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Abstract. A formula for the error in Chung-Yao interpolation an-
nounced earlier is proved (by induction). In the process, a bivariate di-
vided difference identity of independent interest is proved. Also, an in-
ductive proof of an error formula for polynomial interpolation by tensor-
products is given. The main tool is a (convenient notation for a) multi-
variate divided difference.

In [2], a particular multivariate divided difference is introduced and, as
an illustration of its usefulness, error formulæ for three special cases of mul-
tivariate polynomial interpolation are stated, but not proved. To be sure, an
inductive procedure is indicated which, so it is claimed there, will produce
each of these formulæ, but (apparently crucial) detail is missing, for both the
error in tensor-product interpolation and in Chung-Yao interpolation. It is
the purpose of this note to provide complete, inductive proofs, as outlined in
[2], of these formulæ. In the process of proving the formula for Chung-Yao in-
terpolation, an essentially bivariate divided difference identity is proved which
may well have a nice multivariate generalization. Short ‘direct’ proofs (with
the induction being hidden in well-known results about univariate divided
differences) appear in [1].

This note has the following simple structure. After a quick recall, in Sec-
tion 1, of the divided difference (notation) introduced in [2], and, in Section 2,
of well-known facts about hyperplanes in IRd in general position, Section 3
brings the inductive proof of the error formula for Chung-Yao interpolation,
proving two useful divided difference identities in the process. This is followed
by an inductive proof of the error formula for polynomial tensor-product inter-
polation, in Section 4. The last section points out similarities between these
two error formulæ and speculates on the form of a pointwise error formula
for polynomial interpolation at an arbitrary pointset, with particular atten-
tion to the Sauer-Xu formula for the error in polynomial interpolation at an
otherwise arbitrary pointset at which interpolation from the full space Πk of
polynomials of degree ≤ k is uniquely possible.
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§1. The Divided Difference Recalled

In [2], the following multivariate divided difference is singled out:

[x1, . . . ,xk, · | ξξξξξξξξξ1, . . . , ξξξξξξξξξk]g := [x1, · | ξξξξξξξξξ1] · · · [xk, · | ξξξξξξξξξk]g, (1.1)

with

[x,y | ξξξξξξξξξ] : g 7→

∫ 1

0

Dξξξξξξξξξg(x + t(y − x)) dt, (1.2)

hence

[x1, . . . ,xk+1 | ξξξξξξξξξ1, . . . , ξξξξξξξξξk]g =

∫

[x1,...,xk+1]

Dξξξξξξξξξ1
· · ·Dξξξξξξξξξk

g, (1.3)

where

f 7→

∫

[x0,...,xk]

f :=

∫ 1

0

∫ s1

0

· · ·

∫ sk−1

0

f(x0 +s1∇x1 + · · ·+sk∇xk) dsk · · · ds1

(1.4)
(with ∇xj := xj − xj−1) is called the divided difference functional on IRd by
Micchelli in [8], and is familiar from the Genocchi-Hermite formula

[ααααααααα]g =

∫

[ααααααααα]

D#ααααααααα−1g (1.5)

for the univariate divided difference at the (scalar) sequence ααααααααα. See [2] for
more detail and for comments concerning the history of this divided difference.

For our purposes here, it is sufficient to know that this divided difference
is symmetric in the points xi, and is linear and symmetric in the directions

ξξξξξξξξξj . In particular, by that linearity,

x = y +
∑

s

αsns =⇒ g(x) = g(y) +
∑

s

αs [x,y | ns]g (1.6)

since [x] = [y] + [x,y | x − y]. Also, for any ϑϑϑϑϑϑϑϑϑ,n ∈ IRd and any ααααααααα ∈ IRk,

[(ϑϑϑϑϑϑϑϑϑ+ αin : i = 1, . . . , k) | n, . . . ,n]g = [ααααααααα]g(ϑϑϑϑϑϑϑϑϑ+ ( · )n), (1.7)

as follows directly from (1.3) and (1.5).

§2. Hyperplanes in General Position

The discussion of Chung-Yao interpolation to follow relies on the following
well-known facts concerning hyperplanes in IRd. In their discussion, it is con-
venient to identify a hyperplane h in IRd with any one of the linear polynomials
whose zero-set is that hyperplane. Denote by h↑ the linear homogeneous part
of that polynomial. With this,

h(x) = h(y) + h↑(x− y), x,y ∈ IRd .
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In particular,
h(x) = h↑(x − ϑϑϑϑϑϑϑϑϑh), x ∈ IRd, ϑϑϑϑϑϑϑϑϑh ∈ h,

and

h↑(n) = 0, for n ‖ h (:= n is parallel to h).

