
ELASTIC SPLINES III: EXISTENCE

OF STABLE NONLINEAR SPLINES

Albert Borbély & Michael J. Johnson

Abstract. Given points P1, P2, . . . , Pn in the complex plane, a stable nonlinear spline is an
interpolating curve, of arbitrary length, whose bending energy is minimal among all nearby

interpolating curves. We show that if the chord angles of a restricted elastic spline f , at
interior nodes, are less than π

2
in magnitude, then f is a stable nonlinear spline. As a

consequence, existence of stable nonlinear splines is now proved for the case when the stencil

angles ψj := arg
Pj+1−Pj

Pj−Pj−1
satisfy |ψj | < Ψ for j = 2, 3, . . . , n − 1, where Ψ (≈ 37◦) is

defined in our previous article. As in our previous articles, the optimal s-curves c1(α, β) play

an important role and here we show that, when |α|, |β| < π
2
, they are also optimal among

Hermite interpolating curves whose tangent directions are never orthogonal to the chord.

1. Introduction

Let P1, P2, . . . , Pn, with Pj 6= Pj+1, be a list of points in the complex plane, and consider
the problem of drawing a fair curve that passes (i.e., interpolates) sequentially through the
given points. Historically, draftsman have drawn such a curve using a spline, nowadays
called a draftsman’s spline, which is a flexible straight-edge that can be bent so that it
interpolates the given points. The bending energy of a curve f is defined as

‖f‖2 :=
1

4

∫ S

0

κ(s)2 ds,

where κ denotes signed curvature and s arclength. The naive model of the draftsman’s
spline is that it assumes the shape of an interpolating curve whose bending energy is
minimal. Whether or not the length of the spline has been prescribed or constrained in
some manner is a significant detail. In this article, we are concerned only with the case when
length has not been prescribed or constrained–the spline is free to assume whatever length
it pleases in pursuit of minimal bending energy. Unfortunately, interpolating curves with
minimal bending energy never exist, except when the points lie sequentially along a line.
This was first observed at General Motors (see [1] and [2]) by Birkhoff, de Boor, Burchard
and Thomas, and they proposed seeking instead an interpolating curve whose bending
energy is locally minimal; that is, minimal among all nearby interpolating curves. (When
length is prescribed or constrained, existence of interpolating curves with minimal bending
energy is proved in [14] and [7].) At General Motors, such interpolating curves were called
nonlinear splines and they observed that the pieces (connecting one interpolation point
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to the next) of a nonlinear spline would be segments of rectangular elastica. Rectangular

elastica (a.k.a simple elastica [9] or free elastica [5]), first described by James Bernoulli

(1694), refers to a curve whose signed curvature κ satisfies the differential equation 2d2κ
ds2 +

κ3 = 0, where s denotes arclength (see [11] for a detailed account). The meaning of the
term nonlinear spline has evolved over the years, so, to avoid confusion, we will call them
stable nonlinear splines. Thus, an interpolating curve F is called a stable nonlinear

spline if there exists ε > 0 such that ‖F‖2 ≤ ‖G‖2 for all interpolating curves G whose
distance from F is less than ε. How one defines the distance between interpolating curves
depends on one’s setup, but in our case (Def. 6.1) this distance is defined to be the
maximal Hausdorff distance between corresponding pieces. Brunnett [5] also uses (one-
sided) Hausdorff distance, while Jerome [14], Fisher & Jerome [7], Golomb & Jerome [10],
Golomb [9], and Linnér [17, 18, 19] employ various Sobolev formulations of distance.

Lee and Forsythe [16] (see also [7] and [10]) have shown that in addition to having pieces
that are segments of rectangular elastica, stable nonlinear splines are curvature continuous
with zero curvature at P1 and Pn. This result resonates with the result for cubic splines

that states that if a smooth function s : [a, b] → R minimizes
∫ b

a
[s′′(x)]2 dx, subject to

given interpolation conditions s(xi) = yi (a = x1 < x2 < · · · < xn = b), then s is a C2

piecewise cubic polynomial satisfying s(xi) = yi (i = 1, 2, . . . ,m) and s′′(a) = s′′(b) = 0.
For cubic splines, the converse is also true but that is not the case for nonlinear splines. In
the language of Golomb and Jerome [10], an interpolating curve that satisfies the necessary
conditions of Lee and Forsythe is called an extremal interpolant. Although every stable
nonlinear spline is an extremal interpolant, the converse is false. Moreover, there exist
points P1, P2, . . . , Pn which have extremal interpolants, but for which no stable nonlinear
spline exists. An example of this (first put forth in [2]) are the four points 1 + i0, 2 + i0,
0 + i2, 0 + i. Golomb [9] has shown that there exists an extremal interpolant for these
points, but a stable nonlinear spline does not exist.

Our list of interpolation points P1, P2, . . . , Pn is called a configuration and it is allowed
to impose clamps at P1 and/or Pn. This means that the direction of the interpolating curve
at P1 and/or Pn is prescribed. The configuration is called free if no clamps are imposed
and is called clamped if both clamps are imposed. When only one clamp is imposed, the
configuration is called free-clamped or clamped-free. Configurations are assumed to be
free, unless otherwise specified. A special configuration, called a ray configuration in [10]
and [9], occurs when the interpolation points lie sequentially along a line. Configurations
can also be designated as closed, in which case the interpolating curve is required to be a
closed curve, where the n-th piece runs from Pn back to P1 (P1 6= Pn) with C

1 continuity
across the node P1. For example, if the interpolation points are the n vertices of a regular
n-gon that is inscribed in a circle C, then C would be an interpolating curve for this closed
configuration.

The term nonlinear spline means different things to different people (see [16] and [19],
eg.), but in the present context it generally refers to an interpolating curve that is in-
clusively between an extremal interpolant and a stable nonlinear spline. Computation of
nonlinear splines, often focusing on clamped 2-point configurations, is discussed in [5, 6,
8, 12, 17]. Existence (and enumeration) of extremal interpolants for regular configurations
(eg., the closed configuration formed by the vertices of a regular n-gon) and for free con-
figurations that are close to a ray configuration is proven in [10], while proofs of existence
(and enumeration) of nonlinear splines for 2-point configurations that are free, clamped,
or free-clamped can be found in [18, 19]. The importance of 2-point configurations can be
explained as follows. If F , written piecewise as F = f1⊔f2⊔· · ·⊔fn−1, is a stable nonlinear
spline for the configuration P1, P2, . . . , Pn, then each piece fj is a stable nonlinear spline
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for the clamped 2-point configuration that it determines, and f1 is also a stable nonlinear
spline for its free-clamped configuration.

Jerome [13] and Fisher & Jerome [7] give a sufficient condition for the existence of
a stable nonlinear spline. Unfortunately, this sufficient condition has not lead to any
existence proofs for stable nonlinear splines. In his technical report, Golomb [9] builds
rather impressive machinery for deciding whether a given extremal interpolant is stable.
The upshot is that if one has a configuration in hand for which an extremal interpolant can
be constructed, then it might be possible to apply Golomb’s machinery to decide whether
it is stable. Several examples are worked out in [9], where the existence of the extremal
interpolant is first proved in [10]:
1. For every ray configuration Q1, Q2, . . . , Qn, there exists ε > 0 such that if |Pi −Qi| < ε,
then there exists a stable nonlinear spline for the configuration P1, P2, . . . , Pn.
2. If P1, P2, . . . , Pn are the corners of a regular n-gon (n ≥ 3), then there exists a stable
nonlinear spline for the closed configuration.
3. The existence or non-existence of stable nonlinear splines has been decided for a large
swathe of clamped 2-point configurations (see comments after Remark 2.2 for more details).

