
multivariate Hermite interpolation (talk at Guernavaca, 13apr99)
I am not really going to say something new, certainly not to the experts in the audience. Rather, I

am going to try to persuade you that a certain point of view concerning interpolation might, at times, be
very convenient. With that view in hand, I then consider Hermite interpolation, as a limit of Lagrange
interpolation.

The particular point of view has its origin in elementary linear algebra, in the answer to the question:
what is the inverse of a basis? leading to interpolation and convenient representation of interpolants, then
to the limit of an interpolation process as the interpolation functionals approach a certain limit, and thence
to Hermite interpolation.

I start off this elementary talk with something truly basic, namely the notion of a basis of a vector
space.

Here is the definition of a basis, as no doubt you all have learned it, possibly already many years ago,
and as it can be found in most current linear algebra textbooks. Here is a sample:

Definition (Strang’76). A basis for a vector space is a set of vectors having two properties as once:
(1) It is linearly independent.
(2) It spans the space.

This definition is a bit strange for the following reason (and you can check this out with your favorite
Linear Algebra text, too). When it comes time to define the terms ‘linear independent’ and ‘spanning’
needed here, the elements of the set in question are always enumerated. E.g., Strang (loc.cit) writes:

Given a set of vectors v1, . . . , vk, we look at their linear combinations c1v1 + c2v2 + · · · + ckvk.
Further, here is a pop quiz: Assuming that

v1 = x = v2 6= 0,

is the set
{v1, v2}

linearly independent? (NO SI )
So, all of you who voted NO, i.e., most of you, don’t really view a basis as a set, but as a sequence. This

is slowly being realized by the textbook writers. E.g., in Strang’s 1993 ‘Introduction to Linear Algebra’, the
above definition still appears, but with just one change, namely ‘set’ is replaced by ‘sequence’, and I am
happy to take credit for that change (but acknowledge that my task of persuasion was made easier because
I could point to the fact that, e.g., Bourbaki defines a basis as ‘une famille’, i.e., an ‘indexed set’, with those
two properties).

But I am still not satisfied. I am now working on some textbook writers to get them to use a definition
of basis that explicitly acknowledges the sole purpose of a basis.

That purpose, I claim, is to provide linear representations . As you all know, if X is the vector space and
(v1, . . . , vk) is the basis in question, then, for every x ∈ X , there is exactly one choice of the scalar sequence
c1, . . . , ck so that

x = c1v1 + · · · + ckvk.

The linear independence says that there is at most one such choice, the spanning property says that there is
at least one such choice. But, if that is the purpose, why not come right out and say so from the start and
save the students a lot of confusion?

So, let me start from scratch.
By and large, we cannot compute with vectors in a vector space, we can only compute with scalars, i.e.,

elements in the underlying field F, typically the real or the complex numbers. Hence, in order to compute
with vectors, we have to represent them by scalars.

Ideally, such a representation is linear , hence a linear map

V : F
k → X

from scalar k-sequences
F

k := {c := (c(1), . . . , c(k)) : c(j) ∈ F}
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to the vector space X in question.
Any such linear map is of the form

V : F
k → X : c 7→ c(1)v1 + · · · + c(k)vk

with
vj := V ij

the image under V of the jth coordinate vector in F
k:

ij := ( 0, . . . , 0︸ ︷︷ ︸
j−1 terms

, 1, 0, . . .).

Conversely, any k-sequence (v1, . . . , vk) in X gives rise to a linear map from F
k to X , by the prescription

F
k → X : c 7→ v1c(1) + · · · + vkc(k) =: [v1, . . . , vk]c.

Note how I have written here the weights to the right of the vectors, to stress that we are mapping c to
something and in order to motivate the abbreviation [v1, . . . , vk] for this map.

This abbreviation is standard in case also X here is a coordinate space. Indeed, if X = F
m, then we

are accustomed to write its elements vj as one-column matrices,

vj =:




vj(1)
...

vj(m)


 .

