm{loc}}^{1}} \operatorname{span}\left\{\phi_{i}(\cdot-j) \mid i=1, \ldots, n ; j \in \mathbb{Z}\right\}
$$

for some generator ϕ; and we say an FSI space V is local if $V=S(\phi)$ for some compactly supported generator ϕ. Lastly Fwe say V is refinable if

$$
f \in V \Longrightarrow f(\cdot / 2) \in V
$$

Evidently $\Gamma(\phi)$ is refinable whenever ϕ is refinable.
The main objective of this paper is:
Given a refinable generator ψ supported in $[0,1]$ with mask $(a(0), a(1))$, characterize all local refinable FSI subspaces $V \subset S(\psi)$.

We provide such a characterization in case $a(0)$ is invertible.
We point out that every local refinable FSI space is a subspace of $S(\psi)$ for some refinable generator ψ supported in $[0,1]$. For $f \in L_{\mathrm{loc}}^{1}$ and $V \subset L_{\mathrm{loc}}^{1} \Gamma$ define

$$
f_{1}:=f \chi_{[0,1]} \quad \text { and } \quad V_{\mid}:=\left\{f_{\mid} \mid f \in V\right\} .
$$

(As usual $\Gamma \chi_{A}$ denotes the characteristic function of a set $A \subset \mathbb{R}$.) Suppose V is a local refinable FSI space. Then $m:=\operatorname{dim} V_{\mid}$is finite. We refer to m as the local dimension of V. Let $\psi=\left[\psi_{1}, \ldots, \psi_{m}\right]$ be a basis for V_{\mid}. Then ψ is refinable and $V \subset S(\psi)$.

This has been observed and exploited already by Jia in $[7] \Gamma[8] \Gamma$ and $[9] \Gamma$ where the author studied a given function ϕ via a basis ψ for $S(\phi)$. The simpler structure due to the small supports of ψ and a in equation (1.1) has also been recognized by Micchelli et al. in Γ for example $\Gamma[\mathbf{1 1}] \Gamma[\mathbf{1 2}] \Gamma[\mathbf{1 3}] \Gamma$ and $[14]$. In particular Γ given a univariate refinable function ϕ with finite mask $b \Gamma$ they define $a(0)$ and $a(1)$ by $a(\varepsilon):=[b(\varepsilon+2 j-i)]_{i, j}$ and study ϕ via the refinable function having mask a. Among other things Γ this was used to provide necessary and sufficient conditions for the convergence of a given subdivision scheme and Γ in [14] to provide a fairly thorough study of regularity for refinable function vectors.

Our approach is different in that the mask a and generator ψ come first. In this paper Γ we identify all local refinable FSI subspaces $S(\phi)$ of $S(\psi)$. The next steps are to provide further characterizations of the properties of $S(\psi)$ in terms of a; to determine when these properties are preserved by a subspace $S(\phi)$; and to put these ideas together to construct desirable refinable generators.

2. Results

Throughout this paper We assume that $(a(0), a(1))$ is a mask for a refinable generator $\psi=\left[\psi_{1}, \ldots, \psi_{m}\right]$ supported in $[0,1]$ (in particular「each ψ_{j} is assumed to be in $L^{1}(\mathbb{R})$). We will show that when $a(0)$ is invertible Ceach local refinable FSI subspace of $S(\psi)$ corresponds to some $a(0)$-invariant space (for a matrix $a \in \mathbb{R}^{k \times k} \Gamma$ a space $\Gamma \subset \mathbb{R}^{k}$ is a-invariant if $a \Gamma \subset \Gamma$). Our specific statements will require a few more definitions.

We use \mathbb{Z}_{+}to denote the set of non-negative integers and \mathbb{R}^{k} to denote the set of column vectors of length k. For any set $V \subset L_{\mathrm{loc}}^{1} \Gamma$ define

$$
V^{+}:=\{f \in V \mid \operatorname{supp} f \subset[0, \infty)\} ;
$$

and Γ for $V \subset S(\psi) \Gamma$ define

$$
\Sigma(V):=\left\{\sigma \in \mathbb{R}^{m} \mid \psi \sigma \in V_{\mid}^{+}\right\} .
$$

(By convention $\left.\Gamma V_{\mid}^{+}:=\left(V^{+}\right)_{\mid}\right)$.