Referring to item 1. above, Golomb writes, “This is probably the first general existence
proof for locally minimizing interpolants which are not length-restricted.” As we are not
aware of any existence proofs (in the present context) of stable nonlinear splines other than
these, we conclude that the present contribution is probably the second general existence
proof for stable nonlinear splines.

In order to state our results, some preparation is needed. As in [3] and [4], a curve is a
function f : [a, b] → C whose first derivative f ′ is absolutely continuous and non-vanishing.

Fig. 1 the chord angles α and β Fig. 2 the stencil angle ψj

When f(a) 6= f(b), the chord angles of f are defined by

(1.1) α := arg
f ′(a)

f(b)− f(a)
and β := arg

f ′(b)

f(b)− f(a)
(see Fig. 1),

where arg is defined with the standard range (−π, π]. For a configuration P1, P2, . . . , Pn,
the stencil angles, ψ2, ψ3, . . . , ψn−1, are defined by

ψj := arg
Pj+1 − Pj

Pj − Pj−1
(see Fig. 2).

An s-curve is a curve that first turns monotonically at most 180◦ in one direction (clock-
wise or counter-clockwise) and then turns monotonically at most 180◦ in the opposite
direction. Let

A(P1, P2, . . . , Pn)

denote the set of interpolating curves whose pieces (connecting one interpolation point
to the next) are s-curves. We proved in [3] that A(P1, P2, . . . , Pn) contains a curve with
minimal bending energy; such curves are called elastic splines. In order to improve
the fairness of the obtained interpolating curves and their theoretical tractability, it was
suggested in [15] that the chord angles of pieces be restricted to the interval [−π

2 ,
π
2 ]. Let

Aπ/2(P1, P2, . . . , Pn)
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denote the set of interpolating curves whose pieces are s-curves with chord angles in [−π
2 ,

π
2 ].

We proved in [4] that Aπ/2(P1, P2, . . . , Pn) contains a curve with minimal bending energy;
such curves are called restricted elastic splines.

Definition. Let F = f1 ⊔ f2 ⊔ · · · ⊔ fn−1 be a restricted elastic spline, and let the chord
angles of fj be denoted (αj , βj+1). We say that F is proper if αj , βj ∈ (−π

2 ,
π
2 ) for

j = 2, 3, . . . , n − 1; that is, if the chord angles at the interior nodes P2, P3, . . . , Pn−1

belong to (−π
2 ,

π
2 ).

The main results in [4] are the following:
1. If a restricted elastic spline is proper, then it is curvature continuous.
2. Let Ψ (≈ 37◦) be the angle defined in [4, eq. (8.1)]. If the stencil angles satisfy |ψj | < Ψ
(j = 2, 3, . . . , n − 1), then all restricted elastic splines through the points P1, P2, . . . , Pn

are proper.
3. The angle Ψ is sharp.

The main result of the present contribution is the following.

Theorem 1.1. Let F be a restricted elastic spline through given points P1, P2, . . . , Pn. If
F is proper, then F is a stable nonlinear spline.

As an (almost) immediate corollary of Theorem 1.1 and item 2 above, we obtain the
following.

Corollary 1.2. Let Ψ (≈ 37◦) be the angle defined in [4, eq. (8.1)]. If the stencil angles
satisfy |ψj | < Ψ (j = 2, 3, . . . , n − 1), then there exists a stable nonlinear spline through
the points P1, P2, . . . , Pn.

To appreciate the novelty of Corollary 1.2, we mention that it is not a consequence of
Golomb’s results [9], even when n = 3 and Ψ is replaced by an arbitrarily small positive
number.

An outline of the sequel is as follows. In Section 2, we review notation and results from [3]
and [4]. Our proof of Theorem 1.1, given in Section 6, compares a proper restricted elastic

spline F = f1 ⊔ f2 ⊔ · · · ⊔ fn−1 with a nearby interpolating curve F̂ = f̂1 ⊔ f̂2 ⊔ · · · ⊔ f̂n−1.

Our objective, of course, is to prove that ‖F‖2 ≤ ‖F̂‖2. This objective is achieved in

several steps, the first of which is to show that each piece f̂j is forward tracking (see Def.

4.1). The machinery needed for this is developed in Section 5. Now that each piece f̂j is

known to be forward tracking, we compare F̂ with a curve G = g1 ⊔ g2 ⊔ · · · ⊔ gn−1, in

Aπ/2(P1, P2, . . . , Pn), which has the same directions as F̂ at the interpolation nodes and

whose bending energy is minimal among all such curves (of course ‖G‖2 ≥ ‖F‖2). The

purpose of Section 4 is to prove that ‖gj‖2 ≤ ‖f̂j‖
2
, on the grounds that both curves are

forward tracking. A rather delicate element of this proof involves comparing f̂j with an

s-curve constructed from the convex hull of the range of f̂j , and Section 3 is dedicated to
this task. In Section 6, in addition to proving Theorem 1.1 and Corollary 1.2, we make
several concluding remarks relating to non-free configurations.

2. Review of Notation and Key Results

As mentioned above, a curve is a function f : [a, b] → C whose first derivative f ′ is
absolutely continuous. Every curve can be reparametrized by arclength and two curves f
and g are deemed equivalent, written f ≡ g, if their arclength parametrizations are equal.
Curves f and g are said to be directly similar if there exists a similarity transformation
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T (z) = c1z + c2 (c1, c2 ∈ C, c1 6= 0) such that f ≡ T ◦ g. A unit tangent vector is a
pair u = (u1, u2) consisting of a base point u1 ∈ C and a direction u2 ∈ C, with |u2| = 1.
Let u and v be two unit tangent vectors with distinct base points. A curve f : [a, b] → C

is said to connect u to v if u = (f(a), f ′(a)/|f ′(a)|) and v = (f(b), f ′(b)/|f ′(b)|). The
chord angles (α, β) determined by the pair (u, v) are those of any curve f that connects
u to v (see 1.1); in terms of u = (u1, u2) and v = (v1, v2), they are

(2.1) α := arg
u2

v1 − u1
and β := arg

v2
v1 − u1

,

where (as mentioned above) arg is defined with the standard range (−π, π]. An s-curve is
a curve that first turns monotonically at most 180◦ in one direction (clockwise or counter-
clockwise) and then turns monotonically at most 180◦ in the opposite direction. The set of
s-curves can be partitioned into the set of line segments, the set of left c-curves (nonlinear
curves that turn monotonically at most 180◦ counter-clockwise), the set of right c-curves

(nonlinear curves that turn monotonically at most 180◦ clockwise), the set of left-right
s-curves, and the set of right-left s-curves. The set of all s-curves connecting u to v is
denoted

S(u, v),

and we mention that S(u, v) is non-empty if and only if the the chord angles determined by
(u, v) satisfy |α|, |β| < π and |α− β| ≤ π. We proved in [3] that when S(u, v) is nonempty,
it contains a curve with minimal bending energy. Optimal curves in S(u, v) were further
studied in [4] under the restriction |α|, |β| ≤ π

2 ; the following theorem and remark are
proved in [4, Th. 5.4 and Cor. 6.1].

