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Abstract. Given interpolation points P1, P2, . . . , Pm in the plane, it is known that there
does not exist an interpolating curve with minimal bending energy, unless the given points
lie sequentially along a line. We say that an interpolating curve is admissible if each piece,

connecting two consecutive points Pi and Pi+1, is an s-curve, where an s-curve is a planar
curve which first turns monotonically at most 180◦ in one direction and then turns monoton-

ically at most 180◦ in the opposite direction. Our main result is that among all admissible
interpolating curves there exists a curve with minimal bending energy. We also prove, in
a very constructive manner, the existence of an s-curve, with minimal bending energy, that

connects two given unit tangent vectors.

1. Introduction

Given a sequence of points P1, P2, . . . , Pm in R
2 with Pi 6= Pi+1, a curve F : [a, b] → R

2

is called an interpolating curve if there exist times a = t1 < t2 < · · · < tm = b
such that F (ti) = Pi. In the special case when the interpolation points can be written
as Pi = (xi, yi), with x1 < x2 < · · · < xm, an interpolating curve can be constructed
as the graph of a smooth function g : [x1, xm] → R, provided g satisfies the interpolation
conditions g(xi) = yi. It is well known that if g is the natural cubic spline, then g minimizes

the functional
∫ b

a
(g′′(x))2 dx among all smooth functions which satisfy the interpolation

conditions. This functional is often viewed as a simple approximation of the curve’s bending

energy
∫ L

0
κ(s)2 ds, where s denotes arclength and κ denotes signed curvature, and it is

natural to ask what would happen if one tried to minimize the bending energy among all
smooth interpolating curves. Unfortunately, such optimal curves do not exist except in
the trivial case when the interpolation points lie sequentially along a line. Apparently, this
was first observed by Birkhoff and de Boor [1], along with Birkhoff, Burchard and Thomas
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[2]. This lack of existence can be understood as a consequence of the effect that scaling
has on bending energy: the bending energy of a curve scaled by a factor q equals 1

q times

the original bending energy. As a result, it is possible to construct smooth interpolating
curves with arbitrarily small bending energy. For example, let p ≫ 1 and consider the
circles c1, c2, . . . , cm which meet tangentially at the point (p, 0); specifically, let ci be the
circle which begins and ends at (p, 0), has center on the x-axis, and passes through the
point Pi. Then the subcurve of c = c1 ∪ c2 ∪ · · · ∪ cm, starting at P1 and ending at Pm, is
an interpolating curve whose bending energy tends to 0 as p → ∞ (see section 2.6 of [8]
for other constructions).

Subsequent attention was directed towards interpolating curves whose bending energy
is locally minimal (i.e. minimal among all nearby interpolating curves). It was reported in
[2], and mentioned in [1], that if an interpolating curve F has a locally minimal bending
energy, then each segment of F , connecting two consecutive interpolation points, will be a
segment of ‘rectangular elastica’, meaning a planar curve whose signed curvature κ satisfies

the differential equation 2d2κ
ds2 +κ3 = 0. (Rectangular elastica was first described by James

Bernoulli (1694) and is one of the nine types of elastica identified by Euler (1750), see
[5].) Using a variational calculus and physical reasoning, Lee and Forsythe [7] (see also [3])
have confirmed that each segment of F is indeed a segment of rectangular elastica, and
have moreover shown that the signed curvature of F is continuous throughout the curve
and vanishes at the endpoints. Unfortunately, interpolating curves with locally minimal
bending energy do not necessarily exist, and this constitutes a significant deficiency in the
theoretical foundation of this interpolation method.

Rather than seeking an interpolating curve with a locally minimal bending energy, an
alternate approach is to define a restricted class of ‘admissible’ interpolating curves and
then seek a curve with minimal bending energy in the restricted class. Birkhoff proposed
a restriction on length and conjectured that among all smooth interpolating curves of
length at most L0, L0 being a prescribed upper bound, there exists a curve with minimal
bending energy. This conjecture was eventually proved by Jerome [6] (see [4] for a more
comprehensive treatment and also [8] where ‘pinning’ and ‘clamping’ at interpolation nodes
are treated).

Rather than a restriction on length, we propose a restriction on shape. The motivation
for our restriction comes from the fact that if a smooth interpolating curve F has a locally
minimal bending energy, then it can be shown that each segment of F , connecting two
consecutive interpolation points, is what here is called an s-curve. In brief, an s-curve
is a curve which first turns monotonically in one direction (either counter-clockwise or
clockwise) at most 180◦ and then turns monotonically in the opposite direction at most
180◦. An interpolating curve F is deemed admissible if each piece of F , connecting two
consecutive interpolation points Pi and Pi+1, is an s-curve. The family of all admissible
interpolating curves is denoted A(P1, P2, . . . , Pn), and we emphasize that our definition of
A(P1, P2, . . . , Pn) includes no restrictions or constraints on length. Our main result is the
following.

Theorem 1.1. Given any sequence of points P1, P2, . . . , Pm in R
2 with Pi 6= Pi+1, the

family of admissible interpolating curves A(P1, P2, . . . , Pm) contains a curve with minimal
bending energy.
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An essential sub-problem which arises in the proof of Theorem 1.1 is that of proving
the existence of an s-curve, with minimal bending energy, which connects two given unit
tangent vectors. In addition to facilitating our proof of Theorem 1.1, we anticipate that this
sub-problem sits at the core of any numerical algorithm for solving the general problem,
and with this in mind, we present a thorough analysis of the sub-problem along with a
constructive solution. We mention that in [4] and [8], the gradient vector field approach is
employed, but this approach would not apply to A(P1, P2, . . . , Pm) since it is not an open
manifold.

An outline of the sequel is as follows. In section 2, we explain our notation and de-
velop some basic formulae and properties of rectangular elastica. A curve which turns
monotonically at most 180◦ in one direction is called a c-curve and in section 3, we show
the existence of an optimal c-curve connecting a unit tangent vector to a line as well as
connecting two unit tangent vectors. Incidentally, line segments are (degenerate) c-curves
and c-curves are (degenerate) s-curves. In section 4, the uniqueness, or lack thereof, of
the optimal c-curves found in section 3 is treated. The important sub-problem mentioned
above, namely the existence of an optimal s-curve connecting two unit tangent vectors, is
primarily solved in section 5, except that one particular case (where the optimal s-curve
turns out to be a unique c-curve) is treated in section 6. Finally, in section 7, we prove
Theorem 1.1.

2. Notation

We simplify our notation by using the complex plane C in place of R
2. A curve is

a differentiable function f : [a, b] → C whose derivative f ′ is absolutely continuous and

non-zero. The length of f is len(f) =
∫ b

a
|f ′(t)|dt. With L = len(f), let the variables

t ∈ [a, b] and s ∈ [0, L] be related by s =
∫ t

a
|f ′(τ)|dτ and define F : [0, L] → C by

F (s) = f(t). It can be shown that F is a curve (i.e. F ′ is absolutely continuous) satisfying
|F ′| = 1. The curve F is called the unit speed curve described by f and is denoted
[f ]. Two curves f and g are said to be equivalent, written f ≡ g, if [f ] = [g]. Since F ′

is absolutely continuous and |F ′| = 1, it follows that there exists an absolutely continuous
function θ : [0, L] → R, unique modulo an additive constant in 2πZ, such that F ′ = eiθ.
We refer to θ at the direction angle of F , while the derivative of θ, denoted κ, is called
the signed curvature of F . Since θ is absolutely continuous, it follows that κ is Lebesgue
integrable (see [9, pp. 108–112]). The turning angle of f , denoted ∆(f), is defined by

∆(f) = ∆(F ) :=
∫ L

0
κ(s) ds. Note that the magnitude of the turning angle is bounded by

the L1-norm of κ. If κ ≥ 0 (resp. κ ≤ 0) almost everywhere in [0, L], then |∆(F )| = ‖κ‖L1

and f is called a left-curve (resp. right-curve). A c-curve is a left-curve or a right-curve
whose turning angle has magnitude at most π. A u-turn is a c-curve whose turning angle
has magnitude π.

Given the signed curvature κ of F and its initial position and direction, we can recover
F as follows:
Step 1. Define θ(s) = θ0 +

∫ s

0
κ(r) dr, s ∈ [0, L], where θ0 = arg(F ′(0)).

Step 2. F (s) = F (0) +
∫ s

0
eiθ(r) dr.

(Here, arg is defined with the standard range (−π, π].) This reconstruction can be used
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to decide when two curves are close to each other. To see this, suppose F1 is a unit speed
curve having the same length and initial position and direction as F . It follows from step
1, that |θ(r) − θ1(r)| ≤ ‖κ − κ1‖L1

and then using the Lipschitz continuity of the function

r 7→ eir in step 2, we obtain

(2.1) |F (s) − F1(s)| ≤
∫ s

0

∣∣∣eiθ(r) − eiθ1(r)
∣∣∣ dr ≤

∫ s

0

|θ(r) − θ1(r)| dt ≤ s‖κ − κ1‖L1
.

Whereas the L1-norm of κ is necessarily finite, the L2-norm may or may not be finite.
When it is finite, we say that f has finite bending energy, where the bending energy of
f , denoted ‖f‖2

, is essentially the square of the L2-norm of κ:

‖f‖2
= ‖F‖2

:=
1

4

∫ L

0

|κ(s)|2 ds.

The constant 1
4 has been inserted for later convenience.

A unit tangent vector is an ordered pair of complex numbers u = (u1, u2) ∈ C
2 such

that |u2| = 1 and can be visualized (see Fig. 5.1) as the directed line segment, of unit
length, having base-point u1 and direction u2. For any t ∈ [a, b], the unit tangent vector

to f at t, denoted ~f(t), has base-point f(t) and direction f ′(t)/|f ′(t)|, whereby

~f(t) := (f(t), f ′(t)/|f ′(t)|).

The unit tangent vectors u = ~f(a) and v = ~f(b) are called, respectively, the initial and
terminal unit tangent vectors of f (see Fig. 5.2), and we say that f connects u to v. We
also say that f connects u to λ if λ is the line through f(b) which is parallel to f ′(b) (see
Fig. 5.3 where fr connects u to λ). If g is a curve whose initial unit tangent vector equals
the terminal unit tangent vector of f , then [f ] can be extended by [g] obtaining a unit
speed curve, denoted f ⊔ g, whose initial and terminal unit tangent vectors equal those of
f and g, respectively, and whose bending energy satisfies ‖f ⊔ g‖2

= ‖f‖2
+ ‖g‖2

.
A similarity transformation is a mapping T : C → C of the form T (z) = c1z + c2 or

T (z) = c1z + c2, where c1, c2 are complex constants, c1 6= 0. The first form preserves the
orientation (left or right) of a curve while the second form reverses it. The dilation factor is

q = |c1|, and the effect on a curve f is, as expected, len(T ◦f) = q len(f), ‖T ◦ f‖2
= 1

q‖f‖
2

and |∆(T ◦ f)| = |∆(f)|. If a curve g is equivalent to T ◦ f , then we say that g is similar

to f ; in case q = 1, T is called a congruency transformation and we say that g is
congruent to f . Furthermore, we say that g is directly similar (or congruent) to f if T
is orientation preserving.

