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INTRODUCTION 

In [4], Birkhoff and de Boor improved on earlier results by Ahlberg 
and Nilson [l] concerning the convergence of cubic spline interpolants 
to a smooth interpoland. Shortly thereafter, Sharma and Meir [20] 
gave much more general results using much simpler means of proof 
and thus made [4] seemingly obsolete. Yet, the basic idea of [4] has been 
of help recently in illuminating certain problems, as recounted below, 
and seems at present to be the one most likely to provide the right 
insight into general odd-degree spline interpolation at knots. This note 
is therefore intended to give [4] a second chance. 

1. NULLSPLINES AND FUNDAMENTAL SPLINES 

The basic idea of [4] was Birkhoff’s observation that the first and 
second derivative of a nonzero cubic spline C vanishing at its (simple) 
knots . 

*.- < .%&..I < xi < X&l < e.0 

must increase exponentially either for increasing or for decreasing 
argument. Explicitly, for Y = 1, 2, either 

or 

-c(~yxj+l)/c(~yx~) > 2, j = i + 1, i + 2,... 

-c”‘(xjJ/c’yxj) > 2, j = i - 1, i - 2,... 
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This follows at once from the fact that, for a cubic polynomial p vanishing 
at a and b (with a # b), 

with 

P’(b) ( ) p’(a) 
P”(b)/2 = --A@ - 4 (p”(a),2 ) (la) 

Hence, if (b - a) p’(a) p”(a) > 0, then also (b - a)p’(b) p”(b) > 0 and 
j$h(“,“, 1 p@‘(a)j.with equality only if pc3-r)(u) = 0, r = 1, 2. Now, 

i , thus sltuatron must exist either for b = xifl and p = 
C IG++J , or else for b = xi-l and p = C /(“ci-l,zi) . 

This observation implies the exponential decay of the fundamental 
functions of cubic spline interpolation at knots. 

THEOREM 1 [4]. With d: = (xJgN+l so that 0 = x,, < ... < x,,, = 1, 
let Ci = Ci,d be the cubic spline on [0, I] with simple interior knots 
x1 ,..., x, that sutisjes 

C&j) = ai,, > j = l,...,N (2) 

together with the homogeneous end conditions 

Ci(0) = C,‘(O) = C,(l) = C,‘(l) = 0, (3a) 

i = l,..., N. Then 

with K some absolute constant and 

md := max Ax,lAx, 
Iv-sl=l 

the local mesh ratio. Also 

(4) 

with K’ a constant which can be bounded in terms of the global mesh ratio 

iMA := yx Ax,/Ax, . (5) 
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Without going into details (see [4]), note that the boundary conditions 
(3a) insure that 

Ci’@l) c;w > 0, i = 2,..., N 
(6) 

Ci’(XN> W,) < 0, i = l,..., N - 1. 

Hence C,‘(+) grows exponentially from the boundary toward xi , the 
only knot at which C, does not vanish but at which these two nullsplines 
Ci 12<,+ and C, Ir,zi must join smoothly. Since C,(q) = 1, this implies 
the bounds 

hence 

and a corresponding bound for 1 C,(x)1 on (xi-+r , xi+). 

Remark. The term cardinal spline was introduced in [4] to denote 
these functions Ci , thus stressing their kinship to Whittaker’s Cardinal 
Function (sin nx)/nx to which these functions converge as the degree 
is increased to infinity, provided A is chosen appropriately uniform. 
Since the publication of [4], Schoenberg chose to call cardinal spline 
any spline function defined on the real line with knots at the (half) 
integers. For this reason, I refrain here from using the term “cardinal”, 
and use the term “fundamental” instead (but retain the letter C). 