Proposition 2.1. For any refinable subspace V of $S(\psi), \Sigma(V)$ is $a(0)$-invariant.
If $\phi=\left[\phi_{1}, \ldots, \phi_{k}\right]$ is a generator supported in $[0, \infty) \Gamma$ then the sum

$$
\phi *^{\prime} c:=\sum_{j=0}^{\infty} \phi(\cdot-j) c(j)
$$

is locally finite for any sequence $c: \mathbb{Z}_{+} \rightarrow \mathbb{R}^{k}$. In particular Γ the set

$$
R(\phi):=\left\{\phi *^{\prime} c \mid c: \mathbb{Z}_{+} \rightarrow \mathbb{R}^{k}\right\}
$$

spanned by the right shifts of ϕ is a subset of $S(\phi)^{+}$.
We say a subspace Λ of \mathbb{R}^{m} is preserved by $a(0)$ if $a(0) \Lambda=\Lambda$ Гand a matrix $\lambda \in \mathbb{R}^{m \times n}$ is preserved by $a(0)$ if its columns form a basis for a space that is preserved by $a(0)$. Note that a matrix $\lambda \in \mathbb{R}^{m \times n}$ is preserved by $a(0)$ if and only $a(0) \lambda=\lambda \beta_{\lambda}$ for a unique invertible $\beta_{\lambda} \in \mathbb{R}^{n \times n}$. Suppose that $\lambda \in \mathbb{R}^{m \times n}$ is preserved by $a(0)$. Set

$$
\begin{equation*}
\ell(0):=\lambda \quad \text { and } \quad \ell(2 j+\varepsilon):=a(\varepsilon) \ell(j) \beta_{\lambda}^{-1} \text { for } \varepsilon \in\{0,1\}, 2 j+\varepsilon>0 . \tag{2.1}
\end{equation*}
$$

We define the generalized truncated power e_{λ} by

$$
e_{\lambda}:=\psi *^{\prime} \ell .
$$

Proposition 2.2. Suppose that $\lambda \in \mathbb{R}^{m \times n}$ is preserved by $a(0)$. Then
(i) $e_{\lambda}=e_{\lambda}(2 \cdot) \beta_{\lambda}$;
(ii) if $\lambda^{\prime} \in \mathbb{R}^{m \times n}$ has the same column space as λ, then $S\left(e_{\lambda}\right)=S\left(e_{\lambda^{\prime}}\right)$; and
(iii) $S\left(e_{\lambda}\right)$ is a local refinable FSI subspace of $S(\psi)$.

The property (2.2.ii) above allows us to unambiguously define Cfor any Λ preserved by $a(0) \Gamma$ the space $S_{\Lambda}:=S\left(e_{\lambda}\right)$ where the columns of λ form a basis for Λ.

Theorem 2.3. Suppose V is a local refinable FSI subspace of $S(\psi)$. If $\Sigma(V)$ is preserved by $a(0)$ then $V=S_{\Sigma(V)}$.

If $a(0)$ is invertible then every $a(0)$-invariant subspace is Γ in fact Γ preserved by $a(0)$. So we have the following corollary - one of the main results of this paper.

Corollary 2.4. Suppose $a(0)$ is invertible. Then V is a local refinable FSI subspace of $S(\psi)$ if and only if $V=S_{\Lambda}$ for some $a(0)$-invariant Λ.

So Γ in the case $a(0)$ is invertible every local refinable FSI subspace of $S(\psi)$ is of the form S_{Λ} for some $a(0)$-invariant space Λ. The $a(0)$-invariant spaces are easily identified from the Jordan-Canonical form of $a(0)$. By Theorem $2.3 \Gamma S_{\Lambda}=S_{\Sigma\left(S_{\Lambda}\right)}$. So Γ if $a(0)$ is invertible and ψ is linearly independent (meaning the entries of ψ are linearly independent) Γ the local refinable FSI subspaces of $S(\psi)$ are in one-to-one correspondence with those $a(0)$ invariant spaces Λ satisfying $\Lambda=\Sigma\left(S_{\Lambda}\right)$. Our next result provides a characterization of such Λ.

First Tdefine

$$
A_{0}:=\left[\begin{array}{cc}
a(1) & 0 \\
0 & a(0)
\end{array}\right], \quad A_{1}:=\left[\begin{array}{ll}
0 & a(0) \\
0 & a(1)
\end{array}\right] .
$$

Then \mathcal{H}_{Λ} is defined to be the minimal subspace of $\mathbb{R}^{2 m}$ that contains

$$
\left[\begin{array}{l}
0 \\
\Lambda
\end{array}\right]:=\left\{\left.\left[\begin{array}{l}
0 \\
v
\end{array}\right] \right\rvert\, v \in \Lambda\right\}
$$

and is $\left\{A_{0}, A_{1}\right\}$-invariant Γ i.e. ΓA_{ε}-invariant for $\varepsilon=0,1$.
Theorem 2.5. Suppose Λ is an $a(0)$-invariant subspace of \mathbb{R}^{m}. Let the columns of $\lambda \in \mathbb{R}^{m \times n}$ form a basis for Λ. If $a(0)$ is invertible and ψ is linearly independent, then the following are equivalent.
(i) $\Lambda=\Sigma\left(S_{\Lambda}\right)$.
(ii) $\Lambda=\Sigma(V)$ for some local refinable $F S I$ subpace $V \subset S(\psi)$.
(iii) $S_{\Lambda}^{+}=R\left(e_{\lambda}\right)$
(iv) The set $\mathcal{H}_{\Lambda}^{0}:=\left\{v \in \mathbb{R}^{m} \left\lvert\,\left[\begin{array}{l}0 \\ v\end{array}\right] \in \mathcal{H}_{\Lambda}\right.\right\}$ is equal to Λ.