Correspondingly, in that case
c(1)v1 + · · · + c(k)vk = V c,

with V the (m, k)-matrix

V := [v1, . . . , vk] =




v1(1) · · · vk(1)
... · · ·

...
v1(m) · · · vk(m)




that has vj as its jth column, all j. It it therefore an easy generalization to define, for an arbitrary sequence
(v1, . . . , vk) in an arbitrary vector space X over F, the map

[v1, . . . , vk] : F
k → X : c 7→ v1c(1) + · · · + vkc(k),

and call it the (k-)column map, with columns v1, . . . , vk.
• The k-column maps (with columns in X) comprise the linear maps from F

k to X .
• The set of linear combinations of the sequence (v1, . . . , vk) is the range of the corresponding column

map, [v1, . . . , vk].
• For any linear map A : X → Y ,

A[v1, . . . , vk] = [Av1, . . . , Avk].

Note: In some areas, e.g., wavelets and CAGD, it has unfortunately become customary to write

∑

j

c(j)vj = [c(1), . . . , c(k)]




v1
...

vk



 ,

and that is certainly ok in isolation. The problem comes when we now want to apply some linear map A to
the sum, something that’s naturally handled by the column map notation I am trying to persuade you to
use.
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Having in this way identified the linear maps from F
k to X with the k-column maps (and their range

with the linear combinations of their columns), the rest is very simple:
We would like a unique and linear representation of every x ∈ X , i.e., we would like an invertible linear

map from some F
k to X , and that is exactly what the column map corresponding to a basis provides:

[v1 . . . , vk] is

{
1-1
onto
invertible

}
⇐⇒ (v1 . . . , vk) is

{
lin.indep.
spanning
a basis

}

It is puzzling to me why, with these simple map notions of 1-1, onto, invertible available, there was
any need to make up the additional terms ‘linear independent’, ‘spanning’, ‘basis’. I recognize that it is too
late to change matters now. But I do think we owe it to our students to stress this sole purpose of a basis,
namely to provide a unique linear representation in terms of scalars, i.e., to provide the corresponding basis
map, and so make it easier for them to handle those conventional terms.

Here is a silly example. You learn that every finite-dimensional vector space has a basis. So, what about
the trivial space, {0}? We need an invertible linear map to {0} from F

k for some k. Well, then F
k better

have just one element, and that is exactly the case for k = 0 in which case F
k consists of all sequences with

0 entries. There is just such sequence, the empty sequence, (), and the basis map is the unique map from
F

0 to {0}, and is obviously invertible. It’s the column map with no columns,

[ ]

(cf. matlab).
A more serious example (at least for my undergraduate students) is change of basis. Once we think in

terms of the basis map, this problem is trivial:
If we know that x = Wd for some basis(map) W , and V is any basis(map), then

x = V V −1Wd = V c, for c := V −1W.

In other words, V −1W is the so-called transition matrix, evidently a (square) matrix since it is a linear
map from F

k to itself.
The same ease is experienced when wanting to represent the linear map A : Y → X with respect to

bases W for Y and V for X , something we have to do if we wanted to actually work with the linear map A:
If we know that y = Wd, then we compute Ay = V V −1AWd, i.e.,

Ay = V c, for c := (V −1AW )d.

Hence V −1AW is the needed matrix.
Of course, all of this you already know. So, next comes the question that I usually get at this point

from one of the more active students: how do I get hold of V −1, i.e.,
what is the inverse of a basis?

This is a serious question, particularly for students since, for them a map makes sense only if they the
have a formula for it.

If X happens to be a coordinate space, i.e., necessarily X = F
k, then V = [v1, . . . , vk] is just a square

matrix and, correspondingly, V −1 is just its matrix inverse. In any other case, who knows???
It turns out that, in the general case, there is essentially just one recipe. You will recall special cases of

this if not the recipe itself as soon as you see it. But I think it very worthwhile to stress this simple general
recipe. In fact, I would judge my talk a success if all you took away from it is this recipe.

Recipe. If V : F
k → X is a basis(map) for the linear subspace X of the vector space Z, and Λt : Z → F

k

is a linear map whose restriction to X is 1-1 or onto, then the matrix ΛtV is invertible, and

V −1 = (ΛtV )−1Λt on X.

