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Introduction; Notation

The discretization problem is rather central to the field of Numerical Analysis. In
most general terms, it arises in the numerical solution of an equation

(1) Mx = y∗ ,

where y∗ is a given element of some set Y , a solution x∗ being sought in some set X which
is mapped by M to Y . The problem consists in choosing finitely many functionals on X
and means for determining (approximately) the value of these functionals on the unknown
solution x∗ from the information available, i.e., from the map M and the element y∗.

The term “discretization” originated with the finite difference method for the solution
of differential equations, where the functionals are chosen to be point functionals and the
above process amounts to replacing the equation

(Mx) (t) = y∗ (t) , all t ∈ S ,

by an equation on a finite point set.
The method of projections is a rather general means to discretize (1) in case X and

Y are linear spaces: the given equation (1) is replaced by

(2) PnMx = Pny∗ ,

for which a solution, x∗
n, is sought in some n–dimensional subspace Xn of X ; here Pn is a

projection on Y of finite rank, i.e., P 2
n = Pn and Pn[Y ] is finite dimensional.

For the case of a differential equation, special instances of this method have been in
use for some time; thus Galerkin’s method, the Collocation method, the Least-Squares
method and the method of moments all are projection methods, and even finite difference
methods can be interpreted to be of this type.

Nevertheless, literature on the method of projections as such is scarce; the only book
that contains a treatment of it is Kantorovich’ and Akilov’s “Functional analysis in normed
spaces” [10, Ch.XIV]; and it seems justified (and not merely a matter of national pride)
that the references given there are almost exclusively Russian.

But in [10], the method of projections appears only as a special case (referred to as
having “the special structure described in XIV, 2.3”) of an even more general setup. This
seems to make it worthwile to give a more direct treatment of it, as is done in Sections 2
and 4 below.

From the outset, the following assumptions are made. M is taken to be a linear
operator, mapping X in a 1-1 manner onto Y so that M−1 exists (and is linear); both X
and Y are assumed to be normed linear spaces, and both M and M−1 are assumed to be
bounded; Pn is taken to be a bounded linear projection operator. Under these assumptions,
equation (1) admits of exactly one solution, x∗, and equation (2) is equivalent to

(2′) λMx = λy∗ all λ ∈ Λn ,

where Λn is some n–dimensional space of linear functionals on Y . Hence, equation (2) has
one and only one solution in Xn for arbitrary y∗ if and only if the only element x in Xn

for which λMx = 0, all λ ∈ Λn, is x = 0.
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These and other facts about projectors are discussed in Section 1. In Section 2, the
method of projections is introduced, and some examples are given in Section 3, which
also contains a short discussion of the relationship between the projection method and the
method of finite differences.

A projection scheme for the solution of Mx = y∗ is given by a sequence {Xn} of finite
dimensional subspaces of X and a corresponding sequence {Λn} of finite dimensional spaces
of linear functionals on Y ; and it is called convergent if, for all y∗ ∈ Y , equations (2′) define
an approximant x∗

n ∈ Xn for all sufficiently large n and limn→∞ ‖x∗ − x∗
n‖ = 0. Section

4 gives rather simple conditions under which the convergence of a projection scheme for
the equation Mx = y∗ follows from its convergence for a, presumably simpler, equation
M1x = y∗.

As an illustration, these results are applied to the numerical solution of the differential
equation

(3) x(2)(t) + p1(t)x
(1)(t) + p0(t)x(t) = y∗(t), t ∈ [0, 1], x(0) = x(1) = 0,

with the assumption that p0, p1 ∈ C[0, 1]. X is taken to be the linear space {x ∈ C(2)[0, 1] :
x(0) = x(1) = 0}, and, correspondingly, Y = C[0, 1]. The rôle of M1 is played by

(M1x) (t) = x(2)(t) .

In order to test the hypothesis that advantages can be gained by using for Xn a set
of piecewise polynomial functions rather than the customary algebraic or trigonometric
polynomials, Xn is chosen to consist of cubic splines. The necessary information about
spline functions is contained in Section 5. In Section 6, the boundedness of M and M−1

with respect to certain norms on X and Y is established.
Section 7 contains a proof of the convergence of the Collocation method, followed

by the construction of a higher order method: For both methods, order of convergence
estimates are derived; but, whereas the Collocation method gives

(4) ‖x∗ − x∗
n‖∞ = O(n−j) , if x∗ ∈ C(2+j)[0, 1] , j = 1, 2,

which is commensurate with the rate achieved by finite difference approximations, the
second method gives

(5) ‖x∗ − x∗
n‖∞ = O(n−2−j) , if x∗ ∈ C(2+j)[0, 1] , j = 0, 1, 2.

The question as to the existence of a finite difference scheme giving such a rate of conver-
gence is raised but, regrettably, not answered.

The estimate (5) can also be established for Galerkin’s method, as is shown in Section
8. Section 9 contains a brief discussion of the Least-Squares method and, to encourage
more work on it, of the Golomb-Weinberger method.

A few remarks concerning the computation of x∗
n make up the last Section. But

this thesis is not supported by numerical evidence. Justification on practical grounds for
studying the methods discussed in the following pages cannot be based on the few examples

2



that the scope of a doctoral dissertation permits, but must come from extensive numerical
experiments. It is the goal of this thesis to encourage such activity.

Notation
Throughout the text, the following conventions are used without further explanation.
“I” always denotes the identity map on the linear space given in the context.
For a map T from X to Y and a subset S of X , “T |S” denotes the restriction of T to

S, while “T [S]” denotes the image of S under T .
“{xi}n

1” is shorthand for “{xi : i = 1, . . . , n}”; “{xi}” denotes an infinite sequence.
If X is a linear space and {xi}n

1 ⊂ X , then “〈{xi}n
1 〉” denotes the linear subspace of

X spanned by the elements x1, . . . , xn.
“C(j)[a, b]” stands for the linear space of all real valued functions on [a, b] which possess

continuous derivatives up to and including the j–th; for x ∈ C(j)[a, b], “x(j)” denotes the
j–th derivative. As is usual, we write C[a, b] for C(0)[a, b].

“Lip(j)[a, b]” denotes the set of all x ∈ C(j)[a, b] with the property that there exists a
constant K so that

|x(j)(s) − x(j)(t) | ≤ K|s − t| , all s, t ∈ [a, b] .

For x ∈ C[a, b], “ωx” denotes the modulus of continuity of x, i.e.,

ωx(h) = sup{ |x(s) − x(t) | : |s − t| ≤ h, s, t ∈ [a, b] }, h ≥ 0 ,

while “‖x‖∞” is defined as

‖x‖∞ = max{ |x(t) | : t ∈ [a, b] } .

For both, the interval [a, b] will be clear from the context and will usually be the interval
[0, 1].

“The Banach space C[0, 1]” is the linear space C[0, 1] with the norm ‖x‖ = ‖x‖∞.

Finally, “δ
(j)
c ” is shorthand for the rule which assigns to a function x ∈ C(j)[a, b] the

number x(j)(c); therefore, with less precision, δ
(j)
c stands for the linear functional given by

that rule on whatever space of functions the context may indicate. We write δc for δ
(0)
c .

CHAPTER 1: THE METHOD OF PROJECTIONS

1. Linear projection operators.

Let X be a linear space; a linear operator P : X → X is called a linear projection
operator, or, for short, a projector, if P 2 = P . In this section, various properties of
projectors are listed. Most of the material can be found in such standard texts as [8] and
[18].

If P is a projector, then so is I − P ; each projector P determines a decomposition
of X into an algebraic direct sum, X = P [X ]+̇(I − P ) [X ], and each algebraic direct
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decomposition X = X1+̇X2 of X determines a projector P on X such that P [X ] = X1

and (I − P ) [X ] = X2.
If P is a projector on X , and Xa is the algebraic dual of X (or, more generally,

〈X, Xa〉 is some pairing), then the dual of P is the linear map P a : Xa → Xa, given by
the rule

P aλ = λ ◦ P, all λ ∈ Xa,

so that (P aλ) (x) = λ(Px), all λ ∈ Xa and all x ∈ X . P a is also a projector, and the
corresponding decomposition of Xa can be obtained from that of X for P : for S ⊂ X ,
define

S⊥ =
{

λ ∈ Xa : λ [S] = {0}
}

;

then P a[Xa] = {(I − P ) [X ]}⊥ and (I − P a) [Xa] = {P [X ]}⊥.
If P is of rank n, i.e., if dim P [X ] = n, then so is P a. Hence each projector P on X

of rank n determines an n–dimensional subspace X1 = P [X ] of X and an n–dimensional
subspace Λ1 = P a[Xa] of Xa satisfying X1 ∩Λ⊥

1 = {0} and X = X1 + Λ⊥
1 , where without

danger of confusion the set

{x ∈ X : for all s ∈ S, sx = 0}

with S ⊂ Xa is also denoted by S⊥. Conversely, each n–dimensional subspace X1 of X
and each n–dimensional subspace Λ1 of Xa satisfying X1∩Λ⊥

1 = {0} determine a projector
P on X of rank n by the rule

Px ∈ X1, (x − Px) ∈ Λ⊥
1 , all x ∈ X.

Therefore, each projector P on X of finite rank is an interpolation operator in the sense
that P associates with each element x ∈ X the unique element Px ∈ X1 which interpolates
x with respect to the linear functionals {λi}n

1 , i.e., satisfies

λi(Px) = λix, i = 1, . . . , n,

where {λi}n
1 is some basis of Λ1.

For the remainder of this section, let X be a normed linear space. For a projector
P on X to be continuous, it is necessary that both P [X ] and (I − P ) [X ] be closed; this
condition is also sufficient in case X is a Banach space. If P is of finite rank, then P is
continuous if and only if Λ1 consists of continuous linear functionals, i.e., Λ1 ⊂ X ′, where
X ′ is the linear space of all continuous linear functionals on X , or, the topological dual of
X .

The smaller the norm of P or (I−P ), the more apt is Px to be a good approximation
to x. This is so because of

Lemma 1.1. Let P be a continuous projector on the normed linear space X , with X1 =
P [X ]; then

‖x − Px‖ ≤ ‖I − P‖ ‖x − z‖ ≤
(

1 + ‖P‖
)

‖x − z‖, all x ∈ X, all z ∈ X1 .
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In particular, if E(x, X1) = inf
{

‖x − z‖ : z ∈ X1

}

is the distance of x from X1, then

E (x, X1) ≤ ‖x − Px‖ ≤ ‖I − P‖E (x, X1) ≤
(

1 + ‖P‖
)

E (x, X1) .

We will make extensive use of this simple lemma later on.
Unless P is trivial, we have ‖P‖ ≥ 1. If X is a Hilbert space, then ‖I −P‖ = 1 if and

only if P is orthogonal projection. This fact generalizes in the following way to normed
linear spaces: By Lemma 1.1, ‖I − P‖ = 1 if and only if P is a metric projection, i.e., if
and only if

E (x, X1) = ‖x − Px‖, all x ∈ X .

This serves to illustrate the fact that in normed linear spaces projectors of norm 1 are not
very frequent, for even in a uniformly convex Banach space in which every closed linear
subspace possesses a unique metric projection, it is rare for a metric projection to be linear.

In fact, even in a uniformly convex Banach space X , not every closed linear subspace
X1 need possess a projector at all (in the sense that there exists a continuous projector P
on X with X1 = P [X ]);cf.,e.g.,[16]. Of course, by the Hahn-Banach Theorem, every finite
dimensional subspace of a normed linear space possesses plenty of continuous projectors;
and even though it may not possess a projector of norm 1, it possesses projectors of
minimal norm, or minimal projectors as well as optimal projectors, i.e., projectors for
which ‖I −P‖ is minimal. Neither minimal nor optimal projectors need be unique, and it
is not known how to construct either one even in rather simple cases.

We will have to deal later with a sequence {Xn} of subspaces of a normed linear space
X and a corresponding sequence {Pn} of projectors and it will be important to know when
Pn → I, i.e., when Pn converges strongly to the identity on X , or, what is the same, when,
for all x ∈ X , limn→∞ ‖Pnx − x‖ = 0. For a sequence {Xn} of subspaces of X , define

lim
n→∞

Xn =
{

x ∈ X : lim
n→∞

E (x, Xn) = 0
}

.

Lemma 1.2. Let X be a normed linear space and {Pn} a sequence of continuous projectors
on X . Then the conditions that limn→∞ Pn[X ] = X and {Pn} is uniformly bounded are
sufficient for Pn → I. If X is a Banach space, then these conditions are also necessary.