The curves constructed in this article are formed by line segments (denoted [A,B]) and
various segments of rectangular elastica. For the latter, we employ the parameterization

R(t) := sin t + iξ(t),

where ξ(t) is defined by
dξ

dt
=

sin2 t√
1 + sin2 t

, ξ(0) = 0 (see Figure 6.1a). This parameteriza-

tion is derived simply by substituting a = 1 and x = sin t into James Bernoulli’s equation
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dy = x2 dx/
√

a4 − x4, and we find it more suitable to the work at hand than the usual unit

speed formulation involving Jacobi’s elliptic functions. Since dξ
dt is even and π-periodic, it

follows that ξ is odd and satisfies ξ(t + π) = d + ξ(t), where

d := ξ(π).

Since the sine function is odd and 2π-periodic, we conclude that R(t) is odd and satisfies
R(t + 2π) = i2d + R(t). We use the notation R[a,b] to denote the sub-curve R(t), t ∈ [a, b],
and any curve which is similar to R[a,b] is called a segment of rectangular elastica.
For later reference, we mention the following.

|R′(t)| =
1√

1 + sin2 t
,

R′(t)

|R′(t)| = cos t
√

1 + sin2 t + i sin2 t, κ(t) = 2 sin t,

∆(R[0,b]) =

∫ b

0

κ(t)|R′(t)|dt = 2 cos−1

[
cos b√

2

]
− π

2
,

‖R[a,b]‖2
=

1

4

∫ b

a

κ(t)2|R′(t)|dt = ξ(b) − ξ(a).

For t0 ∈ (0, π], the segment R[0,t0] plays an important role in the sequel. In the following
lemma, we establish a connection between the turning angle of R[0,t0] and the value of
ξ(t0).

Lemma 2.1. Let t0 ∈ (0, π] and put θ0 = ∆(R[0,t0]). Then ξ(t0) =
1

2

∫ θ0

0

√
sin τ dτ .

Proof. Fix t0 ∈ (0, π] and put θ = ∆(R[0,t]) = 2 cos−1
[

cos t√
2

]
− π

2 , t ∈ [0, t0]. Then
dθ
dt = κ(t)|R′(t)|, and since eiθ = R′(t)/|R′(t)|, we have sin θ = ImR′(t)/|R′(t)| = sin2 t,

which implies
√

sin θ = sin t. Hence,

ξ(t0) =

∫ t0

0

sin2 t√
1 + sin2 t

dt =
1

2

∫ t0

0

sin(t)κ(t)|R′(t)|dt =
1

2

∫ θ0

0

√
sin τ dτ.

¤

3. Existence of optimal c-curves

Given a unit tangent vector u and a line λ, let Cl(u, λ) denote the set of left c-curves
which connect u to λ. In this section, we consider the problem of finding a curve in Cl(u, λ)

which has minimal bending energy. We first consider Cl(u0, λd), where u0 = ~R(0) and λd =
{z ∈ C : Imz = d}. We will show that R[0,π] has minimal bending energy in Cl(u0, λd).

Note that ‖R[0,π]‖2
= ξ(π) = d and by Lemma 2.1, we have d = ξ(π) = 1

2

∫ π

0

√
sin τ dτ .

Let f ∈ Cl(u0, λd), put L = len(f), and let F = [f ] denote the unit speed curve
described by f . Let θ and κ be the direction angle and signed curvature of F , respectively,

and note that
∫ L

0
κ(s) ds = π since the turning angle in Cl(u, λd) is π. Furthermore, since

F originates at 0 and terminates on λd, we have d = ImF (L) =
∫ L

0
sin θ ds.
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Lemma 3.1. If κ is continuous and positive, then ‖F‖2 ≥ d.

Proof. We adopt the viewpoint that θ ∈ [0, π] and s ∈ [0, L] are variables related by
θ =

∫ s

0
κ(r) dr. The assumptions on κ ensure that θ and s are increasing C1 functions of one

another. Noting that dθ
ds = κ(s), we observe that ‖F‖2

= 1
4

∫ L

0
κ(s)2 ds = 1

4

∫ L

0
κ(s)dθ

ds ds =
1
4

∫ π

0
κ(s) dθ. Similarly, since ds

dθ = 1/κ(s), we have
∫ π

0
sin θ
κ(s) dθ =

∫ π

0
sin θ ds

dθ dθ =
∫ L

0
sin θ ds =

d. Now,

d2 =

[
1

2

∫ π

0

√
sin θ dθ

]2

=

[∫ π

0

√
sin θ√
κ(s)

√
κ(s)

2
dθ

]2

≤
(∫ π

0

sin θ

κ(s)
dθ

)(
1

4

∫ π

0

κ(s) dθ

)
,

by the Cauchy-Schwarz inequality. Hence d2 ≥ d‖F‖2
, and therefore ‖F‖2 ≥ d. ¤

Returning now to the general case, suppose, by way of contradiction, that ‖F‖2
< d.

Then κ is a nonnegative square integrable function satisfying
∫ L

0
κ(s) ds = π. It follows

that for every ε > 0, there exists a positive continuous function κε : [0, L] → [0,∞) such

that
∫ L

0
κε(s) ds = π and ‖κ − κε‖L2

< ε. Let Fε be the unit speed curve having signed
curvature κε and initial unit tangent vector u0. Since Fε has turning angle π, it follows that
the terminal unit tangent vector of Fε is parallel to λd, but there is no guarantee that the
terminal point zε = Fε(L) lies on λd. We repair this by multiplying Fε with the positive

scalar cε = d/ Im zε obtaining the curve cεFε ∈ Cl(u0, λd) with ‖cεFε‖2
= 1

cε
‖Fε‖2

. Since

‖κ − κε‖L2
→ 0, it follows that ‖Fε‖2 → ‖F‖2

as ε → 0. And since the L1-norm of κ− κε

is bounded by a constant multiple of its L2-norm, it follows from (2.1) that cε → 1 as

ε → 0. Hence ‖cεFε‖2
< d when ε > 0 is sufficiently small, contradicting Lemma 3.1.

Therefore, ‖F‖2 ≥ d. We have thus proved the following.

Theorem 3.2. Let u0 = ~R(0) and λd = {z ∈ C : Imz = d}. Then R[0,π] has minimal
bending energy in Cl(u0, λd).

Corollary 3.3. Let t1 ∈ (0, π) and put u1 = ~R(t1). Then R[t1,π] has minimal bending
energy in Cl(u1, λd).

Proof. If f ∈ Cl(u1, λd) has bending energy less than R[t1,π], then R[0,t1]⊔f will be a curve
in Cl(u0, λd) with bending energy less than d, contradicting Theorem 3.2. ¤

Corollary 3.4. Let 0 ≤ t1 < t2 ≤ π and put u1 = ~R(t1), u2 = ~R(t2). Then R[t1,t2] has
minimal bending energy in Cl(u1, u2).

Proof. If f ∈ Cl(u1, u2) has bending energy less than R[t1,t2], then R[0,t1] ⊔ f ⊔R[t2,π] will
be a curve in Cl(u0, λd) with bending energy less than d, contradicting Theorem 3.2. ¤

Definition 3.5. Let λ be a line and u a unit tangent vector whose base-point lies off
of λ, and assume Cl(u, λ) is nonempty. Let δ ∈ (0, π] be the common turning angle in
Cl(u, λ) and let t1 ∈ [0, π) be such that ∆(R[t1,π]) = δ. There exists a unique similarity
transformation T such that T ◦ R[t1,π] belongs to Cl(u, λ). We define l(u, λ) = T ◦ R[t1,π].
In other words, l(u, λ) is the unique curve in Cl(u, λ) which is similar to R[t1,π].
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Theorem 3.6. Let λ be a line and u a unit tangent vector whose base-point lies off of λ,
and assume Cl(u, λ) is nonempty. Then l(u, λ) has minimal bending energy in Cl(u, λ).
Moreover, if δ ∈ (0, π] denotes the common turning angle in Cl(u, λ) and p denotes the
orthogonal distance from the base-point of u to λ, then

‖l(u, λ)‖2
=

1

p

[
1

2

∫ δ

0

√
sin τ dτ

]2

.

Proof. Let t1 and T be as in Definition 3.5 and u1 and λd as in Corollary 3.3. Note that
T maps Cl(u1, λd) onto Cl(u, λ) and a curve f has minimal bending energy in Cl(u1, λd)
if and only if T (f) has minimal bending energy in Cl(u, λ). It therefore follows from
Corollary 3.3 that l(u, λ) = T ◦ R[t1,π] has minimal bending energy in Cl(u, λ). In order

to compute the bending energy of l(u, λ), recall that ‖l(u, λ)‖2
= 1

q‖R[t1,π]‖2
, where q

is the dilation factor in T . Since the orthogonal distance from the base-point of u1 to
λd is d − ξ(t1), it follows that q = p/(d − ξ(t1)). And since ‖R[t1,π]‖2

= d − ξ(t1),

we have ‖l(u, λ)‖2
= 1

p (d − ξ(t1))
2. By Lemma 2.1, ξ(t1) =

∫ π−δ

0

√
sin τ dτ and hence

d − ξ(t1) = 1
2

∫ π

π−δ

√
sin τ dτ = 1

2

∫ δ

0

√
sin τ dτ . ¤

Remark 3.7. The definitions and results for right c-curves are analogous to those for left
c-curves. In brief, we denote the set of right c-curves connecting u to λ by Cr(u, λ), and
r(u, λ) is defined the same as l(u, λ) except that δ denotes the magnitude of the common
turning angle in Cr(u, λ) (right curves have a negative turning angle). Theorem 3.6 then
holds with Cr(u, λ) and r(u, λ) in place of Cl(u, λ) and l(u, λ), respectively.

4. Uniqueness of optimal c-curves

Having settled the question of existence of an optimal curve in Cl(u, λ) we now address
uniqueness. As with existence we start with Cl(u0, λd), where u0 and λd are as in Theorem
3.2.

Theorem 4.1. For i = 1, 2, let Fi : [0, Li] → C be a unit speed curve in Cl(u0, λd) such

that ‖Fi‖2
= d and assume that Fi does not begin or end with a line segment. Then

F1 = F2.

Our proof of this employs the following technical result, which is left as a simple exercise
in differential calculus.