There’s nothing to the proof: Since V is 1-1 and onto, while the restriction of Λt to X = ranV is 1-1 or
onto, the matrix ΛtV is 1-1 or onto, hence invertible (since it is square). Therefore

W := (ΛtV )−1Λt
X

is well-defined, and WV = id by inspection, hence W is a left inverse for V , hence the inverse (since V is
invertible, by assumption).
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One way to view this recipe is as the result of having discretized the abstract equation

V ? = x

by applying Λt to both sides, thereby obtaining the numerical equation

ΛtV ? = Λtx.

For this to work, Λt better be 1-1 on X and ΛtV better be square.
It follows that

V (ΛtV )−1Λt

is (a beautiful way to write) the identity on X . In other words,

x = V (ΛtV )−1Λtx

is the irredundant representation of x ∈ X provided by the basis(map) V .
In practice, it may not be easy to know a priori whether Λt

X is 1-1 or onto but one can often verify
directly that ΛtV is 1-1 or onto and then one even knows that, necessarily, V is a basis for its range.

Example
If Z is itself a coordinate space, Z = F

m, say, hence V is an m × k-matrix, then Λt : F
k → F

m is, in
effect, a k × m-matrix. A standard choice for Λt is V ∗, the (conjugate) transposed of V since, with V a
basis for its range, i.e., V 1-1, so is V ∗V and, being square, it is therefore invertible. The right side of the
resulting formula

V −1 = (V ∗V )−1V ∗ on X = ranV

is, of course, the generalized inverse of V . Correspondingly,

V (V ∗V )−1V ∗

is the ortho-projector from F
m onto X .

More generally, for any Λt : Z → F
k for which ΛtV is invertible,

P := V (ΛtV )−1Λt

is the identity on its range, X , hence is a linear projector on Z to X . In fact, any linear projector from Z
to X arises in this way.

This particular one is the unique linear projector to X for which

ΛtPz = Λtz, ∀z ∈ Z,

i.e., for which Pz is the unique element in X that matches the information about z contained in the vector
Λtz. For this reason, Λt is called a data map, and P is an interpolation scheme for interpolation to the data
supplied by Λt.

Example
Here is another standard example. I’ll take

Z := Π,

the space of all (real-valued univariate) polynomials, as functions on the real line, and take

X := Πn := ranV, with V := [()j : j = 0:n],
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with
()j : t 7→ tj

my poor attempt at filling a painful hole in the notations provided by Mathematics. In other words, Πn is,
by definition, the linear space of all polynomials of degree ≤ n.

I’ll take for Λt the restriction to a (n + 1)-set T = {τ0, . . . , τn} of real numbers, so

Λt = Λt
T :=: g 7→ g T = (g(τi) : i = 0:n) ∈ R

n+1.

How do I know that Λt
TV is invertible? Since you all have learned this fact in some basic numerical

analysis course, here is an opportunity to get more comfortable with this map point of view:
Recall the Lagrange polynomial:

ℓi : t 7→
∏

j 6=i

t − τj

τi − τj

For it
Λt

Tℓi = ii := (δij : j = 0:n).

Hence, for the corresponding column map

W := [ℓ0, . . . , ℓn],

we compute
Λt

TW = Λt[ℓi : i = 0:n] = [Λtℓi : i = 0:n] = id.

This implies that the n + 1-column map W is 1-1, and since it is into Πn, which is the range of the n + 1-
column map V , both W and V must be a basis(map) for Πn. But then, also Λt

TV must be invertible, since
it is square and, e.g.,

id = Λt
TW = ΛtV (V −1W ).

projectors, interpolation, change of basis
In the last example, the resulting map

PT = V (Λt
TV )−1Λt

T

is the linear projector that associates g ∈ Z with the unique polynomial of degree ≤ n that matches g at the
(n + 1)-point set T = {τi : i = 0:n}, i.e., PTg is the corresponding polynomial interpolant to g.

In full generality,
Pg = V (ΛtV )−1Λt g

is the unique element of ranP = ranV that matches g ‘at’ Λt, i.e., for which ΛtPg = Λtg. It is in this sense
that the general recipe for the inverse of a basis is, at the same time, the general recipe for interpolation
from ranV = X to some data supplied by the map Λt.