Proof: If {Pn} is uniformly bounded, then there exists, by definition, c > 0 such
that ‖Pn‖ ≤ c for all n. If also lim Pn[X ] = X , then, by Lemma 1.1,

lim
n→∞

‖x − Pnx‖ ≤ lim
n→∞

(1 + c) E (x, Pn[X ]) = 0, all x ∈ X,

showing that Pn → I.
Conversely, assume that Pn → I. Then obviously, lim Pn[X ] = X , while {Pn} is not

necessarily uniformly bounded. But if X is a Banach space, then any strongly convergent
sequence must be uniformly bounded, by the Banach-Steinhaus Theorem, cf.,e.g., [10,
Thm.3,p.252], Q.E.D.

It is not sufficient for a sequence {Xn} of finite dimensional subspaces of a Banach
space X to satisfy lim Xn = X in order to guarantee the existence of a sequence {Pn}
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of projectors with Xn = Pn[X ] so that Pn → I. A well-known example is the sequence
{Xn} in X = C[−1, 1] with Xn = {

∑n
0 ait

i}; any projector Pn on X to Xn satisfies
‖Pn‖ ≥ 2(lnn)/π2 + O(1) as is shown in [9].

That such examples exist in “almost all” Banach spaces, is partially the content of
the following interesting conjecture [16]: If, for a Banach space X , there exists a c > 0
such that every finite dimensional linear subspace possesses a projector with norm ≤ c,
then X is (topologically and algebraically) isomorphic to a Hilbert space.

Finally, we note that although a sequence {Pn} may not converge strongly to the
identity, it may converge pointwise on (i.e., for each x in) some set which may be quite
“large” and even dense even though it must be of the first category. Thus, for the example
given, one can find a sequence {Pn} of projectors which converges to the identity on the
dense subset C(1)[−1, 1] of C[−1, 1], e.g., interpolation at the zeroes of the appropriate
Tschebycheff polynomial.

Lemma 1.3. If {Pn} is a sequence of projectors on the normed linear space X , then
lim ‖x − Pnx‖ = 0 for all x ∈ X such that lim ‖Pn‖E (x, Pn[X ]) = 0.

2. The method of projections

Assume given a linear map M : X → Y from a linear space X onto a linear space Y ,
and assume that M is 1-1, so that M−1 exists. The problem is to find, given y∗ ∈ Y , the
element x∗ ∈ X such that Mx∗ = y∗.

This problem is, in general, not solvable numerically; it is possible only to compute
(approximately) the values of finitely many functionals on the unknown solution x∗. This
fact can be reconciled with the desire to find an element of X (rather than finitely many
numbers) by seeking an approximation x∗

n to x∗ in some finite dimensional subspace Xn

of X , and the method of projections (or, generalized Galerkin’s method) is one way to
accomplish this.

One picks an n–dimensional subspace Xn of X and an n–dimensional subspace Λn of
Y a so that M [Xn]∩Λ⊥

n = {0}. As M [Xn] is then n–dimensional, M [Xn] and Λn determine
a projector, Pn. The corresponding approximant, x∗

n, to x∗, is then defined as

(2.1) x∗
n = M−1Pny∗ .

Since PnMx = Mx for x ∈ Xn, x∗
n is the solution in Xn to the “projected” equation

(2.2) PnMx = Pny∗ .

For the numerical determination of x∗
n, one picks a convenient basis {xi}n

1 of Xn and
a basis {λi}n

1 of Λn and determines the coefficients a∗
1, . . . , a

∗
n of x∗

n with respect to this
basis as the solution to the system of n linear equations

(2.3)

n
∑

j=1

λi (Mxj) a∗
j = λiy

∗ , i = 1, . . . , n .
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The error in approximating x∗ by x∗
n is

(2.4) x∗ − x∗
n = M−1 (I − Pn) y∗ ;

the accuracy of the approximation depends therefore on how well the “right side”, y∗, can
be approximated by elements in M [Xn] using the projector Pn. As this is so, one would
be tempted, in case Y is a metric space, to use for Pn a metric projection onto M [Xn].
But, unless Y is an inner product space, this would entail solving the nonlinear problem of
finding the best approximation to y∗ by elements in M [Xn]; and, as the elements of M [Xn]
can have quite a complicated description in practice, this will often be a very difficult task.
In view of Lemma 1.1, it seems to be more advisable to attempt instead to find a projector
Pn of small norm.

The mapping Qn : x∗ → x∗
n is given by

(2.5) Qn = M−1PnM =
(

M | Xn

)−1
PnM ;

hence, Qn is a projector. In fact, Qn is given by Xn and Ma[Λn], where Ma is the dual of
M , i.e., Ma is the linear map from Y a to Xa given by the rule

Maλ = λ ◦ M, all λ ∈ Y a .

The projection method is, therefore, “merely” an interpolation method and consists in de-
termining the element x∗

n in Xn which interpolates x∗ with respect to the linear functionals
{Maλi}n

1 , where {λi}n
1 is a basis for Λn.

We note that the method of projections can be dualized. We approximate the dual
equation Maλ = µ by Qa

nMaλ = Qa
nµ, λ ∈ Λn, where Qa

n is the projector given by
Ma[Λn] and Xn. The notation is correct, Qa

n is indeed the dual of Qn. Thus, linear
methods such as the method of finite differences, which compute approximately the value
of some linear functionals on the unknown solution x∗, can be interpreted to be just the
projection method applied to the dual of M (cf. Section 3).

The sad fact that the original problem cannot be solved numerically is usually made
up for by a demonstration showing that one can come arbitrarily close to the solution by
numerical methods. Accordingly, one has in the projection method a sequence {Xn} of
finite dimensional subspaces of X and a sequence {Λn} of corresponding finite dimensional
subspaces of Y a, and can then hopefully show that the elements of the sequence {x∗

n} of
corresponding approximants are defined and that the sequence converges to x∗ in some
sense.

Let both X and Y be normed linear spaces, and assume that both M and M−1 are
bounded. We will call a projection scheme for M given by the sequences {Xn} and {Λn}
convergent if M [Xn] and Λn define a projector, Pn, for all sufficiently large n and if
the resulting sequence of approximants converges in norm to x∗ for all y∗ ∈ Y . Hence a
projection scheme is convergent if and only if Pn (or Qn) is defined for all n ≥ n0 and
Pn → I (or Qn → I). In case one (and therefore the other) of X or Y is a Banach space,
this implies that {Pn} and {Qn} are uniformly bounded. But if Y is not complete, then it
is possible for a sequence {Pn} of projectors on Y to converge strongly to the identity even
though none of the Pn are even bounded (cf., e.g., Section 7). We will call a projection
scheme boundedly convergent if it is convergent and if the sequence {Pn}, and therefore
the sequence {Qn}, is uniformly bounded.
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Lemma 2.1. Let X and Y be normed linear spaces, and M : X → Y a bounded linear
map with bounded inverse; let {Xn} be a sequence of finite dimensional subspaces of X .
Then it is possible to construct a boundedly convergent projection scheme for M using
the sequence {Xn} if and only if lim Xn = X and, for some c > 0, each Xn possesses a
projector with norm no greater than c. In case one (and therefore the other) of X or Y is
a Banach space, these conditions are necessary to guarantee the existence of a convergent
projection scheme using {Xn}.

As an illustration, choose X = {x ∈ C(1)[0, 1] : x(0) = 0}, Y = C[0, 1], Mx(t) =
x(1) (t), norm Y in the usual way and set

‖x‖X = ‖x(1)‖∞, all x ∈ X .

Then both X and Y are Banach spaces and M is an isometry. But we cannot establish
a convergent projection scheme for M using polynomials, i.e., using the sequence {Xn}
with Xn = {∑n

0 ait
i}, even though lim Xn = X , since by the result cited in Section 1

the sequence {M [Xn]} fails to have a bounded sequence of projectors. In contrast, if we
choose for Xn the set of all piecewise parabolic functions in X with interior knots (cf.
Section 5) i/n, i = 1, . . . , n− 1, then Xn possesses a projector Pn of norm 1, given by Xn

and 〈{δ(1)
i/n}n

i=1〉.
This also illustrates the point implicit in this thesis that there is theoretically, if not

practically, no difficulty in constructing (boundedly) convergent projection schemes for the
solution of ordinary linear differential equations using piecewise polynomial functions. But
lest I be accused of polemic I hasten to point out that by Lemma 1.3 projection schemes
which fail to be convergent still may give a sequence of approximants which converge to
x∗, provided y∗ is “nice” enough. Kantorovich and Akilov [10] give several examples of
this nature.

3. Examples

The method of projections has been used in various concrete forms for some time
(cf., e.g., [5, Kap.I, par.4] and [10, ch.XIV] and the references given there). These forms
have been honored with different names according to specific ways of choosing Λn. In
the German literature, they all fall under the heading of “Fehlerabgleichungsmethoden”,
as the approximation x∗

n is determined by the condition that the defect (Mx∗
n − y∗) be

“small” in some sense, viz., so that Pn(Mx∗
n − y∗) = 0, or, what is the same, so that

λi(Mx∗
n − y∗) = 0, i = 1, . . . , n,

where Λn = 〈{λi}n
1 〉 .

As this thesis will deal with second order ordinary linear differential equations only,
the examples are brought in this setting. Accordingly, let M be a second order ordinary
linear differential operator in normal form,

(3.1) (Mx) (t) = x(2) (t) + p1(t)x
(1) (t) + p0(t)x(t), t ∈ [0, 1],
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with p0, p1 ∈ C[0, 1]; set X = {x ∈ C(2)[0, 1] : x(0) = x(1) = 0}, and assume that M is 1-1
on X . Then M maps X onto Y = C[0, 1]. We will write Xn = 〈{xi}n

1 〉, and Λn = 〈{λi}n
1 〉.

Computationally perhaps the simplest method is the Collocation method, for which

λiy = y(ti), i = 1, . . . , n,

with 0 ≤ t1 < t2 < · · · < tn ≤ 1, so that Pn becomes interpolation by elements in M [Xn]
at the points ti, i = 1, . . . , n.

Less simple is the Least-squares method, in which Pn becomes orthogonal projection,
i.e.,

λiy =

∫ 1

0

y(t) (Mxi) (t) dt, i = 1, . . . , n.

Galerkin’s method requires the defect to be orthogonal to Xn rather than M [Xn],
so that

λiy =

∫ 1

0

y(t)xi(t) dt, i = 1, . . . , n,

and coincides more or less with Ritz’ method whenever the latter is applicable.
In the “Sub-domain” method, the λi are given by

λiy =

∫ ti

ti−1

y(t) dt, i = 1, . . . , n,

where 0 = t0 < t1 < · · · < tn = 1, while the “orthogonality” method or method of
moments comes closest to the generality of the previous section: the λi are given by

λiy =

∫ 1

0

y(t)φi(t) dt, i = 1, . . . , n,

where {φi}n
1 are some functions, usually the first n of a complete orthonormal set on [0, 1].

To this list, I would like to add the Golomb-Weinberger method to be discussed
in Section 9, which consists in choosing, given Λn, the subspace Xn of X in such a way
that Qn (given by Xn and Ma[Λn]) becomes orthogonal projection with respect to some
convenient inner product; and also the method of finite differences or nets.

The method of finite differences consists of picking points 0 ≤ t0 < t1 < · · · < tn ≤ 1
and finding approximations to the numbers

µix
∗ = x∗(ti), i = 1, . . . , n

in the following way. One chooses numbers aij such that

(3.2)
∑

j

aijµj − Maλi, i = 1, . . . , n,
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can be expected to be small on x∗, where λiy = y(ti), i = 1, . . . , n; usually, one sets aij = 0
for |i − j| greater than some given integer. Then one solves, if possible,

∑

j

aijbj = (Maλi)x
∗, i = 1, . . . , n,

for the bi’s, the right side being known since

(Maλi)x
∗ = λi(Mx∗) = λiy

∗ = y∗(ti), i = 1, . . . , n.

Because the linear functionals (3.2) are supposedly small on x∗, the number bi is then
hopefully a good approximation to the number µix

∗, i = 1, . . . , n.

In other words, one establishes an easily invertible map Qa
0 from S = 〈{µi}n

1 〉 to
Ma[Λn], where Λn = 〈{λi}n

1 〉, and assumes that x∗ is annihilated by µ−Qa
0µ, for all µ ∈ S.