Theorem 2.1. Let (α, β) be the chord angles determined by a pair of unit tangent vectors
(u, v) with distinct base points. If (α, β) ∈ [−π

2 ,
π
2 ]

2\{(−π
2 ,

π
2 ), (

π
2 ,−π

2 )}, then S(u, v) con-
tains a unique curve c(u, v) (modulo equivalence) with minimal bending energy. Moreover,
c(u, v) is a segment of rectangular elastica.

Remark 2.2. When (α, β) equals (π2 ,−π
2 ) or (−π

2 ,
π
2 ), the optimal curve in S(u, v) fails

to be unique. Nevertheless, among all optimal curves in S(u, v), there is a unique one,
denoted c(u, v), that is a segment of rectangular elastica.

The family of curves c(u, v) considered in Theorem 2.1 have been shown by Golomb [9]
to be stable nonlinear splines for their clamped 2-point configurations. The curves c(u, v)
of Remark 2.2 are all directly similar to U := c((0+i0, i), (1+i0,−i)), which is a single arch
of rectangular elastica. Golomb [9] has shown that U is an unstable extremal interpolant
for the clamped configuration that it determines, but earlier Horn [12] had argued that U
has minimal bending energy when compared to many other plausible curves that fit the
same configuration. More recently, Linnér and Jerome [21] have proven that the bending
energy of U is minimal among all graphs (t 7→ t+ if(t)) that fit the configuration.

Fig. 3 parametrized rectangular elastica Fig. 4 c1(α, β) for β ∈ [−π
2 ,

π
2 ]

Assume that the chord angles (α, β) determined by a pair of unit tangent vectors (u, v)
(with distinct base points) satisfy |α|, |β| ≤ π

2 . If (α, β) = (0, 0), c(u, v) is simply the
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line segment from u1 to v1; otherwise, c(u, v) will be a segment of nonlinear rectangular
elastica. Our preferred parametrization for the latter (see Fig. 3) is R(t) := sin t + iξ(t),

where ξ is defined by ξ′(t) = sin2 t√
1+sin2 t

, ξ(0) = 0. If (α, β) 6= (0, 0), then there exist t1 < t2

such that the optimal curve c(u, v) is directly similar to the segment R[t1,t2] (see [4, Th.
5.4, Cor. 6.1]). The parameters (t1, t2) are unique in the sense described in [4, Th. 4.1],
and more can be said:
1. If c(u, v) is a right (resp. left) c-curve, then −π ≤ t1 < t2 ≤ 0 (resp. 0 ≤ t1 < t2 ≤ π);
2. If c(u, v) is a right-left (resp. left-right) s-curve, then −t ≤ t1 < 0 < t2 ≤ t (resp.
π− t ≤ t1 < π < t2 ≤ π+ t), where t is defined in [4, Cor. 3.5] as the unique τ ∈ (0, π) for
which the segment R[−τ,τ ] has chord angles (π2 ,

π
2 ). The critical angle Ψ mentioned above

Theorem 1.1 and in Corollary 1.2, is shown in Fig. 3 and defined in [4, eq. (8.1)].
The bending energy of a curve f is invariant under translation and rotation and is

inversely proportional to scale. More precisely, if P,Q ∈ C are constant, with Q 6= 0, then
‖P +Qf‖2 = 1

|Q|‖f‖
2
. Consequently, when studying S(u, v), it suffices to focus on the

case when u = (0 + i0, eiα) and v = (1 + i0, eiβ). In this case we write S(u, v) and c(u, v)
simply as S(α, β) and c1(α, β) and define

(2.2) E1(α, β) := ‖c1(α, β)‖2, |α|, |β| ≤ π

2
.

In the general case, when u = (u1, u2), v = (v1, v2) determine chord angles (α, β) ∈
[−π

2 ,
π
2 ]

2, the bending energy of c(u, v) is given by ‖c(u, v)‖2 = 1
|u1−v1|

E1(α, β). The func-

tion E1 : [−π
2 ,

π
2 ]

2 → [0,∞) is continuous on its domain and is C∞ on

[−π
2 ,

π
2 ]

2\{(0, 0), (−π
2 ,

π
2 ), (−π

2 ,
π
2 )} (see [3, Th. 7.10] and [4, Cor. 7.4]). A fundamental

identity is proved in [4, Th. 7.3] that relates partial derivatives of E1(α, β) with the end
curvatures of c1(α, β). With κa(c1(α, β)) and κb(c1(α, β)) denoting the initial and terminal
signed curvatures, respectively, it is proved that for all (α, β) ∈ [−π

2 ,
π
2 ]

2\{(−π
2 ,

π
2 ), (−π

2 ,
π
2 )},

−κa(c1(α, β)) = 2
∂E1

∂α
(α, β) and κb(c1(α, β)) = 2

∂E1

∂β
(α, β).

A question of both practical and theoretical importance is the following.
Let α ∈ [−π

2 ,
π
2 ] be fixed and consider all curves c1(α, β) as β ranges over [−π

2 ,
π
2 ] (see Fig.

4). Which of these has minimal bending energy?
In [4, Sec. 8], it is shown that E1(α, β) (the bending energy of c1(α, β)) is uniquely mini-
mized at β = β∗(α), where the function β∗ is defined in [4, Def. 8.4]. The domain of β∗ is
an open interval containing [−π

2 ,
π
2 ] and key properties of β∗ are detailed in [4, Lem. 8.5]:

Lemma 2.3. The function β∗ is continuous, odd, and decreasing. Moreover, the following
hold.
(i) |β∗(α)| ≤ π

2 −Ψ for all α ∈ [−π
2 ,

π
2 ].

(ii) On [0, π2 ], the function γ 7→ Ψ− β∗(γ) increases continuously from Ψ to π
2 .

(iii) On [0, π2 ], the function γ 7→ γ + β∗(γ) increases continuously from 0 to Ψ.

In [4, Th. 8.6] it is proved that

(2.3) sign

(
∂E1

∂β
(α, β)

)
= sign(β − β∗(α))

holds for all (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0), (π2 ,−π
2 ), (−π

2 ,
π
2 )}. From (2.3), we deduce that the

function β 7→ E1(α, β) is decreasing on [−π
2 , β

∗(α)] and is increasing on [β∗(α), π2 ]; hence,
E1(α, β) is uniquely minimized at β = β∗(α).
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3. The Convex Hull of a Curve

One of the primary challenges faced when proving Theorem 1.1 is that of comparing
the bending energy of an optimal curve c(u, v) ((u, v) being a pair of unit tangent vectors)
with the bending energy of some generic curve F that also connects u to v. Although
we cannot in general claim that ‖c(u, v)‖2 ≤ ‖F‖2, we will prove this when F has the
property, defined in the next section, of being forward tracking. A key ingredient in this
is to produce an s-curve g ∈ S(u, v) such that ‖g‖2 ≤ ‖F‖2. It turns out that g can
be assembled from the boundary of the convex hull of F . The theorem below lays the
foundation for this.