In this sense, we can also think of it as nothing more than a change of basis . For, if ΛtV is invertible,
then so is Λt

X , and its inverse,

W := (Λt
X)−1,

is necessarily an invertible linear map from F
k to X , hence a basis for X . Knowing Λtx for some x ∈ X

means knowing nothing more than knowing the coordinates of x with respect to the basis W , from which
our formula Px = V (ΛtV )−1Λtx merely constructs the coordinates (ΛtV )−1Λtx of x with respect to V .

analysis and synthesis; row maps and column maps
The maps V and Λt play dual roles in this discussion.
Λt : Z → F

k plays the role of a data map, or an analysis operator, as it extracts numerical information
from the elements of Z.
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V : F
k → X goes the other way; from such numerical information, V (re)constructs an element of X , it

is a synthesis operator.
Any such V is characterized by its columns. Dually, every Λt : Z → F

k is characterized by the linear
functionals

λi : Z → F : z 7→ (Λtz)(i), i = 1:k,

i.e., by the linear functionals defined by

Λtz =: (λiz : i = 1:k), z ∈ Z.

That being so, and in view of the special case Z = F
m, it is natural to write such Λt, more explicitly, as

Λt = [λ1, . . . , λk]t,

calling it a (k-)row map, with rows λ1, . . . , λk.
E.g., for polynomial interpolation at the points of T,

Λt = Λt
T = T = [δτi

: i = 0:n]t,

with
δτ : g 7→ g(τ)

the linear functional of point evaluation at τ .
In this way, the matrix

ΛtV = [λ1, . . . , λk]t[v1, . . . , vk] = (λivj : i, j = 1:k)

is the Gramian of the two sequences, while

V Λt = [v1, . . . , vk][λ1, . . . , λk]t : z 7→
∑

j

(λjz)vj

is the general linear map on Z with range in X = ranV .

simplify the formula P = V (ΛtV )−1Λt

In particular, V and Λt might be dual to each other, i.e.,

ΛtV = id,

in which case the formula P = V (ΛtV )−1Λt simplifies, i.e., then

V Λt

is a linear projector onto ranV .
E.g., V = [()j : j = 0:n] is dual to

Λt : z 7→ (Djz(0)/j! : j = 0:n),

leading to the truncated Taylor expansion at 0:

z(t) ≈
∑

j

tjDjz(0)/j!.

If the Gramian is merely invertible, then any factorization

ΛtV = AC
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of the Gramian into square, hence invertible, matrices A and C leads to the modified maps

V̂ := V C−1, Λ̂t := A−1Λt,

which are dual to each other but describe the same linear projector:

V̂ Λ̂ = P = V (ΛtV )−1Λt.

For our example of polynomial interpolation, a simple choice is

A = id, C = ΛtV,

hence
Λ̂t = Λt

and therefore, necessarily,
V̂ = V (ΛtV )−1 = [ℓi : i = 0:n]

the column map whose columns are the relevant Lagrange polynomials. By expanding ℓi in powers, we get
in this way an explicit formula for the inverse of the matrix ΛtV , the Vandermonde matrix, socalled by
Lebesgue.

A more interesting factorization of the Vandermonde is the one obtained by Gauss elimination (without
pivoting): Here

ΛtV = LU,

with L lower triangular and U upper triangular. Such a factorization if it exists is unique up to the choice
of the diagonal elements of either L or U . I’ll choose U to be unit upper triangular.

Then also U−1 is unit upper triangular, hence v̂j , as column j of

[. . . , v̂j , . . .] := V̂ = V U−1 = [()0, . . . , ()n]




· · ·

×
...
×
1
0
...
0

· · ·




,

has leading term tj , i.e., v̂j(t) = tj + lot.
Further,

[. . . , Λtv̂j , . . .] = ΛtV̂ = LΛ̂V̂ = L =



· · ·

0
...
0
×
...
×

· · ·




is lower triangular, hence v̂j vanishes on t0, . . . , tj−1. Hence, altogether,

v̂j =
∏

i<j

(· − ti), j = 0:n,

and we recognize these as the polynomials appearing in the Newton form for the interpolating polynomial.
Again, since L is lower triangular, λ̂i, as row i of L−1Λt, is a linear combination of the evaluations