To establish the connection with the projection method, extend Qa
0 in any of the many

possible ways to a projector Qa
n on Xa to Ma[Λn]; for this, we can pick any n–dimensional

subspace Xn of X satisfying X⊥
n ∩ Ma[Λn] = {0} and X⊥

n ∩ {µ − Qa
0µ : µ ∈ S} = {0},

and then define Qa
n as the projector given by Ma[Λn] and Xn. Then Qa

n|S = Qa
0 and

the projection method with Xn and Λn gives an approximant x∗
n satisfying µix

∗
n = bi,

i = 1, . . . , n.

In conclusion, any such finite difference scheme can be considered to be a special
instance of the Collocation method; and any concrete example of the Collocation method
for which the resulting projector Qa

n is 1-1 on S gives rise to a finite difference scheme.

4. How to construct convergent projection schemes

Except in special cases, e.g., in the Least-squares method and its dual, the Golomb-
Weinberger method, or in the Galerkin method when M is positive definite, it is not
clear, given Xn and Λn, that M [Xn] and Λn define a projector; and even if this can be
ascertained for a given sequence {Xn} and a sequence {Λn} at least for large enough n, it
is not obvious under what conditions on {Xn} and {Λn} the projection scheme for M is
convergent.

One difficulty arises from the fact that even though Xn may be a set of functions
about which we know quite a bit, such as polynomials or piecewise polynomial functions,
the subspace M [Xn] of Y can be made as complicated as we wish with the “proper” choice
of p0, p1. Of course, if Xn consists of piecewise polynomial functions, and M = M1, where

(M1x) (t) = x(2) (t), all t ∈ [0, 1],

then M [Xn] consists also of piecewise polynomial functions, so that the existence of Pn is
more easily ascertained in this case. In this section, we prove a theorem which permits us
to conclude the convergence of a projection scheme for M from its convergence for M1.

We return to the generality of Section 2, and assume given a bounded linear map
M : X → Y , where X and Y are normed linear spaces. We need the notion of total
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boundedness. A subset S of a normed linear space X is totally bounded if, given ∈> 0,
there exists a finite subset {xi}n

1 of X such that

S ⊂
n
⋃

i=1

{x ∈ X : ‖x − xi‖ ≤∈}.

A linear operator T : X → Y is totally bounded if T maps bounded sets into totally
bounded sets. Hence T is totally bounded if the set

{Tx : x ∈ X, ‖x‖ ≤ 1}

is totally bounded. Thus, any compact (or completely continuous) linear operator is totally
bounded, but the converse is not true.

Lemma 4.1. Let X and Y be normed linear spaces and T : X → Y a totally bounded
linear operator; let {Rn}∞1 be a uniformly bounded sequence of linear operators on Y ,
which converges strongly to some bounded linear operator R on Y . Then lim ‖Rn T −
RT‖ = 0, i.e., the sequence {RnT} converges uniformly to RT .

Proof: This lemma is a consequence of the well-known fact (c.f., e.g., [11, Thm.8.17])
that for an equicontinuous family of linear maps from one topological vector space to
another the topologies of pointwise convergence and of uniform convergence coincide on
totally bounded sets. But, for completeness, we prove the lemma directly.

It is sufficient to give the proof for the case R = 0. We have

(4.1) ‖RnT‖ = sup
{

‖RnTx‖ : x ∈ X, ‖x‖ ≤ 1
}

= sup
{

‖Rny‖ : y ∈ B
}

,

where B = {Tx : x ∈ X , ‖x‖ ≤ 1}, so that B is a totally bounded set. By assumption,
there is a c > 0 so that, for all n, ‖Rn‖ ≤ c. Let ε > 0 be given; then there exists a finite
set {yi}r

1 ⊂ Y such that

B ⊂
r
⋃

i=1

{

y ∈ Y : ‖y − yi‖ ≤ ε/2c
}

.

Since Rn → 0, there exists n0 so that for n ≥ n0 and i = 1, . . . , r, ‖Rnyi‖ < ε/2. But
then, for all n ≥ n0 and i = 1, . . . , r, we have

‖Rny‖ ≤ ‖Rnyi‖ + ‖Rn(y − yi)‖ < ε/2 + c‖y − yi‖ ≤ ε,

whenever ‖y − yi‖ < ε/2c, so that for n ≥ n0,

sup
{

‖Rny‖ : y ∈ B
}

≤ max
i=1,...,r

sup
{

‖Rny‖ : ‖y − yi‖ ≤ ε/2c
}

< ε.

As ε was arbitrary, we have, with (4.1), that lim‖RnT‖ = 0, Q.E.D.
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Theorem 4.1. Let X and Y be normed linear spaces, let M and M1 be bounded linear
maps from X to Y with bounded inverse and such that

M2 = M − M1

is totally bounded. Let {Yn} be a sequence of finite dimensional subspaces of Y such that
lim Yn = Y , and let {Λn} be a corresponding sequence of finite dimensional subspaces
of Y ′ (the topological dual of Y ) such that Yn and Λn define a projector, P̄n, for all n.
If the sequence {P̄n} is uniformly bounded, then the projection scheme for M given by
{M−1

1 [Yn]} and {Λn} is boundedly convergent.

Proof: Observe that since lim Yn = Y and {P̄n} is uniformly bounded, we have
from Lemma 1.2 that P̄n → I. Hence, by Lemma 4.1,

(4.2) lim ‖M2 − P̄nM2‖ = 0.

Set Xn = M−1
1 [Yn], all n. Since dim M [Xn] = dim Yn, and Yn and Λn define a

projector P̄n, M [Xn] and Λn define a projector, Pn, if and only if M [Xn] ∩ Λ⊥
n = {0}, or,

as Λ⊥
n = ker P̄n, if and only if the map

(4.3) R = P̄n | M [Xn]

is 1-1. Hence the existence of Pn is proven, once R is shown to be bounded below.

Set M0 = M | Xn.We have, for x ∈ Xn, (I − R)M0x = (I − P̄n)M2x, hence

(4.4) ‖I − R‖ = sup{‖y − P̄ny‖ : y ∈ M [Xn], ‖y‖ ≤ 1} ≤ ‖M2 − P̄nM2‖ ‖M−1
0 ‖.

Therefore,

(4.5) ‖Ry‖ ≥ ‖y‖ − ‖(I − R)y‖ ≥ (1 − ‖M2 − P̄nM2‖ ‖M−1
0 ‖) ‖y‖, all y ∈ M [Xn].

Because of (4.2) and since ‖M−1
0 ‖ ≤ ‖M−1‖, (4.5) implies the existence of n0 such that,

for n ≥ n0, R is bounded below; thus Pn is defined.

But as R is of finite rank, R is then also onto Yn, so that R−1 is defined and, by (4.5),

(4.6) ‖R−1‖ ≤ (1 − ‖M2 − P̄nM2‖ ‖M−1
0 ‖)−1.

Since Pn = R−1P̄n, we have with this

(4.7) ‖Pn‖ ≤ ‖R−1‖ ‖P̄n‖ ≤ (1 − ‖M2 − P̄nM2‖ ‖M−1
0 ‖)−1 ‖P̄n‖,

showing that {Pn} is uniformly bounded. But as M [Xn] = MM−1
1 [Yn], and (MM−1

1 )−1

is bounded and lim Yn = Y , we also have lim M [Xn] = Y , so that Pn → I, Q.E.D.
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Corollary 1. Under the assumptions of the theorem, we have for n ≥ n0

(4.8) ‖y∗ − Pny∗‖ ≤ ‖y∗ − P̄ny∗‖ + ‖R − I‖ ‖R−1‖ ‖P̄ny∗‖,

and, therefore,
(4.9)
‖x∗ − x∗

n‖ ≤

‖M−1‖
(

‖y∗ − P̄ny∗‖ + ‖M2 − P̄nM2‖ ‖M−1
0 ‖ · (1 − ‖M2 − P̄nM2‖ ‖M−1

0 ‖)−1‖P̄ny∗‖
)

.

Proof: Observe that

I − Pn = I − R−1P̄n = I − P̄n + (R − I) R−1P̄n,

and use (4.4), (4.6) and (4.2), Q.E.D.
The error estimate (4.9) is not very helpful, as it is usually impossible in practice to

compute the number ‖M−1‖ by any means short of knowing M−1. Should it happen that
‖M−1

1 M2‖ < 1, we get, of course, the estimate

(4.10) ‖M−1‖ ≤ ‖M−1
1 ‖/(1 − ‖M−1

1 ‖ ‖M2‖),

which is often simpler than it looks; in the application later on, e.g., we will choose the
norms on X and Y always in such a way that M1 is an isometry. Also, if in our application
M is positive definite, there are standard ways of estimating ‖M−1‖. Otherwise, we must
rely on the fact that ‖M−1

0 ‖ can be computed (even though that may not be easy) and
use an estimate of ‖M−1‖ which uses only the numbers ‖M−1

0 ‖, ‖Pn‖, ‖M2 − P̄nM2‖ and
‖M‖.

To derive such an estimate, recall that x∗
n = Qnx∗, where Qn is a projector, Qn =

M−1
0 PnM , given by Xn and Ma[Λn], so that by Lemma 1.1,

(4.11) ‖x∗ − x∗
n‖ ≤ (‖Qn‖ + 1) ‖x∗ − x‖, all x ∈ Xn.

Now

‖x∗+M−1
1 P̄nM2x

∗‖ ≤ ‖M−1
1 ‖ ‖M1x

∗+P̄nM2x
∗‖ ≤ ‖M−1

1 ‖ (‖Mx∗‖+‖M2−P̄nM2‖ ‖x∗‖),

and M−1
1 P̄nM2x

∗ ∈ Xn, so that with (4.11),

‖x∗‖ ≤ ‖x∗−x∗
n‖+‖Qnx∗‖ ≤ ‖M−1

1 ‖ (‖Qn‖+1) (‖Mx∗‖+‖M2−P̄nM2‖ ‖x∗‖)+‖Qnx∗‖.

Since ‖Qnx∗‖ ≤ ‖M−1
0 Pn‖ ‖Mx∗‖, this gives

‖x∗‖
(

1−‖M−1
1 ‖ (‖Qn‖+ 1) ‖M2 − P̄nM2‖

)

≤ ‖Mx∗‖
(

‖M−1
0 Pn‖+ (‖Qn‖+1)‖M−1

1 ‖
)

.

We have proved

13



Corollary 2. For sufficiently large n, we have
(4.12)

‖M−1‖ ≤
(

‖M−1
0 Pn‖ +

(

‖Qn‖ + 1
)

‖M−1
1 ‖

)

/
(

1 − ‖M−1
1 ‖ (‖Qn‖ + 1) ‖M2 − P̄nM2‖

)

.

Remark. Theorem 4.1 is a slight extension of Theorem 6 in Ch. XIV of Kantorovich
and Akilov [10]. The latter is proved there by referring back to a series of more general
results. But because of the importance of Theorem 4.1 for the purposes of this thesis,
it seemed advantageous to give a direct proof. The above proof of Theorem 4.1 is only
vaguely related to the chain of reasoning employed in [10]. By contrast, the argument for
Corollary 2 is essentially that for Theorem 4 in Ch. XIV of [10].

The content of Theorem 4.1 can be phrased somewhat differently.

Corollary 3. Let M and M1 be bounded linear maps with bounded inverse from the
normed linear space X to the normed linear space Y . If M2 = M −M1 is totally bounded,
then a projection scheme is boundedly convergent for M if and only if it is boundedly
convergent for M1.

Finally, Theorem 4.1 starts with a uniformly bounded sequence {P̄n} of projectors
on Y satisfying P̄n → I, for which the sequence {Xn} has to be constructed via Xn =
M−1

1 P̄n[Y ]. In practice, one is more likely to start with the sequence {Xn} and attempt
to construct, for each n, a projector P̄n with P̄n[Y ] = M1[Xn]. But one can also begin
with a uniformly bounded sequence {Q̄n} of projectors on X satisfying Q̄n → I.

Corollary 4. Let M and M1 be bounded linear maps with bounded inverse from the
normed linear space X to the normed linear space Y and let {Q̄n} be a uniformly bounded
sequence of projectors on X such that Q̄n → I, where Q̄n is given by Xn and Σn, all n.
If M2 = M − M1 is totally bounded, then {Xn} and {Λn} give a boundedly convergent
projection scheme for M , with Λn = (M−1

1 )a[Σn], all n.

Proof: Observe that the sequence {P̄n}, with P̄n = M1Q̄nM−1
1 , all n, satisfies all

assumptions of Theorem 4.1.

Note that the practical use of this corollary (as of Theorem 4.1) presupposes that
M−1

1 is known.

CHAPTER 2: SPLINE FUNCTIONS

5. Spline functions

In this section, spline functions are introduced, and certain of their properties are
derived. The main portion of the section is taken up with the investigation of two projectors
on C[0, 1] to a subspace of cubic splines.