Lemma 4.2. Let ν1, ν2 > 0 and define H : (0, 1) → (0,∞) by H(µ) =
ν2
1

µ
+

ν2
2

1 − µ
. Then

H has a unique minimum at µ0 = ν1/(ν1 + ν2), where H(µ0) = (ν1 + ν2)
2.

Proof of Theorem 4.1. Let θi and κi be the direction angle and signed curvature of Fi,
respectively. Since Fi does not begin or end with a line segment, we have 0 < θi(s) < π
for all s ∈ (0, Li), and it follows that Fi can be reparameterized as t 7→ gi(t)+ it, t ∈ [0, d],
where gi is continuous on [0, d] and continuously differentiable on (0, d). Fix γ ∈ (0, π)



8 ALBERT BORBÉLY & MICHAEL J. JOHNSON

and let t ∈ (0, π) be such that ∆(R[0,t]) = γ. Let si ∈ (0, Li) be such that θi(si) = γ, and

put vi = ~Fi(si) and ti = Im Fi(si). We claim that t1 = ξ(t) = t2. Noting that the turning
angle in Cl(vi, λd) is π − γ and the orthogonal distance from the base-point of vi to λd is
d− ti, and since Fi[si,L] belongs to Cl(vi, λd), we obtain from Theorem 3.6 and Lemma 2.1

that ‖Fi[si,Li]‖
2 ≥ 1

d−ti
(d− ξ(t))2. By a similar argument (using right c-curves) we obtain

‖Fi[0,si]‖
2 ≥ 1

ti
ξ(t)2. Therefore,

d = ‖Fi‖2
= ‖Fi[0,si]‖

2
+ ‖Fi[si,L]‖2 ≥ 1

ti
ξ(t)2 +

1

d − ti
(d − ξ(t))2.

With ν1 = ξ(t), ν2 = d − ξ(t), µ = ti/d, and with H(µ) as in Lemma 4.2, we can express
the above inequality as d ≥ 1

dH(µ), or equivalently, d2 ≥ H(µ). By Lemma 4.2, H has

a unique minimum at µ0 = ξ(t)/d where H(µ0) = d2. But since d2 ≥ H(µ), it must be
the case that µ = µ0; therefore ti = ξ(t) as claimed. In terms of the functions g1 and g2,
we have proved that if g′1(t1) = cot γ = g′2(t2), then t1 = ξ(t) = t2. Since, for i = 1, 2, g′i
is continuous and decreasing on (0, d), with range (−∞,∞), we conclude that g′1 = g′2 on
(0, d). Since g1(0) = 0 = g2(0), we have g1 = g2 on [0, d]. From this we conclude that F1

and F2 are equivalent, but since both are unit speed curves, they must be equal. ¤

As an immediate corollary, we have the following.

Corollary 4.3. If f ∈ Cl(u0, λd) has minimal bending energy, then f contains a subcurve
which is equivalent to c + R[0,π] for some real constant c ≥ 0.

Imitating the proof of Corollary 3.3 and Theorem 3.6, one easily obtains the following.

Corollary 4.4. Let λ be a line and u a unit tangent vector whose base-point lies off of
λ, and assume Cl(u, λ) is nonempty. Let δ ∈ (0, π] denote the common turning angle in
Cl(u, λ) and let f ∈ Cl(u, λ) have minimal bending energy.
(i) If δ = π, then f contains a subcurve which is congruent to l(u, λ).
(ii) If δ < π, then either f ≡ l(u, λ) or f ≡ l(u, λ) ⊔ [A,B] for some line segment [A,B].

We have seen in Corollary 3.4 that R[t1,t2] has minimal bending energy in Cl(u1, u2).
Using the same technique as above, one easily obtains the following.

Theorem 4.5. Let 0 ≤ t1 < t2 ≤ π and let u1 = ~R(t1), u2 = ~R(t2) denote the initial
and terminal unit tangent vectors of the curve R[t1,t2], respectively. Let f be a curve with
minimal bending energy in Cl(u1, u2). If f is not equivalent to R[t1,t2], then [t1, t2] = [0, π]
and a sub-curve of f is congruent to R[0,π] (i.e. f is equivalent to [0, c]⊔ (c + R[0,π])⊔ [c +
id, id] for some real constant c > 0).

5. Optimal s-curves, part I

An s-curve is either a c-curve (considered a degenerate s-curve) or a curve of the form
f = f1 ⊔ f2, where f1 and f2 are c-curves which turn in opposite directions. Let u and v
be two unit tangent vectors and let S(u, v) denote the set of all s-curves which connect u
to v. In this section and the next, we will prove the following.
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Theorem 5.1. Let u and v be two unit tangent vectors with distinct base-points. If S(u, v)
is nonempty, then there exists a curve in S(u, v) with minimal bending energy.

In addition to proving existence, our proof of Theorem 5.1 will actually describe all
optimal curves in S(u, v). Expecting that the numerical problem of finding an optimal
curve in S(u, v) lies at the heart of future algorithms, we have structured our proof so that
it easily translates into a numerical algorithm.

To begin, let u and v be two unit tangent vectors with distinct base-points. By applying
a similarity transformation, if necessary, and possibly a direction reversal (i.e. S(−v,−u) in
place of S(u, v)), we can assume without loss of generality that u = (0, eiα) and v = (1, eiβ),
where α ∈ [0, π] and |β| ≤ α (see Figure 5.1, where (α) indicates the direction angle of u).

We leave it to the reader, as a worthwhile exercise, to verify that in this situation S(u, v)
is nonempty if and only if α < π and β ≥ α− π. With that in mind, we proceed assuming
that α ∈ [0, π), |β| ≤ α and β ≥ α − π.

If α = 0, then β = 0 as well and the line segment [0, 1] is the unique curve (modulo
equivalence) in S(u, v) having minimal bending energy. Having dispensed with the trivial
case, we assume henceforth that α > 0.

Our proof of existence will show that there exists an optimal curve in S(u, v) having
one of the following two forms.

Definition 5.2. A curve f is of
(i) first form if there exist −π < t0 < t < π such that f is directly similar to R[t0,t],
(ii) second form if there exists c ≥ 0 and t ∈ [0, π] such that f is directly similar to

R[−π,0] ⊔ [0, c] ⊔ (c + R[0,t]).

Note that curves of first form do not contain u-turns, while curves of second form
do. While studying a generic right-left s-curve f ∈ S(u, v), the following quantities will
gradually take on significance, but for easy reference we gather and define them here. The
minimum direction angle γ = min arg(f ′) is illustrated in Fig. 5.3 for a non-degenerate
right-left s-curve f , while γ = β if f is a right c-curve. The set of all possible angles γ is
denoted Γ.
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Definition 5.3. For γ in Γ := [α − π, β] ∩ (−∞, 0), we define the following:

y1 := y1(γ) :=
1

2

∫ α−γ

0

√
sin τ dτ (bending energy of R[0,t1])

y2 := y2(γ) :=
1

2

∫ β−γ

0

√
sin τ dτ (bending energy of R[0,t2])

G(γ) :=
1

− sin γ
(y1 + y2)

2 (lower bound on ‖f‖2
)

σ(γ) := cos γ +
sin γ

y1 + y2
(
√

sin(α − γ) +
√

sin(β − γ)) (signed distance)

q(γ) :=
− sin γ

y1 + y2
(dilation factor)

Note that, by Lemma 2.1 (see Fig. 2.1), y1 and y2 can also be expressed as y1 = ξ(t1) =
‖R2

[0,t1]
‖ and y2 = ξ(t2) = ‖R2

[0,t2]
‖, where t1, t2 ∈ [0, π] are determined by ∆(R[0,t1]) =

α − γ and ∆(R[0,t2]) = β − γ.

We mention further that G(γ) (see Theorem 5.6) is a lower bound on the bending
energy of our generic curve f , and σ(γ) is a signed distance, which is illustrated in Fig.
5.4. Regarding q(γ), we mention that the curves r(u, λ) and l(λ, v), shown in Fig. 5.4, are
similar to R[0,t1] and R[0,t2], respectively, with common dilation factor q(γ). The crucial
identity relating G(γ), σ(γ) and q(γ) is given in Lemma 5.11.

Our constructive proof that S(u, v) contains an optimal curve is broken into three cases
which depend on α and β. To help the reader track these cases, we give here a short
description of each case and where in this section or the next it is treated.

Summary 5.4. We assume α ∈ (0, π), |β| ≤ α and β ≥ α − π.
Case A: β = α − π.

This case is treated just below and results in an optimal curve of second form.
Case B: β ≥ 0 or (α − π < β < 0 and σ(β) ≥ 0).

It is shown in Lemma 5.11 that the function G has a minimum value Gmin, and in Corollary
5.12 (vi) it is shown that Gmin equals the minimum bending energy in S(u, v). Each γ ∈ Γ,
where G is minimized, gives rise to an optimal curve in S(u, v), but the form of the optimal
curve depends on whether or not γ is the left endpoint of Γ. If G is minimized at the left
endpoint γ = α − π, then it is shown in Corollary 5.12 (iii), that the curve fα−π, which
is of second form, is an optimal curve in S(u, v). If G is minimized at any other point
γ > α − π, then it is shown in Corollary 5.12 (iv), (v) that the curve fγ , which is of first
form, is an optimal curve in S(u, v).

Case C: α − π < β < 0 and σ(β) ≤ 0.
In Theorem 6.2, it is shown that the unique curve (modulo equivalence) in S(u, v) having
minimal bending energy is a c-curve of first form.

Remark. The reader may note that Case B and Case C have some overlap (namely, when
α−π < β < 0 and σ(β) = 0); this overlap is intentional and serves as a bridge from Case B
to Case C. The construction under Case C is the better because it yields a unique optimal
curve.
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Proof of Theorem 5.1 for Case A. Assume β = α − π. Then α ≥ π/2 and S(u, v) =
Cr(u, v) (since the common turning angle in S(u, v) is −π). Let λ be the line through 1
which is parallel to v (and also parallel to u) and let P1 be the terminal point of r(u, λ)
(see Fig. 5.2). Since α ≥ π/2, it follows that P1 lies on or above the real axis and
therefore f := r(u, λ) ⊔ [P1, 1] belongs to Cr(u, v). Since S(u, v) = Cr(u, v) ⊂ Cr(u, λ), it
follows from Theorem 3.6 and Remark 3.7 that f has minimal bending energy in S(u, v).
Furthermore, one easily deduces from Corollary 4.4 (i) and Remark 3.7 that f is unique
modulo equivalence and elongation of u-turns (see remark below). Note that f is of second
form with t = 0.