Note that Theorem 1 is easily extended to end conditions other than 
(3a). Thus, (6) is implied by 

C,(O) = c;(o) = C,(l) = c;(l) = 0 (3b) 

important when second derivatives are prescribed or for natural cubic 
spline interpolation, or by 

C,(O) = C&lx,/2) = Ci( 1 - Llx,/2) = C,(l) = 0 (34 

important for cubic spline interpolation without derivatives. The case 
of periodic boundary conditions 

q(o) = C,(l) = C,‘(l) - q’(o) = c;(l) - c;(o) = 0 (34 

is dealt with in Section 3. 
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2. THE QUESTION OF THE LARGEST ALLOWABLE LOCAL MESH RATIO 

Take again d = (x$‘+~ with 

and define 

the cubic spline that agrees with f at its knots x1 ,..., x, and satisfies 
appropriate end conditions, e.g., one of the four conditions (3a)-(3d) 
(with PJ replacing CJ. P, is a bounded linear projector on CIO, l] 
(and on even larger spaces). In considering in what sense (if at all) 
Pdf converges to a given f E C[O, l] as 

goes to zero, it becomes important to bound 

II PA II := y$ II PLlf llm/llf I/m - 

It is fairly easy to see that, even for fixed N, 11 PA /] may become 
arbitrarily large [7] unless d is restricted to be more or less uniform. 
In [17] it is proven that 

sup{ll PA I[ / N arbitrary; n/r, = mg flxi/Axj < M} < 03. 

Further, it was shown that 

sup(II P, 1) j N arb., md = max dx&lxi < m> < co 
Ii-jl=l 

provided 

m< v? [I71 
t2 PI 
< 1 + 2/2 I91 
< 2.439+ 1161. 

(7) 

All these results assumed the periodic end conditions (3d). Similar 
results for end conditions (3a)-(3b) can be found in [15]. 
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Since 

all of these results except those of [9] and of [15, 161 could have been 
obtained directly from the exponential decay of the Ci’s as proven in [4]. 

Marsden [16] 1 a so shows that [for conditions (3a, b, d)], 

sup{// PO I/ 1 N arb., mA < m} = cc 

if m > (3 + d/5)/2 = 2.618... . Since // Pd 11 is clearly a continuous 
function of x1 ,..., X, , the supremum must also be infinite when m = 
(3 + d/5)/2. As it turns out, the existing gap between 2.439+ and 
2.618+ can be filled by a careful consideration of cubic nullsplines in 
the manner of [4], thus terminating the iteration (7). 

THEOREM 2. For every m < m * := (3 + d/5)/2, there exists (II = 
ol, E [0, 1) and a constant K = K, so that for every A = (x$‘+~ with 

0 = xg < *** < xN+l = 1 and mA < m  

the fundamental cubic splines Ci = CiSd satisfy 

SUP{/1 PA II I N a& mA < m> < co if m < m* = (3 + 142. 

Proof. If the cubic polynomial p vanishes at 0 and at h > 0, and 
if p’p” > 0 at 0, then 

and 

Y  := &“(0)/(2p’(O)) 3 0 

gy& I P(4l = h I P’@)l F(r) 

with 

F(Y) := (3r + 2 3 +,";; y2 [y + (3 + 39. + y2)'/"])/(27(1 + Y)), (10) 
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as one verifies. One checks that F(r) strictly increases with I. Further, 
bY (l), 

and 

p’(h) = W(O) + W(O)/2 = p’(O)(2 + r> (11) 

hence 

&f(h)/2 = 3p’(O) + 2hp”(O)/2 = p’(O)(3 + 2r), 

W(WP’(4) = (3 + 2r)l(2 + T), 

which strictly increases from 3/2 to 2 as r goes from 0 to 00. 
If now C is a cubic spline which vanishes at its simple knots 

and if 

7-i :== AXi c”(Xi)/(2c’(XJ) 

is non-negative, then it follows that 

ri+1 = &+1 
C"@i,l> 

2C’(x,+1) = 
(3 + 2rf)l(2 + ri) 

wl 

is positive, with 

mi+l := Axi/Axi, . 

Hence, for arbitrary r, E [0, co], ri+l > 3/(2na,), and, in general, with 
p0 = 0, we find that forj = 1, 2,... 

ri+j 2 pj := 
(3 + 2P,-I)/(2 + Pi-l) , 

mA 

The sequence (p$ is strictly increasing and converges to 

p = dmA) := [l - mA + (mA2 + mA + l)“2]/mA , 

a strictly decreasing function of ntA . 
Further, from (lo), (ll), and (12), 

= 4ri , mi+J 
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with 

a(r,m) := mF(r)l{(2 + qT(3 + 2r)l[(2 + rhl>I 

positive on r, m > 0 and satisfying 

aajar < 0, aqam > 0 

there. Since 

the equation 

p(m) = a3 + %4f41/[2 + /4~m~~ 

c++>, ml = 1 

(13) 

(14) 

is equivalent to m/[2 + p(m)] = 1, or p(m) = m - 2. From this and (14), 

m3-22m2-2mfl=O 

which has the solutions -1, m*, and l/m*, with 

m* = (3 + d/5)/2 

i.e., the square of the golden ratio, as already remarked upon by Marsden 
U61. 