A spline function x(t) on [a, b] of degree k ≥ 0 with knots (or joints) {ti}n
1 , where

a < t1 < t2 < · · · < tn < b, is, by definition, a function in C(k−1)[a, b] which on each of
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the intervals (a, t1), (t1, t2), . . . , (tn, b) agrees with some polynomial of degree k (or less).
Any such function can be written (in exactly one way) as

(5.1) x(t) =
k
∑

i=0

ait
i +

n
∑

j=1

bj(t − tj)
k
+,

where we use the by now customary notation

(5.2) (t)m
+ =

{ tm, t ≥ 0
, m ≥ 0.

0 , t < 0

Denote the linear space of all such functions by

Sk (a, t1, . . . , tn, b).

The literature on spline functions, with its earliest entry [13], has grown to some 40
articles. The few that are pertinent for this thesis are listed in the bibliography; for a
rather complete list, see Chapter 10 and the bibliography of [12].

Of the many facts known about splines, we will need only the following. For a function
x(t) and points t0 < t1 < · · · < tk, denote by x(t0, . . . , tk) the k–th divided difference of x
on these points.

Lemma 5.1 [7]. Let gk(s; t) = (s − t)k−1
+ /(k − 1) !, k ≥ 1. Then, for all x ∈ C(k)[a, b]

and all points {ti}k
0 with a ≤ t0 < t1 < · · · < tk ≤ b,

(5.3) x(t0, . . . , tk) =

∫ b

a

gk(t0, . . . , tk; s)x(k) (s) ds.

Proof: By Taylor’s formula with integral remainder,

(5.4) x(t) =
k−1
∑

i=0

x(i) (a) (t − a)i/i ! +

∫ b

a

gk(t; s)x(k) (s) ds,

for all t ∈ [a, b], from which (5.3) follows with the observation that for the (k−1)–st degree
polynomial

y(t) ≡
k−1
∑

i=0

x(i) (a) (t − a)i/i !

any k–th divided difference is zero, Q.E.D.

We note that (5.3) remains valid even if some of the points coincide as long as t0 < tk.
The function gk(t0, . . . , tk; t) is called a basic or fundamental spline [13], [14].
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Corollary. The function x(t) = gk(t0, . . . , tk; t) is nonnegative, and positive if and only if
t ∈ (t0, tk). Further

(5.5)

∫ tk

t0

gk(t0, . . . , tk; t) dt = 1/k !.

Proof: This follows at once from (5.3) and from the fact that

(5.6) x(t0, . . . , tk) = x(k) (ξ)/k !, some ξ ∈ (t0, tk),

but can, of course, be ascertained directly from the definition of gk(t0, . . . , tk; t); Q.E.D.

Lemma 5.2. Let n ≥ 1, k ≥ 0, and 0 = t0 < t1 < · · · < tn = 1, and introduce auxiliary
points ti = i/n, i = −k, . . . ,−1, n + 1, . . . , n + k. Then {xik(t)}n+k

i=1 , given by

(5.7) xik(t) = gk+1(ti−k−1, ti−k, . . . , ti; t), t ∈ [0, 1], i = 1, ., n + k,

is a basis for S = Sk(0, t, . . . , tn−1, 1)S.

Proof: First, {xi}n+k
1 ⊂ S, where we omit the subscript k. Also, because of the

preceding corollary, the set {gk+1(ti−k−1, . . . , ti; t)}n+k
i=1 is linearly independent. We need

more of an argument as we must show their linear independence on [0, 1]. So assume

n+k
∑

i+k

aixi = 0.

Then, by (5.3),

(5.8)
n+k
∑

i=1

aiy(ti−k−1, . . . , ti) = 0

for all y ∈ C(k+1)[t−k, tn+k], whose (k+1)–st derivative vanishes outside the interval [0, 1].
But this implies ai = 0, i = 1, ., n + k: If i ≤ n/2, let p(t) be the k–th degree polynomial
satisfying

p(tj) = 0, j = i − k, . . . , i − 1, p(ti) = 1,

and let q(t) be the (2k + 3)rd degree polynomial satisfying

q(j) (ti−1) = 0, q(j) (ti) = p(j) (ti), j = 0, . . . , k + 1.

Then

y(t) =











0 , t < ti−1,

q(t) , t ∈ [ti−1, ti],

p(t) , t > ti,

is in C(k+1) and y(k+1) (t) = 0 for t /∈ [0, 1], while y(tj−k−1, . . . , tj) 6= 0 if and only if j = i,
so, by (5.8), ai = 0. If i ≥ n/2, use the symmetric construction to get ai = 0 for i ≥ n/2.
In conclusion, {xi}n+k

1 is a linearly independent set. But, by (5.1), S is of dimension not
greater than k + 1 + n− 1 = k + n, so that {xi}n+k

1 is a maximal linearly independent set
in S, hence a basis, Q.E.D.

The practical importance of this basis, which derives from the Corollary to Lemma
5.2, is discussed in Section 10.

The case of uniformly spaced knots is of particular interest.
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Lemma 5.3. Let n ≥ 1, k ≥ 0, and ti = i/n, i = 1, . . . , n − 1, and let {xik}n+k
i=1 be the

basis of Sk(0, 1/n, . . . , (n − 1)/n, 1) given by (5.7). Then, for k ≥ 1,

(5.9)

(

n+k
∑

i=1

aixik(t)

)(1)

=
n

k + 1

n+k−1
∑

i=1

(ai+1 − ai) xi,k−1(t).

Also, for k ≥ 0,

(5.10) xik(t) ≡ xjk(t + (j − i)/n), all i, j,

(5.11)
n+k
∑

i=1

xik(t) ≡ n/(k + 1) ! .

Proof: We have (∂/∂t)gk+1(s; t) = −gk(s; t), and

gk+1(ti−k−1, . . . , ti; t) =
(

gk+1(ti−k, . . . , ti; t) − gk+1(ti−k−1, . . . , ti−1; t)
)

/(ti − ti−k−1),

from which (5.9) follows. Also

(5.12) gk+1(ti−k−1, . . . , ti; t) ≡ gk+1(ti−k−1 + c, . . . , ti + c; t + c)

for all c, from which (5.10) follows. Finally, one checks (5.11) directly for k = 0. For k ≥ 1,
we have by (5.9) that the left hand side of (5.11) is constant on [0, 1]. with (5.10), this
constant equals

n+k
∑

i=1

xik(0) =
k+1
∑

i=0

gk+1(ti−k−1, . . . ti; 0) = φ(t0, . . . , tk+1),

where

φ(t) =

k+1
∑

i=0

(t − (k + 1 − i)/n)k
+/k !.

As φ(tj , tj+1) = n((j + 1)/n)k/k !, j = 0, . . . , k, a polynomial of degree k in (j/n) with
leading coefficient n/k !, we have φ(t0, . . . , tk+1) = n/(k + 1) !, Q.E.D.

We note that most of these and many other facts are contained in the rather thorough
treatment of splines with uniformly spaced knots [13]; missing only is the generating
function for the numbers

gk+1(0, 1, . . . , k + 1; i), i = 0, . . . , k + 1,

which can be found already in [6], and has been rediscovered recently by others (cf., e.g.,
[1]).

In the remainder, we will be concerned with linear splines (broken lines) and cubic
splines only. We begin with a straightforward lemma on interpolation by broken lines.

17



Lemma 5.4. Let n ≥ 1, Xn = S1(t0,n, . . . , tn,n), with 0 = t0,n < · · · < tn,n = 1; set
hn = max{ti+1,n − ti,n : i = 0, . . . , n− 1}, and Λn = 〈{δti,n

}n
i=0〉, considered as a subspace

of the topological dual of the Banach space X = C[0, 1]. Then Xn and Λn define a
projector, P̄n, on X , and ‖P̄n‖ = 1, and ‖I − P̄n‖ = 2, and

‖x − P̄nx‖∞ ≤ ωx(hn), all x ∈ X,(5.12)

‖x − P̄nx‖∞ ≤ hnωx(1)(hn)/2, all x ∈ C(1)[0, 1].(5.13)

Remark. The estimate (5.13) gives

(5.14) ‖x − P̄nx‖∞ = O(h2
n), all x ∈ Lip(1)[0, 1],

and any further increase in the smoothness assumption on x will not increase the conver-
gence rate above O(h2

n), as the function x(t) = t2 readily shows.

Theorem 5.1. For n ≥ 3, let Xn = S3(0, t2,n, . . . , tn−2,n, 1), with 0 = t0,n < t1,n <
· · · < tn,n = 1; let hn = max{∆ti,n : i = 0, . . . , n − 1} and qn = max{∆ti,n/∆tj,n :
i, j = 0, . . . , n − 1}, where ∆ti,n = ti+1,n − ti,n, and let Λn = 〈{δti,n

}n
0 〉, considered as a

subspace of the topological dual of the Banach space X = C[0, 1]. Then Xn and Λn define
a projector, Q̄n, on X , and

‖Q̄n‖ ≤ 1 + 5q2
n/2, all n.

Hence, if lim hn = 0 while, for some c and all n, qn ≤ c, then Q̄n → I.

Proof: Fix n and drop the second subscript in ti,n. We use the abbreviation

x′′
i

= x(2) (ti).

If y ∈ Xn, (so that y(2) is a broken line), then one computes from (5.3),
(5.15)
∆ti−1y

′′
i−1

+2(∆ti−1+∆ti)y
′′
i
+∆tiy

′′
i+1

= 6(∆ti−1+∆ti) y (ti−1, ti, ti+1), i = 1, . . . , n−1,

while the lack of a knot at t1 and at tn−1 gives

(5.16)
∆t1y

′′
0

− (∆t1 + ∆t0)y
′′
1

+ ∆t0y
′′
2

= 0,

∆tn−1y
′′
n−2

− (∆tn−2 + ∆tn−1)y
′′
n−1

+ ∆tn−2y
′′
n

= 0.

Combining these with the first and last equation of (5.15) gives

(5.17a) (∆t0+∆t1) (2+∆t0/∆t1)y
′′
1
+
(

∆t1−(∆t0)
2/∆t1

)

y′′
2

= 6(∆t0+∆t1) y (t0, t1, t2),

(5.17b) (∆t0+∆t1)y
′′
0
+(∆t0+∆t1)y

′′
1
+(∆t0+∆t1)y

′′
2

= 6(∆t0+∆t1) y (t0, t1, t2),

18



and two analogous equations involving y′′
n−2

, y′′
n−1

, y′′
n
. Adjoin (5.17a) and its counterpart

to (5.15) to get, for any y ∈ Xn,

(5.18)
2∆t1 + ∆t0

∆t1
y′′

1
+

∆t1 − ∆t0
∆t1

y′′
2

= 6y(t0, t1, t2),

∆ti−1

∆ti−1 + ∆ti
y′′

i−1
+ 2y′′

i
+

∆ti
∆ti−1 + ∆ti

y′′
i+1

= 6y(ti−1, ti, ti+1), i = 2, . . . , n − 2,

∆tn−2 − ∆tn−1

∆tn−2
y′′

n−2
+

2∆tn−2 + ∆tn−1

∆tn−2
y′′

n−1
= 6y(tn−2, tn−1, tn).

The matrix of this system of equations is diagonally dominant, giving the lower bound of 1
for the modulus of any of its eigenvalues. Therefore, if y ∈ Xn∩Λ⊥

n , then y(ti) = y(2) (ti) =
0, i = 0, . . . , n, hence y = 0 (cf. equation (5.21) below). Therefore, Q̄n is defined. Also

|y′′
i
| ≤ 6 max

j
| y(tj−1, tj , tj+1) |, i = 1, . . . , n − 1,(5.19a)

so that, with (5.17b) and its counterpart

|y′′
i
| ≤ 18 max

j
| y(tj−1, tj, tj+1) |, i = 0, n.(5.19b)

Further, if x ∈ X and y = Q̄nx, then y(ti−1, ti, ti+1) = x(ti−1, ti, ti+1), so that

(5.20) |y(tj−1, tj, tj+1) | ≤ 2q2
nh−2

n ‖x‖, j = 1, . . . , n − 1.

Hence, as

(5.21)

y(t) = x(ti)
ti+1 − t

∆ti
+ +x(ti+1)

t − ti
∆ti

+

+
1

6
(t − ti) (t − ti+1) ·

(

y′′
i
(
ti+1 − t

∆ti
+ 1) + y′′

i+1
(
t − ti
∆ti

+ 1)
)

,

t ∈ [ti, ti+1],

for i = 0, . . . , n − 1, we have with (5.19a–b) and (5.20),

(5.22) ‖y‖ ≤ ‖x‖ +
1

6
(hn/2)2 5 · 12 · q2

nh−2
n ‖x‖,

giving ‖Q̄n‖ ≤ 1 + 5q2
n/2.