Regarding the quantities defined in Definition 5.3, the set Γ reduces to the singleton
Γ = {β} and since the orthogonal distance from 0 to λ is |P1 − 0| = − sin β, it follows

from Theorem 3.6 that ‖f‖2
= d2/(− sin β) = G(β). It is easy to see that the distance

from P1 to 1 equals cos β, and hence |P1 − 1| = cos β = σ(β). Lastly, q(β) = (− sinβ)/d
corresponds to the dilation factor from R[−π,0] to the similar curve r(u, λ). ¤

Remark 5.5. If a curve f ∈ S(u, v) contains a u-turn (eg. the curve r(u, λ)⊔ [P1, 1] above),
then it is always possible to elongate the u-turn by inserting a pair of congruent line
segments before and after the u-turn. Although longer, the resulting curve still belongs to
S(u, v) and has the same bending energy as f .

Having settled the trivial case (α = 0) and Case A, we proceed assuming that

(5.1) α ∈ (0, π), |β| ≤ α, β > α − π.

Our analysis employs an initial partitioning S(u, v) = S′
lr(u, v) ∪ Srl(u, v), where S′

lr(u, v)
(which is nonempty if and only if β < 0) denotes the set of all non-degenerate left-right
s-curves in S(u, v) and Srl(u, v) denotes the set of all right-left s-curves in S(u, v).

Proposition 5.6. If β < 0, then ‖f‖2
> G(β) for all f ∈ S′

lr(u, v).

Proof. Let f : [a, b] → C be a non-degenerate left-right s-curve in S(u, v). Set α1 =
mint∈(a,b] arg f(t) and let A = f(s1) be a point where this minimum is attained. It can
be shown that arg f ′(s1) = α1 > α and that f[s1,b] is a right c-curve. Let u1 be the unit

tangent vector u1 = (0, eiα1) and let λ denote the line through 1 which is parallel to v.
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Then g = [0, A] ∪ f[s1,b] belongs to Cr(u1, λ), and we have

‖f‖2
> ‖f[s1,b]‖2

= ‖g‖2 ≥ ‖r(u1, λ)‖2
=

1

− sin β

(
1

2

∫ α1−β

0

√
sin τ dτ

)2

>
1

− sinβ

(
1

2

∫ α−β

0

√
sin τ dτ

)2

= ‖r(u, λ)‖2
= G(β).

¤

Although it is not yet apparent, it will eventually be clear that Proposition 5.6 is all
we need to rule out curves in S′

lr(u, v). We now turn our attention to Srl(u, v) and define
subsets s∗γ(u, v) ⊂ sγ(u, v) ⊂ Srl(u, v). For γ ∈ Γ, let sγ(u, v) be the set of all curves
f ∈ Srl(u, v) whose minimal direction angle, min arg(f ′), equals γ. One easily verifies that
Srl(u, v) partitions as Srl(u, v) =

⋃
γ∈Γ sγ(u, v).

If β < 0, then sβ(u, v) simplifies to sβ(u, v) = Cr(u, v) and we also define s∗β(u, v) =

Cr(u, v). The definition of s∗γ(u, v) is much more involved when γ < β: Let γ ∈ Γ with
γ < β, and let f ∈ sγ(u, v). Then f , being a non-degenerate right-left s-curve, has a well
defined inflection line λ with direction angle γ (see Figure 5.4).

Let a(f) denote the orthogonal distance from 0 to λ. Since λ necessarily passes between
0 and 1, it follows that a(f) belongs to the interval (0, b), where b = − sin γ denotes the
orthogonal distance from 0 to the line through 1 and parallel to λ. We define s∗γ(u, v) to
be the set of all curves f ∈ sγ(u, v) for which a(f) = − sin γ y1

y1+y2

.

Theorem 5.7. Assume (5.1). For γ ∈ Γ and f ∈ sγ(u, v), the following hold.

(i) ‖f‖2 ≥ G(γ).

(ii) If ‖f‖2
= G(γ), then f ∈ s∗γ(u, v).

Proof. We first consider the simpler case when β < 0 and γ = β. Since s∗β(u, v) =

sβ(u, v) = Cr(u, v) we need only prove (i). Let λ be the line through 1 which is parallel

to v. Then Cr(u, v) ⊂ Cr(u, λ) and it follows that ‖f‖2 ≥ ‖r(u, λ)‖2
, since r(u, λ) has

minimal bending energy in Cr(u, λ). Noting that the orthogonal distance from 0 to λ is
− sin β and the common turning angle in Cr(u, λ) has magnitude α − β, it follows from

Theorem 3.6 and Remark 3.7 that ‖r(u, λ)‖2
= G(β); hence (i).

Now assume that γ ∈ Γ with γ < β and let f ∈ sγ(u, v). Let the inflection line λ and
the distances a(f) and b = − sin γ be as described above (see Fig. 5.4), and let us write
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f = fr ⊔ fl, where fr terminates (and fl originates) at an inflection point I of f . Since
fr ∈ Cr(u, λ) and fl ∈ Cl(λ, v), it follows that

(5.2) ‖f‖2
= ‖fr‖2

+ ‖fl‖2 ≥ ‖r(u, λ)‖2
+ ‖l(λ, v)‖2

=
y2
1

a(f)
+

y2
2

b − a(f)
.

Let H be the function defined in Lemma 4.2 with ν1 = y1, ν2 = y2 and µ = a(f)
b ∈ (0, 1).

Then (5.2) can be expressed as ‖f‖2 ≥ 1
b H(µ), and it follows from Lemma 4.2 that

H(µ) ≥ (y1 + y2)
2, with equality if and only if µ = y1/(y1 + y2); that is, if and only

if a(f) = − sin γ y1

y1+y2

. We therefore conclude that ‖f‖2
> G(γ) if f 6∈ s∗γ(u, v) and

‖f‖2 ≥ G(γ) if f ∈ s∗γ(u, v), which proves both (i) and (ii). ¤

For γ ∈ Γ with γ < β, let λγ denote the common inflection line in s∗γ(u, v), and let
aγ = − sin γ y1

y1+y2

denote the orthogonal distance from 0 to λγ ; furthermore (see Fig. 5.5),

let P1 and P2 denote the terminal and initial points of r(u, λγ) and l(λγ , v), respectively.
If β < 0 and γ = β, let λβ denote the line through 1 which is parallel to v and let aγ and
P1 be as defined above (note that aβ = − sin β still equals the orthogonal distance from
0 to λβ), but for convenience set P2 = 1 (the base-point of v). We now show that the
quantity q(γ) corresponds to a common dilation parameter.

Proposition 5.8. Assume (5.1) and let γ ∈ Γ. Then the following hold.
(i) The curve r(u, λγ) is directly congruent to q(γ)R[−t1,0].
(ii) If γ < β, then l(λγ , v) is directly congruent to q(γ)R[0,t2].

Proof. Let T1 be the similarity transformation such that r(u, λγ) = T1 ◦ R[−t1,0] and if
γ < β, let T2 be such that l(λγ , v) = T2◦R[0,t2]. Since the orthogonal distance from R(−t1)
to the real axis is ξ(t1) and the orthogonal distance from 0 to λγ is aγ , it follows that the
dilation parameter of T1 equals

aγ

ξ(t1)
= 1

y1

y1

y1+y2

(− sin γ) = q(γ). If γ < β, we see by similar

reasoning, that the dilation parameter of T2 equals
b−aγ

ξ(t2)
= 1

y2

(− sin γ+y1 sin γ/(y1+y2)) =

q(γ), where b = − sin γ denotes the orthogonal distance from 0 to the line through 1 which
is parallel to λγ . ¤

The following result shows that the quantity σ(γ) corresponds to the signed distance
from P1 to P2.

Proposition 5.9. Assume 5.1 and let γ ∈ Γ. Then σ(γ) equals the signed distance, in
the direction eiγ , from P1 to P2.

Proof. We consider first the case γ < β. Let h denote the signed distance in question,
and put B = P2 − P1 = heiγ (see Figure 5.5). It follows from Proposition 5.8 that
f = r(u, λγ) ⊔ (l(λγ , v) − B) is directly congruent to q(γ)R[−t1,t2]. Since the projected

distance, in the direction ei0, from R(−t1) to R(t2) equals sin t1 +sin t2, it follows that the
projected distance, in the direction eiγ , from the initial point to the terminal point of f
equals q(γ)(sin t1 + sin t2). Noting that the projected distance, in the direction eiγ , from
0 to 1 equals cos γ, we deduce that q(γ)(sin t1 + sin t2) = cos γ − h. Solving for h and then
employing the identity sin2 δ = sin t, when δ = ∆(R[0,t]) and t ∈ [0, π], yields the desired
conclusion h = σ(γ).
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If β < 0 and γ = β, then t2 = 0 and the above proof, with f = r(u, λβ), yields the same
conclusion h = σ(γ). ¤

Remark 5.10. Two important consequences of Proposition 5.8 and Proposition 5.9 are:
1. Let γ ∈ Γ, with γ > α − π. If σ(γ) = 0, then fγ := r(u, λγ) ⊔ l(λγ , v) has bending
energy G(γ) and is directly congruent to q(γ)R[−t1,t2]. It follows from the latter that fγ is
of first form with t0 = −t1 and t = t2.
2. If σ(α− π) ≥ 0, then fα−π := r(u, λγ)⊔ [P1, P2]⊔ l(λγ , v) has bending energy G(α− π)
and is of second form with c = σ(α − π)/q(α − π) and t = t2.

In the following result, we see that σ(γ) appears as a factor in the derivative G′(γ).

Lemma 5.11. Assume (5.1). The function G : Γ → (0,∞) is continuously differentiable,

has a minimum value Gmin, and satisfies
d

dγ
G(γ) =

1

q(γ)2
σ(γ) for all γ ∈ Γ.

Proof. For γ ∈ Γ, we have

G′(γ) =
cos γ

sin2 γ
(y1 + y2)

2 − 2

sin γ
(y1 + y2)(y

′
1(γ) + y′

2(γ))

=
1

q(γ)2

(
cos γ − 2 sin γ

y1 + y2
(−1

2

√
sin(α − γ) − 1

2

√
sin(β − γ))

)
=

1

q(γ)2
σ(γ),

and we note that both q and σ are continuous on Γ and q is positive. If β < 0, then
Γ = [α − π, β] and it is clear that G has a minimum value. On the other hand, if β ≥ 0,
then Γ = [α − π, 0), but we note that G(γ) → ∞ as γ → 0−; hence G has a minimum
value. ¤

In preparation for the main result of this section, we remind the reader that S(u, v) has
been partitioned as

(5.3) S(u, v) = S′
lr(u, v) ∪

⋃

γ∈Γ

sγ(u, v),

where S′
lr(u, v) is nonempty only when β < 0.

Corollary 5.12. Let (5.1) be in force, and in case β < 0, assume σ(β) ≥ 0. The following
hold.
(i) If β < 0, then ‖f‖2

> Gmin for all f ∈ S′
lr(u, v).

(ii) If γ ∈ Γ and G(γ) > Gmin, then ‖f‖2
> Gmin for all f ∈ sγ(u, v).