Fig. 5 The convex hull of F is bounded by Fr and Fl.

Theorem 3.1. Let F : [0, S] → C be a curve that satisfies

(3.1) −π
2
< m := min

0≤s≤S
argF ′(s) and

π

2
> M := max

0≤s≤S
argF ′(s).

Let H(F ) denote the convex hull of the range of F . Then H(F ) (see Fig. 5) is bounded
above by a right c-curve Fr : [0, Sr] → C and is bounded below by a left c-curve Fl : [0, Sl] →
C. Moreover, the following hold:
(i) Fr(0) = F (0) = Fl(0) and Fr(Sr) = F (S) = Fl(Sl);
(ii) argF ′(0) ≤ argF ′

r(0) ≤M and argF ′(S) ≥ argF ′
r(Sr) ≥ m;

(iii) argF ′(0) ≥ argF ′
l (0) ≥ m and argF ′(S) ≤ argF ′

l (Sl) ≤M ;

(iv) ‖Fr‖2 ≤ ‖F‖2, with equality if and only if F ≡ Fr;

(v) ‖Fl‖2 ≤ ‖F‖2, with equality if and only if F ≡ Fl.

Proof. It suffices to prove the assertions on Fr, since those on Fl can then be obtained
by first reflecting F about the real axis. Set a := Re F (0) and b := Re F (S). Since
Re F ′(s) > 0 for all s, the curve F can be parametrized as x 7→ x + if(x), x ∈ [a, b],
where f and f ′ are absolutely continuous. Note that if F (s) = x + iy, then y = f(x)
and argF ′(s) = arctan f ′(x). The upper boundary of H(F ) can be parametrized as x 7→
x+ ig(x), x ∈ [a, b], where the function g : [a, b] → R is defined by

g(x) := max{Imz : z ∈ H(F ) and Re z = x}.

Since H(F ) is convex, it follows that

(3.2) g is the smallest concave function with the property g(x) ≥ f(x) for all x ∈ [a, b].

It is easy to construct a concave function ĝ : [a, b] → R that satisfies ĝ(a) = f(a), ĝ(b) =
f(b), and ĝ(x) > f(x) for a < x < b. From this it follows that g(a) = f(a) and g(b) = f(b);
hence (i).
Since g is concave, it follows that the left (resp. right) derivatives exist for all x ∈ (a, b]
(resp. x ∈ [a, b)); in particular, g′(a) and g′(b) exist. For x ∈ (a, b), the following two
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statements follow easily from (3.2) and the continuity of f ′.
(A) If g(x) = f(x), then g′(x) exists and equals f ′(x).
(B) If g(x) 6= f(x), then g(x) > f(x) and there is a smallest interval ax < x < bx such
that g(ax) = f(ax), g(bx) = f(bx), and g is linear on [ax, bx].

Note that if g(x) 6= f(x), then it follows from these that g′(x) = f(bx)−f(ax)
bx−ax

; consequently,

g′(x) exists for all x ∈ [a, b] and g is continuous.
We can now prove (ii).
In order to prove that argF ′(0) ≤ argF ′

r(0) ≤ M , it suffices to show that g′(a) ≥ f ′(a)
and that there exists c ∈ [a, b] such that g′(a) = f ′(c). Since g(a) = f(a), it follows from
(3.2) that g′(a) ≥ f ′(a). If g′(a) = f ′(a), then the desired equality g′(a) = f ′(c) holds
with c = a; so assume g′(a) > f ′(a). Then there exists x ∈ (a, b) such that g(t) > f(t) for
all t ∈ (a, x]. The smallest interval [ax, bx] described in property (B) will have ax = a, and
therefore

g′(a) = g′(x) =
f(bx)− f(a)

bx − a
= f ′(c)

for some c ∈ (a, bx), by the mean value theorem. The proof that argF ′(S) ≥ argF ′
r(Sr) ≥

m can be made in a similar manner, so this completes the proof of (ii).
At present we know that g′(x) exists for all x ∈ [a, b] and that g′ is monotonically decreasing
(since g is concave). It follows by Darboux’s Theorem that the range of g′ equals the
interval (or singleton) [g′(b), g′(a)]. But since g′ is monotonically decreasing, it now follows
that g′ is continuous. With (ii) in hand, in order to prove that Fr is a right c-curve, it
suffices to show that g′ is absolutely continuous on [a, b]. For this, since g′ is continuous
on [a, b], it suffices to show that g′ is absolutely continuous on the open interval (a, b).

Claim For all intervals [c, d] ⊂ (a, b), there exists an interval [ĉ, d̂] ⊂ [c, d] such that

g′(c)− g′(d) ≤ |f ′(ĉ)− f ′(d̂)|.
proof: Let [c, d] ⊂ (a, b). If g′(c) − g′(d) ≤ |f ′(c)− f ′(d)|, then [ĉ, d̂] = [c, d] is as

required. So assume g′(c)− g′(d) > |f ′(c)− f ′(d)|. If g(c) = f(c), set ĉ = c; otherwise (if
g(c) > f(c)), let [ac, bc] be the interval described in property (B) and set ĉ = bc. Similarly,

if g(d) = f(d), set d̂ = d; otherwise, let [ad, bd] be the interval described in property (B)

and set d̂ = ad. Note that g′(ĉ) = g′(c) > g′(d) = g′(d̂) and therefore ĉ < d̂. Since c ≤ ĉ

and d̂ ≤ d by construction, it follows that [ĉ, d̂] ⊂ [c, d]. Note also that g(ĉ) = f(ĉ) and

g(d̂) = f(d̂), and hence, by property (A), g′(c) = g′(ĉ) = f ′(ĉ) and g′(d) = g′(d̂) = f ′(d̂).

We therefore have g′(c)− g′(d) = |f ′(ĉ)− f ′(d̂)|, which proves the claim.
Let ε > 0 be given. Since f ′ is absolutely continuous, there exists δ > 0 such that
if a < c1 < d1 < c2 < d2 < · · · < cn < dn < b satisfy

∑n
j=1(dj − cj) < δ, then∑n

j=1 |f ′(cj)− f ′(dj)| < ε. We will show that the same δ works for g′. Assume a < c1 <

d1 < c2 < d2 < · · · < cn < dn < b satisfy
∑n

j=1(dj − cj) < δ. For j = 1, 2, . . . , n, let

[ĉj , d̂j ] ⊂ [cj , dj ] be as in the claim. Then

n∑

j=1

|g′(cj)− g′(dj)| =
n∑

j=1

(g′(cj)− g′(dj)) ≤
n∑

j=1

|f ′(ĉj)− g′(d̂j)| < ε,

since
∑n

j=1(d̂j − ĉj) ≤
∑n

j=1(dj − cj) < δ. Therefore g′ is absolutely continuous on (a, b)
and this completes the proof that Fr is a right c-curve.
Lastly, we turn to (iv).
Let U denote the open interval (a, b) and set V := {x ∈ U : f ′′(x) and g′′(x) exist}. Since
both f ′ and g′ are absolutely continuous, U\V has Lebesgue measure 0. Set W := {x ∈
V : g(x) = f(x)}. If x ∈ V \W we must have g(x) > f(x) and hence, by property (B),
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g′′(x) = 0. On the other hand, if x ∈ W , then (by property (A)) g′(x) = f ′(x) and since
g ≥ f , it follows that g′′(x) ≥ f ′′(x). Since g is concave, we have g′′(x) ≤ 0, and therefore
|g′′(x)| = −g′′(x) ≤ −f ′′(x) ≤ |f ′′(x)| for all x ∈W . Thus,

‖Fr‖2 =

∫

V

|g′′(x)|2
(1 + g′(x)2)5/2

dx

=

∫

W

|g′′(x)|2
(1 + g′(x)2)5/2

dx (since g′′ = 0 on V \W )

=

∫

W

|g′′(x)|2
(1 + f ′(x)2)5/2

dx (since g′ = f ′ on W )

≤
∫

W

|f ′′(x)|2
(1 + f ′(x)2)5/2

dx ≤ ‖F‖2.