To prove that Q̄n → I if lim hn = 0 and {qn} is bounded, we can either appeal to
Lemma 1.2 using the fact that under these circumstances {Q̄n} is uniformly bounded while
lim Xn = X , or else prove it directly as follows: Since

|x(tj−1, tj , tj+1) | ≤ ωx(hn)q2
nh−2

n , j = 1, . . . , n − 1,

we have that

|1
6
(t − ti) (t − ti+i)

(

y′′
i
(
ti+1 − t

∆ti
+ 1) + y′′

i+1
(
t − ti
∆ti

+ 1)
)

| ≤

≤ 1

6
(hn/2)2 · 5 · 6 · q2

nh−2
n ωx(hn) =

5

4
q2
nωx(hn),
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while |x(t) −
(

x(ti)
ti+1−t

∆ti
+ x(ti+1)

t−ti

∆ti

)

| ≤ ωx(hn), so that with (5.21),

‖Q̄nx − x‖ ≤ (1 + 5q2
n/4)ωx(hn), Q.E.D.

Corollary 1. If Q̄n is restricted to Y = C(2) [0, 1], normed by

‖x‖Y =| x(0) | + | x(1) | + ‖x(2)‖∞,

then Q̄n → I, provided lim hn = 0.

Proof: We have from (5.18) that | (Q̄nx(2) (ti) | ≤ 9‖x(2)‖∞, i = 0, . . . , n, since
x(tj−1, tj, tj+1) = x(2) (ξ)/2 for some ξ ∈ (tj−1, tj+1), j = 1, . . . , n − 1. As (Q̄nx)(2) is a
broken line with vertices at ti, i = 0, . . . , n, we get

‖(Q̄nx)(2)‖∞ = max
i

| (Q̄nx)(2) (ti) | ≤ 9‖x(2)‖∞,

implying ‖Q̄n‖ ≤ 9. As lim hn = 0 implies that lim Xn = Y , the corollary follows from
Lemma 1.2, Q.E.D.

Corollary 2. If Q̄n is restricted to Y = C(1)[0, 1], normed by

‖x‖Y = | x(0) | + ‖x(1)‖∞,

then Q̄n → I, provided lim hn = 0 and there exists c < 1 so that

(5.23) max{∆t0,n/t2,n, ∆tn−1,n/(1 − tn−2,n)} ≤ c, n = 3, 4, . . .

Proof: Any y ∈ Xn satisfies (cf., e.g., [3])

(5.24)
(∆ti)y

′
i−1 + 2(∆ti−1 + ∆ti)y

′
i + (∆ti−1)y

′
i+1 =

= 3
(

(∆ti) y (ti−1, ti) + (∆ti−1) y (ti, ti+1)
)

, i = 1, . , n− 1,

– (we dropped again the reference to n in ti,n and set y′
i = y(1) (ti) ) –, while the absence

of a knot at t1 and at tn−1 gives

(5.25) (∆t1)
2y′

0 +
(

(∆t1)
2 − (∆t0)

2
)

y′
1 − (∆t0)

2y′
2 = 2

(

(∆t1)
2y(t0, t1)− (∆t0)

2y(t1, t2)
)

,

with an analogous equation involving y′
n−2, y′

n−1, y′
n. Combine these with the first and

last equation of (5.24) to get

(5.26a)
(∆t0 + ∆t1)

2y′
1 + (∆t0) (∆t0 + ∆t1)y

′
2 =

= (∆t1)
2y(t0, t1) + (∆t0) (2∆t0 + 3∆t1) y (t1, t2),

(5.26b)
(∆t1) (∆t0 + ∆t1)y

′
0 + (∆t0 + ∆t1)

2y′
1 =

= (∆t1) (3∆t1 + 2∆t0) y (t0, t1) + (∆t0)
2y(t1, t2),
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and a pair of analogous equations involving y′
n−2, y′

n−1, y′
n. Adjoin (5.26a) and its coun-

terpart to (5.24) to get, for any y ∈ Xn, the system
(5.27)

y′
1 +

∆t0
∆t0 + ∆t1

y′
2 =

=
(

(∆t1)
2y(t0, t1) + (∆t0) (2∆t0 + 3∆t1) y (t1, t2)

)

/(∆t0 + ∆t1)
2,

∆ti
∆ti−1 + ∆ti

y′
i−1 + 2y′

i +
∆ti−1

∆ti−1 + ∆ti
y′

i+1 =

= 3
(

(∆ti) y (ti−1, ti) + (∆ti−1) y (ti, ti+1)
)

/(∆ti−1 + ∆ti), i = 2, . . . , n − 2,

∆tn−1

∆tn−2 + ∆tn−1
y′

n−2 + y′
n−1 =

(

(∆tn−1) (2∆tn−1 + 3∆tn−2) · y(tn−2, tn−1)+

+ (∆tn−2)
2y(tn−1, tn)

)

/(∆tn−2 + ∆tn−1)
2,

whose matrix is diagonally dominant, giving the lower bound (1 − c) for the modulus of
any of its eigenvalues. Much as in the proof of the theorem, this gives

|y′
i | ≤ 3‖x‖Y /(1 − c), i = 1, . . . , n − 1,

|y′
i | ≤ 5‖x‖Y /(1 − c)2, i = 0, n,

whenever y = Q̄nx, x ∈ Y . As for t ∈ [ti, ti+1], since

(5.28)

y(1) (t) = x(ti, ti+1) 6 (t − ti) (t − ti+1)/(∆ti)
2 + y′

i(3t − 2ti − ti+1) (t − ti+1)/(∆ti)
2+

+ y′
i+1(3t − 2ti+1 − ti) (t − ti)/(∆ti)

2,

i = 0, . . . , n − 1, it follows that

‖y(1)‖∞ ≤ 3

2
‖x(1)‖∞ + max

i
| y′

i | ,

so that ‖Q̄nx‖Y ≤ 13
2 ‖x‖Y /(1 − c)2 for all x ∈ Y , showing the uniform boundedness of

{Q̄n}. The corollary now follows from Lemma 1.2, Q.E.D.

Corollary 3. If x ∈ Lip(3)[0, 1], then

(5.29) ‖(Q̄nx − x)(j)‖∞ = O(h4−j
n ), j = 0, 1, 2.

Proof: Under the assumption on x, there exists, by (5.14), x0 ∈ Xn, such that

‖x(2) − x
(2)
0 ‖∞ = O(h2

n).

Therefore ‖(Q̄nx)(2) − x(2)‖∞ = O(h2
n), by Corollary 1 and Lemma 1.1. But then, for

t ∈ [ti, ti+1],

(Q̄nx − x) (t) =

∫ ti+1

ti

Gi(t, s) (Q̄nx − x)(2) (s) ds,
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where

Gi(t, s) = −(∆ti)
−1







(t − ti) (ti+1 − s), t ≤ s
,

(s − ti) (ti+1 − t), t ≥ s

from which one computes directly the estimates

‖Q̄nx − x‖∞ ≤ 1

8
h2

n‖(Q̄nx − x)(2)‖∞,

‖(Q̄nx − x)(1)‖∞ ≤ 1

32
hn‖(Q̄nx − x)(2)‖∞,

which concludes the proof, Q.E.D.
We note that the corollaries remain true if we set ∆t0,n = ∆tn−1,n = 0. This amounts

to replacing the linear functionals δt1,n
, δtn−1,n

in Λn by δ
(1)
0 , δ

(1)
1 . This is made precise in

the following

Theorem 5.2. For n = 1, 2, . . . , let Xn = S3(0, t1,n, . . . , tn−1,n, 1) with 0 = t0,n < t1,n <

· · · < tn,n = 1; set hn = max{∆ti,n : i = 0, . . . , n − 1} and let Λn = 〈{δt0,n
, . . . , δtn,n

, δ
(1)
0 ,

δ
(1)
1 }〉, considered as a subspace of the topological dual of the Banach space X = C(1)[0, 1]

with norm
‖x‖X =| x(0) | + ‖x(1)‖∞, all x ∈ X.

Then Xn and Λn define a projector Q̄′
n and ‖Q̄′

n‖ ≤ 13/2, for all n. Hence Q̄′
n → I,

provided lim hn = 0. Also, for x ∈ C(2)[0, 1], ‖(Q̄′
nx)(2)‖∞ ≤ 9‖x(2)‖∞, and

(5.30) ‖(Q̄′
nx − x)(j)‖∞ = O(h4−j

n ), all x ∈ Lip(3) [0, 1], j = 0, 1, 2.

Proof: On X , Q̄′
n is the strong limit of the sequence {Q̄n,i}, where Q̄n,i is the

projector given by Xn and Λn,i = 〈{δt0,n
, . . . , δtn,n

, i(δ1/i − δ0), i(δ1 − δ1−1/i)}〉. For each
n ≥ 1, and for all i large enough, Q̄n,i is of the type described in the preceding Theorem
5.1, hence the results in Corollaries 1, 2, 3 apply to Q̄n,i for i large enough and therefore
to their strong limit, Q̄′

n. Note that the constant c in Corollary 2 can be taken arbitrarily
small for i large enough so that we can set c = 0 for Q̄′

n, Q.E.D.
Remark. Theorem 5.1 has been proved for the case of interpolation by periodic

splines in [15]; the proof given here is an adaptation of the argument in [15]. The approx-
imation properties of Q̄′

n of Theorem 5.2 have been studied in [2], where (5.30) has been
obtained under the additional assumption that x ∈ C(4)[0, 1] and that the sequence {qn}
is bounded. Finally, it was asserted in [3] that the conclusions of Theorem 5.1 hold true for
the sequence {Q̄′

n} of Theorem 5.2, an obvious mistake as the definition of Q̄′
n involves the

linear functionals δ
(1)
0 , δ

(1)
1 , which fail to be bounded with respect to the norm ‖x‖ = ‖x‖∞.

Still, the argument in [3] shows that {Q̄′′} is uniformly bounded on the Banach spase C[0, 1]
(provided {qn} is bounded), where Q̄′′ is given by X̄n = {x ∈ Xn : x(1) (0) = x(1) (1) = 0}
and Λ̄n = 〈{δti,n

}n
0 〉. But the results of Corollaries 1, 2, 3, do not apply to Q̄′′

n
because of

the arbitrary assignment of the boundary derivatives.
The use of Galerkin’s method is, as will be seen in Section 8, connected with quite a

different projector from C[0, 1] to a subspace of cubic splines, which we will discuss in the
following
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Theorem 5.3. For n = 3, 4, . . . , let Xn = S3 (0, 1/n, . . . , (n − 1)/n, 1), i.e., we assume
equidistant knots, and let X̄n = {x ∈ Xn : x(0) = x(1) = 0}. Define λi by

λix =

∫ 1

0

x(t) yi(t) dt, i = 0, . . . , n,

where

(5.31) yi(t + ih) = y0 (t) = h−1 ·
{

(t + h)+, t < 0,

(h − t)+, t ≥ 0,

and h = hn = 1/n, and set Λn = 〈{λi}n
0 〉, considered as a subspace of the topological dual

of the Banach space X̄ = {x ∈ C[0, 1] : x(0) = x(1) = 0}. Then X̄n and Λn define a
projector Q̄n on X̄, and ‖Q̄n‖ ≤ 22.5, for all n. Hence Q̄n → I.

Proof: Define a basis for Xn by

(5.32) xi(t) = (4h)g4(ti−2, . . . , ti+2; t), i = −1, . . . , n + 1,

where g4(s; t) = (s − t)3+/6 and tj = jh, j = −3, . . . , n + 3 (cf. Lemma 5.2). So

(5.33) xi(t + ih) = x0(t) = (6h3)−1 ·







(t + 2h)3+ − 4(t + h)3+, t < 0

(2h − t)3+ − 4(h − t)3+, t ≥ 0,

and, by Lemma 5.3 (or by direct computation),
∑

xi(t) =
∑

| xi(t) |= 1, for t ∈ [0, 1],
therefore

(5.34) ‖
n+1
∑

−1

aixi(t)‖ ≤ max
i

| ai | .

From this, we get a basis for X̄n by

(5.35)
x̄0 = x0 − 4x−1, x̄1 = x1 − x−1, x̄n−1 = xn−1 − xn+1,

x̄n = xn − 4xn+1, x̄i = xi, i = 2, . . . , n − 2.