If now mA < m < m*, then there exists E > 0 and j, = j,(m) so that, 
for allj >ja, 

yi+5 > p(m) - E 2 p(m*> + E. 

Hence, for all j > j,, , 

%+i+1 = 4yi+5 , mi+5+d < 4@*) + 5 m> 

< a(p(m*), m*) = 1, 

using (13) to establish the two inequalities. 
The exponential decay of the ci,A now follows as in the proof 

in [4] for Theorem 1 above. Specifically, one obtains (9) with h = 
a(p(m*) + E, m) and K, adjusted to cover the possible (but bounded) 
increase in 1 C,(x)] in the first and last j0 = j,,(m) intervals. 

There are certainly sequences (d) of meshes with mA > 2.62..., 
all d, but for which (11 PA 11) is nevertheless bounded [9]. A more eIaborate 
argument along the above lines but taking into consideration the relation- 
ship between three or more pieces of a nullspline would reveal such 
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sequences and many others. A limit of sorts to further weakening of the 
assumptions on (d) is set by the observation in [7] that SUPAT?ZA has to 
be finite for sup, 11 PA 11 to be finite. 

3. THE QUESTION OF LOCAL CONVERGENCE 

I continue to denote by PA the Iinear projector given by the rule 

pAf = f f(%) &.A 
i=l 

with C{, A the fundamental splines associated with the sequence A = 
(%)oN+l, and satisfying appropriate end conditions, e.g., one of (3a)-(3d). 
It is convenient to denote by P,f the unique cubic polynomial for which 
f - P,f satisfies these same end conditions. 

QA := PO + PA(l - PcJ 

is then the linear projector defined on sufficiently smooth f, with range 
the cubic splines on [0, l] with simple knots at x1 ,..., x, . 

While it is well known (e.g., as a consequence of [20]) that, for 
f EL’,4’[0, l] := {f E C3)[0, l] 1 f t3) abs. continuous, f t4) EL,[O, I]), 

i/f - QAf b, < const 1 d I4 IIf’“’ /Im , (15) 

two questions of local convergence seem to continue to attract attention. 

(i) If f is smooth enough so that Qf is defined but otherwise 
only f ELZ)[~, p] for some subinterval [a, /3] of (0, l), is it still true that 

i(f - $?Af )(t)l < ConSt 1 d IQ, for t E [01, /3] 

with const depending on f and possibly on t [2, lo] ? 

(ii) Although PAf may be b ounded away from f at 0 and 1 in- 
dependently of A, is it nevertheless true that 

I(f - PAf)(t)l < const I d i4, for t E (0, 1) 

if f ELg)[O, 11, with const depending on f and possibly on t [3, ll-14]? 

Questions of this nature can all be answered in the affirmative using 
such results as Theorems 1 and 2, provided attention is restricted to 
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partitions d for which the corresponding nullsplines, and therefore the 
c i,A 2 decay exponentially. 

Take the second question first. Since QA can also be written as 

QA = PA + (1 - pA) PO , 

it is sufficient to show that, for any fixed cubic polynomial p (e.g., for 
P = W), 

xEyys, I(1 - PA) P(x>l < cow I d I4 

with const depending on E > 0 and on p. For this, observe that 

SA := (1 - PA)p 

is a cubic nullspline, i.e., a cubic spline which vanishes at its interior 
knots x1 ,..., X, , and consider sA at xi for some i E (1, N). Take first 
the case that SA’sI is non-negative at xi . Then 

for some 01 E [0, 1) with const bounded either in terms of M, or else 
??.?A (provided 7124 -=C m*). Also, 

But / sAl( can be bounded in terms of p and l/d+, since s(xN) = 0 
and sg’(%?N) si(+) > 0. To be specific, the end conditions (3a) imply that 

hence 

sA(l) = p(l), $A’( 1) = p’(l), 

I Sdl(XN)I G (3 I P(lWXN + I P’UN/4* 

For the end conditions (3b), ~g(l) = p(l), s:(l) = p”(l), hence 

I s,‘@,)I < I ~(l)l/kv + &.I I ~“(1)1/6. 