Let H be a collection of d hyperplanes in IRd in general position, meaning
that they have exactly one point in common; denote this point by ϑϑϑϑϑϑϑϑϑH . The
hyperplanes are the coordinate planes for any coordinate system with ϑϑϑϑϑϑϑϑϑH as
its origin and with nontrivial vectors nh parallel to

∩(H\h) := ∩h̃∈H\hh̃,

h ∈ H, as its coordinate vectors. To see this, note that h↑(nh̃) = 0 for h 6= h̃
(since then nh̃ ‖ h by assumption), while h↑(nh) 6= 0 (since otherwise

ϑϑϑϑϑϑϑϑϑH 6= ϑϑϑϑϑϑϑϑϑH + nh ∈ ∩H = {ϑϑϑϑϑϑϑϑϑH},

a contradiction). Consequently, (nh : h ∈ H) is linearly independent, hence a
basis for IRd. Since

h(ϑϑϑϑϑϑϑϑϑH + nh̃) = h(ϑϑϑϑϑϑϑϑϑH) + h↑(nh̃) = 0 + 0, h ∈ H\h̃,

h is the affine hull of the points ϑϑϑϑϑϑϑϑϑH , (ϑϑϑϑϑϑϑϑϑH +nh̃ : h̃ ∈ H\h), i.e., the coordinate
plane defined by the vanishing of the coordinate associated with nh.

It follows that the affine map

x 7→ ϑϑϑϑϑϑϑϑϑH +
∑

h∈H

h(x)

h↑(nh)
nh

is well-defined on IRd, and that, for every h̃ ∈ H, it carries the point x :=
ϑϑϑϑϑϑϑϑϑH + nh̃ to

ϑϑϑϑϑϑϑϑϑH +
∑

h∈H

h↑(nh̃)

h↑(nh)
nh = ϑϑϑϑϑϑϑϑϑH + nh̃ = x,

hence must be the identity (given that (nh : h ∈ H) is a basis). This proves
that

x = ϑϑϑϑϑϑϑϑϑH +
∑

h∈H

h(x)

h↑(nh)
nh, x ∈ IRd . (2.1)

Correspondingly, by (1.6),

[x] = [ϑϑϑϑϑϑϑϑϑH ] +
∑

h∈H

h(x)

h↑(nh)
[ϑϑϑϑϑϑϑϑϑH ,x | nh]. (2.2)
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§3. Error Formula and Newton Form for Chung-Yao Interpolation

Let IH be a collection of hyperplanes in IRd in general position, meaning not
only that the d hyperplanes in anyH ∈

(
IH
d

)
have exactly one point in common,

denoted again by
ϑϑϑϑϑϑϑϑϑH ,

but that also ϑϑϑϑϑϑϑϑϑH = ϑϑϑϑϑϑϑϑϑH′ only if H = H ′. As Chung and Yao [4] were the first
to observe, this implies that

IIHg :=
∑

H∈(IH

d)

ℓH g(ϑϑϑϑϑϑϑϑϑH),

with

ℓH :=
∏

h∈IH\H

h

h(ϑϑϑϑϑϑϑϑϑH)
,

is well-defined, in Π#IH−d, and matches g at the
(
#IH

d

)
= dimΠ#IH−d points

in
ΘIH := {ϑϑϑϑϑϑϑϑϑH : H ∈ IH},

hence is the unique interpolant to g from Π#IH−d at ΘIH.

Fig. 1. The typical term in the formula for the error at x involves the
derivative of order #IH − d + 1 in the direction of the line common to
d − 1 hyperplanes, averaged over a triangle with apex x, multiplied by a
polynomial which vanishes on all hyperplanes not containing that line.

Theorem 3.1. Let IH be a collection of hyperplanes in IRd in general position.

Then,

g = IIHg +
∑

K∈( IH

d−1)

pK [ΘIH,K , · | nK . . . ,nK ]g, (3.2)

with

ΘIH,K := ΘIH ∩ (∩K)

the points in ΘIH on the unique straight line

∩K :=
⋂

h∈K

h
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common to the d− 1 hyperplanes in K, and

pK :=
∏

h∈IH\K

h

h↑(nK)
.