Note that
∑

xi(t) =
∑

| xi(t) | ≤ 1, so that

(5.34′) ‖
n
∑

0

aix̄i‖ ≤ max
i

|ai| .

It is possible to show directly that the matrix A = {λix̄j}n
i,j=1 is non-singular: From

the condition that (Q̄nx − x) ∈ Λ⊥
n , one finds for Q̄nx =

∑

aix̄i,

17a0 +18a1 + a2 = 120h−1λ0x,
22a0 +65a1 +26a2 + a3 = 120h−1λ1x,

(5.36) ai−2+26ai−1 +66ai +26ai+1 + ai+2= 120h−1λix, i = 2, . . . , n − 2,
an−3+26an−2+65an−1+22an = 120h−1λn−1x,

an−2+18an−1+17an = 120h−1λnx.
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One computes that ‖λi‖ = h, i = 1, . . . , n − 1, and ‖λ0‖ = ‖λn‖ = h/2. Let now i be
such that

|ai| = max{|aj| : j = 0, . . . , n} .

Then, if 2 ≤ i ≤ n − 2, one gets from (5.36)

120‖x‖ ≥ |120h−1λix| ≥ 66|ai| − (1 + 26 + 26 + 1) |ai| = 12|ai|;
and if i = 1 or i = n − 1, one gets

120‖x‖ ≥ |120h−1λix| ≥ 65|ai| − (22 + 26 + 1)|ai| = 16|ai|;
and if i = 0 or i = n, say, i = 0, then, subtracting (1/4) of the second equation of (5.36)
from the first, on gets

11.5a0 + 1.75a1 − 5.5a2 − 0.25a3 = 120h−1λ0x − 30h−1λ1x,

and therefore

90‖x‖ ≥ |30h−1 (4λ0 − λ1)x| ≥ 11.5|ai| − (1.75 + 5.5 + .25)|ai| = 4|ai|.
From this, we conclude that Q̄n is defined for all n and, with (5.34′), that ‖Q̄n‖ ≤ 22.5,
Q.E.D.

Corollary. With the notation of the theorem, let Yn = {x(2) : x ∈ X̄n}, and define the
linear functionals µi, i = 0, . . . , n, on the Banach space Y = C[0, 1] by

(5.37) µiy =

∫ 1

0

y(t)x̄i(t) dt, i = 0, . . . , n,

where x̄i is given by (5.35) and (5.33). Then Yn and Λ̄n = 〈{µi}n
0 〉 define a projector P̄n

on Y for all n, and {P̄n} is uniformly bounded, hence P̄n → I.

Proof: We note that {yi}n
0 , given by (5.31), is a basis for Yn, that ‖

∑

aiyi‖ =
maxi |ai| and that (with (5.6)),

‖µi‖ =

∫ 1

0

x̄i (t) dt ≤ 4h/6, i = 0, . . . , n.

The matrix {µiyj}n
i,j=0 is clearly the transpose of the matrix A = {λix̄j}n

i,j=0 of the

theorem which was shown there to be non-singular, hence P̄n is defined for all n. By an
argument entirely analogous to the one given in the proof of the theorem, one also shows
the existence of c > 0 such that ‖P̄n‖ ≤ c, all n, Q.E.D.

Remark. Note that P̄n = M1Q̄nM−1
1 , where M1 is the linear map from X = {x ∈

C(2) [0, 1] : x(0) = x(1) = 0} to Y = C[0, 1],

M1x = x(2), all x ∈ X.

If X is normed by

(5.38) ‖x‖X = ‖x(2)‖∞, all x ∈ X,

and Y is normed in the usual way, then M1 is an isometry. The preceding corollary proves,
therefore, that the sequence {Q̄n} is uniformly bounded on X with respect to the norm
(5.38).
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CHAPTER 3: APPLICATION TO TWO POINT BOUNDARY VALUE PROBLEMS

6. Preliminary considerations

In the following sections, we apply the results of Sections 4 and 5 to the numerical
solution of an ordinary linear second order differential equation with two point boundary
conditions.

M denotes the differential operator given by

(6.1) (Mx) (t) = x(2) (t) + p1(t) x(1) (t) + p0 (t) x (t), t ∈ [0, 1],

with p0, p1 ∈ C[0, 1]; we assume the linear functionals δ0, δ1 to be linearly independent
over the nullspace of M , or, what is the same, we assume that M maps the linear space
X = {x ∈ C(2)[0, 1] : x(0) = x(1) = 0} in a 1-1 manner onto Y = C[0, 1], so that M−1

exists.
Denote by G(s, t) the Green’s function of the problem,

(6.2) x(t) =

∫ 1

0

G(s, t) (Mx) (s) ds, all x ∈ X, t ∈ [0, 1].

In order to apply Theorem 4.1, we split M into M1 and M2,

(6.3)
M = M1 + M2,

M1x = x(2), all x ∈ X.

Then

(6.4) x(t) ≡
∫ 1

0

G1 (t, s) (M1x) (s) ds, all x ∈ X,

where

(6.5) G1 (t, s) =

{

t(s − 1), t ≤ s,

s(t − 1), t ≥ s.

To make application of Theorem 4.1 and its corollaries possible, we must norm X and
Y in such a way that M and M1 and their inverses are bounded. This can be done in a
number of ways, as will be seen shortly. But there are other considerations. If Xn and
Λn are given, then Qn, if at all defined, will be bounded if and only if Ma[Λn] consists
of continuous linear functionals. For example, in the Collocation method, Λn is given by

〈{δti
}n
1 〉, where 0 ≤ t1 < · · · < tn ≤ 1, so that, with M = M1, we have Ma[Λn] = 〈{δ(2)

ti
}n
1 〉;

therefore Qn fails to be bounded if the norm

6.6) ‖x‖X = ‖x‖∞, all x ∈ X,
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or the norm

(6.7) ‖x‖X = ‖x(1)‖∞, all x ∈ X,

is chosen on X , but is bounded with respect to the norm

(6.8) ‖x‖X = ‖x(2)‖∞, all x ∈ X.

If, on the other hand, we choose Λn = 〈{λi}n
1 〉, with

λiy = (M−1
1 )aδti

y =

∫ 1

0

G1(ti, t) y (t) dt, all y ∈ Y, i = 1, . . . , n,

then Qn, if at all defined, is bounded with respect to any of the norms (6.6) – (6.8).
In the next two sections, we will, for simplicity, consider only the three norms (6.6) –

(6.8) for X and will norm Y always in such a way that M1 becomes an isometry, i.e.

(6.9) ‖y‖Y = ‖M−1
1 y‖X , all y ∈ Y.

For these cases, we establish the applicability of Theorem 4.1 in the following two lemmata.

Lemma 6.1. Let X be the Banach space {x ∈ C(2) [0, 1] : x(0) = x(1) = 0} with norm
(6.8). Then M , given by (6.1), is a bounded linear map from X onto the Banach space
Y = C[0, 1]. Further, M−1 is bounded and M2 = M − M1 is totally bounded.

Proof: By (6.4), we have

(6.10) ‖x(j)‖∞ ≤ cj‖x‖X , all x ∈ X, j = 0, 1, 2,

with

cj = ‖
∫ 1

0

| (∂/∂t)(j)G1 (t, s) | ds‖∞, j = 0, 1, c2 = 1.

Hence

‖Mx‖Y ≤ ‖M1x‖∞ + ‖M2x‖∞ ≤
(

1 + c1‖p1‖∞ + c0‖p0‖∞
)

‖x‖X , all x ∈ X,

showing that M (and therefore M2) is bounded. Therefore, as M−1 exists, and X and
Y are Banach spaces, M−1 is bounded, (cf., e.g., [10, Thm.2,p.471] or else infer it from
(6.2)).

Further,

| (M2x) (s) − (M2x) (t) | ≤
1
∑

j=0

(

|pj(s) − pj(t) | | x(j) (s) | + |pj(t) | | x(j) (s) − x(j) (t) |
)

,

so that, with |x(j) (s) − x(j) (t) | ≤| s − t| ‖x(j+1)‖∞, and with (6.10),

(6.11) | (M2x) (s) − (M2x) (t) | ≤ ωM2
(| s − t |)‖x‖X ,

where

(6.12) ωM2
(h) ≡

1
∑

j=0

(

ωpj
(h) cj + ‖pj‖∞ · h · cj+1

)

, h ≥ 0.

Therefore, M2 maps the unit ball of X into a bounded set of uniformly equicontinuous
functions in C[0, 1], so that, as such sets are totally bounded (they are in fact precompact
by Arzela’s Theorem), M2 is shown to be totally bounded, Q.E.D.

With Theorem 4.1, we have the
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Corollary. If {P̄n} is a sequence of projectors of finite rank on the Banach space Y =
C[0, 1] such that P̄n −→ I, where P̄n is given by Yn and Λn, all n, then the projection
scheme for M given by {M−1

1 [Yn]} and {Λn} is boundedly convergent.

Lemma 6.2. For j = 0, 1, let X be the normed linear space {x ∈ C(2)[0, 1] : x(0) =
x(1) = 0} with norm

‖x‖X = ‖x(j)‖∞, all x ∈ X,

let Y be the normed linear space C[0, 1] with norm

‖y‖Y = ‖M−1
1 y‖X , all y ∈ Y,

and let M be the linear map from X to Y given by

(6.1′) (Mx) (t) = x(2) (t) + (p1(t) x (t))(1) + p0(t) x (t), all x ∈ X,

i.e., we add to the earlier assumptions on M that p1 ∈ C(1)[0, 1]. Then M is bounded,
M−1 is bounded and M2 = M − M1 is totally bounded.

Proof: The boundedness of M follows from the existence of a constant c so that

(6.13) ‖M2x‖Y ≤ c‖x‖X , all x ∈ X.

Case j = 0: We have, for x ∈ X and s ∈ [0, 1],

(6.14)

(M−1
1 M2x) (s) =

∫ 1

0

G1 (s, t)
(

(p1(t) x (t))(1) + p0(t) x (t)
)

dt =

=

∫ 1

0

(

− p1(t) (∂/∂t) G1 (s, t) + p0(t) G1 (s, t)
)

x(t) dt,

so that
‖M2x‖Y = ‖M−1

1 M2x‖∞ ≤ c‖x‖∞ = c‖x‖X , all x ∈ X,

with

c = ‖
∫ 1

0

| −p1 (t) (∂/∂t) G1 (s, t) + p0(t) G1 (s, t) | dt‖∞ .

Case j = 1: We have, for x ∈ X and s ∈ [0, 1],

(6.15)

(M−1
1 M2x)(1) (s) =p1(s) x (s) +

∫ s

0

p0 (t) x (t) dt −

−
∫ 1

0

p1 (t) x (t) dt−
∫ 1

0

∫ t

0

p0 (r) x (r) drdt,

so that

(6.16) ‖M2x‖Y = ‖(M−1
1 M2x)(1)‖∞ ≤ c‖x‖∞ ≤ c‖x(1)‖∞ = c‖x‖X ,
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for all x ∈ X , with c = 2(‖p0‖∞ + ‖p1‖∞), using the fact that ‖x‖∞ ≤ ‖x(1)‖∞.
The boundedness of M−1 follows from the existence of a constant d so that

(6.17) ‖M2x‖Y ≤ d‖Mx‖Y , all x ∈ X ;

for, with M−1y = x, we have

M−1y = M−1
1 M1x = M−1

1 (Mx − M2x),

so that then

‖M−1y‖X = ‖M−1
1 (Mx − M2x)‖X = ‖Mx − M2x‖Y ≤ (1 + d) ‖Mx‖Y = (1 + d) ‖y‖Y

for all y ∈ Y .
Case j = 0: We have from (6.14) that for x ∈ X and s ∈ [0, 1],

(M−1
1 M2x) (s) =

∫ 1

0

R(s, t)

∫ 1

0

G(t, r) (Mx) (r) drdt,

where G(s, t) is given in (6.2) and

R(s, t) = −p1(t) (∂/∂t) G1 (s, t) + p0(t) G1 (s, t).

After the appropriate integration by parts, we get that

‖M2x‖Y = ‖M−1
1 M2x‖∞ ≤ d‖M−1−1Mx‖∞ = d‖Mx‖Y , all x ∈ X,

with

d = ‖
∫ 1

0

|R(s, r) +

∫ 1

0

R(s, t)
(

(∂/∂r) (p1(r) G (t, r))− p0(r) G (t, r)
)

dt|dr‖∞ .

Case j = 1: We have from (6.16) that, for all x ∈ X ,

‖M2x‖Y ≤ 2(‖p0‖∞ + ‖p1‖∞) ‖x‖∞.