It is clear that $S_{\Lambda \mid}$ is always a subset of $\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{m}\right\}$. We now give a characterization of when these sets are actually equal.

Theorem 2.6. Suppose ψ is linearly independent. Suppose $\Lambda \subset \mathbb{R}^{m}$ is preserved by $a(0)$. Define \mathcal{L}_{Λ} to be the minimal $\{a(0), a(1)\}$-invariant subspace of \mathbb{R}^{m} containing Λ. Then $S_{\Lambda \mid}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ if and only if $\mathcal{L}_{\Lambda}=\mathbb{R}^{m}$.

Among the premises of Theorems 2.5 and 2.6 is the statement that ψ is linearly independent. A characterization of this property is provided for completeness.

Define

$$
T:=a(0)+a(1) .
$$

Then a necessary condition for the generator ψ to be linearly independent is that 2 be a simple eigenvalue of the matrix T with left eigenvector $\hat{\psi}(0)$ and that all other eigenvalues have modulus strictly less than 2 (cf. Γ e.g. $\Gamma[\mathbf{2}] \Gamma[3] \Gamma[\mathbf{1 0}]$). In this case $\Gamma \psi$ is the unique (up to constant multiple) generator satisfying Eq. (1.1). With this in mind「we offer the following theorem ([4] provides a generalization of this result).

Theorem 2.7. Let \mathcal{W} be the smallest subspace of \mathbb{R}^{m} satisfying

$$
\hat{\psi}(0) \in \mathcal{W}, \quad \mathcal{W} a(0) \subset \mathcal{W}, \quad \mathcal{W} a(1) \subset \mathcal{W}
$$

Then the generator ψ is linearly independent if and only if
(i) 2 is a simple eigenvalue of T;
(ii) all other eigenvalues have modulus strictly less than 2; and
(iii) $\mathcal{W}=\mathbb{R}^{m}$.

3. Proofs

Throughout this section Γ we write $\phi \subset V$ to mean that the entries of the generator ϕ are elements of V.

We recall some results from [1].
Lemma 3.1. For any closed shift-invariant space V of finite local dimension, there exists $r>0$ such that if $f \in V$ vanishes on $[-r, 0]$ then $f_{\mid} \in V_{\mid}^{+}$.
Lemma 3.2. For any closed shift-invariant space V of finite local dimension, there is a compactly supported generator $\phi=\left[\phi_{1}, \ldots, \phi_{k}\right] \subset V$ such that ϕ_{\mid}is basis for V_{\mid}^{+}and $V^{+}=R(\phi)$.

Actually the topology used in [1] is that of uniform convergence on compact sets. However the arguments used there also apply to the topology of L_{loc}^{1}.

Proof of Proposition 2.1: \quad Suppose $\sigma \in \Sigma(V)$. Then there exists $f \in V^{+}$such that $f_{\mid}=\psi \sigma$. Since V is refinable $\Gamma(\cdot / 2) \in V^{+}$. $\operatorname{But} \Gamma f(\cdot / 2)=\psi(\cdot / 2) \sigma=\psi a(0) \sigma$ on $[0,1]$. So $a(0) \sigma \in \Sigma(V)$.

Proof of Proposition 2.2:

(i) $\quad \epsilon_{\lambda}(\dot{\overline{2}})=\sum_{j} \psi\left(\frac{\cdot-2 j}{2}\right) \ell(j)=\sum_{j, \varepsilon} \psi(\cdot-2 j-\varepsilon) a(\varepsilon) \ell(j)$

$$
=\sum_{j, \varepsilon} \psi(\cdot-(2 j+\varepsilon)) \ell(2 j+\varepsilon) \beta_{\lambda}=e_{\lambda} \beta_{\lambda} .
$$

(ii) There exists $\gamma \in \mathbb{R}^{n \times n}$ such that $\lambda=\lambda^{\prime} \gamma$. Set $\beta:=\beta_{\lambda}$ and $\beta^{\prime}:=\beta_{\lambda^{\prime}}$. Then

$$
\lambda^{\prime} \gamma \beta=\lambda \beta=a(0) \lambda=a(0) \lambda^{\prime} \gamma=\lambda^{\prime} \beta^{\prime} \gamma
$$