Now, suppose ‖Fr‖2 = ‖F‖2. Then the above holds with equalities and it follows that∫
V \W

|f ′′(x)|2

(1+f ′(x)2)5/2
dx = 0; hence, f ′′ = 0 a.e. on V \W . Moreover, on W we have 0 ≥

g′′ ≥ f ′′ and
∫
W

|g′′(x)|2

(1+f ′(x)2)5/2
dx =

∫
W

|f ′′(x)|2

(1+f ′(x)2)5/2
dx. From these it follows that f ′′ = g′′

a.e. on W . Consequently, f ′′ = g′′ a.e. on V . Since [a, b]\V has measure 0 (and f ′, g′

are absolutely continuous), there exists a constant C such that g′(x) = f ′(x) + C for all
x ∈ [a, b]. But since g(a) = f(a) and g(b) = f(b), it follows that f(x) = g(x) for all
x ∈ [a, b]; hence, Fr ≡ F . �

4. Forward Tracking Curves and Optimality

Definition 4.1. Let F : [a, b] → C be a curve. We say that F is forward tracking if
F (a) 6= F (b) and

(4.1) −π
2
< arg

F ′(t)

F (b)− F (a)
<
π

2
for all t ∈ [a, b].

Given a pair (u, v) of unit tangent vectors with distinct base points, let F(u, v) denote
the set of all forward tracking curves that connect u to v. Given points P1, P2, . . . , Pn,
let F(P1, P2, . . . , Pn) denote the set of all interpolating curves whose pieces are forward
tracking.

Our purpose in this section is to prove the following theorem and corollary.

Theorem 4.2. Let (u, v) be a pair of unit tangent vectors, with distinct base points, such
that F(u, v) is non-empty. Then the curve c(u, v) (defined in Section 2) is the unique curve
in F(u, v) (modulo equivalence) with minimal bending energy.

Corollary 4.3. Given points P1, P2, . . . , Pn, with Pj 6= Pj+1, let F ∈ Aπ/2(P1, P2, . . . , Pn)
be a restricted elastic spline (i.e., a curve with minimal bending energy in Aπ/2(P1, P2, . . . , Pn)).
If F(P1, P2, . . . , Pn) is non-empty (i.e., if none of the stencil angles equals π), then

‖F‖2 ≤ ‖f‖2 for all f ∈ F(P1, P2, . . . , Pn).

The property of being forward tracking (applied to a curve) is invariant under transla-
tion, rotation and scaling, and therefore, as explained above (2.2), when proving Theorem
4.2 we can assume, without loss of generality, that u = (0 + i0, eiα) and v = (1 + i0, eiβ).
With this in mind, we write F(α, β) instead of F(u, v), which is consistent with the no-
tation S(α, β) and c1(α, β) in place of S(u, v) and c(u, v) already instituted in Section 2.
One easily verifies that F(α, β) is non-empty if and only if (α, β) ∈ (−π

2 ,
π
2 )

2.

We will first show that c1(α, β) is a forward tracking curve when (α, β) ∈ (−π
2 ,

π
2 )

2. The
line segment c1(0, 0) is obviously forward tracking, so this case is excluded in the following.



10 ELASTIC SPLINES III

Proposition 4.4. Let (α, β) ∈ [−π
2 ,

π
2 ]

2\{(0, 0)}, and assume c1(α, β) is parametrized as
c1(t;α, β), t ∈ [t1, t2]. Then

(4.2) |arg c′1(t;α, β)| < max{|α|, |β|} for all t ∈ (t1, t2).

In particular, c1(α, β) is forward tracking for all (α, β) ∈ (−π
2 ,

π
2 )

2\{(0, 0)}.
Proof. We can assume, without loss of generality (see [4, Remark 5.5]), that α ≥ |β| and
it follows [3, Prop. 5.6] that c1(α, β) is either a right c-curve or a right-left s-curve. Define
θ(t) := arg c′1(t;α, β), t1 ≤ t ≤ t2, whereby θ(t1) = α and θ(t2) = β. If c1(α, β) is a right
c-curve, then θ decreases from α to β and inequality (4.2) follows easily.
Assuming now that c1(α, β) is a right-left s-curve, there exists t0 ∈ (t1, t2) such that θ
is decreasing on [t1, t0] and increasing on [t0, t1]. Since α ≥ |β|, in order to prove (4.2)
it suffices to show that |θ(t0)| < α. With Q := c1(t0;α, β) denoting the inflection point,
let ℓ denote the inflection line (the tangent line through Q) and let R denote the point of
intersection between ℓ and the line segment [0, 1].

Fig. 6 The case when c1(α, β) is a right-left s-curve and ImQ ≥ 0.
Case 1: ImQ ≥ 0 (see Fig. 6)

Let (α̂, β̂) be the chord angles of the segment v(t) := c1(t;α, β), t1 ≤ t ≤ t0. It follows

from [3, Lemma 6.3] that α̂ > |β̂|, and since ImQ ≥ 0, we have |β̂| ≥ |∠QR0| = |θ(t0)|.
Therefore α ≥ α̂ > |β̂| ≥ |θ(t0)|.
Case 2: ImQ < 0
The same argument given for Case 1 shows that |β| > |θ(t0)| and hence α ≥ |β| >
|θ(t0)|. �

Our proof of Theorem 4.2 hinges on the monotonicity of E1(α, β) as described in the
following.

Proposition 4.5. Assume π
2 ≥ α̂ ≥ α ≥ |β|. If π

2 ≥ β̂ ≥ β ≥ β∗(α) or −π
2 ≤ β̂ ≤ β ≤

β∗(α), then E1(α̂, β̂) ≥ E1(α, β), with equality if and only if (α̂, β̂) = (α, β).

Our proof of the proposition employs the following lemma.

Lemma 4.6. For α, β ∈ [−π
2 ,

π
2 ], the following hold.

(i) If π
2 ≥ β̂ > β ≥ β∗(α), then E1(α, β̂) > E1(α, β).

(ii) If −π
2 ≤ β̂ < β ≤ β∗(α), then E1(α, β̂) > E1(α, β).

(iii) If π
2 ≥ α̂ > α ≥ β∗(β), then E1(α̂, β) > E1(α, β).

(iv) If π
2 ≥ α̂ > α ≥ |β|, then E1(α̂, β) > E1(α, β).