As

x(s) =

∫ 1

0

G(s, t) (Mx) (t) dt = −
∫ 1

0

(∂/∂t) (G(s, t)) (M−1
1 Mx)(1) (t) dt,

(6.17) follows for this case with

d = 2(‖p0‖∞ + ‖p1‖∞) ‖
∫ 1

0

| (∂/∂t) G (s, t) | dt‖∞ .

It remains to show that M2 is totally bounded.

28



Case j = 0: By (6.16), we have

‖(M−1
1 M2x)(1)‖∞ ≤ c‖x‖∞, all x ∈ X,

so that

ωy(h) ≤ ch, all h ≥ 0, all y ∈ F = {M−1
1 M2x : x ∈ X, ‖x‖∞ ≤ 1} .

The set F is therefore totally bounded in X , and so, as M1 is an isometry, M2 is totally
bounded.

Case j = 1: In this case, the total boundedness of M2 follows from the uniform
equicontinuity of the set

F = {(M−1
1 M2x)(1) : x ∈ X, ‖x(1)‖∞ ≤ 1}.

For y(s) = (M−1
1 M2x)(1) (s) ∈ F , we have y(1) (s) = (M2x) (s), hence, using ‖x‖∞ ≤

‖x(1)‖∞,

‖y(1)‖∞ ≤ ‖M2x‖∞ ≤ e‖x(1)‖∞,

with e = ‖p1‖∞ + ‖p(1)
1 ‖∞ + ‖p0‖∞, so that

ωy(h) ≤ eh, all h ≥ 0, all y ∈ F,

Q.E.D.

Corollary. Let 0 ≤ j ≤ 2, and let {Xn} be a sequence of finite dimensional subspaces of
the normed linear space X = {x ∈ C(2)[0, 1] : x(0) = x(1) = 0} with norm

‖x‖X = ‖x(j)‖∞, all x ∈ X ;

let {Λn} be a corresponding sequence of finite dimensional subspaces of the topological
dual Y ′ of the normed linear space Y = C[0, 1] with norm

‖y‖Y = ‖M−1
1 y‖X , all y ∈ Y,

where M1x = x(2), all x ∈ X . Let M be the map from X to Y given by (6.1′) with
p0 ∈ C[0, 1] and p1 ∈ C(1)[0, 1], and assume that M−1 exists. If {Xn} and {Λn} give a
boundedly convergent projection scheme for M1, then {Xn} and {Λn} give a boundedly
convergent projection scheme for M and, in that case,

‖x∗(i) − x∗(i)‖∞ ≤ c · min
z∈Xn

‖x∗(j) − z(j)‖∞, i = 0, . . . , j, some c.
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7. Collocation and a higher order method

As a first application of the results of the previous section we consider the Collocation
method using cubic splines for Xn. Specifically, let Xn = {x ∈ S3(t0,n, . . . , tn,n : x(0) =
x(1) = 0} and use the points {ti,n}n

0 as collocation points, i.e., choose Λn = 〈{δti,n
}n
0 〉.

Then M1[Xn] and Λn define a projector P̄n for all n ≥ 1 which has been discussed in
Lemma 5.4; P̄n is just interpolation by broken lines.

Theorem 7.1. In the Banach space X = {x ∈ C(2)[0, 1] : x(0) = x(1) = 0} with norm
(6.8), let

Xn = {x(t) ∈ S3(0, t1,n, . . . , tn−1,n, 1) : x(0) = x(1) = 0},
where 0 = t0,n < t1,n < · · · < tn,n = 1, set hn = max{∆ti,n : i = 0, . , n − 1}; further
let Λn = 〈{δti,n

}n
0 〉 considered as a subspace of the topological dual of the Banach space

Y = C[0, 1], n = 1, 2, . . . . Then the projection scheme for M (as defined by (6.1)) given
by {Xn} and {Λn} is boundedly convergent, provided lim hn = 0. Specifically, we have
for all large enough n,

(7.1) ‖x∗−x∗
n‖X ≤ ‖M−1‖

(

ωy∗(hn)+ωM2
(hn) ‖M−1

0 ‖ (1−ωM2
(hn) ‖M−1

0 ‖)−1‖y∗‖∞
)

,

where ωM2
is given by (6.12) and M0 = M |Xn, so that x∗

n and its first two derivatives
converge uniformly to x∗ and its first two derivatives. Further,

(7.2) ‖x∗(j) − x∗
n

(j)‖∞ = O(hn), j = 0, 1, 2, if y∗, p0, p1 ∈ Lip[0, 1],

and
‖x∗(j) − x∗

n
(j)‖∞ = O(h2

n), j = 0, 1, 2, if x∗ ∈ Lip(3)[0, 1].

Proof: Except for the convergence estimates (7.1) – (7.3), this theorem follows at
once from the Corollary to Lemma 6.1 and from Lemma 5.4, since

M1[Xn] = S1(t0,n, . . . , tn,n) .

Denote the projector given by M1[Xn] and Λn by P̄n, n ≥ 1. Then, by (6.11) and
(5.12),

‖M2 − PnM2‖ = sup{‖M2x − P̄nM2x‖Y : x ∈ X, ‖x‖X ≤ 1} ≤ ωM2
(hn) ,

‖y∗ − P̄ny∗‖Y ≤ ωy∗(hn), ‖P̄ny∗‖Y ≤ ‖y∗‖∞ ,

so that (7.1) follows from (4.9) in Corollary 1 to Theorem 4.1. The estimate (7.2) in turn is
a consequence of (7.1) with the observation that if p0, p1 ∈ Lip[0, 1] then ωM2

(h) = O(h).

Finally, if x∗ ∈ Lip(3)[0, 1], then x∗(2) ∈ Lip(1)[0, 1], so that by (5.14) there is an x0 ∈ Xn

so that
‖x∗(2) − x∗

0
(2)‖∞ = O(h2

n) .

Since the projection scheme is boundedly convergent, we have that {Qn} is uniformly
bounded (recall that x∗

n = Qnx∗) so that Lemma 1.1 implies

‖x∗ − x∗
n‖X = O(h2

n),
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from which (7.3) follows, Q.E.D.
The estimate (7.3) is of the same order as those attained under similar assumptions

on x∗ for the error in the solution of standard finite difference approximations to M (cf.,
e.g., [17, Thm 6.2]).

It is possible to give examples showing that this order of convergence is, in general,
best possible for the Collocation method. Take, e.g., M = M1, y∗(t) = t2, and use uniform
knot spacing, ti,n = ih, i = 0, . . . , n, h = 1/n. Then with e(t) = x∗(t) − x∗

n(t), we have

e(2) (t) = t(h − t) + 2h

n−1
∑

i=1

(t − ih)+ ,

therefore

e(t) = e(1) (0) t + ht3/6 − t4/12 + (h/3)

n−1
∑

i=1

(t − ih)3+ ,

so that, with e(1) = 0, we get e(1) (0) = −h2/12. Hence, with n = 2k, we get

‖e‖∞ ≥| e(1/2) |= h2/48 .

On the other hand, we know from Section 5, e.g., from Corollary 3 to Theorem 5.1,
that

(7.4) min{‖x∗ − x‖∞ : x ∈ Xn} = O(h4
n), all x∗ ∈ Lip(3)[0, 1] ,

so that the Collocation method does not provide us with the best possible order of con-
vergence in this circumstance.

In view of Lemma 1.1, the fault must lie with the projectors Qn: If X is provided
with the norm

(7.5) ‖x‖X = ‖x‖∞, all x ∈ X ,

then the sequence {Qn} must fail to be uniformly bounded. Actually, by the remarks in the
beginning of Section 6, the Qn are not even bounded in this norm. This does not contradict
the fact proved in Theorem 7.1 that Qn → I with respect to (7.5), since X with that norm
is not a Banach space. Because of the connection between finite difference methods and
collocation methods discussed in Section 3, it seems therefore rather unlikely that there
exist finite difference schemes which, under the assumption that x∗ ∈ Lip(3)[0, 1], converge
faster than O(h2

n).

To put it positively, we have from Lemma 1.1 and from (7.4) that for x∗ ∈ Lip(3)[0, 1],
‖x∗ − x∗

n‖∞ = O(h4
n), provided there exists c > 0 such that for all x ∈ X and all n,

‖x∗ − x∗
n‖∞ ≤ c‖x‖∞ .

This amounts to saying that the projection scheme given by {Xn} and {Λn} should be
boundedly convergent if X is provided with the norm (7.5). According to the Corollary to
Lemma 6.2 and Corollary 4 of Theorem 4.1, such a projection scheme can be constructed
from a sequence {Q̄n} of projectors on X which is uniformly bounded and converges
strongly to the identity with respect to the norm (7.5). Such a sequence, with Q̄n[X ] a set
of cubic splines, is provided by Theorem 5.1.
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Theorem 7.2. For n ≥ 3, let

Xn = {x ∈ S3(0, t2,n, t3,n, . . . , tn−2,n, 1) : x(0) = x(1) = 0} ,

where 0 = t0,n < t1,n < · · · < tn,n = 1; set hn = max{∆ti,n : i = 0, . . . , n − 1} and
qn = max{∆ti,n/∆tj,n : i, j = 0, . . . , n − 1}, and let Λn = 〈{λi,n}n−1

1 〉 ⊂ Y a, where

λi,ny =

∫ 1

0

y(t)gi,n(t) dt, all y ∈ Y,

(7.6)

gi,n(t) =

{

(t − ti−1,n)+/∆ti−1,n, t ≤ ti,n

(ti+1,n − t)+/∆ti,n, t ≥ ti,n,
i = 1, . . . , n − 1.

Then the projection scheme for M given by {Xn} and {Λn} defines an approximant x∗
n

for all sufficiently large n, provided lim hn = 0, and

(7.7) lim ‖x∗(j) − x∗
n

(j)‖∞ = 0, j = 0, 1, 2,

and if x∗ ∈ Lip(1+i)[0, 1], i = 1, 2, then

(7.8) ‖x∗(j) − x∗
n

(j)‖∞ = O(hi
n), j = 0, 1, 2.

Under the additional assumption that p1 ∈ C(1)[0, 1], we have
(i) if for some c < 1 and all n,

(5.23) max{∆t0,1/t2,n, ∆tn−1,n/(1 − tn−2,n)} ≤ c ,

then

(7.9) ‖x∗(j) − x∗
n

(j)‖∞ = O(hn), j = 0, 1,

and if also x∗ ∈ Lip(1+i) [0, 1], i = 1, 2, then

(7.10) ‖x∗(j) − x∗
n

(j)‖∞ = O(h1+i
n ), j = 0, 1;

(ii) if the sequence {qn} is bounded, then

(7.11) ‖x∗ − x∗
n‖∞ = O(h2

n) ,

and if also x∗ ∈ Lip(1+i) [0, 1], then

(7.12) ‖x∗ − x∗
n‖∞ = O(h2+i

n ), i = 1, 2.

Proof: Let Σn = 〈{δti,n
}n−1
1 〉 ⊂ Xa; then, by Theorem 5.1, Xn and Σn define a

projector Q̄n on X . Observe that

(M1)
a [Λn] = Σn :
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Indeed, Λn is also spanned by the set {µi,n}n−1
1 , where

µi,ny =

∫ 1

0

G1 (ti,n, t) y (t) dt, i = 1, . . . , n − 1,

and G1(s, t) is the Green’s function for the problem M1x = y∗, x(0) = x(1) = 0, given in
(6.5). With this

(Ma
1 µi,n)x = µi,n(M1x) =

∫ 1

0

G1(ti,n, t) (M1x) (t) dt =

= x(ti,n) = δti,n
x, all x ∈ X, i = 1, . . . , n − 1,

or, Ma
1 [Λn] = Σn.

Now assume lim hn = 0; then, by Corollary 1 to Theorem 5.1, the sequence {Q̄n} is
uniformly bounded and converges strongly to the identity on X with respect to the norm

(7.13) ‖x‖X = ‖x(2)‖∞, all x ∈ X.

By Corollary 4 to Theorem 4.1 and Lemma 6.1, the projection scheme for M given by
{Xn} and {Λn} is therefore boundedly convergent with respect to the norm (7.13) on X
and the norm

‖y‖Y = ‖M−1
1 y‖X = ‖y‖∞, all y ∈ Y,

on Y , so that (7.7) follows. Since, with this, the sequence {Qn} is uniformly bounded with
respect to (7.13), Lemma 5.4 provides the estimate (7.8).