Proof: The proof is by induction on #IH, the case #IH = d being given by
(2.2). So, assume (3.2) to hold for a given IH (in general position), and let k
be any hyperplane for which

IH′ := IH ∪ k := IH ∪ {k}

is in general position. Then

ΘIH′\ΘIH = {ϑϑϑϑϑϑϑϑϑK∪k : K ∈
(

IH
d−1

)
} = ΘIH′ ∩ k,

and pK(ϑϑϑϑϑϑϑϑϑK′∪k) = 0 if (and only if) K 6= K ′. Hence, by (3.2),

g = IIHg +
∑

K∈( IH

d−1)

pK [ΘIH,K , ϑϑϑϑϑϑϑϑϑK∪k | nK . . . ,nK ]g on ΘIH′\ΘIH,

while the sum over K on the right side here gives an element of Π#IH+1−d

which vanishes on ΘIH. Consequently, the entire right side must equal the
unique interpolant from Π#IH′−d to g at ΘIH′ , i.e.,

IIH∪kg = IIHg +
∑

K∈( IH

d−1)

pK [ΘIH∪k,K | nK . . . ,nK ]g, (3.3)

thus providing a Newton form for Chung-Yao interpolation (also mentioned
in [2]).

It follows that, for any x ∈ IRd,

g(x) =
(
IIH′g

)
(x) +

∑

K∈( IH

d−1)

pK(x)EK ,

with

EK := [ΘIH,K ,x | nK . . . ,nK ]g − [ΘIH,K , ϑϑϑϑϑϑϑϑϑK∪k | nK . . . ,nK ]g

= [ΘIH′,K ,x | nK . . . ,nK ,x− ϑϑϑϑϑϑϑϑϑK∪k]g.

Use of (2.2) with H = K ∪ k gives

EK =
∑

h∈K∪k

h(x)

h↑(nK∪k\h)
[ΘIH′,K ,x | nK . . . ,nK ,nK∪k\h]g.
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Consequently,

(
g−IIH′g

)
(x) =

∑

K∈( IH

d−1)

pK(x)
k(x)

k↑(nK)
[ΘIH′,K ,x | nK . . . ,nK ]g +

∑

L∈( IH

d−2)

FL,

(3.4)
with

FL :=
∑

h∈IH\L

pL∪h(x)
h(x)

h↑(nL∪k)
[ΘIH′,L∪h,x | nL∪h . . . ,nL∪h,nL∪k]g.

In particular, for K ∈
(

IH
d−1

)
, we obtain the correct form of the error term,

therefore, by symmetry and the independence of the polynomials

qK :=

{
pK

k
k↑(nK) , K ∈

(
IH

d−1

)
;

∏
h∈IH\L

h
h↑(nL∪k)

, K = L ∪ k, L ∈
(

IH
d−2

)
,

necessarily

FL = qL∪k(x) [ΘIH′,L∪k,x | nL∪k, . . . ,nL∪k]g, L ∈
(

IH
d−2

)
. (3.5)

However, a rigorous version of this proof would have to deal with the fact
that, in (3.4), the coefficients of the polynomials qK are not just constants,
unless g is in Π#IH+1−d, hence would have to prove the claim that the identity

∑

h̃∈IH\L




∏

h∈IH\(L∪h̃)

h↑(nL∪k)

h↑(nL∪h̃)



 [ΘIH∪k,L∪h̃,x | nL∪h̃ . . . ,nL∪h̃,nL∪k]g

= [ΘIH∪k,L∪k,x | nL∪k, . . . ,nL∪k]g, L ∈
(

IH
d−2

)
,

(3.6)
needed here to prove (3.5), holds for all smooth g if it holds for g ∈ Π#IH+1−d.
But the details of such reasoning, while certainly of interest for a better under-
standing of this multivariate divided difference, become much more involved
than the following direct proof of (3.6).

Since ∩L is a two-dimensional plane, (3.6) can be obtained by applying
to

[ · ,x | nL∪k]g

the bivariate divided difference identity established in the Lemma 3.9 below.
This proves (3.5), hence gives, with (3.4), that (3.2) holds with IH replaced
by IH′, thus finishing the induction step, hence the proof of the theorem.

In the proof of Lemma 3.9, the following lemma is used.
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Lemma 3.7. Let ℓ = ϑϑϑϑϑϑϑϑϑ + span(n) be a straight line in IRd and let IH be a

collection of hyperplanes in IRd in general position with respect to ℓ, meaning

that each h ∈ IH has exactly one point in common with ℓ, denoted by ϑϑϑϑϑϑϑϑϑh, and

that ϑϑϑϑϑϑϑϑϑh = ϑϑϑϑϑϑϑϑϑh̃ only if h = h̃. Then

[(ϑϑϑϑϑϑϑϑϑh : h ∈ IH) | n, . . . ,n] =
∑

k∈IH




∏

h∈IH\k

h↑(n)

h(ϑϑϑϑϑϑϑϑϑk)



 [ϑϑϑϑϑϑϑϑϑk]. (3.8)

Proof: Let
ϑϑϑϑϑϑϑϑϑh =: ϑϑϑϑϑϑϑϑϑ+ αhn, h ∈ IH.

