Short Note
A divided difference expansion of a divided difference
Carl de Boor
Department of Computer Sciences
University of Wisconsin-Madison
running head: DIVIDED DIFFERENCE EXPANSION OF DIVIDED DIFFERENCE

```
address: deboor@cs.wisc.edu
    tel: 1-608-263-7308
    fas: 1-608-262-9777
```

Abstract A divided difference expansion with remainder for a general divided difference is derived that contains Floater's recent derivative expansion as a special case.
key words divided difference, univariate, remainder, interpolation

It is the purpose of this note to record a divided difference expansion of a divided difference, as suggested by the intriguing derivative expansion of a divided difference recently derived by M. Floater (see [F]), and containing the latter as a special case.

With $\left[t_{1}, \ldots, t_{n}\right]$ the divided difference (functional) at the point sequence $\left(t_{1}, \ldots, t_{n}\right)$, here is the formula.
Proposition. Let $t:=\left(t_{1}, \ldots, t_{n}\right)$ and $s:=\left(s_{1}, \ldots, s_{m}\right)$ be real sequences, with $n \leq m$, and set

$$
\psi_{i, j}:=\prod_{k=i}^{j-1}\left(\cdot-s_{k}\right), \quad i, j=1, \ldots, m+1
$$

Then,

$$
\begin{equation*}
\left[t_{1}, \ldots, t_{n}\right]=\sum_{j=n}^{m}\left(\left[t_{1}, \ldots, t_{n}\right] \psi_{j-n+2, m+1}\right)\left[s_{j-n+1}, \ldots, s_{m}\right]+R_{m}(t, s), \tag{1a}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{m}(t, s)=\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)\left(\left[t_{i}, \ldots, t_{n}\right] \psi_{i+1, m+1}\right)\left[t_{1}, \ldots, t_{i}, s_{i}, \ldots, s_{m}\right] \tag{1b}
\end{equation*}
$$

Proof: \quad The proof is by induction on m, the case $m=n$ being the readily derivable identity

$$
\left[t_{1}, \ldots, t_{n}\right]-\left[s_{1}, \ldots, s_{n}\right]=\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)\left[t_{1}, \ldots, t_{i}, s_{i}, \ldots, s_{n}\right]
$$

which occurred to me after reading Floater's account in [F] of an argument in [DL] that proves this identity for a constant sequence t, but which I eventually found already in Eberhard Hopf's 1926 dissertation [H].

Assuming (1b) to be correct for a given m, let s_{0} be an arbitrary point in \mathbb{R}. Since, by Leibniz' formula, $\left[t_{i}, \ldots, t_{n}\right]\left(\left(\cdot-s_{i}\right) f\right)=\left(t_{i}-s_{i}\right)\left[t_{i}, \ldots, t_{n}\right] f+\left[t_{i+1}, \ldots, t_{n}\right] f$, hence

$$
\begin{equation*}
\left(t_{i}-s_{i}\right)\left[t_{i}, \ldots, t_{n}\right] f=\left[t_{i}, \ldots, t_{n}\right]\left(\cdot-s_{i}\right) f-\left[t_{i+1}, \ldots, t_{n}\right] f \tag{2}
\end{equation*}
$$

(1b) implies that

$$
\begin{aligned}
R_{m+1}\left(t,\left(s_{0}, s\right)\right)= & R_{m}(t, s)-\left(\left[t_{1}, \ldots, t_{n}\right] \psi_{1, m+1}\right)\left[s_{0}, \ldots, s_{m}\right] \\
= & \sum_{i=1}^{n}\left(\left[t_{i}, \ldots, t_{n}\right] \psi_{i, m+1}-\left[t_{i+1}, \ldots, t_{n}\right] \psi_{i+1, m+1}\right)\left[t_{1}, \ldots, t_{i}, s_{i}, \ldots, s_{m}\right] \\
& \quad-\left(\left[t_{1}, \ldots, t_{n}\right] \psi_{1, m+1}\right)\left[s_{0}, \ldots, s_{m}\right] \\
& =\sum_{i=1}^{n}\left(\left[t_{i}, \ldots, t_{n}\right] \psi_{i, m+1}\right)\left(\left[t_{1}, \ldots, t_{i}, s_{i}, \ldots, s_{m}\right]-\left[t_{1}, \ldots, t_{i-1}, s_{i-1}, \ldots, s_{m}\right]\right) \\
= & \sum_{i=1}^{n}\left(\left[t_{i}, \ldots, t_{n}\right] \psi_{i, m+1}\right)\left(t_{i}-s_{i-1}\right)\left[t_{1}, \ldots, t_{i}, s_{i-1}, \ldots, s_{m}\right]
\end{aligned}
$$

and moving the factors $\left(t_{i}-s_{i-1}\right)$ to the left and renaming $\left(s_{0}, \ldots, s_{m}\right)$ to $\left(s_{1}, \ldots, s_{m+1}\right)$ finishes the proof.