δτ0
, . . . , δτi

, and, since




· · ·

λ̂iv1, . . . , λ̂ivn

· · ·



 = Λ̂V = Λ̂V̂ U = U =




· · ·

0 · · · 0 1 · · ·
· · ·
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is unit upper triangular, λ̂i vanishes on ()0, . . . , ()i−1 and has the value 1 on ()i, hence

λ̂i = ∆(τ0, . . . , τi),

the divided difference at the point sequence (τ0, . . . , τi) (in Velvel Kahan’s felicitous notation).
I like the idea that, at least in the univariate context, divided differences arise naturally from Gauss

elimination, as this points to a natural generalization of divided differences to the multivariate context.
You may have fun working out the details of the following related claim:

. The Gram-Schmidt algorithm of orthogonalization of a linearly independent sequence (v1, . . . , vk) is Gauss
Elimination without pivoting applied to the Gram matrix

V ∗V = (〈vj , vi〉 : i, j = 1:k).

Hermite is coalescence
So far, this has been a very leisurely walk through very familiar territory but, perhaps, with very strange

glasses on. My claim is that these glasses are very useful once you get used to them. I mainly took the time
for this leisurely walk in order to give you a chance to get used to them.

I am now ready to take on the stated topic of this talk, namely Hermite interpolation.
To me, it is a question of the dependence of, e.g., polynomial interpolation

PT = VTΛt
T, VT := [ℓj : j = 0:n], Λt

T := T,

on the sequence T = (τi : i = 0:n). Specifically, I want to know what happens as T → Σ with some of the
entries of Σ coincident. (Of course, you all know what happens, so this is still one more bit of preparation
for the multivariate case.)

If we look directly at VT and Λt
T, we notice that Λt

T → Λt
Σ, while VT fails to converge. Does this mean

that PT fails to converge? Of course not. It only means that this particular description of PT isn’t very
helpful here.

Let’s look again at our general description

P = V (ΛtV )−1Λt

of a linear projector. For V here, we can take any basis of ranP . What is our freedom as regards the data
map Λt?

By going to the dual, we see that
P ′ = Λ((ΛtV )−1)′V ′,

hence that
(Λt)′ = Λ = [λ1, . . . , λk]

can be chosen as any particular basis for ranP ′. While ranP provides the interpolant, ranP ′ provides the
interpolation functionals, i.e.,

ranP ′ = ranΛ = {λ ∈ Π′ : λ = λP},

a description of the information to be matched.
With this, our task is simple: check what happens to ranPT and ranP ′

T as T → Σ.
Since ranPT = Πn regardless of T, nothing happens there. What about ranP ′

T = ran[δτ : τ ∈ T]?
Well, you all know the answer, as one of the payoffs of the Newton form. Extend T in any way whatsoever

to a bounded infinite sequence T̃ and extend Σ by the same terms. Then still T̃ → Σ̃, and

v̂j :=
∏

i<j

(· − τi), j = 0, 1, . . .
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provides a basis for Π, and this basis converges elementwise to

ŵj :=
∏

i<j

(· − σi), j = 0, 1, . . .

as T̃ → Σ̃. Since
λ̂iv̂j = δij ,

it follows that
λ̂i = ∆(τ0, . . . , τi)

converges to the corresponding coordinate functional for the basis

Ŵ := [ŵj : j = 0, 1, . . .],

usually also denoted
∆(σ0, . . . , σi).

Hence
PT → PΣ := V̂ΣΛ̂t

Σ

with
Λ̂Σ := [∆(σ0, . . . , σi) : i = 0:n]

1-1, hence a basis for its range.
What exactly is its range? Since this range is finite-dimensional, we know that

ran Λ̂Σ = {λ ∈ Π′ : kerλ ⊃ ker Λ̂t
Σ}.

Since
ker Λ̂t

Σ = (· − σ0) · · · (· − σn)Π,

this implies that ran Λ̂Σ contains the sequence

(δzD
j : 0 ≤ j < #{i : z = σi})

which is linearly independent and of length n + 1, hence necessarily a basis for the space of ‘interpolation
functionals’ for the limiting PΣ.

multivariate
Finally, I am ready to discuss the multivariate situation. Now

T

is a sequence in R
d for some d > 1 and the question is again:

lim
T→Σ

ran[δτ : τ ∈ T] =???