Then
h(ϑϑϑϑϑϑϑϑϑh̃) = h(ϑϑϑϑϑϑϑϑϑh) + h↑(ϑϑϑϑϑϑϑϑϑh̃ − ϑϑϑϑϑϑϑϑϑh) = 0 + (αh̃ − αh)h↑(n),

hence the right side of (3.8) equals the linear functional

f 7→ [(αh : h ∈ IH)]f(ϑϑϑϑϑϑϑϑϑ+ (·)n) = [(ϑϑϑϑϑϑϑϑϑh : h ∈ IH) | n, . . . ,n]f,

the last equation by (1.7).

Lemma 3.9. Let IH′ := IH∪k be a collection of straight lines in IR2 in general

position, and, for each h ∈ IH′, let nh be a nonzero vector parallel to h, and

set

Θh := ΘIH′,h = ΘIH′ ∩ h.

Then

∑

h̃∈IH




∏

h∈IH\h̃

h↑(nk)

h↑(nh̃)



 [Θh̃ | nh̃, . . . ,nh̃] = [Θk | nk, . . . ,nk]. (3.10)

Proof: By Lemma 3.7 and for every h̃ ∈ IH′,

[Θh̃ | nh̃, . . . ,nh̃] =
∑

ĥ∈IH′\h̃




∏

h∈IH′\{h̃,̂h}

h↑(nh̃)

h(ϑϑϑϑϑϑϑϑϑ
h̃,̂h

)



 [ϑϑϑϑϑϑϑϑϑ
h̃,̂h

], (3.11)

with
ϑϑϑϑϑϑϑϑϑ

h̃,̂h

the unique point common to the two straight lines h̃ and ĥ. Substitution of
this into the left side of (3.10) produces the double sum

∑

h̃∈IH

∑

ĥ∈IH′\h̃

w(h̃, ĥ) [ϑϑϑϑϑϑϑϑϑ
h̃,̂h

], (3.12)
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with

w(h̃, ĥ) :=




∏

h∈IH\h̃

h↑(nk)

h↑(nh̃)








∏

h∈IH′\{h̃,̂h}

h↑(nh̃)

h(ϑϑϑϑϑϑϑϑϑ
h̃,̂h

)



 .

Each [ϑϑϑϑϑϑϑϑϑ] with ϑϑϑϑϑϑϑϑϑ ∈ ΘIH occurs exactly twice in the sum (3.12). For any
such ϑϑϑϑϑϑϑϑϑ, set

ϑϑϑϑϑϑϑϑϑ =: ϑϑϑϑϑϑϑϑϑ
h̃,̂h

.

Then the coefficient of [ϑϑϑϑϑϑϑϑϑ] in (3.12) is

w(h̃, ĥ) + w(ĥ, h̃) =




∏

h∈IH\{h̃,̂h}

h↑(nk)

h(ϑϑϑϑϑϑϑϑϑ)



 F ,

with

F :=
ĥ↑(nk) k↑(nh̃)

ĥ↑(nh̃) k(ϑϑϑϑϑϑϑϑϑ)
+
h̃↑(nk) k↑(nĥ

)

h̃↑(nĥ
) k(ϑϑϑϑϑϑϑϑϑ)

.

Now note that F depends linearly on nk and is constant as a function of nh̃

and n
ĥ
, hence must be zero for all choices of nk, nh̃, n

ĥ
if it can be shown to

be zero for a particular (nontrivial) choice. Choose, in particular,

nk =ϑϑϑϑϑϑϑϑϑh̃,k − ϑϑϑϑϑϑϑϑϑ
ĥ,k
,

nh̃ =ϑϑϑϑϑϑϑϑϑ− ϑϑϑϑϑϑϑϑϑh̃,k,

n
ĥ

=ϑϑϑϑϑϑϑϑϑ− ϑϑϑϑϑϑϑϑϑ
ĥ,k
.

Then (see Figure 2 below)

k↑(nh̃) = k(ϑϑϑϑϑϑϑϑϑ) = k↑(nĥ
),

while
ĥ↑(nk) = −ĥ↑(nh̃)

and
h̃↑(nk) = h̃↑(nĥ

),

and this implies the vanishing of F , for this choice of the nh, hence for any
(nontrivial) choice.

k
ĥ

h̃

Fig. 2. The vectors nk ,n
h̃
,n

ĥ
.
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To be sure, the vanishing of F is nothing more than the fact that

[ϑϑϑϑϑϑϑϑϑh̃,k] − [ϑϑϑϑϑϑϑϑϑ
ĥ,k

] = ([ϑϑϑϑϑϑϑϑϑ] − [ϑϑϑϑϑϑϑϑϑ
ĥ,k

]) − ([ϑϑϑϑϑϑϑϑϑ] − [ϑϑϑϑϑϑϑϑϑh̃,k]).