Floater's formula is the special case when $s_{i}=x$ for all i, hence $\psi_{i+1, m+1}=(\cdot-x)^{m-i}$, while, as Floater kindly pointed out to me, the Dokken/Lyche formula (see [DL]) for the derivatives of the error in Hermite interpolation is the special case when t is constant. More than that, Floater also pointed out that, with $p:=m-n,(1 \mathrm{a}-\mathrm{b})$ can also be written

$$
\begin{equation*}
\left[t_{1}, \ldots, t_{n}\right]=\left[t_{1}, \ldots, t_{n}\right] \sum_{j=n}^{m} \psi_{1, j}\left[s_{1}, \ldots, s_{j}\right]+\sum_{i=1}^{n}\left(t_{i}-s_{i+p}\right)\left(\left[t_{1}, \ldots, t_{i}\right] \psi_{1, i+p}\right)\left[s_{1}, \ldots, s_{i+p}, t_{i}, \ldots, t_{n}\right] \tag{3}
\end{equation*}
$$

Indeed, reversing the order of the entries of both t and s converts (1a-b) into (3).
Floater [F] also proves, for the case of constant s and using properties of the elementary symmetric functions, that, for odd $m-n$,

$$
\begin{equation*}
R_{m}(t, s) f=\left(\left[t_{1}, \ldots, t_{n}\right] \psi_{1, m+1}\right) D^{m} f(\xi) / m! \tag{4}
\end{equation*}
$$

for some ξ in the interval containing both t and s (and assuming that f is sufficiently smooth). Such a result can also be proved in our more general context, using elementary properties of the divided difference, as follows.

By (2) and induction,

$$
\begin{align*}
{\left[t_{1}, \ldots, t_{n}\right] \psi_{1, m+1} } & =\left(t_{1}-s_{1}\right)\left[t_{1}, \ldots, t_{n}\right] \psi_{2, m+1}+\left[t_{2}, \ldots, t_{n}\right] \psi_{2, m+1} \\
& =\cdots \\
& =\sum_{i=1}^{n}\left(t_{i}-s_{i}\right)\left[t_{i}, \ldots, t_{n}\right] \psi_{i+1, m+1} \tag{5}
\end{align*}
$$

Since this is the sum of the coefficients in (1b), (4) follows provided one can show that these coefficients are all of the same sign. This is indeed possible for the case $m-n$ odd, under some assumption on s. The simplest such assumption is that the smallest interval containing s contains no t_{j} in its interior (certainly satisfied when s is constant).

Since (as already used) $\left[t_{1}, \ldots, t_{n}\right] f=D^{n-1} f(\xi) /(n-1)$! for some ξ in the smallest interval containing all the t_{j}, it is clear that $\left[t_{1}, \ldots, t_{n}\right] \psi_{2, m+1}$ is positive in case all the t_{j} are to the right of all the s_{i}. Also, when $m-n=\operatorname{deg} D^{n-1} \psi_{2, m+1}$ is odd, then $\left[t_{1}, \ldots, t_{n}\right] \psi_{2, m+1}$ is negative in case all the t_{j} are to the left of all the s_{i}. Hence, in both cases, $\left(t_{1}-s_{1}\right)\left[t_{1}, \ldots, t_{n}\right] \psi_{2, m+1}$ is nonnegative. Otherwise, there are t_{j} both to the left and to the right of s_{1}, hence, after exchanging t_{1} with some more suitable t_{j} if necessary, $\left(t_{1}-s_{1}\right)\left[t_{1}, \ldots, t_{n}\right] \psi_{2, m+1}$ is nonnegative in this case, too. Thus, by (5) and induction, there is a reordering of t so that all the coefficients in (1b) are nonnegative, and (4) follows.

The simple example $s=(0,0,3), t=(2,2)$, for which $\left[t_{1}, \ldots, t_{n}\right] \psi_{1, m+1}=0$, shows that (4) does not hold in general.

References

[DL] T. Dokken and T. Lyche, A divided difference formula for the error in Hermite interpolation, BIT 19 (1979), 540-541.
[F] M. Floater, Error formulas for divided difference expansions and numerical differentiation, J. Approx. Theory xx (200x), $\mathrm{xxx}-\mathrm{xxx}$.
[H] Eberhard Hopf, "Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften", dissertation, Universität Berlin (30 pp), 1926.