As you surely already know, at least from Mariano Gasca’s talk yesterday, we don’t have any divided
difference to help us since it isn’t at all obvious how we should choose an interpolating polynomial. Yet,
even without any particular ranP in mind, it makes sense to consider linear projectors P with data map Λt

T

and to wonder what happens to the corresponding space of interpolation functionals as T → Σ.
So, let’s explore, by taking

T = (τ0, . . . , τn)

with n = 1.
If, e.g.,

τ0 = ϑ, τ1 = ϑ + εξ,

9



then, as ε → 0, we get
lim
ε→0

(δτ1
− δτ0

)/ε = lim
ε→0

(δϑ+εξ − δϑ)/ε = δϑDξ

i.e., the value at ϑ of the directional derivative

Dξ :=

d∑

i=1

ξ(i)Di.

If, on the other hand,
τ1 = ϑ + ε(cos(1/ε), sin(1/ε)),

then ran[τ0, τ1] fails to have a limit as ε → 0.
So we must be prepared to be modest in our expectations.
We consider first the simplest possible situation, namely that

T = εΞ, ε → 0.

Let
λ :=

∑

ξ∈Ξ

c(ξ)δξ,

and consider

λεp :=




∑

ξ∈Ξ

c(ξ)δεξ



 p = λp(ε·)

for some polynomial p as ε → 0. Write the polynomial in power form, i.e.,

p =
∑

α

()αp̂(α),

with
()α : R

d → R : t 7→ t(1)α(1) · · · t(d)α(d),

and
p̂(α) := Dαp(0)/α!, α ∈ Z

d
+

its power coefficients, and

Dα := D
α(1)
1 · · ·D

α(d)
d

the corresponding partial derivative, and

α! := α(1)! · · ·α(d)!.

We’ll also use the standard notation
p(D) :=

∑

α

p̂(α)Dα

for the corresponding constant coefficient differential operator, as well as the standard notation

|α| := α(1) + · · · + α(d).

With these notations, we compute

λεp = λp(ε·) =
∑

ξ∈Ξ

c(ξ)
∑

α

(εξ)αp̂(α)

=
∑

j

εj
∑

|α|=j

∑

ξ∈Ξ

c(ξ)ξα

︸ ︷︷ ︸
λ()α

p̂(α)

=
∑

j≥order λ

εj
∑

|α|=j

λ()αp̂(α)
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with

orderλ := min{|α| : λ()α 6= 0}.

Therefore

lim
ε→0

λεp/εorderλ =
∑

|α|=orderλ

λ()αp̂(α) =
∑

|α|=orderλ

λ()α 1

α!
Dαp(0)

= q(D)p(0),

with

q :=
∑

|α|=orderλ

∑

ξ∈Ξ

c(ξ)
ξα

α!
()α = ???

a certain polynomial, that we’ll look further into. Note that, in the univariate case, this sum would only
have one term in it and, correspondingly, the limit is just a scalar multiple of the (orderλ)-th derivative at
the origin, just as expected. In the multivariate case, things are much more complicated.

Yet, as we look further into this polynomial q, we’ll also discover real beauty.
What does the term ξα/α! remind you of? The exponential function!
Right, you recall

eξ : t 7→ eξ·t =
∑

j

(ξ·t)j/j! =
∑

α

ξα

α!
tα,

the exponential with frequency ξ, with

ξ·t :=
∑

i

ξ(i)t(i)

the standard scalar product in R
d.

Define

f :=
∑

ξ∈Ξ

c(ξ)eξ =
∑

j

∑

|α|=j

∑

ξ∈Ξ

c(ξ)
ξα

α!
()α

︸ ︷︷ ︸
=: f [j]

.

And there we discover q:

q = f [orderλ].

In other words: if we organize f into its homogeneous terms ,

f = f [0] + f [1] + · · · ,

then we find that f [orderλ] is the first such term that is non-zero. For that reason, we call it the least or
initial term of f , and denote it by

f↓.

Conclusion.

lim
ε→0

ran[δεξ : ξ ∈ Ξ] ⊇ {δ0q(D) : q ∈ ΠΞ}

with

ΠΞ := {f↓ : f ∈ ran[eξ : ξ ∈ Ξ]}.