In any event, (3.12) reduces to the sum of terms involving ϑϑϑϑϑϑϑϑϑ ∈ Θk, i.e., to the
sum ∑

h̃∈IH

w(h̃, k)[ϑϑϑϑϑϑϑϑϑh̃,k],

with

w(h̃, k) =




∏

h∈IH\h̃

h↑(nk)

h↑(nh̃)








∏

h∈IH\h̃

h↑(nh̃)

h(ϑϑϑϑϑϑϑϑϑh̃,k)





=
∏

h∈IH\h̃

h↑(nk)

h(ϑϑϑϑϑϑϑϑϑh̃,k)
,

and this sum equals the right side of (3.10), by Lemma 3.7.

It seems certain that (3.10) is the bivariate case of a multivariate divided
difference identity.

§4. An Error Formula for Tensor-product Interpolation

Let ti =: (ti,1, . . . , ti,d), i = 0, 1, 2, . . ., be a sequence of points in IRd, with
ti,s = tj,s for some s only if i = j. For any particular k = (k1, . . . , kd) with
nonnegative integer entries, consider the rectangular mesh

Θk :=
d
×

s=1
{ti,s : i = 0, . . . , ks}.

It is well known that the tensor-product polynomial space

Πk := Πk1
⊗ · · · ⊗ Πkd

contains, for given g defined at least on Θk, exactly one element,

Ikg,

that matches g on Θk.
Error formulæ for this polynomial interpolant can be found in the stan-

dard literature as early as [7] (and probably earlier). However, all these for-
mulæ are variants on the following simple tensor-product construct. With
Is,k denoting univariate polynomial interpolation at t0,s, . . . , tks,s, one has

id =

d⊗

s=1

(Is,k + (ids − Is,k)) ,
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hence the resulting error formula

id − Ik =
∑

ααααααααα∈{0,1}d\0

d⊗

s=1

Iαs

s,k(ids − Is,k)1−αs

contains explicitly the term

d⊗

s=1

(ids − Is,k),

and, therefore, when applied to the interpoland g and written in standard inte-
gral form, involves the high-order mixed derivativeDk+1g = Dk1+1

1 · · ·Dkd+1
d g

(along with various other mixed derivatives).
On the other hand, it has been known at least since [5] that the distance

of a smooth function g from Πk can be bounded entirely in terms of the
low-order pure derivatives Dks+1g, s = 1, . . . , d, of the interpoland, g.

It is the purpose of this section to show that, correspondingly, tensor-
product polynomial interpolation admits an error formula that involves only
these pure derivatives Dks+1g, s = 1, . . . , d, of the interpoland.

The formula to be proved, for the error at x = (xs : s = 1, . . . , d), involves
d terms, with the sth term the product, of

ψs,k(x) := (xs − t0,s) · · · (xs − tks,s)

with the value at
x\s := (xi : i 6= s)

of the interpolant, on the mesh

Θk,\s := ×
σ 6=s

{t0,σ, . . . , tkσ,σ}

from the polynomial space

Πk,\s :=
⊗

σ 6=s

Πkσ

to the function

IRd−1 → IR : y 7→ [((ti,s|sy) : i = 0, . . . , ks) ,x | is, . . . , is]g.

Here,
is := (0, . . . , 0︸ ︷︷ ︸

s−1

, 1, 0, . . .),

and
(t|sy) := (y1, . . . , ys−1, t, ys, . . . , yd−1)

is an attempt to avoid more cumbersome notation. In the same spirit, I will
denote by

Ik,\s

the operator of polynomial interpolation on Θk,\s from Πk,\s.
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Theorem 4.1. The error at x ∈ IRd of the polynomial interpolant Ikg from

Πk at Θk to g can be written as the sum

(g − Ikg)(x) =

d∑

s=1

ψs,k(x)
(
Ik,\s [((ti,s|s · ) : i = 0, . . . , ks) ,x | is, . . . , is]g

)
(x\s).

(4.2)

Proof: The proof is by induction on k, the simplest case, k = 0, being
covered by (2.2). Assume that (4.2) holds for k = h and consider, without
loss of generality, just the case k = h′ := h + i1.