(iii) If G(α−π) = Gmin, then σ(α−π) ≥ 0 and the curve fα−π, defined in Remark 5.10, is
the unique curve, modulo equivalence and elongation of u-turns, in sα−π(u, v) with bending
energy Gmin.
(iv) Let γ ∈ Γ with α − π < γ < β. If G(γ) = Gmin, then σ(γ) = 0 and the curve fγ ,
defined in Remark 5.10, is the unique curve (modulo equivalence) in sγ(u, v) with bending
energy Gmin.
(v) If β < 0 and G(β) = Gmin, then σ(β) = 0 and fβ := r(u, λβ), which is of first form
with t0 = −t1 and t = 0, is the unique curve (modulo equivalence) in sβ(u, v) with bending
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energy Gmin.
(vi) The minimum bending energy in S(u, v) is Gmin.

Proof. Items (i) and (ii) are immediate consequences of Proposition 5.6 and Theorem
5.7 (i), respectively. For (iii), assume G(α − π) = Gmin. If σ(α − π) < 0, then it
follows from Theorem 5.11 that G′(α − π) < 0, which contradicts the assumption that G
attains its minimum at α − π; therefore, σ(α − π) ≥ 0. It now follows from Remark 5.10
that fα−π has bending energy Gmin. Now, suppose f ∈ sα−π(u, v) has bending energy
G(α − π) = Gmin. By Theorem 5.7 (ii), f belongs to s∗α−π(u, v) and writing f = f1 ∪ f2,

as in the discussion preceding (5.2), it follows from (5.2) that ‖f1‖2
= ‖r(u, λα−π)‖2

and

‖f2‖2
= ‖l(λα−π, v)‖2

. It can then be deduced from the results of section 4 that f is
equivalent to fα−π or can be obtained (equivalently) from fα−π by elongation of u-turns.
We have thus proved (iii). Turning next to (iv), assume G(γ) = Gmin. Then G′(γ) = 0
(since γ is an interior point of Γ) and by Lemma 5.11, we have σ(γ) = 0. It now follows
from Remark 5.10 that fγ has bending energy Gmin and the previous argument can be
applied to show that if f ∈ sγ(u, v) has bending energy Gmin, then f is equivalent to fγ

(elongation of u-turns is ruled out since curves in sγ(u, v) do not have u-turns). This proves
(iv). For (v), assume β < 0 and G(β) = Gmin. If σ(β) > 0, then G′(β) > 0, by Lemma
5.11, which contradicts the assumption that G is minimized at β. Therefore, σ(β) = 0
and it follows that r(u, λβ) belongs to sβ(u, v) = Cr(u, v) (i.e. P1 = 1). From Proposition
5.8 (i) we have that r(u, λβ) is directly congruent to q(β)R[−t1,0], and from this it is easy

to verify that ‖r(u, λβ)‖2
= G(β). Thus ‖r(u, λβ)‖2

= Gmin, and we note that r(u, λβ) is
of first form, with t0 = −t1 and t = 0. Since the turning angle in r(u, λβ) has magnitude
less than π, it easily follows from Theorem 4.5 and Remark 3.7 that r(u, λβ) is the unique
curve (modulo equivalence) in sβ(u, v) with bending energy Gmin and the proof of (v) is

complete. We now prove (vi). It follows from (i), Theorem 5.7 and (5.3) that ‖f‖2 ≥ Gmin

for all f ∈ S(u, v). Since the function G has a minimum, there exists γ ∈ Γ such that
G(γ) = Gmin, and it then follows from items (iii), (iv) and (v) that fγ is a curve in S(u, v)
with bending energy Gmin. This proves (vi). ¤

As explained in Summary 5.4, Case B of Theorem 5.1 is a consequence of Corollary 5.12.

6. Optimal s-curves, part II

The purpose of this section is to prove the following two results, where we note that
Case C (see Summary 5.4) of Theorem 5.1 follows from the latter.

Theorem 6.1. Let 0 ≤ t1 < t2 ≤ π satisfy t2 − t1 < π, and let u = ~R(t1) and v = ~R(t2)
be the initial and terminal unit tangent vectors, respectively, to the curve R[t1,t2]. Then
R[t1,t2] is the unique curve (modulo equivalence) in S(u, v) with minimal bending energy.

Theorem 6.2. In the notation of section 5, let α ∈ (0, π) and β < 0 satisfy (5.1) and
suppose σ(β) ≤ 0. Then there exist −π < t1 < t2 ≤ 0 such that R[t1,t2] is directly similar
to a curve f ∈ S(u, v). Moreover, the curve f is the unique curve (modulo equivalence) in
S(u, v) with minimal bending energy.
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For t ∈ (0, π], let ψ and φ, as shown in Figure 6.1b, be the positive angles made by the
chord [0, R(t)] and the segment R[0,t]. With λ denoting the tangent line to R at R(t), let
p(t) denote the orthogonal distance from 0 to λ.

Lemma 6.3. For t ∈ (0, π), φ(t) > ψ(t).

Proof. We will first show, by way of contradiction, that φ(t) 6= ψ(t). Assume φ(t) =
ψ(t) for some t ∈ (0, π). Let T (z) = c1z + c2 be the congruency transformation which
interchanges R(t) and 0, and set W = T ◦ R[t,0], where R[t,0] denotes the reversal of

R[0,t]. Since φ(t) = ψ(t), it follows that W belongs to Cl(~R(0), ~R(t)). But Theorem

4.5 asserts that R[0,t] is the unique curve (modulo equivalence) in Cl(~R(0), ~R(t)) with
minimal bending energy. Therefore, since W and R[0,t] have the same bending energy,
they must be equivalent. However, they cannot be equivalent because W begins with a
nonzero curvature, namely 2 sin t, while R[0,t] begins with curvature 0. This proves that
φ(t) 6= ψ(t) for all t ∈ (0, π). While φ(π) and ψ(π) both equal π/2, a simple computation
shows that their derivatives satisfy −φ′(π) = ψ′(π) = 1/d, and it follows that φ(t) > ψ(t)
for t ∈ (0, π) sufficiently close to π. Since φ and ψ are continuous, we conclude that
φ(t) > ψ(t) for all t ∈ (0, π). ¤

Lemma 6.4. For t ∈ [0, π), p(t)ξ(t) < (2d − ξ(t))2.

Proof. The orthogonal distance p(t) can be formulated as the magnitude of the cross

product R(t) × R′(t)
|R′(t)| which yields

p(t) = det

[
sin t ξ(t)

cos t
√

1 + sin2 t sin2 t

]
= sin3 t − ξ(t) cos t

√
1 + sin2 t, 0 ≤ t ≤ π.

We therefore have

p(t)ξ(t) − (2d − ξ(t))2 = (sin3 t + 4d)ξ(t) − 4d2 −
(
1 + cos t

√
1 + sin2 t

)
ξ(t)2

≤ (sin3 t + 4d)ξ(t) − 4d2 =: g(t),

where the inequality holds since −1 ≤ cos t
√

1 + sin2 t ≤ 1. We note that g(π) = 0 and

g′(t) = sin2 t

(
3ξ(t) cos t +

sin3 t + 4d√
2 − cos t

)
. It is clear that g′(t) > 0 for t ∈ (0, π/2], and for
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t ∈ (π/2, π) (where − cos t > 0), we have

g′(t) = (−3 cos t) sin2 t

(
−ξ(t) +

sin3 t + 4d

−3 cos t
√

2 − cos t

)
≥ (−3 cos t) sin2 t

(
−ξ(t) +

4d

3

)
,

as 0 < − cos t
√

2 − cos t < 1 on (π/2, π). Since 0 ≤ ξ(t) ≤ d, it follows that g′(t) > 0
for all t ∈ (0, π) and hence g is increasing on [0, π]. For t ∈ [0, π), we therefore have
p(t)ξ(t) − (2d − ξ(t))2 ≤ g(t) < g(π) = 0, which completes the proof. ¤

In the following, we again use the notation S′
lr(u, v) (resp. S′

rl(u, v)) for the set of all
non-degenerate left-right (resp. right-left) s-curves connecting u to v.

Lemma 6.5. For t ∈ (0, π), the following hold:

(i) If f ∈ S′
lr(

~R(0), ~R(t)), then ‖f‖2
> ‖R[0,t]‖2

.

(ii) If f ∈ S′
rl(

~R(0), ~R(t)) ends with a left u-turn, then ‖f‖2
> ‖R[0,t]‖2

.

Proof. We will employ the notation and results of the previous section, so in order to
minimize confusion, we will actually prove the following equivalent formulations:

(i′) If f ∈ S′
lr(

~R(−t), ~R(0)), then ‖f‖2
> ‖R[−t,0]‖2

.

(ii′) If f ∈ S′
rl(

~R(−t), ~R(0)) begins with a right u-turn, then ‖f‖2
> ‖R[−t,0]‖2

.
Let T (z) = c1z + c2 be the similarity transformation determined by T (R(−t)) = 0 and

T (0) = 1, and note that T brings the configuration (~R(−t), ~R(0)) to the canonical form
(u, v) (see Figure 6.2), where u = (0, eiα), v = (1, eiβ) with α = φ(t), β = −ψ(t). Since
0 < ψ(t) < φ(t) < π, it follows that (5.1) holds. Noting that r(u, λβ) = T ◦ R[−t,0], we

see that σ(β) = 0 and G(β) = ‖r(u, λβ)‖2
. For (i′), suppose f ∈ S′

lr(
~R(−t), ~R(0)). Then

T ◦ f ∈ S′
lr(u, v), and it follows from Proposition 5.6 that ‖T ◦ f‖2

> ‖r(u, λβ)‖2
. Since

r(u, λβ) = T ◦ R[−t,0], we immediately obtain (i′). Now suppose f ∈ S′
rl(

~R(−t), ~R(0))
begins with a right u-turn. Then T ◦ f belongs to the set sα−π(u, v) defined just above

Theorem 5.7, and it follows from this theorem that ‖T ◦ f‖2 ≥ G(α − π). Since G(β) =

‖r(u, λβ)‖2
and r(u, λβ) = T ◦ R[−t,0], in order to establish (ii′), it suffices to show that

G(α − π) > G(β). From Definition 5.3, we have G(β) = ξ(t)2/ sin ψ(t) and G(α − π) =
(2d − ξ(t))2/ sin φ(t). Referring to Figure 6.1b, we see that sinψ(t) = ξ(t)/|R(t)| and
sinφ(t) = p(t)/|R(t)|. Hence

G(α − π) − G(β) =
|R(t)|
p(t)

(
(2d − ξ(t))2 − p(t)ξ(t)

)
> 0,

by the previous lemma, and this completes the proof of (ii′). ¤
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Proposition 6.6. Let t ∈ (0, π). Then R[0,t] is the unique curve (modulo equivalence) in

S(~R(0), ~R(t)) having minimal bending energy.