Since the columns of λ^{\prime} form a basis $\Gamma \gamma=\beta^{\prime} \gamma \beta^{-1}$. Define ℓ by Eq. (2.1) and ℓ^{\prime} similarly Γ but with λ^{\prime} in place of λ. Then $\Gamma \ell(0)=\lambda=\lambda^{\prime} \gamma=\ell^{\prime}(0) \gamma$. Now Γ suppose $2 j+\varepsilon>0$ and $\ell(j)=\ell^{\prime}(j) \gamma$. Then

$$
\ell(2 j+\varepsilon)=a(\varepsilon) \ell(j) \beta^{-1}=a(\varepsilon) \ell^{\prime}(j) \gamma \beta^{-1}=\ell^{\prime}(2 j+\varepsilon) \beta^{\prime} \gamma \beta^{-1}=\ell^{\prime}(2 j+\varepsilon) \gamma .
$$

It follows that $e_{\lambda}=e_{\lambda^{\prime}} \gamma$.
(iii) Set $V:=S\left(e_{\lambda}\right)$ and let ϕ be as guaranteed by Lemma 3.2. Since $\phi \subset V \Gamma$ we have $S(\phi) \subset S\left(e_{\lambda}\right)$. Conversely Γ since $e_{\lambda} \in V^{+}=R(\phi) \subset S(\phi) \Gamma$ we have $S\left(e_{\lambda}\right) \subset S(\phi)$.

The proof of Theorem 2.3 will require the following lemma.
Lemma 3.3. Let V be a local FSI space. Suppose $\phi=\left[\phi_{1}, \ldots, \phi_{n}\right] \subset V^{+}$is such that $\operatorname{span}\left\{\phi_{1 \mid}, \ldots, \phi_{n \mid}\right\}=V_{\mid}^{+}$. Then $V^{+}=S(\phi)^{+}=R(\phi)$.

Proof: Let $f \in V^{+}$. We recursively construct a sequence $c: \mathbb{Z}_{+} \rightarrow \mathbb{R}^{n}$ so that

$$
f=f_{N}:=\sum_{j=0}^{N} \phi(\cdot-j) c(j) \text { on }[0, N] .
$$

This is the so-called "peeling-off argument" from [1]. Since $f \in V^{+}$and ϕ_{\mid}spans $V_{\mid}^{+} \Gamma$ $f=\phi c(0)$ on $[0,1]$ for some $c(0) \in \mathbb{R}^{n}$. Now suppose we have $c(0), \ldots, c(N)$ such that $f=f_{N}$ on $[0, N]$. Then $\left(f-f_{N}\right)(\cdot+N) \in V^{+}$. So there exists $c(N+1)$ such that $\left(f-f_{N}\right)(\cdot+N)=\phi c(N+1)$ on $[0,1]$. For this value for $c(N+1) \Gamma f=f_{N+1}$ on $[0, N+1)$. So V^{+}is contained in $R(\phi)$ which is a subset of $S(\phi)^{+}$.

Since $\phi \subset V$ and $S(\phi)$ is the smallest closed shift-invariant space containing $\phi \Gamma S(\phi)$ is a subspace of V. This Γ in turn Γ implies that $S(\phi)^{+} \subset V^{+}$.

Proof of Theorem 2.3: Let the columns of λ form a basis for $\Sigma(V)$. We first show that $V^{+}=S\left(e_{\lambda}\right)^{+}$. By Lemma 3.3Γ it is sufficient to show that $e_{\lambda} \subset V^{+}$since $e_{\lambda \mid}=\psi \lambda \Gamma$ which spans V_{\mid}^{+}.

Let $\phi=\left[\phi_{1}, \ldots, \phi_{n}\right] \subset V^{+}$be such that ϕ_{\mid}is a basis for V_{\mid}^{+}. Then $e_{\lambda \mid}=\phi_{\mid} \gamma$ for some $\gamma \in \mathbb{R}^{n \times n}$. Since $e_{\lambda}=e_{\lambda}(2 \cdot) \beta \Gamma e_{\lambda}=e_{\lambda}\left(2^{-k} \cdot\right) \beta^{-k}=\phi\left(2^{-k} \cdot\right) \gamma \beta^{-k}$ on $\left[0,2^{k}\right]$. Since V is refinable $\Gamma \phi\left(2^{-k} \cdot\right) \gamma \beta^{-k} \subset V^{+}$. And since ϕ_{\mid}is a basis for $V_{\mid}^{+} \Gamma$ it follows that $V^{+}=R(\phi)$. So「for each $n \in \mathbb{N} \Gamma$ there exists a sequence c_{k} such that

$$
e_{\lambda}=\sum_{j=0}^{2^{k}} \phi(\cdot-j) c_{k}(j) \quad \text { on } \quad\left[0,2^{k}\right] .
$$