For the end conditions (3c), sA( 1) = p(l), sA( 1 - dx,/2) = p( 1 - Ax,/~), 
so 
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Finally, for the periodic end conditions (3d), I have to assume, in 
addition, that p is l-periodic. Then p is a constant and sd = (1 - P&J 
is simply the periodic cubic spline satisfying 

S&i) = P(O) %i , all j, 

with xj = ~,+i+~ , all j; i.e., s,, is the multiple of a fundamental spline. 
Hence, if s,‘si is nonpositive at x1 = xN+a , [4] supplies the bound for 
1 sg’(xN)] in terms of j p(O)1 and I/&X, as it does for the nonperiodic 
fundamental spline. Otherwise, sd’sJ is positive at x1 = xN+a . But then 

, I . . . 
sA s, is positive at x2 ,..., x, and 

I SA’(%)I = I SA’(X-1)l > 2-l I ~A’h)l~ 

Further, on subtracting 

from sg , I obtain a cubic spline s” which vanishes at x-i, x0 , xi while 
f’f” = sA’sg > 0 at xel . Hence 

4 I SLlyX-1)l < I Wl)l = I SAY%) + 3P(Wl - ~-l)2/w%(~%)21 

or 

I Sd’(?v)I = I SA’(G)l < 3 I P(O)1 [(I + %j2/(4 - 2'-Nw%v > 

the required bound. 
It follows that if sA = (1 - Pd)p is determined by one of the four side 

conditions (3a)-(3d), and if sg’si > 0 at xi , then 

for some 01 E [0, 1) and some const depending on mA and p. Of course, 
if not sd’si > 0 at xi , then s,(‘sI must increase exponentially toward 
the left and the analogous argument now produces 

THEOREM 3. For given A = (xl):+’ with 0 = x,, < .** < ++I = 1, 
let PAf = zy=“=, f (x&‘i,d with Ci,d the fundamental cubic splines on A 
satisfying one of the end conditions (3a)-(3d). Then, for every cubic poly- 
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nomial p [l-periodic in case of end conditions (3d)], (1 - P&J converges to 
zero exponentially uniformly on every closed subinterval of (0, 1) as 1 A 1 -+ 0 
provided M, stays bounded or, at least, md stays below (3 + 1/5)/2. 

The first question is essentially settled by the following lemma, for 
which I am unable to supply a reference, although it is part of the 
technical equipment of many an approximator. 

LEMMA. For given A = (xi)c+l, let Rd be de$ned by the rule 

Rdf := ; f(xf) ci 
i=l 

and assume that (i) Rd reproduces polynomials of degree < k, i.e., Rdp = p 
for all polynomials of degree < k, and (ii) the ci’s decay exponentially, i.e., 
for some const, and some rzL. E [0, l), < 

xc(,~~j+jj I ci(x)l d conSt,(G, d ki. 

If f is bounded on [0, l] and k times continuously difSerentiable in a nezgh- 
borhood of 4 E (0, l), then there exists a number constf such that 

1 f(x) - jz f(j)(i)(x - Z)j/j! j < const, 1 x - 4 jk, all x E [O, 11, 

hence then 

If(i) - (R,f)(k)j < (con&, const, 2 1 r Ik LX!‘-‘) 1 d 1’. 
r=-cc 

Proof. Abbreviate Cj<,f”‘(a)(X - S)jh! to P. Then as R&p = P 
and p(a) = f(a), 

f (4 - (Rdf )@) = -(Rdf - P))@). 

Hence, with xi < 2 < xi+i , 

I(f - Rdf )@)I = ) F (f - I) 432”) j 

< cons& constf C (.G - x$ CX~? + C (xi - 2)” &-i-l 
i i<j i>i 1 

< cons& const, C 1 y 1’ orbr’-r 1 Ll Ik. 
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Remark. The lemma can be improved in various ways. 