Proof. With Corollary 3.4, Theorem 4.5 and Lemma 6.5 in view, it suffices to show that

‖f‖2
> ‖R[0,t]‖2

whenever f ∈ S′
rl(

~R(0), ~R(t)) does not end with a left u-turn. Let
f = fr ⊔fl be as stated, where fr is a right c-curve and fl is a left c-curve (see Figure 6.3).

Since fr originates on ~R(0), it follows that there exists t0 ∈ (t, π) such that fl ⊔ R[t,t0] is

a left u-turn. Thus f ⊔ R[t,t0] belongs to S′
rl(

~R(0), ~R(t0)) and ends with a left u-turn. By
Lemma 6.5 (ii),

‖f‖2
+ ‖R[t,t0]‖

2
= ‖f ⊔ R[t,t0]‖

2
> ‖R[0,t0]‖

2
= ‖R[0,t]‖2

+ ‖R[t,t0]‖
2
,

whence we obtain ‖f‖2
> ‖R[0,t]‖2

. ¤

Remark 6.7. By symmetry, it follows from Proposition 6.6 that R[t,π] is the unique curve

(modulo equivalence) in S(~R(t), ~R(π)) having minimal bending energy.

In the context of the previous section, Proposition 6.6 asserts the following.

Corollary 6.8. Let direction angles α ∈ (0, π), β < 0 satisfy (5.1) and suppose σ(β) = 0.
Then G(γ) > G(β) for all γ ∈ [α − π, β); that is, G(γ) is uniquely minimized at γ = β.

Proof of Theorem 6.1. The extreme cases t1 = 0 and t2 = π have been settled in Propo-
sition 6.6 and Remark 6.7, respectively, so assume 0 < t1 < t2 < π. By symmetry, and
with Corollary 3.4 and Theorem 4.5 in view, it suffices to show that ‖f‖2

> ‖R[t1,t2]‖
2

whenever f belongs to S′
rl(

~R(t1), ~R(t2)). Let f be as stated, and let γ ∈ (−π, π) be the
direction angle of f at an inflection point I.
Case 1: γ ∈ [0, π).

Then f⊔R[t2,π] belongs to S′
rl(

~R(t1), ~R(π)), and it follows from Remark 6.7 that ‖f ⊔ R[t2,π]‖2
>

‖R[t1,π]‖2
, which implies ‖f‖2

> ‖R[t1,t2]‖
2
.

Case 2: γ ∈ (−π, 0).
Since f begins at R(t1) with a direction angle in (0, π), there exists a point B on f , between
R(t1) and I, where f has direction angle 0 (see Figure 6.4). Let us write f := f1 ⊔ f2,
where f1 terminates (and f2 originates) at B. Let λ be the (horizontal) tangent line to f

at B, and set g := l(λ, ~R(t2)). Since g and R[0,t2] are similar and terminate at the same
unit tangent vector, it follows that g originates at the point of intersection A between λ
and the line segment [0, R(t2)]. Moreover, since g is at a smaller scale than R[0,t2], we have

‖g‖2
> ‖R[0,t2]‖

2
. Now, it follows from Proposition 6.6 that ‖[A,B] ⊔ f2‖2

> ‖g‖2
, and

therefore

‖f‖2
> ‖[A,B] ⊔ f2‖2

> ‖g‖2
> ‖R[0,t2]‖

2
> ‖R[t1,t2]‖

2
.

¤

Remark 6.9. By symmetry, Theorem 6.1 remains valid when −π ≤ t1 < t2 ≤ 0.
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Lemma 6.10. Define J : [−π,∞) → C by J(t) :=

{
R(t) if t ∈ [−π, 0]

t if t > 0
. Given positive

angles α ≥ δ > 0, with α + δ < π, there exist t1 ∈ (−π, 0) and t2 > t1 such that the chord
[J(t1), J(t2)] intersects J with interior angles α and δ at J(t1) and J(t2), respectively.

Proof. We refer to Figure 6.5. For t ∈ [−π, 0], let θ(t) denote the direction angle of ~R(t).
As t ranges from −π to 0, θ(t) decreases continuously from π to 0, and it follows that there
exists b ∈ (−π, 0) such that θ(b) = α. For t ∈ [−π, b), let Yt denote the ray emanating from
J(t) with direction angle θ(t) − α and note that since the direction angle is positive, Yt

intersects J at a unique point J(µ(t)), where µ(t) > t. Let ω(t) denote the interior angle, at
J(µ(t)), made when the chord [J(t), J(µ(t))] intersects J (the interior angle at J(t) equals
α by construction). It is clear that ω(t) depends continuously on t ∈ [−π, b) and tends to
0 as t → b−. We claim that ω(−π) > δ. If µ(−π) ≥ 0 (i.e. J(µ(−π)) lies on [0,∞)), then
ω(−π) = π − α and the claim follows immediately from the assumption that α + δ < π.
On the other hand, if µ(−π) < 0, then α = ψ(−µ(−π)) and ω(−π) = φ(−µ(−π)); hence,
by Lemma 6.3, ω(−π) > α and now the claim follows from the assumption α ≥ δ. By
the intermediate value property of continuous functions, there exists t1 ∈ [−π, b) such that
ω(t1) = δ, and the lemma is proved with t2 = µ(t1). ¤

Proof of Theorem 6.2. Put δ = −β > 0 and note that the hypothesis of Lemma 6.10 follows
from (5.1), and we obtain the conclusion of the lemma. We claim that t2 ≤ 0. To see this,
assume to the contrary that t2 > 0. Let T (z) = c1z + c2 be the similarity transformation
determined by T (J(t1)) = 0 and T (J(t2)) = 1. It follows that T ◦ R[t1,0] = r(u, λβ)
and therefore, by Proposition 5.9, that σ(β) = |c1| (t2 − 0) > 0, which contradicts the
assumption that σ(β) ≤ 0. Therefore, t2 ≤ 0 and we conclude, from Theorem 6.1 and
Remark 6.9, that f = T ◦R[t1,t2] is the unique curve (modulo equivalence) in S(u, v) with
minimal bending energy. ¤

7. Proof of Theorem 1.1

For the convenience of the reader let us recall the main theorem of the paper stated in
the introduction (but with C in place of R

2).
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Theorem 1.1. Given any sequence of points P1, P2, . . . , Pm in C with Pi 6= Pi+1, the
family of admissible interpolating curves A(P1, P2, . . . , Pm) contains a curve with minimal
bending energy.

The outline of the proof is as follows. First we show that the family A(P1, P2, . . . , Pm)
is non-empty (Prop. 7.1). With M denoting the infimum of the bending energies of
curves in A(P1, P2, . . . , Pm), it follows that there exists a sequence of curves c1, c2, c3, . . .

in A(P1, P2, . . . , Pm) such that ‖cn‖2 → M as n → ∞.
Let vn

i denote the unit tangent vector to the curve cn at the point Pi. Note that the
vectors v1

i , v2
i , v3

i , . . . are all of unit length and have a common base point Pi. Appealing to
the Heine-Borel theorem, and passing to a subsequence if necessary, we can assume without
loss of generality that the sequence v1

i , v2
i , v3

i , . . . converges to a unit tangent vector vi, for
i = 1, 2, . . . ,m. To dispel any possible confusion, we mention that the sequence of curves
c1, c2, c3, . . . need not converge in any sense–only the unit tangent vectors need converge.

Next we show that for each i, the pair vi, vi+1 is s-feasible (Prop. 7.2), and therefore
(by Theorem 5.1), there exists an s-curve si with minimal bending energy in the family
S(vi, vi+1). Joining these pieces together, we construct our candidate c = s1⊔s2⊔· · ·⊔sm−1

which belongs to A(P1, P2, . . . , Pm).

The proof of Theorem 1.1 is then completed by showing that ‖c‖2
= M . The proof of

this equality uses the fact (Theorem 7.10) that the minimal bending energy of curves in
the family S(u, v) depends continuously on the directions of u and v, and most of the work
in the current section (Prop. 7.5 – Prop. 7.9) goes towards establishing this fact.

Proposition 7.1. Under the hypothesis of Theorem 1.1, the family of admissible curves
A(P1, P2, . . . , Pm) is nonempty.

Proof. If we show that there exist unit tangent vectors {uj}, with base-points {Pj}, such
that S(uj , uj+1) is nonempty for j = 1, 2, . . . ,m − 1, then f = f1 ⊔ f2 ⊔ · · · ⊔ fm−1, with
fj ∈ S(uj , uj+1), will be a curve in A(P1, P2, . . . , Pm). We will actually prove a slightly
stronger result in that we will show that A(P1, P2, . . . , Pm, P1) contains a periodic (closed)
curve, where we have tacitly assumed (without loss of generality) that Pm 6= P1. Let {Pj}
be extended periodically by Pj+m = Pj . For j ∈ Z, let wj = (Pj+1 − Pj)/|Pj+1 − Pj |
be the complex unit in the same direction as Pj+1 − Pj (see Figure 7.1). We then set
uj = (Pj , zj), where zj , the direction of uj , is defined as follows:
If wj−1 + wj is nonzero, then zj is the complex unit in the same direction as wj−1 + wj ;

otherwise, zj = eiπ/2wj . Since {uj} has inherited the periodicity of {Pj} (namely uj+m =
uj), in order to complete the proof, it suffices to show that S(uj , uj+1) is nonempty for all
j ∈ Z.
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Fix j ∈ Z. By applying a rigid motion, if necessary, we can assume without loss of
generality that Pj = 0 and that Pj+1 lies on the positive real axis. That S(uj , uj+1) is
nonempty can now be established simply by showing that both directions zj and zj+1 have
nonnegative real part. Note that wj = 1. If wj−1 6= −1, then zj is the complex unit in the

same direction as wj−1 + 1 and hence Re zj ≥ 0; otherwise, Re zj = Re eiπ/2 = 0. By the
same reasoning, one sees that Re zj+1 ≥ 0. ¤

Let u, v be s-feasible (S(u, v) 6= ∅) unit tangent vectors. Denote by E(u, v) the minimum
of the bending energy in S(u, v). By the previous sections (Theorem 5.1) this minimum is
assumed by a curve in S(u, v).

We will need the following proposition which shows that the limit of s-feasible vectors
is also s-feasible assuming that the bending energy is bounded.

Proposition 7.2. Let Pu 6= Pv be different points of C. Let un, vn be s-feasible unit
tangent vectors with base-points Pu and Pv respectively, such that limun = u and lim vn =
v. If {E(un, vn)} is bounded then u, v is also s-feasible.