Abbreviate the summands in (4.2), for k = h,

Fs(x) := ψs,h(x)
(
Ih,\s [((ti,s|s · ) : i = 0, . . . , hs) ,x | is, . . . , is]g

)
(x\s),

write the first summand in Lagrange form:

F1(x) = ψ1,h(x)
∑

ϑϑϑϑϑϑϑϑϑ∈Θh,\1

ℓϑϑϑϑϑϑϑϑϑ(x\1) [((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h1) ,x | i1, . . . , i1]g

and note that, by the assumed validity of (4.2) for k = h, on replacing here
the x in the divided difference by (th′

1
,1|1ϑϑϑϑϑϑϑϑϑ), the resulting function

p : x 7→ ψ1,h(x)
∑

ϑϑϑϑϑϑϑϑϑ∈Θh,\1

ℓϑϑϑϑϑϑϑϑϑ(x\1) [((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) | i1, . . . , i1]g

is a polynomial in Πh′ which agrees with g−Ihg at (th′
1
,1|1ϑϑϑϑϑϑϑϑϑ) for all ϑϑϑϑϑϑϑϑϑ ∈ Θh,\1;

it also vanishes on Θh, because of the factor ψ1,h. Hence Ihg + p = Ih′g, and

(g−Ih′g)(x) = ψ1,h(x)×

∑

ϑϑϑϑϑϑϑϑϑ∈Θh,\1

ℓϑϑϑϑϑϑϑϑϑ(x\1)
d∑

s=1

(xs − ϑs)[((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) ,x | i1, . . . , i1, is]g

+
d∑

s=2

Fs(x),

making use of the fact that, by (1.1) and (1.6),

[((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h1) ,x | i1, . . . , i1]g

− [((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) | i1, . . . , i1]g

=

d∑

s=1

(xs − ϑs)[((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) ,x | i1, . . . , i1, is]g.
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It follows that

(g − Ih′g)(x) =

ψ1,h′(x)
(
Ih′,\1 [((ti,1|1 · ) : i = 0, . . . , h′1) ,x | i1, . . . , i1]g

)
(x\1)

+
d∑

s=2

(
Es(x) + Fs(x)

)
,

(4.3)

with

Es(x) := ψ1,h(x) ·
∑

ϑϑϑϑϑϑϑϑϑ∈Θh,\1

ℓϑϑϑϑϑϑϑϑϑ(x\1)(xs − ϑs)[((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) ,x | i1, . . . , i1, is]g .

Now, as for the sum in Es(x), observe that
∑

ϑϑϑϑϑϑϑϑϑ∈Θh,\1

ℓϑϑϑϑϑϑϑϑϑ(x\1)(xs − ϑs)[((ti,1|1ϑϑϑϑϑϑϑϑϑ) : i = 0, . . . , h′1) ,x | i1, . . . , i1, is]g

=
(
(Ih′\{1,s} ⊗ Is,h′)f

)
(x\1),

with
f(ϑϑϑϑϑϑϑϑϑ) := (xs − ϑs)[(ti,1 : i = 0, . . . , h′1)][( · |1ϑϑϑϑϑϑϑϑϑ),x | is]g.

Further, for any univariate ϕ (defined at least on (ti,1 : i = 0, . . . , h′1)),

(
Is,h′ (x− · )s ϕ

)
(xs) =

h′
s∑

j=0

(∏

i6=j

xs − ti,s
tj,s − ti,s

)
(xs − tj,s)ϕ(tj,s)

= ψs,h′(x) [(ti,s : i = 0, . . . , h′s)]ϕ.

Hence, altogether,

Es(x) = ψ1,h(x)ψs,h′(x)
∑

ϑϑϑϑϑϑϑϑϑ∈Θ
h′,\{1,s}

ℓϑϑϑϑϑϑϑϑϑ(x\{1,s})Gs(x, ϑϑϑϑϑϑϑϑϑ),

with

Gs(x, ϑϑϑϑϑϑϑϑϑ) := [(ti,1 : i = 0, . . . , h′1)] ⊗ [(ti,s : i = 0, . . . , h′s)][( · |{1,s}ϑϑϑϑϑϑϑϑϑ),x | is]g

= [(ti,1 : i = 0, . . . , h′1)] [(( · |1(ti,s|sϑϑϑϑϑϑϑϑϑ)) : i = 0, . . . , h′s) ,x | is, . . . , is]g,

the second equality by (1.7). Further, for any univariate ϕ (defined at least
on (ti,1 : i = 0, . . . , h′1)),

ψ1,h(x)([(ti,1 : i = 0, . . . , h′1)]ϕ)(x1) =
(
(I1,h′ − I1,h)ϕ

)
(x1).

Hence, altogether,

Es(x) = ψs,h′(x)×
(
(Ih′,\s − Ih,\s)[((ti,s|s · ) : i = 0, . . . , hs = h′s) ,x | is, . . . , is]g

)
(x\s),

from which, with ψs,h = ψs,h′ for s > 1, we conclude that

Es(x) + Fs(x) =

ψs,h′(x)
(
Ih′,\s [((ti,s|s · ) : i = 0, . . . , h′s) ,x | is, . . . , is]g

)
(x\s).