(v) If π
2 ≥ α̂ > α ≥ 0, then E1(α̂, β

∗(α̂)) > E1(α, β
∗(α)).

Proof. We first consider (i) and (ii). Let α ∈ [−π
2 ,

π
2 ] be fixed. The function β 7→ E1(α, β)

is continuous on [β∗(α), π2 ] and C
∞ on (β∗(α), π2 ). It follows from (2.3) that ∂E1

∂β (α, β) > 0

on (β∗(α), π2 ). Therefore β 7→ E1(α, β) is increasing on [β∗(α), π2 ], which proves (i). One
proves (ii) by showing, in a similar fashion, that β 7→ E1(α, β) is decreasing on [−π

2 , β
∗(α)].
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Item (iii) is an immediate consequence of (i) and the symmetry E1(α, β) = E1(β, α). It
follows from Lemma 2.3 that |β∗(γ)| < |γ| for all γ ∈ [−π

2 ,
π
2 ]\{0}, and consequently (iv)

is an immediate consequence of (iii).
We turn now to (v), where our task is to show that the continuous function g(γ) :=
E1(γ, β

∗(γ)) is increasing on [0, π2 ]. We first show that it is increasing on [|β∗(a)|, a] for
all a ∈ (0, π2 ]. Suppose a ≥ α̂ > α ≥ |β∗(a)|. Then g(α̂) = E1(α̂, β

∗(α̂)) > E1(α, β
∗(α̂))

by (iv) since α ≥ |β∗(a)| ≥ |β∗(α̂)| (by Lemma 2.3). And by (ii), we have E1(α, β
∗(α̂)) >

E1(α, β
∗(α)) = g(α), since −π

2 ≤ β∗(α̂) < β∗(α). Therefore g(α̂) > g(α), and hence g is
increasing on [|β∗(a)|, a] as claimed. In particular, g is increasing on [β∗(π2 ),

π
2 ] = [π2−Ψ, π2 ].

Define γ0 ∈ [0, π2 −Ψ] by

γ0 := inf{a ∈ [0,
π

2
−Ψ] : g is increasing on [a,

π

2
]}.

If γ0 > 0, then it follows that g is increasing on (γ0,
π
2 ]. But since g is continuous, g must

be increasing on the closed interval [γ0,
π
2 ]. By the claim, g is increasing on [|β∗(γ0)|, γ0],

and hence g is increasing on the union [|β∗(γ0)|, π2 ]–a contradiction (since |β∗(γ0)| < γ0).
Therefore γ0 = 0 and it follows that g is increasing on [0, π2 ]. �

Proof of Proposition 4.5. If α̂ = α or β̂ = β, then the desired result is already proved in

Lemma 4.6 (i),(ii),(iv). So assume π
2 ≥ α̂ > α ≥ |β| and β̂ 6= β, and note that, by Lemma

2.3, β∗(α̂) < β∗(α) ≤ 0.

Another easy case is when π
2 ≥ β̂ > β ≥ β∗(α). By Lemma 4.6 (i), we have E1(α̂, β̂) >

E1(α̂, β), while invoking Lemma 4.6 (iv) yields E1(α̂, β) > E1(α, β). Therefore E1(α̂, β̂) >
E1(α, β).

We now consider the remaining case −π
2 ≤ β̂ < β ≤ β∗(α). Although β∗(α̂) < β∗(α), we

cannot say where β∗(α̂) lies relative to β̂ and β. Consequently, we must branch into three
cases.
Case A: β ≤ β∗(α̂) < β∗(α)

Then E1(α̂, β̂) > E1(α̂, β) > E1(α, β) by Lemma 4.6 (ii) and (iv).

Case B: β̂ ≤ β∗(α̂) < β

Then E1(α̂, β̂) ≥ E1(α̂, β
∗(α̂)), by Lemma 4.6 (ii). There exists α1 ∈ [α, α̂) such that

β∗(α1) = β, and so, by Lemma 4.6 (v), we have E1(α̂, β
∗(α̂)) > E1(α1, β

∗(α1)). Fi-

nally, E1(α1, β
∗(α1)) = E1(α1, β) ≥ E1(α, β), by Lemma 4.6 (iv). Therefore, E1(α̂, β̂) >

E1(α, β).

Case C: β∗(α̂) < β̂

There exists α2 ∈ (α, α̂) such that β∗(α2) = β̂. By Lemma 2.3, α2 > |β∗(α2)| = |β̂|, and
hence E1(α̂, β̂) > E1(α2, β̂) by Lemma 4.6 (iv). Since β∗(α2) = β̂, we are now in Case B

whereby E1(α2, β̂) > E1(α, β). Therefore, E1(α̂, β̂) > E1(α, β). �

We can now prove the main results of this section.

Proof of Theorem 4.2. . We can assume, without loss of generality, that π
2 > α ≥ |β| and

α > 0. Let F : [0, S] → C be a curve in F(α, β) that satisfies ‖F‖2 ≤ E1(α, β). We will
show that F ≡ c1(α, β). Let m,M be as defined in (3.1) and note that (3.1) holds (i.e.,
−π

2 < m ≤ M < π
2 ) since F is a forward tracking curve from 0 + i0 to 1 + i0. Let Fr be

as in Theorem 3.1.
Case 1: β ≤ β∗(α)

With α̂ := argF ′
r(0) and β̂ := argF ′

r(Sr), we have from Theorem 3.1 (ii) that M ≥ α̂ ≥ α

and m ≤ β̂ ≤ β. It follows from Proposition 4.5 that E1(α̂, β̂) ≥ E1(α, β). Since Fr ∈
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S(α̂, β̂), we conclude that

‖F‖2 ≥ ‖Fr‖2 ≥ E1(α̂, β̂) ≥ E1(α, β) ≥ ‖F‖2,

and it follows that F ≡ Fr ≡ c1(α, β). This settles Case 1.
Case 2: β > β∗(α) and m = β
Set α̂ = argF ′

r(0). By Theorem 3.1 (ii), we have M ≥ α̂ ≥ α and β = argF ′
r(Sr) = m.

Thus Fr ∈ S(α̂, β), and therefore, by Proposition 4.5,

‖F‖2 ≥ ‖Fr‖2 ≥ E1(α̂, β) ≥ E1(α, β) ≥ ‖F‖2,

and it follows that F ≡ Fr ≡ c1(α, β). This settles Case 2.
Case 3: β > β∗(α) and m < β

Fig. 7 The curve F = f ⊔ g shown with fr ⊔ gl.
Let s1 ∈ (0, S) be such that argF ′(s1) = m. Writing F = f ⊔ g (see Fig. 7), where
f := F[0,s1] and g := F[s1,S], we observe that

arg f ′(s1) = min
0≤s≤s1

arg f ′(s) = m = min
s1≤s≤S

arg g′(s) = arg g′(s1).