Proof. Assume {E(un, vn)} is bounded. Without loss of generality we can assume that
Pu = 0 ∈ C and Pv = 1 ∈ C. Let α, αn, β, βn ∈ (−π, π] be the direction angles of
u, un, v, vn, respectively (see Figure 5.1). Since un, vn are s-feasible configurations, we
must have αn, βn ∈ (−π, π). Moreover, it is easy to see that if with |αn| → π or |βn| → π,
then E(un, vn) → ∞; therefore α, β ∈ (−π, π).

If α = 0 then u, v is s-feasible, regardless of β ∈ (−π, π). So assume α 6= 0. Without
loss of generality, we may assume that α > 0 and αn > 0 for all n ∈ N. Similar to the
exercise assigned to the reader at the beginning of section 5, we leave it to the reader to
verify that un, vn is s-feasible if and only if βn ∈ [αn − π, π). Since β ∈ (−π, π), it follows
that β ∈ [α − π, π), and therefore the limit configuration u, v is s-feasible. ¤

Next, we show that the bending energy E(u, v) is continuous in u and v. For this we
will need some preparation.

Let u = (0, eiα) and v = (1, eiβ) be two unit tangent vectors with direction angles

α, β ∈ (−π, π] and for comparison, let ū = (0, eiᾱ) and v̄ = (1, eiβ̄) be unit tangent vectors
with the same base-points as u and v, but possibly different directions. The diameter of
a curve f : [a, b] → C is defined by diam(f) = maxt,τ |f(t) − f(τ)|.

Lemma 7.3. With the notations introduced above, let D > 0 and η ∈ (0, π/4) be given and
assume that α,−β ∈ (η, π − η) are such that there exists a curve f : [a, b] → C in Cr(u, v)
with diam(f) ≤ D. Then, for every ε > 0 there is a δ1 = δ1(ε,D, η) > 0 (depending
only on ε,D, η) such that if |ᾱ − α| < δ1 and Cr(ū, v) is nonempty, then there is a curve
c ∈ Cr(ū, v) such that ||c||2 ≤ ||f ||2 + ε and diam(c) ≤ 2D + 1.

Proof. We will describe, in two cases, how to modify the curve f near the base point of u
to obtain a new curve c in Cr(ū, v) satisfying ‖c‖2 ≤ ‖f‖2

+ ε.
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Case 1: 0 < ᾱ < α.
Draw a line with direction angle ᾱ through a distant point on the negative real axis, and
then translate it horizontally towards f until it makes first contact, obtaining a line λ (see
Figure 7.2). Let P denote the intersection point of λ with the negative real axis and let f(t0)
be a point on λ. Set c1 = [P, f(t0)]⊔f[t0,b] and note that c1 is similar to a curve c in Cr(ū, v)

having bending energy ‖c‖2
= (1 − P )‖c1‖2

, while ‖c1‖2
= ‖f[t0,b]‖2 ≤ ‖f‖2

. It is easy to
see that there is a δ1 = δ1(ε, η,D) ∈ (0, η/2) such that if α−δ1 < ᾱ < α, then the distance

from P to 0 is less than the minimum of 1 and ε
||f ||2 ; hence ||c||2 ≤ (1−P )‖f‖2 ≤ ||f ||2 +ε

and diam(c) ≤ 2D + 1.

Case 2: ᾱ > α.
We obtain our curve c in two steps (see Figure 7.3). First, draw the tangent lines λu

and λv to f at 0 and 1, respectively. For a given h > 0, let P and Q be the points on
λu and λv, respectively, having ImP = ImQ = −h. Since, α,−β ∈ (η, π − η), there
exists h = h(η, ε) ∈ (0, 1/2) such that the resulting points P and Q will satisfy |P | < 1/9,

|Q − 1| < 1/9 and Q − P < ||f ||2+ε
||f ||2+ε/2 . Let h, P and Q be thus fixed.

Second, replace the line segment [P, 0] by an arc of a circle which emanates from a
point P̄ on [P,Q], with direction angle ᾱ, and terminates at 0 with direction angle α,
as shown in Figure 7.3. If ᾱ is sufficiently close to α, one can construct such an arc
easily and we leave the details to the reader. With g denoting this circular arc, we define
c1 = g ⊔ f ⊔ [1, Q], which is similar to a curve c in Cr(ū, v), and we note that ‖c‖2

=

(Q − P̄ )‖c1‖2
, while ‖c1‖2

= ‖f‖2
+ ‖g‖2

. The radius of the circle containing g tends

to ∞ as ᾱ tends to α, and therefore ‖g‖2
can be made arbitrarily small by taking ᾱ

sufficiently close to α. Consequently, there exists δ1 = δ1(η, ε) ∈ (0, η/2) such that if

α < ᾱ < α + δ1, then ‖g‖2
< ε/2 and consequently we have diam(c) < 2D + 1 and

‖c‖2
< (Q − P )(‖f‖2

+ ‖g‖2
) ≤ ‖f‖2

+ ε. ¤

Remark 7.4. Under the same hypothesis as Lemma 7.3, we can prove in a similar manner
that for every ε > 0 there is a δ2 = δ2(ε,D, η) > 0 (depending only on ε,D, η) such that
if |β̄ − β| < δ1 and Cr(u, v̄) is nonempty, then there is a curve c ∈ Cr(u, v̄) such that
||c||2 ≤ ||f ||2 + ε and diam(c) ≤ 2D + 1.
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Proposition 7.5. Under the same hypothesis as Lemma 7.3, for every ε > 0 there is a
δ3 = δ3(ε,D, η) > 0 (depending only on ε,D, η) such that if |ᾱ − α|, |β̄ − β| < δ3 and
Cr(ū, v̄) is nonempty, then there is a curve c ∈ Cr(ū, v̄) such that ||c||2 ≤ ||f ||2 + ε.

Proof. Let ε > 0 be given, and let δ3 be the minimum of η/2, δ1(ε/2, D, η), δ2(ε/2, 2D +
1, η/2), δ2(ε/2, D, η), δ1(ε/2, 2D + 1, η/2). Assume that α,−β ∈ (η, π − η) are such that
there exists a curve f : [a, b] → C in Cr(u, v) with diam(f) ≤ D, and let ᾱ, β̄ be such that
|ᾱ−α|, |β̄−β| < δ and Cr(ū, v̄) is nonempty. Although we cannot claim that both Cr(ū, v)
and Cr(u, v̄) are nonempty (a counterexample can be easily found when f is a u-turn), it is
easy to see that at least one of them is nonempty. We will address the case when Cr(ū, v)
is nonempty, as the other case is similar. Since |ᾱ − α| < δ3 ≤ δ1(ε/2, D, η), we obtain
from Lemma 7.3 that there exists a curve c1 ∈ Cr(ū, v) such that ||c1||2 ≤ ||f ||2 + ε/2 and
diam(c1) ≤ 2D + 1. Note that ᾱ,−β ∈ (η/2, π/η/2) (since δ3 ≤ η/2) and that c1 is a
curve in Cr(ū, v) with diam(c1) ≤ 2D + 1. Since Cr(ū, v̄) is nonempty and |β̄ − β| < δ3 ≤
δ2(ε/2, 2D +1, η/2), it follows from Remark 7.4 that there exists a curve c ∈ Cr(ū, v̄) such

that ‖c‖2
< ‖c1‖2

+ ε/2 < ‖f‖2
+ ε. ¤

For given α, β ∈ (−π, π) let u = (0, eiα) and v = (1, eiβ) be the unit tangent vectors with
base points 0 and 1 and direction angles α and β, respectively. It will be useful to introduce
the following notations: Cr(α, β) := Cr(u, v), S(α, β) := S(u, v) and E(α, β) := E(u, v),
which we will call the bending energy of the pair α, β. We say α, β are s-feasible if S(u, v)
is nonempty.

Proposition 7.6. The bending energy E(α, β) tends to 0 as α, β → 0.

Proof. Assume that |α| , |β| ≤ π/3, and let f : [0, 1] → C be the curve given by f(t) =
t + ig(t), where g is the cubic polynomial g(t) = t(tanα − (tanα + tanβ)t)(1 − t). Then

f belongs to S(α, β) and it is easy to see that there exists a constant C such that ‖f‖2 ≤
C

4

∫ 1

0

|g′′(t)|2 dt. A simple calculation shows that the latter quantity equals C(tan2 α +

tanα tanβ + tan2 β) which tends to 0 as α, β → 0. ¤

In what follows we will rely heavily on the results of sections 5 and 6, where it is assumed
that u and v are in ‘canonical’ arrangement: α ≥ |β|. However, if we perturb α and β, the
resultant pair, ᾱ and β̄, may no longer be in ‘canonical’ arrangement. The following two
propositions will help deal with this situation.

Proposition 7.7.

(i) E(α, β) = E(−β,−α)
(ii) E(α, β) = E(−α,−β)
(iii) E(α, β) = E(β, α).

Proof. For any curve in S(α, β) if we reflect the curve across the x = 1/2 line and reverse its
orientation, we obtain a curve in S(−β,−α) with the same bending energy. This means
that there is a bijection between S(α, β) and S(−β,−α) which preserves the bending
energy. This implies (i). Similarly, reflection across the x-axis gives a bending energy-
preserving bijection between S(α, β) and S(−α,−β), which yields (ii). Combining (i) and
(ii) we obtain (iii). ¤
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Proposition 7.8. Let us assume that α ≥ |β| but 0 < ᾱ < |β̄|.

Define (α̃, β̃) :=

{
(β̄, ᾱ) if β̄ > 0

(−β̄,−ᾱ) if β̄ < 0
.

If |α − ᾱ|, |β − β̄| < δ, then |α − α̃|, |β − β̃| < δ and α̃ ≥ |β̃|.
Proof. The proof is elementary and we will leave it to the reader. ¤

Let us indicate how we will use the previous two propositions in the proof of the next
one. Assume that α ≥ |β|, and |α − ᾱ|, |β − β̄| < δ with α > δ > 0. If ᾱ < |β̄|, then we

will replace ᾱ, β̄ with a new pair α̃, β̃ as in Proposition 7.8. Then the new pair will be in

‘canonical’ arrangement (α̃ ≥ |β̃|), |α − α̃|, |β − β̃| < δ and from Proposition 7.7 we have

E(α, β) = E(α̃, β̃).

Proposition 7.9. With the notations introduced above let us assume that α, β are s-
feasible with α ≥ |β|, and let η ∈ (0, π/4). If α ∈ (η, π − η), then for every ε > 0 there
is a δ = δ(ε, η) > 0 (depending only on ε, η) such that if |ᾱ − α|, |β̄ − β| < δ and ᾱ, β̄ are
s-feasible, then E(ᾱ, β̄) < E(α, β) + ε.