Substitution of this into (4.3) gives (4.2) for k = h′, and so finishes the
induction step.
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§5. More General Error Formulæ

Both error formulæ involve weighted integrals, of certain derivatives of the in-
terpoland, over triangles, even when d > 2. Both formulæ reduce, on certain
straight lines, to the standard error formula for univariate polynomial inter-
polation. It would be interesting to explore the error formula for Chung-Yao
interpolation in the limiting case, as some of the hyperplanes become parallel
and/or coincident, in which case the ‘finite part’ of the interpolant becomes
the Dyn-Ron interpolant introduced in [6]. Since tensor-product interpolation
is a special case of the latter, it should be possible to connect the two error
formulæ in this way and, in the process, provide a corresponding error formula
for Dyn-Ron interpolation.

Both error formulæ are of the form

(g − Ig) (x) =
∑

ϕ∈Φ

ϕ(x)Mx,ϕ(qϕ(D)g), (5.1)

with Φ a minimal generating set for ideal(Θ), the ideal of all polynomials
which vanish on Θ, and (qϕ : ϕ ∈ Φ) a sequence of homogeneous polynomials
dual to Φ in the sense that

qϕ(D)(ϕ̃↑) = 0 ⇐⇒ ϕ 6= ϕ̃,

and Mx,ϕ certain distributions. (Here, p↑ denotes the leading term of the
polynomial p, i.e., the homogeneous polynomial characterized by the fact that
the degree of p− p↑ is less than that of p (with the zero polynomial being its
own leading term, by definition).) One would hope that a formula of the form
(5.1) would be available for more general polynomial interpolation schemes,
at least for the least interpolation introduced in [3]. The least interpolation
scheme for a given pointset Θ chooses a particular polynomial space from
which to interpolate, and this is just Πk whenever interpolation from Πk to
data on Θ is uniquely possible, i.e., whenever Θ is minimally total for Πk. It
is therefore instructive to compare the form (5.1) with the only error formula
presently available in this case, namely the remarkable formula of Sauer and
Xu, in [9].

The Sauer-Xu formula relies on the fact that, since Θ is miminally total
for Πk, it must be possible to partition Θ into subsets Θ0, . . . ,Θk so that, for
each j = 0, . . . , k, the pointset

Θ≤j :=
⋃

i≤j

Θi

is minimally total for Πj . For any such partition of Θ and for each ϑϑϑϑϑϑϑϑϑ ∈ Θj ,
let ℓϑϑϑϑϑϑϑϑϑ be the unique element in Πj for which

ℓϑϑϑϑϑϑϑϑϑ(ϑϑϑϑϑϑϑϑϑ′) = δϑϑϑϑϑϑϑϑϑ,ϑϑϑϑϑϑϑϑϑ′ ∀ϑϑϑϑϑϑϑϑϑ′ ∈ Θ≤j .
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With this, the Sauer-Xu formula, for the error in the interpolant Ikg from Πk

to g at Θ, can be written

(g − Ikg) (x) =
∑

ϑϑϑϑϑϑϑϑϑ∈Θk

∑

µµµµµµµµµ∈Mk
ϑϑϑϑϑϑϑϑϑ
(x)

(
k∏

i=0

ℓµµµµµµµµµi
(µµµµµµµµµi+1)

)
[µµµµµµµµµ | ∆µµµµµµµµµ]g, (5.2)

with

Mk
ϑϑϑϑϑϑϑϑϑ(x) := (

k−1
×

i=0
Θi) × {ϑϑϑϑϑϑϑϑϑ} × {x}

and
∆µµµµµµµµµ := (µµµµµµµµµ1 − µµµµµµµµµ0, µµµµµµµµµ2 − µµµµµµµµµ1, . . .).

For the sake of comparison with (5.1), here is the formula with its dependence
on x made more explicit:

(g − Ikg) (x) =
∑

ϑϑϑϑϑϑϑϑϑ∈Θk

ℓϑϑϑϑϑϑϑϑϑ(x)
∑

µµµµµµµµµ∈Mk
ϑϑϑϑϑϑϑϑϑ

(
k−1∏

i=0

ℓµµµµµµµµµi
(µµµµµµµµµi+1)

)
[µµµµµµµµµ,x | ∆µµµµµµµµµ,x− ϑϑϑϑϑϑϑϑϑ]g, (5.3)

with

Mk
ϑϑϑϑϑϑϑϑϑ := (

k−1
×

i=0
Θi) × {ϑϑϑϑϑϑϑϑϑ}.