Since $\phi_{\|}$is a basis Γ the set $\left\{\phi(\cdot-j)_{\left.\right|_{\left[0,2^{k}\right]}} \mid j=0,1, \ldots, 2^{k}-1\right\}$ is linearly independent. It follows that the sequence

$$
c(j):=c_{k}(j) \text { for } j \in \mathbb{Z}_{+}, 2^{k}>j
$$

is well-defined and satisfies $e_{\lambda}=\phi *^{\prime} c$.
Since V is a local FSI space Γ it follows that $V=S(\nu)$ for some compactly supported generator ν. Without loss of generality $\Gamma \operatorname{supp} \nu \subset[0, \infty)$. Since $V^{+}=S\left(e_{\lambda}\right)^{+} \Gamma$ we have $\nu \in S\left(e_{\lambda}\right)$ and $e_{\lambda} \in V$.Thus $\Gamma V=S\left(e_{\lambda}\right)$.

Proof of Theorem 2.5: First note that Γ since $a(0)$ is invertible $\Gamma \Lambda$ is preserved by $a(0)$. We show that property (i) is equivalent to each of the others.
(i) \Longrightarrow (ii) is obvious. To see that (ii) \Longrightarrow (i) (let V be a local refinable FSI subspace of $S(\psi)$ such that $\Lambda=\Sigma(V)$. By Theorem $2.3 \Gamma V=S_{\Lambda}$. So $\Lambda=\Sigma\left(S_{\Lambda}\right)$.
(iii) \Longrightarrow (i) is obvious. To see that (i) \Longrightarrow (iii) 「by Lemma 3.3 Гit is enough to point out that $e_{\lambda \mid}=\psi \lambda$ is a basis for $S_{\Lambda \mid}^{+}=\psi \Lambda$.

To deal with property (iv) Γ we define

$$
h(0):=\left[\begin{array}{l}
0 \\
\lambda
\end{array}\right] \quad \text { and } \quad h(2 j+\varepsilon):=A_{\varepsilon} h(j) \text { for } \varepsilon \in\{0,1\}, 2 j+\varepsilon>0 .
$$

Then \mathcal{H}_{A} is the column space of $[h(0), h(1), h(2), \ldots]$. Also Γ with $\ell(-1):=0$ for consistency Γ

$$
h(j)=\left[\begin{array}{c}
\ell(j-1) \\
\ell(j)
\end{array}\right] \text { for all } j \in \mathbb{Z}_{+}
$$

by Eq. (2.1). It follows that $\left[\begin{array}{l}u \\ v\end{array}\right] \in \mathcal{H}_{\Lambda}$ if and only there exists an $f \in S_{\Lambda}$ which agrees with $u \psi(\cdot+1)+v \psi$ on $[-1,1]$.

We show that (iv) implies (i) by contraposition. Suppose $\Lambda \neq \Sigma\left(S_{\Lambda}\right)$. Then there exists $f \in S_{\Lambda}^{+}$such that $f_{\mid} \notin \psi \Lambda$. That is Γf agrees with $u \psi(\cdot+1)+v \psi$ on $[-1,1]$ where $u=0$ and $v \notin \Lambda$. It follows from the above remarks that $v \in \mathcal{H}_{\Lambda}^{0} \backslash \Lambda$.

Finally Γ suppose there is some $v \in \mathcal{H}_{\Lambda}^{0} \backslash \Lambda$. Then there exists $f \in S_{\Lambda}$ such that f vanishes on $[-1,0]$ and $f_{\mid}=\psi \sigma$ for some $\sigma \notin \Lambda$. By Lemma 3.1Γ there is an $n \in \mathbb{N}$ such that if $g \in S_{\Lambda}$ vanishes on $\left[-2^{k}, 0\right] \Gamma$ then $g_{\mid} \in S_{\Lambda \mid}^{+}$. We show $a(0)^{k} \sigma \in \Sigma\left(S_{\Lambda}\right) \backslash \Lambda$ for this n. First「note that

$$
f\left(2^{-k} \cdot\right)_{\mid}=\psi\left(2^{-k} \cdot\right)_{\mid} \sigma=\psi a(0)^{k} \sigma .
$$

Since $f\left(2^{-k}\right.$.) vanishes on $\left[-2^{k}, 0\right] \Gamma$ it follows that $a(0)^{k} \sigma \in \Sigma\left(S_{\Lambda}\right)$. But $\Gamma a(0)^{k} \sigma$ is not in Λ since $\sigma \notin \Lambda \Gamma \Lambda$ is $a(0)$-invariant Γ and $a(0)$ is invertible.

Proof of Theorem 2.6: Let the columns of λ form a basis for Λ and recall that $e_{\lambda}=\psi *^{\prime} \ell$ where ℓ is given by Eq. (2.1). Then $e_{\lambda}(\cdot+j)_{\mid}=\psi \ell(j)$. Let L be the column space of $[\ell(0), \ell(1), \ell(2), \ldots]$. Then $S\left(e_{\lambda}\right) \mid=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ if and only if $L=\mathbb{R}^{m}$. We show that $L=\mathcal{L}_{\Lambda}$.