Since f and g are sub-curves of F , it follows that (3.1) holds for both f and g. Let
fr : [0, a] → C and gl[a, b] → C be as described in Theorem 3.1, and set α̂ := arg f ′r(0),

β̂ := arg g′l(b). It follows from Theorem 3.1 that M ≥ α̂ ≥ α, arg f ′r(a) = m, β ≤ β̂ ≤ M ,
and arg g′l(a) = m. Since arg f ′r(a) = arg g′l(a), the composite curve fr ⊔ gl belongs to

S(α̂, β̂), and therefore, by Proposition 4.5,

‖F‖2 = ‖f‖2 + ‖g‖2 ≥ ‖fr‖2 + ‖gl‖2 = ‖fr ⊔ gl‖2 ≥ E1(α̂, β̂) ≥ E1(α, β) ≥ ‖F‖2.

Noting that equality holds throughout the above, it follows that F ≡ fr⊔gl ≡ c1(α, β). �

Proof of Corollary 4.3. Assume f ∈ F(P1, P2, . . . , Pn). We can write f piecewise as

f = f1 ⊔ f2 ⊔ · · · ⊔ fn−1 where fj connects uj = (Pj , dj) to uj+1 = (Pj+1, dj+1). Let F̂ ∈
Aπ/2(P1, P2, . . . , Pn) be defined piecewise by F̂ := c(u1, u2)⊔ c(u2, u3)⊔ · · · ⊔ c(un−1, un).

By Theorem 4.2, ‖c(uj , uj+1)‖2 ≤ ‖fj‖2, j = 1, 2, . . . , n, and hence ‖F̂‖2 ≤ ‖f‖2. But

since F has minimal bending energy in Aπ/2(P1, P2, . . . , Pn), we have ‖F‖2 ≤ ‖F̂‖2.
Therefore ‖F‖2 ≤ ‖f‖2. �
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5. Contagion of forward tracking curves

In this section we show that the property of being forward tracking is contagious, for if
a curve f , with limited bending energy, gets too close to a forward tracking C2 curve g,
then f will also be forward tracking. The precise statement of this is given in the theorem
below, where the distance from f : [0, L] → C to g : [0, S] → C is defined as the Hausdorff
distance:

(5.1) dist(f, g) := max{d(f, g), d(g, f)}, with d(f, g) := max
t∈[0,L]

min
s∈[0,S]

|f(t)− g(s)|.

Theorem 5.1. Let g : [0, S] → C be a C2 unit speed curve that is forward tracking. For
all M > 0 there exists ε > 0 such that if f : [0, L] → C is a unit speed curve satisfying

(i) f(0) = g(0), f(L) = g(S), (ii) ‖f‖2 < M , and (iii) dist(f, g) < ε,
then f is forward tracking.

Our proof Theorem 5.1 employs the following two lemmas, the first of which shows
that if a sufficiently long curve is initially directed toward a line, then it must possess
considerable bending energy in order to avoid intersecting the line.

Lemma 5.2. Given θ0 ∈ (0, π2 ] and ε > 0, set b0 :=
9ε

θ0
. If f : [0, b0] → C is a unit speed

curve satisfying
(i) f ′(0) = eiθ0 and
(ii) Imf(s)− Imf(0) ≤ 3ε for all s ∈ [0, b0],

then ‖f‖2 ≥ θ30
108ε

.

Proof. Assume that f satisfies (i) and (ii), and let κ(s) denote its signed curvature and

θ(s) := θ0 +

∫ s

0

κ(t) dt its direction angle. We can assume, without loss of generality,

that π
2 ≥ θ(s) ≥ 0, since otherwise we can construct a curve f̂ (eg., κ̂(s) := −|κ(s)| while

θ̂(s) > 0), with ‖f̂‖2 ≤ ‖f‖2, that satisfies π
2 ≥ θ̂(s) ≥ 0 while maintaining (i) and (ii).

Since 1
2θ(s) ≤ sin θ(s), we have

∫ b0

0

1

2
θ(s) ds ≤

∫ b0

0

sin θ(s) ds = Imf(b0)− Imf(0) ≤ 3ε,

and hence

∫ b0

0

[θ0 +

∫ s

0

κ(t) dt] ds ≤ 6ε. This can be written equivalently as

3ε = b0θ0 − 6ε ≤
∫ b0

0

(b0 − s)(−κ(s)) ds.

Applying the Cauchy-Schwarz inequality, we obtain

9ε2 ≤
(∫ b0

0

(b0 − s)(−κ(s)) ds
)2

≤
∫ b0

0

(b0 − s)2 ds

∫ b0

0

(κ(s))2 ds =
b30
3
(4‖f‖2),

and therefore ‖f‖2 ≥ 27ε2

4b30
=

θ30
108ε

. �

This lemma generalizes easily to the following.
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Lemma 5.3. Given θ0 ∈ (0, π2 ] and ε > 0, set b0 :=
9ε

θ0
. If f : [0, b0] → C is a unit speed

curve satisfying
(i) θ0 ≤ |arg f ′(0)| ≤ π − θ0 and
(ii) |Imf(s)− Imf(0)| ≤ 3ε for all s ∈ [0, b0],

then ‖f‖2 ≥ θ30
108ε

.

Proof. Assume f satisfies (i) and (ii) and set θ1 := arg f ′(0). We can assume without loss
of generality that θ0 ≤ θ1 ≤ π

2 since otherwise we can replace f with one of f (complex

conjugate), −f , or −f , which leaves bending energy unchanged and preserves (ii). Set
b1 := 9ε

θ1
. Since b1 ≤ b0, it follows from Lemma 5.2 that

‖f‖2 ≥ ‖f[0,b1]‖
2 ≥ θ31

108ε
≥ θ30

108ε
.

�

Proof of Theorem 5.1. Let B := {z ∈ C : |z| < 1} denote the open unit disk and C its
boundary, whereby the open disk of radius r and center c can be written as c+ rB. With
P := g(0) and Q := g(S), set

θmax := max
0≤s≤S

|arg g′(s)

Q− P
|, θ0 :=

1

3
(
π

2
− θmax),

K := 1 + max
0≤s≤S

|g′′(s)|, and δ := 1

2K
.

Since g is forward tracking, we have θmax <
π
2 , which implies θ0 > 0. We extend g, in a

C1 fashion, by tangent rays:

g(s) := g(0) + sg′(0) for s < 0, g(s) := g(S) + (s− S)g′(S) for s > S,

and denote the range of g by G := g(R). Set

ε := min{ 1

81
δθ20,

1

18
Lθ0,

1

108M
θ30} and b0 :=

9ε

θ0
,

and note that b0 ≤ L
2 is an immediate consequence of ε ≤ 1

18Lθ0.
Assume f satisfies (i),(ii), and (iii). Since θmax + θ0 < π

2 , in order to prove that f is
forward tracking, it suffices to show that

(5.2) |arg f ′(t)

Q− P
| < θmax + θ0 for all 0 ≤ t ≤ L.

Suppose not. Since f(0) = P and f(L) = Q, it follows by Cauchy’s mean value theorem

that there exists t2 ∈ (0, L) such that arg f ′(t2)
Q−P = 0. Since we assume (5.2) does not

hold, it follows, by the intermediate value theorem, that there exists t0 ∈ [0, L] such that

|arg f ′(t0)
Q−P | = θmax + θ0. Let s0 ∈ R be such that g(s0) is a closest point of G to f(t0). By

applying a translation and rotation, if necessary, we can assume without loss of generality
that g(s0) = 0+i0 and g′(s0) = 1+i0. Note that it follows that f(t0) lies (on the imaginary
axis) in the interval [−iε, iε].