Further, by Corollary 2 to Theorem 5.1, the sequence {Q̄n} is uniformly bounded and
converges strongly to the identity on X with respect to the norm

(7.14) ‖x‖X = ‖x(1)‖∞, all x ∈ X,

provided that (5.23) holds for some c < 1 and all n. Hence, by Corollary 4 to Theorem 4.1
and Lemma 6.2, the projection scheme for M given by {Xn} and {Λn} is also boundedly
convergent with respect to the norm (7.14) on X and the norm

‖y‖Y = ‖M−1
1 y‖X , all y ∈ Y,

on Y , so that {Qn} is uniformly bounded with respect to the norm (7.14), and (7.9) and
(7.10) follow from Corollary 3 of Theorem 5.1 and its proof.

Finally, by Theorem 5.1, {Q̄n} is uniformly bounded and converges strongly to the
identity on X with respect to the norm

(7.15) ‖x‖X = ‖x‖∞, all x ∈ X,

provided {qn} is bounded; this, by a repeat of the preceding argument, gives (7.11) and
(7.12), Q.E.D.
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Remark. The projector P̄n = M1Q̄nM−1
1 , given by M1[Xn] and Λn, is almost

orthogonal projection onto M1[Xn]. In fact, the projector P̄ ′
n, given by M1[Xn] and Λ′

n =
〈{λ′

1, λ2, . . . , λn−2, λ
′
n−1}〉, where

λ′
1y =

∫ 1

0

y(t) (t2,n − t)+ dt, λ′
n−1y =

∫ 1

0

y(t) (t− tn−2,n)+ dt,

(we suppressed the second subscript in λi,n), is orthogonal projection onto M1[Xn]. The
projector Q̄′

n = M−1
1 P̄ ′

nM1 is discussed in Theorem 5.2 and, much as in the proof of the
preceding theorem, one shows that the sequences {Xn} and {Λ′

n} give a projection scheme
for M which defines the approximant x∗

n for all sufficiently large n; also, for j = 0, 1,

‖x∗(j) − x∗
n

(j)‖∞ = O(hn) ,

‖x∗(j) − x∗
n

(j)‖∞ = O(h3
n) , if x∗ ∈ Lip(3) [0, 1] ,

using Theorem 5.2 and Lemma 6.2. But Q̄′
n is not bounded with respect to the norm

‖x‖X = ‖x‖∞, so that (7.11) and (7.12) cannot be proved for this projection scheme.
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8. Galerkin’s Method

Galerkin’s method consists, as remarked earlier, in choosing, given Xn = 〈{xi}n
1 〉, the

linear functionals

(8.1) λiy =

∫ 1

0

y(t) xi (t) dt, i = 1, . . . , n

as a basis for Λn.

In case Xn consists of cubic splines with n−1 equidistant knots, Theorem 5.3 provides
the facts sufficient to derive for Galerkin’s method the same order of convergence estimates
that are proved in Theorem 7.2 for the projection scheme discussed there. In particular,
it is possible to show that, in this case, Galerkin’s method gives approximants x∗

n to the
solution x∗ of Mx = y∗ satisfying

‖x∗ − x∗
n‖∞ = O(n−4), if x∗ ∈ Lip(3)[0, 1].

Theorem 8.1. For n = 1, 2, . . . , let

Xn = {x ∈ S3(0, 1/n, . . . , (n − 1)/n, 1) : x(0) = x(1) = 0}.

Then, for all large enough n, the Galerkin approximant x∗
n in Xn to the solution x∗ of

Mx = y∗ exists and

(8.2) lim ‖x∗(j) − x∗
n

(j)‖∞ = 0, j = 0, 1, 2.

If M satisfies the additional assumption that p1 ∈ C(1)[0, 1], then

(8.3) ‖x∗ − x∗
n‖∞ = O(n−2) ,

while, if also x∗ ∈ Lip(3)[0, 1], then

(8.4) ‖x∗ − x∗
n‖∞ = O(n−4) .

Proof: By the Corollary to Theorem 5.3, M1[Xn] and Λn define a projector P̄n

on the Banach space Y = C[0, 1] and P̄n → I. Galerkin’s method is therefore boundedly
convergent with respect to the norm ‖x‖X = ‖x(2)‖∞ on X and the norm ‖y‖Y = ‖y‖∞ on
Y . This implies (8.2). But, by Theorem 5.3, the sequence {Q̄n}, with Q̄n = M−1

1 P̄nM1,
all n, is uniformly bounded and converges strongly to the identity on X with respect to
the norm ‖x‖X = ‖x‖∞ on X , which, by an argument as given in the proof of Theorem
7.2, implies (8.3) and (8.4), Q.E.D.
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9. Least-squares and the Golomb-Weinberger method

We retain the definitions (6.1), (6.3) of the maps M and M1, but extend X and Y
slightly: Let Y = L2[0, 1] with the usual norm, set

X = {x ∈ C(1)[0, 1] : x(0) = x(1) = 0, x(1)abs.cont. , x(2) ∈ L2[0, 1]}.

Then M1 maps X in a 1-1 manner onto Y , and, by the assumptions on M , so does M .
Define an inner product on X by

(x, z)X = (M1x, M1z)Y =

∫ 1

0

x(2) (t)z(2) (t) dt, all x, z ∈ X,

so that both X and Y are Hilbert spaces and M1 is a unitary operator.
If {Xn} is any sequence of finite dimensional subspaces of X , then the Least-squares

method using this sequence is the projection scheme given by {Xn} and {M [Xn]}, where
M [Xn] is considered here as a subspace of Y ′. In other words, the corresponding sequence
{Pn} of projectors on Y consists of orthogonal projections. Hence, the Least-squares
method is convergent (with respect to the norms on X and Y as chosen) if and only if
lim Xn = X .

Instead of giving rather obvious theorems concerning the order of approximation
achieved by the Least-squares method using cubic splines, I prefer to sketch a (facetious)
example in order to demonstrate that the Least-squares method is maligned in [5, Kap.
III, §6.4] because of insufficient evidence. It is intimated there that Galerkin’s method (or
Ritz’ method) is to be preferred to the Least-squares method since the latter tends to give
poorer approximations to x∗ than the former.

So, let G(s, t) be the Green’s function for the problem at hand, so that

x(s) =

∫ 1

0

G(s, t) (Mx) (t) dt, s ∈ [0, 1], all x ∈ X .

Pick a partition of [0, 1], 0 < t1 < · · · < tn < 1, set

xi(s) ≡
∫ 1

0

G(s, t) G (ti, t) dt, i = 1, . . . , n,

and take Xn = 〈{xi}n
1 〉. Then the Least-squares method using Xn provides an approximant

x∗
n to x∗ which agrees with x∗ at the points ti, i = 1, . . . , n, — as good a result as one can

hope to get by any numerical method.
To prove this assertion, let Pn be the orthogonal projection onto M [Xn]. Then, for

i = 1, . . . , n,

x∗(ti) − x∗
n(ti) =

∫ 1

0

G(ti, t)
(

(I − Pn)y∗
)

(t) dt = 0 ,

since G(ti, t) = (Mxi) (t) ∈ M [Xn], and (I−Pn)y∗ is orthogonal to all elements of M [Xn].
The Golomb-Weinberger method is dual to the Least-squares method in the sense that

it is the Least-squares method applied to the dual problem (cf. Section 2). Whereas in the
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Least-squares method one starts with a subspace Xn of X and chooses Λn ⊂ Y ′ in such a
way that Pn, given by M [Xn] and Λn, is orthogonal projection, in the Golomb-Weinberger
method one starts with a subspace Λn ⊂ Y ′ and chooses Xn ⊂ X in such a way that Qn,
given by Xn and Ma[Λn], becomes orthogonal projection (cf.,[19, Example 6.1]). It is clear
that, given a sequence {Λn} of finite dimensional subspaces of Y ′, the Golomb-Weinberger
approximant x∗

n is defined for all n, and that the Golomb-Weinberger method is convergent
(with respect to the norms on X and Y as chosen) if and only if = lim Λn = Y ′.

Although in general it may be difficult to determine Xn for given Λn, this is rather
simple in the present case: Let Λn = 〈{λi}n

1 〉, and set

K(s, t) =

∫ 1

0

G1(s, u)G1(t, u) du, s, t ∈ [0, 1],

where G1(s, t) is given by (6.5). Then, {xi}n
1 , given by

xi(s) ≡ λi(t)M(t)K(s, t), i = 1, . . . , n,

is a basis for Xn.
To prove this, it is sufficient to show that for x ∈ X , for all z ∈ Xn, (x, z)X = 0,

if and only if for all λ ∈ Λn, (Maλ)x = 0. But this follows from the fact that xi is the
functional representer for Maλi on the Hilbert space X , i.e.,

(x, xi)X = (Maλi)x, i = 1, . . . , n, all x ∈ X,

a proof of which may be found in [4].
The Golomb-Weinberger method derives its appeal from the fact that the following

pointwise bound

(9.1) |x∗(s) − x∗
n(s) | ≤ √

(‖x∗‖2 − ‖x∗
n‖2) · min{‖gs − z‖ : z ∈ Xn}

holds for s ∈ [0, 1], where gs(t) = K(s, t). Under the assumption that ‖x∗‖ (or a bound for
it) is known, the right side of (9.1) can be computed from the numbers λiy

∗, i = 1, . . . , n,
and the bound is sharp with respect to the information λiy

∗, i = 1, . . . , n and ‖x∗‖.
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10. Computational considerations

It is stated in Section 2 that, for the numerical determination of the approximant
x∗

n, one picks convenient bases, {xi}n
0 for Xn and {λi}n

0 for Λn, and determines the
coefficients a∗

0, . . . , a∗
n, of x∗

n with respect to the basis {xi}n
0 as the solution to the system

of n + 1 equations,

(10.1)

n
∑

j=0

λi(Mxj)a
∗
j = λiy

∗, i = 0, . . . , n,

the so-called generalized Galerkin equations. In this section, we derive a basis for Xn for
the case that Xn consists of cubic splines, as was assumed in the previous sections.

According to Lemma 5.2, the set {xi}n+1
−1 , given by

xi(t) ≡ g4(ti−2, . . . , ti+2; t), i = −1, . . . , n + 1,

g4(s; t) ≡ (s − t)3+/6,

is a basis for S3(0, t1, . . . , tn−1, 1), where we use the auxiliary points ti = i/n, i =
−3, . . . , 0, n . . . , n + 3. Written out explicitly, we have, for i = −1, . . . , n + 1,

(10.2) xi(t) =



































(t − ti−2)
3
+/

i+2
∏

j=i−1

(tj − ti−2) + (t − ti−1)
3
+/

i+2
∏

j=i−2
j 6=i−1

(tj − ti−1), t ≤ ti,

(ti+2 − t)3+/
i+1
∏

j=i−2

(ti+2 − tj) + (ti+1 − t)3+/
i+2
∏

j=i−2
j 6=i+1

(ti+1 − tj), t ≥ ti.

From this, we get a basis {x̄i}n
0 for

Xn = {x ∈ S3(0, t1, . . . , tn−1, 1) : x(0) = x(1) = 0}

much as in the proof of Theorem 5.3. Set

(10.3)

x̄0 = x0 − x0(0)x−1/x−1(0), x̄1 = x1 − x1(0)x−1/x−1(0),

x̄n = xn − xn(0)xn+1/xn+1(0),

x̄n−1 = xn−1 − xn−1(0)xn+1/xn+1(0),

x̄i = xi, i = 2, . . . , n − 2.

In the case of equidistant knots, formulae (10.2) and (10.3) simplify considerably (cf. the
proof of Theorem 5.3).

This basis for Xn is doubly convenient. For one, the evaluation of x =
∑

aix̄i at any
point involves at most four of the ai’s, since, by the Corollary to Lemma 5.1 (or else by
(10.2)), xi(t) = 0, whenever t /∈ (ti−2, ti+2). But, because of this, the matrix of (10.1) is a
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band matrix, whenever the linear functionals λi are “local” in the sense that the number
λiy depends only on the values of y in some “small” interval. On checks, e.g., that for the
Collocation method in Section 7, the matrix of (10.1) is tri-diagonal, for the higher order
method of Theorem 7.2, the matrix is five-diagonal, while for Galerkin’s method and the
Least-squares method the matrix is seven-diagonal. The work necessary to solve (10.1) is
therefore, in these cases, of the order of n rather than n2.

In this general setup, it is impossible to state whether or not direct inversion of (10.1)
is numerically stable or whether an iterative method is to be preferred. I am certain that
for any particular procedure for solving (10.1) there is some differential operator M for
which this procedure gives poor results. In any case, I have yet not studied this question.
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