Clearly $\Lambda \subset L \Gamma$ since $\lambda=\ell(0)$. Also Γ by Eq. (2.1) and since β is invertible $\Gamma a(\varepsilon) L \subset L$ for $\varepsilon=0,1$. So $\mathcal{L}_{\Lambda} \subset L$.

Now Γ the columns of $\ell(0)=\lambda$ are obviously in \mathcal{L}_{Λ}. And if \mathcal{L}_{Λ} contains the columns of $\ell(m)$ then it must contain the columns of $\ell(2 m+\varepsilon)$ for $\varepsilon=0,1$. Hence $L \subset \mathcal{L}_{\Lambda}$.

Proof of Theorem 2.7: Let the columns of $w \in \mathbb{R}^{k \times m}$ form a basis for \mathcal{W}. Then there exists $\tilde{v} \in \mathbb{R}^{1 \times k}$ and $\tilde{a}(\varepsilon) \in \mathbb{R}^{k \times k}$ such that $v=\tilde{v} w$ and $w a(\varepsilon)=\tilde{a}(\varepsilon) w$ for $\varepsilon=0,1$. With $\tilde{T}:=\tilde{a}(0)+\tilde{a}(1) \Gamma$ it follows that $\tilde{v} \tilde{T}=2 \tilde{v} \neq 0 \Gamma$ since the columns of w are linearly independent and

$$
\tilde{v} \tilde{T} w=\tilde{v} w T=v T=v=\tilde{v} w .
$$

So there exists a unique $\tilde{\psi} \subset \mathcal{D}^{\prime}(\mathbb{R})$ supported in $[0,1]$ satisfying

$$
\widehat{\tilde{\psi}}(0)=\tilde{v} \quad \text { and } \quad \tilde{\psi}=\tilde{\psi}(2 \cdot) \tilde{a}(0)+\tilde{\psi}(2 \cdot-1) \tilde{a}(1)
$$

Multiplying each of these equations on the right by $w \Gamma$ we see that $\widehat{\tilde{\psi} w}(0)=v$ and $\tilde{\psi} w$ satisfies Eq. (1.1). Hence $\tilde{\psi} w=\psi$. It follows that $\sigma \in \mathcal{W}^{\perp} \Longrightarrow \psi \sigma=0$.

Now Γ let the entries of $\tilde{\psi}=\left[\tilde{\psi}_{1}, \ldots, \tilde{\psi}_{k}\right]$ form a basis for $\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{m}\right\}$. Then there exists $w \in \mathbb{R}^{k \times m}$ such that $\psi=\tilde{\psi} w$. Let row w denote the row space of $w \Gamma$ that is Γ row $w:=\left\{u w \mid u \in \mathbb{R}^{1 \times k}\right\}$. Evidently $\Gamma v \in \operatorname{row} w$. We will show that (row w) $a(\varepsilon) \subset$ row w for $\varepsilon=0$, 1. Consequently $\Gamma \mathcal{W} \subset \operatorname{row} w$. So $\psi \sigma=0 \Longrightarrow \sigma \in \mathcal{W}^{\perp}$.

For any $\sigma \in \mathbb{R}^{m} \Gamma$

$$
\tilde{\psi} w \sigma=\psi \sigma=\psi(2 \cdot) a(0) \sigma+\psi(2 \cdot-1) a(1) \sigma=\tilde{\psi}(2 \cdot) w a(0) \sigma+\tilde{\psi}(2 \cdot-1) w a(1) \sigma .
$$

And Γ since the entries of $\tilde{\psi}$ are linearly independent $\Gamma w \sigma=0 \Longrightarrow w a(\varepsilon) \sigma=0$ for $\varepsilon=0,1$. Since $\sigma \in \mathbb{R}^{m}$ was arbitrary $\overline{\text { it follows that (row } w) ~} a(\varepsilon) \subset$ row w for $\varepsilon=0,1$.

4. Examples

Example 4.1. In this example, we present all local refinable FSI spaces of piecewise polynomials with integer breakpoints and show that the list is complete.