(i) Iff has a bounded kth derivative in the interval [S - E, 4 + l ] 
for some positive E, then it is possible to replace the global mesh length 
1 A / by the local mesh length 

and still get 

1 f(i) - (Rdf)(k)l < const h” + const LX:‘~, 

the last term being, of course, o(F) for all n. 

(ii) The q’s need only decay polynomially of sufficiently high 
degree, i.e., it is sufficient to have 

for some positive E. 

(iii) The lemma applies verbatim to linear maps of the form 

Rdf := i (Aif) ci 
i=l 

provided supi 11 hi /I is bounded, say no bigger than 1, and the Ai’s are 
local linear functionals in the sense that, for some fixed r and all i, Xi has 
its support in (xi+, xi+?). 

It follows that most of the local convergence results for cubic spline 
interpolation now in the literature could have been deduced directly 
from [4]. Here is a sample result. 

THEOREM 4. For d = (xJ~+~ with 0 = x0 < .a- < x,,, , let 

PAf = 5 f(Xi) %I 
i=l 

denote the cubic spline interpolant, as at the beginning of this section, with 
Ci = CiBd satisfying one of the three end conditions (3a)-(3c), or the end 
condition (3d) iff is periodic. If f is bounded on [0, l] and, for some integer 
k E [l, 41, f uc-1) exists and is continuous at 2 E (0, l), then 

If@> - (Pdf)@)l < cona I d V--l 4 d I) 
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with w the modulus of continuity off - (k l) at f, and const depending on the 
bound on f, and on MA and/or mA (provided mA < 2.618...). 

4. CUBIC SPLINE INTERPOLATION AT INFINITELY MANY KNOTS 

Recently, Schoenberg raised the following question: 
Given a strictly increasing sequence A = (x& and a corresponding 

bounded biinfinite sequence ( yi)c”, , does there exist a bounded cubic 
spline s with knot sequence A for which 

If so, how many? 

s(xi) = Yi > all i? (16) 

The earlier considerations of nullsplines allow the following partial 
answers: 

(i) If lim,+*m xi = &co, then there exists at most one solution 
to the interpolation problem. For, if both s and s” are solutions, then 
their difference d := s - E is a bounded nullspline. If now d # 0, then 
we may assume without loss that d’ and d” are both positive at x0, 
which then implies that (-)i d’(q) > 2id’(x,), i = 1, 2,... . Since, for a 
cubic polynomial p vanishing at 0 and h, 

it follows that 

P(W) = W’(O) - P’(W8~ 

I d((xi + xi+J/2)l = (-)i d((Xi + X,+1)/2) > 3AXi2id’(XO)/S, i = 1, 2,... 

hence, the boundedness of d implies that the sequence (2iO~Jg is 
bounded. But then 

~+i xi = x0 + f Axi d x0 + M f 2-( < a, 
i=O i=O 

a contradiction. 

(ii) Let lim. z+fm~i = foe. If the interpolation problem has a 
solution s, (necessarily unique) for every bounded sequence y = (yJ, 
then 

SUP II SY L/II Y l/m < 00. 
J 
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For, the linear space S4,d of all bounded cubic splines with knot sequence 
d is known to be a Banach space with respect to the sup-norm [5], as is 
the space Z&!) of bounded biinfinite sequences. We just proved that 

R,: S,,, + ZrJZ): s F+ (s(q)) 

is one-one. If the interpolation problem has a solution for every 
y E Z&Z), then R, is also onto. But then, its linear inverse, y H sr, , 
must be bounded, by the Open Mapping Theorem. 

(iii) Let limi-tfra xi = f CO. If Md := SUP~,~ Ax,/Axj < CO, or if 
mA := SUP,~+=~ AX,/AXj < (3 + 2/5)/2, then there exists exactly one 
bounded cubic spline s in Sd,A satisfying (16) for given bounded (ri). 
This spline can be written as 

with the sum converging uniformly on compact sets, where C,,, are 
the unique bounded cubic fundamental splines on A, i.e., CisA E S,,, 
and C&xj) = S,,j , all i,i. 