EXISTENCE OF STABLE NONLINEAR SPLINES 15

Recall that for nonzero w, z ∈ C, |argw| − |arg z| ≤ |arg w
z | ≤ |argw| + |arg z|. Writing

arg f ′(t0) = arg
(

f ′(t0)/(Q−P )
g′(s0)/(Q−P )

)
, we apply this to obtain

(5.3) θ0 = (θmax + θ0)− θmax ≤ |arg f ′(t0)| ≤ (θmax + θ0) + θmax < π − θ0.

Since K is greater than the curvature |g′′(s)|, for all s, the definition of δ ensures that the
range of g satisfies

G ∩ (iδ + δB) = ∅ = G ∩ (−iδ + δB) (see Fig. 8).

Fig. 8 The ranges G := g(R) and F = f([0, L]). Fig. 9 The set H.
Since dist(f, g) < ε, it follows that the range of f , denoted F = f([0, L]), satisfies

(5.4) F ∩ (D+ ∪D−) = ∅, where D± := ±iδ + (δ − ε)B (see Fig. 8).

Either t0 ∈ [0, L/2] or t0 ∈ (L/2, L].
Case 1: t0 ∈ [0, L/2]

We claim that

(5.5) |Imf(t)− Imf(t0)| ≤ 3ε for all t ∈ [t0, t0 + b0].

Since f(t0) ∈ [−iε, iε] and f[t0,t0+b0] has length b0, it follows from (5.4) that

f([t0, t0 + b0)) ⊂ H := ([−iε, iε] + b0B)\(D+ ∪D−) (see Fig. 9).

One easily verifies that the point a :=
√
2εδ − 3ε2 + i2ε lies on the circle (bounding D+)

iδ + (δ − ε)C and that the distance from iε to a is d :=
√
2εδ − 2ε2. In order to prove

(5.5), it suffices (by symmetry) to show that d ≥ b0.
The bound ε ≤ 1

81δθ
2
0 ensures that ε ≤ 1

2δ, and consequently

d2 ≥ 2εδ − εδ = εδ ≥ ε 81ε
θ2
0

= b20; hence (5.5) as claimed.

It now follows from Lemma 5.3 that ‖f[t0,t0+b0]‖
2 ≥ 1

108
θ3
0

ε ≥ M , which contradicts as-
sumption (ii).

Case 2: t0 ∈ (L2 , L]

Defining f̂(t) := f(2t0 − t), t ∈ [t0, t0 + b0], the proof of Case 1 above shows that

‖f[t0−b0,t0]‖
2
= ‖f̂‖2 ≥M , which again contradicts assumption (ii). �
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6. Proofs of the Main Results and Concluding Remarks

In this section, we prove Theorem 1.1 and Corollary 1.2.

Definition 6.1. Let P1, P2, · · · , Pn be a list of points in C with Pj 6= Pj+1. Any interpo-
lating curve F can be written piecewise as F = f1 ⊔ f2 ⊔ · · · ⊔ fn−1, where the j-th piece
fj connects Pj to Pj+1. We define the distance from F to another interpolating curve

F̂ = f̂1 ⊔ f̂2 ⊔ · · · ⊔ f̂n−1 by

Dist(F, F̂ ) := max
1≤j<n

dist(fj , f̂j),

where dist(fj , f̂j) is the Hausdorff distance defined in (5.1).

Proof of Theorem 1.1. Assume F = f1 ⊔ f2 ⊔ · · · ⊔ fn−1 is a proper restricted elastic spline

through points P1, P2, · · · , Pn, with Pj 6= Pj+1, and set M := ‖F‖2 + 1. As usual, let the
chord angles of fj be denoted (αj , βj+1). Since F is proper, we have αj , βj ∈ (−π

2 ,
π
2 ) for

j = 2, 3, . . . , n − 1. That α1 and βn also belong to (−π
2 ,

π
2 ) can be seen as follows. As

explained at the end of Section 2, we necessarily have α1 = β∗(β2) and βn = β∗(αn−1),
since otherwise the bending energy of F would not be minimal in Aπ/2(P1, P2, . . . , Pn).
By Lemma 2.3 (i), |α1|, |βn| ≤ π

2 −Ψ, and hence α1, βn ∈ (−π
2 ,

π
2 ). Therefore, all the chord

angles belong to (−π
2 ,

π
2 ). Let u1, u2, . . . , un be the unit tangent vectors determined by F ,

whereby fj ∈ S(uj , uj+1). Since F has minimal bending energy in Aπ/2(P1, P2, · · · , Pn),
it follows that fj has minimal bending energy in S(uj , uj+1) and therefore, by Theorem
2.1, fj is equivalent to c(uj , uj+1) (a segment of rectangular elastica). By Proposition 4.4,
c(uj , uj+1) is forward tracking and therefore, by Theorem 5.1, there exists εj > 0 such

that if a curve f , connecting Pj to Pj+1, satisfies ‖f‖2 < M and dist(f, fj) < εj , then f is
forward tracking. Set ε := min

1≤j<n
εj .

In order to prove that F is a stable nonlinear spline, we will show that if F̂ = f̂1 ⊔ f̂2 ⊔
· · · ⊔ f̂n−1 is an interpolating curve with Dist(F̂ , F ) < ε, then ‖F̂‖2 ≥ ‖F‖2. Let F̂ be

an interpolating curve with Dist(F̂ , F ) < ε and suppose, to the contrary, that ‖F̂‖2 <
‖F‖2. Since f̂j connects Pj to Pj+1 and satisfies ‖f̂j‖

2 ≤ ‖F̂‖2 < M and dist(f̂j , fj) ≤
Dist(F̂ , F ) < ε, it follows that f̂j is forward tracking (j = 1, 2, . . . , n − 1). Therefore

F̂ ∈ F(P1, P2, · · · , Pn). By Corollary 4.3, ‖F̂‖2 ≥ ‖F‖2, which is a contradiction. �

Proof of Corollary 1.2. Assume that the points P1, P2, . . . , Pn yield stencil angles satisfying
|ψj | < Ψ, for j = 2, 3, . . . , n − 1. By [4, Prop. 1.1], there exists a restricted elastic spline
F through P1, P2, . . . , Pn, and by [4, Cor. 1.3] F is proper. Therefore, by Theorem 1.1, F
is a stable nonlinear spline. �

Remark 6.2. Although written and proved specifically for the free configuration, Theo-
rem 1.1 and Corollary 1.2 remain true for the clamped-free, free-clamped, and clamped
configurations provided that prescribed chord angles α1 and/or βn belong to (−π

2 ,
π
2 ).

Remark 6.3. For the closed configuration through P1, P2, . . . , Pn (and back to P1), a closed
restricted elastic spline F = f1⊔f2⊔· · ·⊔fn has the additional piece fn, with chord angles
(αn, β1), and we also have two additional stencil angles ψ1 and ψn at P1 and Pn. Theorem
1.1 and Corollary 1.2 remain true with the following modifications:
(A) F is deemed proper if αj , βj ∈ (−π

2 ,
π
2 ) for j = 1, 2, . . . , n, and

(B) the hypothesis of Corollary 1.2 includes the assumption |ψ1|, |ψn| < Ψ.
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