Before we start the proof of Proposition 7.9 let us recall some quantities defined in
Definition 5.3. For γ ∈ Γ = [α − π, β] ∩ (−∞, 0) we have

y1(α, γ) =
1

2

∫ α−γ

0

√
sin τ dτ, y2(β, γ) =

1

2

∫ β−γ

0

√
sin τ dτ,

G(α, β, γ) =
(y1 + y2)

2

− sin γ
, Gmin(α, β) = min{G(α, β, γ) : γ ∈ Γ}.

Recall from Section 3 that d = ξ(π) = 1
2

∫ π

0

√
sin τ dτ and define the quantity γ0 by

γ0 = − sin−1
(
(sin η)(1 − cos η)2/(16d2)

)
. If α ∈ (η, π − η), from the formulas above one

can verify immediately that

(7.1) G(α, β, α − π) ≤ 4d2

sin η
< G(α, β, γ) if γ0 < γ < β.

This implies that if G(α, β, γ) = Gmin(α, β), then γ ≤ β∗ = min{β, γ0}.
It will be convenient to extend the domain of G(α, β, γ) to include any γ ∈ [−π, 0]

without changing the minimum Gmin(α, β) or values γ where the minimum is assumed.
We define the set Kη by Kη = {(α, β) : η ≤ α ≤ π − η, |β| ≤ α, α − π ≤ β}. For
(α, β) ∈ Kη, β∗ := min{β, γ0} and γ ∈ [−π, 0) we set

Ĝ(α, β, γ) =

{ G(α, β, β∗) + γ − β∗

G(α, β, γ)

G(α, β, α − π) + α − π − γ

if β∗ < γ ≤ 0

if α − π ≤ γ ≤ β∗

if − π ≤ γ < α − π

.

From the remark following inequality (7.1) and from the construction of Ĝ it is clear

that Gmin(α, β) = Ĝmin(α, β) = min{Ĝ(α, β, γ) : γ ∈ [−π, 0]}. Moreover G and Ĝ
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assume their minimum at the same points, that is Gmin(α, β) = G(α, β, γ) if and only if

Ĝmin(α, β) = Ĝ(α, β, γ).
The quantity σ(γ) will be interesting for us only in the case when γ = β. Therefore we

have

σ(α, β) = cos β +
sinβ

y1(α, β)

√
sin(α − β), α − π ≤ β < 0.

It is easy to see that σ(α, β) → 1 as β → 0. Therefore we can extend the domain of
σ(α, β) to the region 0 ≤ β by setting

σ(α, β) = 1, if β ≥ 0.

We can summarize the results of sections 5 and 6 as follows:
If σ(α, β) ≤ 0, then we are in Case C of Summary 5.4 and there is a segment of

rectangular elastica in Cr(α, β) which has minimal bending energy in S(α, β).
If σ(α, β) > 0, then we are in Case A or B and there is an s-curve in S(α, β) with

minimal bending energy E(α, β) = Gmin(α, β).

Proof of Proposition 7.9.
Case 1: σ(α, β) ≤ 0.
Then β < 0 and there is a segment of rectangular elastica f ∈ Cr(α, β) which has minimal
bending energy in S(α, β). Before invoking Proposition 7.5, we remark that the diameter
of f cannot exceed 10 since the ratio of length over breadth for any segment of rectangular
elastica is bounded by 10. Since σ(α, β) is continuous and α ∈ (η, π − η), one can see
that there is an η1 = η1(η) ∈ (0, η) such that |β| > η1(η). By Proposition 7.5, there
is a δ = δ(η, ε) > 0 (namely, δ3(ε/2, 10, η1) in the language of Prop. 7.5) such that if
|ᾱ − α|, |β̄ − β| < δ, then

E(ᾱ, β̄) < E(α, β) + ε/2,

which completes the proof for Case 1.
Case 2: σ(α, β) > 0.
Then E(α, β) = Gmin(α, β) = G(α, β, γ), for some (not necessarily unique) γ = γ(α, β).
From the remark following inequality (7.1) we have γ(α, β) ∈ [α − π, β∗], where β∗ =

min{β, γ0}. From the definition of G and Ĝ one can see that Ĝ(α, β, γ) is continuous, hence
uniformly continuous on the region Kη × [−π, 0]. Therefore, there is a δ0 = δ0(η, γ0) > 0
such that for (α, β), (α′, β′) ∈ Kη we have

(7.2) |Ĝ(α, β, γ) − Ĝ(α′, β′, γ′)| <
ε

2
, whenever |α − α′|, |β − β′|, |γ − γ′| < δ0.

Let us assume that |ᾱ − α|, |β̄ − β| < δ, where δ ≤ min{δ0,
η
4} is determined later. We

can further assume, without loss of generality, that ᾱ ≥ |β̄|, since otherwise, we can

replace ᾱ, β̄ with α̃, β̃, keeping in mind that |α̃ − α|, |β̃ − β| < δ, by Proposition 7.8, and

E(α̃, β̃) = E(α, β), by Proposition 7.7.
Case 2a: σ(ᾱ, β̄) ≥ 0.

Let γ̄ = γ(ᾱ, β̄) be an angle where G(ᾱ, β̄, γ) assumes its minimum. Since G and Ĝ assume

their minimum at the same points (see the remarks following the definition of Ĝ) we have
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E(ᾱ, β̄) = Gmin(ᾱ, β̄) = G(ᾱ, β̄, γ̄) = Ĝ(ᾱ, β̄, γ̄) and E(α, β) = Gmin(α, β) = G(α, β, γ) =

Ĝ(α, β, γ). Taking (7.2) into consideration, we then obtain

E(ᾱ, β̄) = Ĝ(ᾱ, β̄, γ̄) ≤ Ĝ(ᾱ, β̄, γ) < Ĝ(α, β, γ) +
ε

2
= E(α, β) +

ε

2
,

which completes the proof for Case 2a (with δ = min{δ0,
η
4}).

Case 2b: σ(ᾱ, β̄) < 0.
Since δ ≤ η/4 we have (α, β), (ᾱ, β̄) ∈ Kη/2, which is a convex set. Therefore the line

segment [(α, β), (ᾱ, β̄)] is also a subset of Kη/2. Since σ is a continuous function of α, β there

is a pair (α1, β1) ∈ [(α, β), (ᾱ, β̄)] with σ(α1, β1) = 0. Applying the previous argument for
α1, β1 instead of ᾱ, β̄ we obtain E(α1, β1) < E(α, β) + ε

2 .
Since σ(α1, β1) = 0 there is a segment of rectangular elastica f ∈ Cr(α1, β1) with

||f ||2 = E(α1, β1). Noting that α1 > η
2 , we have, as in Case 1, |β1| > η1(η/2). We can

now apply Proposition 7.5 to obtain E(ᾱ, β̄) < E(α1, β1) + ε
2 ,

provided δ ≤ δ3(ε/2, 10, η1(η/2)) in the language of Proposition 7.5. Combining this with
the previous inequality we obtain

E(ᾱ, β̄) < E(α, β) + ε,

which completes the proof for Case 2b. ¤

With propositions 7.5–7.9 in hand, we can finally prove the following.

Theorem 7.10. The bending energy E(u, v) depends continuously on the directions of the
unit tangent vectors u and v.

Proof. Let u and v be s-feasible unit tangent vectors. As explained at the beginning of
section 5, we can assume, without loss of generality, that u = (0, eiα) and v = (1, eiβ),
where α, β ∈ (−π, π) satisfy α ≥ |β|. The case α = 0 has been settled in Proposition 7.6,
so assume α ∈ (0, π). Let η ∈ (0, π/8) be such that α ∈ (2η, π − 2η).

Let ε > 0 and set δ = min{η, δ4}, where δ4 = δ(ε, η) is as described in Proposition 7.9.
Let ᾱ, β̄ be s-feasible with |ᾱ − α|, |β̄ − β| < δ. We will show, in two cases, that

(7.3)
∣∣E(ᾱ, β̄) − E(α, β)

∣∣ < ε.

Case 1: ᾱ ≥ |β̄|.
As written, Proposition 7.9 yields E(ᾱ, β̄) < E(α, β) + ε, but Proposition 7.9 can also be
applied with (α, β) and (ᾱ, β̄) interchanged, since ᾱ ∈ (η, π − η) and ᾱ ≥ |β̄|. This yields
E(α, β) < E(ᾱ, β̄) + ε, and we obtain (7.3).
Case 2: ᾱ < |β̄|.
Let α̃, β̃ be as defined in Proposition 7.8, whereby |α̃−α|, |β̃−β| < δ and α̃ ≥ |β̃|. It follows

from Case 1 that
∣∣∣E(α̃, β̃) − E(α, β)

∣∣∣ < ε, but since E(α̃, β̃) = E(ᾱ, β̄) (by Proposition

7.7), we have (7.3). ¤

Proof of Theorem 1.1. Most of the proof has been explained in the discussion following
the theorem’s statement at the beginning of this section. All that remains is to show that
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our candidate c = s1 ∪ s2 ∪ · · · ∪ sm−1 has bending energy M (the infimum of bending
energies in A(P1, P2, . . . , Pm)).

For n = 1, 2, 3, . . . , let us write cn ∈ A(P1, . . . , Pm) as cn = fn
1 ⊔ fn

2 ⊔ · · · ⊔ fn
m, where

fn
j belongs to S(vn

j , vn
j+1) for j = 1, 2, . . . ,m. Note that

‖cn‖2
=

m−1∑

j=1

‖fn
j ‖2 ≥

m−1∑

j=1

E(vn
j , vn

j+1) while ‖c‖2
=

m−1∑

j=1

‖sj‖2
=

m−1∑

j=1

E(vj , vj+1)

(since sj has minimal bending energy in S(vj , vj+1)). For j = 1, 2, . . . ,m − 1, it follows
from Theorem 7.10 that E(vn

j , vn
j+1) → E(vj , vj+1) as n → ∞, and therefore we obtain

‖c‖2 ≤ limn ‖cn‖2
= M . Since c belongs to A(P1, P2, . . . , Pm), we conclude that ‖c‖2

=
M . ¤

Remark 7.11. We conjecture, and hope to show in a subsequent paper, that if each of the
curves si is of form one (see Definition 5.2), then the resulting optimal curve s is twice
continuously differentiable.

Remark 7.12. Let us denote by Aperiodic(P1, P2, . . . , Pm, P1) the set of periodic (closed)
curves passing through the points P1, P2, . . . , Pm, P1 such that they are s-curves between
any two consecutive points. Notice that the proof of Theorem 1.1 works equally well for
periodic admissible curves, provided that Aperiodic(P1, P2, . . . , Pm, P1) is nonempty. This
is exactly what is shown in the proof of Proposition 7.1. Therefore we have the following
extension of Theorem 1.1:

Theorem 7.13. Given any sequence of points P1, P2, . . . , Pm ∈ C with Pj 6= Pj+1 and
Pm 6= P1, the family Aperiodic(P1, P2, . . . , Pm, P1) contains a curve with minimal bending
energy.
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