For any $r, m \in \mathbb{Z}$ satisfying $-1 \leq r<m \Gamma$ the space \mathcal{S}_{r}^{m} of all r times continuously differentiable piecewise polynomials of degree at most m with integer breakpoints is defined by

$$
\mathcal{S}_{r}^{m}:=\left\{f \in C^{r}(\mathbb{R})|f|_{(j, j+1)} \text { is polynomial of degree at most } m \text { for all } j \in \mathbb{Z}\right\} .
$$

Note that $\mathcal{S}_{r}^{m}=\sum_{j=r+1}^{m} \mathcal{S}_{j-1}^{j}$. In fact Γ we will show that every local refinable shiftinvariant subspace of \mathcal{S}_{-1}^{m} is of the form

$$
\sum_{j \in J} \mathcal{S}_{j-1}^{j} \text { for some } J \subset\{0, \ldots, m\} .
$$

In particular Tevery local refinable shift-invariant subspace of \mathcal{S}_{-1}^{m} is a sum of refinable PSI spaces. This is not true of shift-invariant spaces in general. For exampleГthe only refinable PSI subspace of the space generated by $\chi_{[0,1)}$ and $\chi_{[0,1 / 2)}$ is (the proper subspace) \mathcal{S}_{-1}^{0}.

Define $\psi:=\left[\pi_{0 \mid}, \ldots, \pi_{m \mid}\right] \Gamma$ where $\pi_{j}(x):=x^{j}$. Then the elements of ψ are linearly independent $\Gamma \mathcal{S}_{-1}^{m}=S(\psi) \Gamma$ and ψ is refinable with mask $a(0)=d, a(1)=c d \Gamma$ where

$$
c:=\left[\binom{j-1}{i-1}\right]_{i, j=0}^{m} \quad \text { and } \quad d:=\operatorname{diag}\left(2^{-j}\right)_{j=0}^{m}
$$

Since $a(0)$ is diagonal with distinct eigenvalues Γ the eigenvectors are

$$
\lambda_{0}:=[1,0, \ldots, 0]^{T}, \lambda_{1}=[0,1,0, \ldots, 0]^{T}, \ldots, \lambda_{m}=[0, \ldots, 0,1]^{T}
$$

and the $a(0)$-invariant spaces are $\Lambda_{J}:=\operatorname{span}\left\{\lambda_{j} \mid j \in J\right\} \Gamma J \subset\{0, \ldots, m\}$. It is easy to verify that Γ for each $j \Gamma$ the function $\epsilon_{\lambda_{j}}$ is the well-known truncated power function

$$
e_{\lambda_{j}}: x \mapsto x_{+}^{j}:=(\max (0, x))^{j}
$$

and $S\left(e_{\lambda_{j}}\right)=\mathcal{S}_{j-1}^{j}$. It follows that for any $J \subset\{0, \ldots, m\} \Gamma$

$$
S_{\Lambda J}=\sum_{j \in J} S\left(e_{\lambda_{j}}\right)=\sum_{j \in J} \mathcal{S}_{j-1}^{j}
$$

Example 4.2. We consider the case of local dimension $m=2$ with $a(0)$ invertible in order to illustrate the main results of this paper.

Let $\psi=\left[\psi_{1}, \psi_{2}\right]$ be a linearly independent generator supported in $[0,1]$ which is refinable with mask $(a(0), a(1))$. Then $S(\psi)$ must contain all constant functions and we
can assume Γ without loss of generality Γ that $\psi_{1}=\chi_{[0,1)}(c f .[3] \Gamma[5] \Gamma[6])$. It is also assumed that $a(0)$ is invertible.

First Γ suppose $a(0)$ is diagonalizable Γ in which case we may assume (by a change of basis for ψ) that $a(0)$ and $a(1)$ are of the form

$$
a(0)=\left[\begin{array}{cc}
1 & 0 \\
0 & s
\end{array}\right], \quad a(1)=\left[\begin{array}{ll}
1 & u \\
0 & t
\end{array}\right]
$$

where $s \neq 0 \Gamma$ since $a(0)$ is invertible. Then $T=a(0)+a(1)=\left[\begin{array}{cc}2 & u \\ 0 & s+t\end{array}\right]$.
Since ψ is linearly independent Γ Theorem 2.7 implies $s+t<2$. Then the left 2 eigenspace of T is spanned by $[2-s-t, u]$. If $u=0$ then the invariant space \mathcal{W} is spanned by $[1,0]$; and if $s=1 \Gamma$ then \mathcal{W} is spanned by $[1-t, 1]$. In either case Γ Theorem 2.7 implies that ψ is linearly dependent. So $S(\psi)=S\left(\psi_{1}\right)$ which has no proper local refinable FSI subspaces. So we assume $s \neq 0 \Gamma s \neq 1 \Gamma$ and $u \neq 0$. By rescaling $\psi_{2} \Gamma$ we may assume $u=1$. There are three possible choices for an $a(0)$-invariant space Λ :