For this, it is certainly sufficient to ascertain that, under the given 
conditions, there exists a bounded cubic spline C,, with knot sequence A 
so that C,(X,) = &, all i, and that this C,, decays exponentially, i.e., 

sup 1 C,(x)1 < Kd, j = 1, 2,... 
~ebL~,~,) 

for some 01 E [0, 1) and some K, both depending only on Md or %?A. 
Let Bi denote a B-spline of order two with knots xi-r , xi , xi+r , 

Bi(X) := (x - x&.JAx,-1 , xi-1 d x < xi 

= (Xi+1 - X)/A% > xi < x < xi+1 

.- .- 0, x + h-l 8 Xi+d. 

Every linear spline with knot sequence A can be written uniquely as 
C di , with oli the value of the spline at xi , all i, the sum being taken 
pointwise. According to [6], there exists a positive constant Da indepen- 
dent of A so that 

0;’ II(wi4lz < 1 c cd-4 I2 < ll(wdlls (17) 
2 

with wi := ((Xi+l - ~+i)/2)~/~, all i. This implies that (w;lBJ is a 
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Schauder basis for the closed linear subspace of L,(R) spanned by the 
Bi’s. In particular, for every choice of ~.i , (~a ,a1 , the function K,B-, + 
q,B, + or,B, has a best La-approximation in the span of (Bi)iZ--l,O,l. 
The error in this best approximation can be written 

for an appropriate (0~~) with 

Il(w412 d D2 II e II2 < 4 II 43-l + cd% + G4 112 . (18) 

Let now C be the cubic spline with knot sequence A that vanishes 
at xM1 and x1 and whose second derivative equals e. Then C” = e is 
orthogonal to Bi for all i # - 1, 0, 1, therefore 

dC(x,)dx, - dC(x,~l)dx,~l = / B&) C”(x) d42 = 0, all i 5 -l,O, 1. 
(1% 

Choose 01-i , 01~ , a1 so that C(x,) = 1, C(x.+J = C(xJ = 0 (as can be 
done in exactly one way). Since also C(X-,) = C(X,) = 0, (19) implies 
that then C(X,) = 0 for all i # 0. C is therefore the desired fundamental 
cubic spline C,, . In particular, C Iz++ is then a cubic nullspline. If now 
CC” were non-negative at some xi > xi , then it would follow that, 
for some positive i and all j > i, 

/ cij 1 = 1 C”(X& > 2j-i 1 Cn(xJ > 0. 

On the other hand, by (lg), Cj (xj+l - xjP1) / 01~ 12/2 = Il(eojolj)ll~ < CO, 
hence 

0 < (2j-i j C”(x,))” (X&l - Xjq)/2 < 1 o”j (2 (xj+l - WY-J2 -0 

which would imply that limj,, xi < co, a contradiction. Consequently, 
CC” is negative at all xi > x0 , and therefore, as in the arguments for 
Theorems 1 and 2, max,>,, 1 C(x)] < Kaj for some 01 E [O, 1). The 
exponential decay for x --+ -00 is proved analogously. 

5. HIGHER ORDER NULLSPLINES 

The material presented in this paper indicates that higher order spline 
interpolation could be analyzed once the corresponding nullsplines 
are understood. 

607/20/1-z 
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One establishes easily that a polynomial p of degree < K which 
vanishes at 0 and at h satisfies 

fP’(h)/i! = --z [(” ; ‘) - (i,] h’-“p’yo)/j!. 
Hence, if C is a spline of degree < k that vanishes at its simple knots 

then 

with 

co, = --A,(Aq ci 

and 

cj := (cyx,), c”(Xj)/2,..., C(yXjy(12 - 2)!), 

A,(h) : = diag( 1, h-l ,..., h-“+3) Alc( 1) diag( 1, h ,..., hk-3), 

From Schoenberg’s work (see, e.g., [19]) and earlier work going back 
to Collatz and Quade [18] and before, -Ak( 1) is known to be diagonal- 
izable with its K - 2 eigenvalues the roots of the appropriate Euler- 
Frobenius polynomial. In particular, these roots are simple and negative, 

x, < x, < .*- < A,-, < 0 

and paired so that hihk--l--i = 1, all i. Further, &i(h) = A,(--h), 
and Ak( 1) is totally positive. 

In fact, there seems to be enough structure here to allow the conclusion 
that, for such a nullspline C and for even K, Cj increases exponentially 
with a factor of l/a > -min,(& + X,-,-J/2 either for increasing j or 
else for decreasing j. But, I have been unable to prove this so far. 
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