Claim.

lim
ε→0

ran[δεξ : ξ ∈ Ξ] = {δ0q(D) : q ∈ ΠΞ}

since, for any ε > 0,

dim ran[δεξ : ξ ∈ Ξ] = #Ξ = dimΠΞ.
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Let’s try the first equality first. It is a special case of the fact that, for any finite T, [δτ : τ ∈ T] is 1-1,
or, equivalently,

Λt
T = [δτ : τ ∈ T]t

is onto. Is it obvious? Here is a quick proof: Define

wτ : t 7→
∏

σ∈T\τ

(t − σ)·(τ − σ)

and observe that
∀{σ ∈ T} wτ (σ) = 0 ⇐⇒ σ 6= τ.

Hence
Λt

T[wτ/wτ (τ) : τ ∈ T] = id.

Incidentally, look what we have just produced here: Since each

ℓτ := wτ/wτ (τ)

is a polynomial of degree < #T,
[ℓτ : τ ∈ T]Λt

T

provides a polynomial interpolant to data at an arbitrary finite pointset T. The interpolant has some nice
properties. For example, it is symmetric in the points in T, and, in the univariate case, it reduces to the
standard polynomial interpolant. Remember how earlier I bemoaned the fact that there doesn’t seem to be
a ‘natural’ polynomial interpolant to data at an arbitrary pointset? So, why am I not happy with this one?

It has an unnecessarily high degree. E.g., for three generic points in the plane, it will give a quadratic
interpolant while the ‘natural’ interpolant is linear.

Back to our problem of identifying

ΠΞ = {f↓ : f ∈ ran[eξ : ξ ∈ Ξ]}.

We know that it is in the limit of a sequence of linear spaces, each of dimension #Ξ. Consequently, we
now know that

dimΠΞ ≤ #Ξ.

To get equality, hence get the second needed equality in the (second display of the) Claim, we merely
have to find a linearly independent sequence of #Ξ elements in ΠΞ.

Let’s start with the basic question: how do we get any element of ΠΞ?
If we take f(t) = eξ(t) =

∑
j(ξ·t)

j/j!, then, obviously,

eξ↓ = 1.

So far, so good. If #Ξ = 1, that is it. Otherwise, there is ζ ∈ Ξ\ξ, and we could take

f := eζ − eξ = (ζ − ξ)· + hot,

giving us
f↓(t) = (ζ − ξ)·t,

a linear polynomial.
If there are more points in Ξ, we can now form more complicated linear combinations

f =
∑

ξ∈Ξ

c(ξ)eξ =
∑

α

()αf̂(α)

with the goal of having the first so many power coefficients f̂(α) equal zero.
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The first so many??? Well, choose any ordering of the multi-index set Z
d
+ you like as long as it is

compatible with degree, i.e., as long as

|α| < |β| =⇒ α < β.

(E.g., the lexicographic ordering will do.) With that, we can think of

f̂ = (f̂(α) : α ∈ Z
d
+)

as a(n infinite) vector. Since f̂ is a weighted sum of the coefficient vectors

êξ := (ξα/α! : α ∈ Z
d
+)

of the functions eξ, all ξ ∈ Ξ, we are, in effect, trying to form linear combinations of the rows of the matrix

G := (ξα/α! : ξ ∈ Ξ, α ∈ Z
d
+) =




· · ·

· · · ξα/α! · · ·
· · ·





in such a way that the first so many entries are zero.
Is that an operation you have come across before???
Of course, that is exactly what Gauss elimination is designed to do!
Gauss elimination produces the factorization

G = LU,

with L invertible and with U in row-echelon form. Since we know that G is onto (i.e., the rows of G are
linearly independent (how??)), we know that each row of U is nontrivial. Since L is invertible, the rows of
U are weighted sums of the rows of G, hence each row of U provides us with an element of ΠΞ. Moreover,
since U is in row-echelon form, the resulting sequence of #Ξ elements of ΠΞ is linearly independent, hence
necessarily a basis for ΠΞ. This finishes the proof of the above Claim.

why eξ here?
Next, here is an explanation for the still unexplained appearance of the exponential functions eξ.
Consider the pairing

A0 × Π : (g, p) → 〈g, p〉 :=
∑

α

ĝ(α)α! p̂(α),

in which p is a polynomial, hence the sum has only finitely many nonzero terms regardless of the choice of
the sequence ĝ, i.e., the pairing makes sense for an arbitrary formal power series

g =
∑

α

()αĝ(α).