1. $\Lambda:=\operatorname{span}\left\{\lambda:=[1,0]^{T}\right\}$. Then $e_{\lambda}=\chi_{[0, \infty)}$ and $S_{\Lambda}=S\left(\psi_{1}\right)$ is the space of piecewise constant polynomials with integer breakpoints.
2. $\Lambda:=\mathbb{R}^{2}$. Then $S_{\Lambda}=S(\psi)$.
3. (The interesting case) $\Lambda:=\operatorname{span}\left\{\lambda:=[0,1]^{T}\right\}$. Calculating $h(0)=[0,0,0,1]^{T} \Gamma h(1)=$ $A_{1} h(0) \Gamma h(2)=A_{0} h(1) \Gamma$ and $h(3)=A_{1} h(1) \Gamma$ we find that the span of $h(0), \ldots, h(3)$ is $\left\{A_{0}, A_{1}\right\}$-invariant and so equals \mathcal{H}_{Λ}. By a simple reduction Γ we find that \mathcal{H}_{Λ} is also spanned by the four vectors

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
s+t-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
s \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] .
$$

Hence $\mathcal{H}_{\Lambda}^{0}$ is $\operatorname{span}\left\{[0,1]^{T},[s+t-1,0]^{T}\right\}$. By Theorem $2.5 \Gamma \Lambda$ is a proper subset of $\Sigma\left(S_{\Lambda}\right)$ whenever $s+t \neq 1$. It follows that $S(\psi)$ and $S\left(\psi_{1}\right)$ are the only local refinable FSI subspaces of $S(\psi)$ when $s+t \neq 1$; but Γ when $s+t=1 \Gamma$ there is a third local refinable FSI subspace $\Gamma S\left(e_{\lambda}\right)$. Lastly Γ since $a(1) \lambda=[1, t]^{T} \Gamma$ we see that $\mathcal{L}_{\Lambda}=\mathbb{R}^{2}$ and so Γ by Theorem $2.6 \Gamma S_{\Lambda \mid}=\operatorname{span}\left\{\psi_{1}, \psi_{2}\right\}$ for any values of s and t.
When $a(0)$ is not diagonalizableएwe may assume (by a change of basis for ψ_{2}) that

$$
a(0)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

The only choices for $\Lambda \Gamma$ in this case Γ are $\Lambda=\operatorname{span}\left\{[1,0]^{T}\right\} \Gamma$ and $\Lambda=\mathbb{R}^{2}$. So the only local refinable FSI spaces are $S\left(\psi_{1}\right)$ (which is the space of all piecewise constant polynomials with integer breakpoints) and $S(\psi)$.

Acknowledgement. The authors would like to thank Mike Neamtu for several helpful discussions during the preparation of this paper.
[1] C. de Boor and R. DeVore (1985) Г "Partitions of unity and approximation" Γ Proc. Amer. Math. Soc. 93Г705-709.
[2] W. Dahmen and C. A. Micchelli (1997)Г"Biorthogonal wavelet expansions" Γ Constr. Approx. 13Г293-328.
[3] T. A. Hogan (to appear) Γ "A note on matrix refinement equations" TSIAM J. Math. Anal.
[4] T. A. Hogan and R.-Q. Jia (in preparation) Γ "Dependency relations among the shifts of a multivariate refinable distribution"
[5] R.-Q. Jia (1995) Г"The Toeplitz theorem and its applications to approximation theory and linear PDE's" Γ Trans. Amer. Math. Soc. 347Г2585-2594.
[6] R.-Q. Jia (1997) Г "Shift-invariant spaces on the real line" Γ Proc. Amer. Math. Soc. 125Г785-793.
[7] R.-Q. Jia (to appear) Γ "Shift-invariant spaces and linear operator equations" Γ Israel J. Math.
[8] R.-Q. Jia (to appear) Γ "Stability of the shifts of a finite number of functions" Γ J. Approx. Theory
[9] R.-Q. Jia (184) Γ "Multiresolution of L_{p} spaces" Γ J. Math. Anal. Appl.1994; 620-639;
[10] Q. Jiang and Z. Shen (to appear) Г"On existence and weak stability of matrix refinable functions" Γ Constr. Approx.
[11] C. A. Micchelli (1995)Г Mathematical Aspects of Geometric Modeling Г CBMS-NSF Regional Conference Series in Applied Mathematics v.65ГSIAM (Philadelphia PA).
[12] C. A. Micchelli and H. Prautzsch (1989) Γ "Uniform refinement of curves" Γ Linear Algebra Appl. 114/115Г841-870.
[13] C. A. Micchelli and H. Prautzsch (1987) Г"Refinement and subdivision for spaces of integer translates of a compactly supported function" 「in Numerical Analysis 1987 (D. F. Griffiths and G. A. WatsonГeds.) Longman Scientific and Technical (Essex) Γ 192-222.
[14] C. A. Micchelli and T. Sauer (1997) Γ "Regularity of multiwavelets" Γ Advances in Comp. Math. 7Г455-545.

[^0]: * This work was partially supported by a grant from the NSF and a grant from the Vanderbilt University Research Council.