Try, in particular,

g = eξ =
∑

α

()αξα/α!,

to get

〈eξ, p〉 =
∑

α

ξαp̂(α) = p(ξ).

Representation. eξ represents δξ on Π wrto the given pairing.

Now also the appearance of ΠΞ makes more sense. In effect,

ΠΞ = lim
ε→0

ran[eεξ : ξ ∈ Ξ]

13



In other words, ΠΞ is the limiting polynomial space of the representers of the interpolation functionals
ran[δεξ : ξ ∈ Ξ] as ε → 0.

To be sure, earlier we wrote those limiting linear functionals as

p → q(D)p(0), q ∈ ΠΞ.

So, here is a final observation, easy to verify:

q(D)p(0) =
∑

α

Dαq(0)
1

α!
Dαp(0)

=
∑

α

q̂(α)α! p̂(α) = 〈q, p〉.

the general case
If T → Σ with Θ the distinct elements in Σ, then, in the nicest situation,

T ∼ (ϑ + εΞϑ : ϑ ∈ Θ), ε → 0,

for certain point sets Ξϑ.
Since

eϑ+εξ = eϑeεξ,

the corresponding space of representers is
∑

ϑ∈Θ

eϑ ran[eεξ : ξ ∈ Ξϑ]

and this converges, as ε → 0, to ∑

ϑ∈Θ

eϑΠΞϑ

leading to the limiting interpolation functionals
∑

ϑ∈Θ

{δϑq(D) : q ∈ ΠΞϑ
}.

properties of ΠΞ

It turns out that ΠΞ has many remarkable properties. I mention only a few:

Properties of ΠΞ.
• ΠΞ is dilation-invariant, i.e.,

q ∈ ΠΞ, r > 0 =⇒ q(r·) ∈ ΠΞ.

• ΠΞ is translation-invariant, i.e.,

q ∈ ΠΞ, τ ∈ R
d =⇒ q(· − τ) ∈ ΠΞ,

hence ΠΞ is D-invariant, i.e.,

q ∈ ΠΞ, α ∈ Z
d
+ =⇒ Dαq ∈ ΠΞ.

Both of these follow from the following perhaps most intriguing property,
•

ΠΞ = ∩
p Ξ=0

kerp[deg p](D).

Conjecture. Every dilation-invariant and translation-invariant (finite-dimensional) polynomial space is nec-
essarily of the form ΠΞ for some set Ξ.[added 20apr08: true for d = 2, false for d > 2 (B. Shekhtman)]

This motivates the following definition:
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Definition: Hermite interpolation. (Multivariate) Hermite interpolation occurs when the space of in-
terpolation functionals is of the form

ranP ′ =
∑

ϑ∈Θ

{δϑq(D) : q ∈ Qϑ}

for some finite point set Θ and some finite-dimensional dilation- and translation-invariant polynomial spaces
Qϑ, ϑ ∈ Θ. [added 20apr08: Have, meanwhile, restricted the term “Hermite interpolation” to mean the
limits of Lagrange interpolation, in view of Shekhtman’s proof that, for d > 2, not every ideal interpolation
is Hermite interpolation in this restricted sense.]

The important property here is the translation invariance of the Qϑ. For this is a necessary and sufficient
condition for P to be an ideal interpolation scheme, as defined by Garrett Birkhoff. This means that

(ranP ′)⊥ = kerP

is an ideal, i.e., closed under pointwise multiplication by any polynomial. By Hilbert’s Nullstellensatz, this
guarantees that there is a finite set H of polynomials, so that

ran(id − P ) = kerP =
∑

h∈H

hΠ,

hence gives hope that, eventually, one may have in hand reasonable error formulae for the error

g − Pg = (id − P )g

in the interpolant Pg to given g.
But that is another whole, well, quite unfinished, story.
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