It is, of course, possible to apply (1.6) in many ways to bring this formula
into the form

(g − Ikg) (x) =
∑

ϕ∈Φ

ϕ(x)Mx,ϕ(g).

However, careless application of (1.6) may well result in a Φ which, while
generating ideal(Θ), fails to be minimally generating. Also, at present, I have
no idea just how to use (1.6) here so as to ensure that the coefficient of ϕ
here is the result of a distribution applied to some appropriate derivative of
g (rather than the sum of distributions applied to various derivatives of g).

This difficulty exists even in the case of Chung-Yao interpolation, in which
case we know what end result we have in mind. To elaborate, in that case,
any ordering

IH =: {h1, . . . , hm}

of the set IH produces a suitable partition of ΘIH as follows:

Θj−d := {ϑϑϑϑϑϑϑϑϑK∪hj
: K ∈

(
IH<j

d−1

)
},

with
IH<j := {hi : i < j},

j = d, . . . ,m =: d+ k. Correspondingly,

ℓϑϑϑϑϑϑϑϑϑK∪hj
= ℓK,j :=

∏

h∈IH<j\K

h

h(ϑϑϑϑϑϑϑϑϑK∪hj
)
.
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Therefore, with

µµµµµµµµµj−d := ϑϑϑϑϑϑϑϑϑKj∪hj
, j = d, . . . ,m = d+ k,

we have

ℓµµµµµµµµµi−d
(µµµµµµµµµi+1−d) = 0 unless (Ki+1 ∪ hi+1) ∩ (IH<i\Ki) = ∅,

i.e., unless (Ki+1\hi) ⊂ Ki. In other words,

ℓµµµµµµµµµi−d
(µµµµµµµµµi+1−d) 6= 0 =⇒ Ki =

{
(Ki+1\hi) ∪ h, h ∈ IH<i, if hi ∈ Ki+1;
Ki+1 otherwise.

(5.4)
This greatly reduces the inner sum in (5.3) since, with

ϑϑϑϑϑϑϑϑϑ =: ϑϑϑϑϑϑϑϑϑK∪hm
,

(5.4) implies that we only have to sum over µµµµµµµµµ in

Mk
K := {(ϑϑϑϑϑϑϑϑϑKd∪hd

, . . . , ϑϑϑϑϑϑϑϑϑKm∪hm
) :

Ki+1\hi ⊂ Ki ⊂ IH<i, i = d, . . . ,m− 1;Km = K}.

In other words, for Chung-Yao interpolation, (5.3) reduces to

(g − IIHg) (x) =

∑

K∈(IH<m
d−1 )

ℓK,m(x)
∑

µµµµµµµµµ∈Mk
K

(
k−1∏

i=0

ℓµµµµµµµµµi
(µµµµµµµµµi+1)

)
[µµµµµµµµµ,x | ∆µµµµµµµµµ,x− ϑϑϑϑϑϑϑϑϑK∪hm

]g.
(5.5)

In particular, by (5.4), for K = IH<d, this leaves just one µµµµµµµµµ, as was first
noticed by Vladimir Yegorov [10], during an attempt to derive (3.2) from
(5.2). Specifically, in the notation used here,

Mk
K = {(ϑϑϑϑϑϑϑϑϑK∪hi

: i = d, . . . ,m)}, K = IH<d.

Correspondingly,

ℓK,m(x)
∑

µµµµµµµµµ∈Mk
K

(
k−1∏

i=0

ℓµµµµµµµµµi
(µµµµµµµµµi+1)

)

=

m−1∏

i=d

hi(x)

hi(ϑϑϑϑϑϑϑϑϑK∪hi+1
)
.

Since hi(ϑϑϑϑϑϑϑϑϑK∪hi+1
) = hi↑(ϑϑϑϑϑϑϑϑϑK∪hi+1

− ϑϑϑϑϑϑϑϑϑK∪hi
), hence

(ϑϑϑϑϑϑϑϑϑK∪hi+1
− ϑϑϑϑϑϑϑϑϑK∪hi

)/hi(ϑϑϑϑϑϑϑϑϑK∪hi+1
) = nK/hi↑(nK),

this reduces the term in (5.5) corresponding to K = IH<d to
(

m−1∏

i=d

hi(x)

hi↑(nK)

)
[(ϑϑϑϑϑϑϑϑϑK∪hi

: i = d, . . . ,m),x | nK , . . . ,nK ,x− ϑϑϑϑϑϑϑϑϑK∪hm
]g.

Thus, as Yegorov also noted, after using (2.2) with H = K ∪ hm to remove
the dependence on x in the direction set of this last divided difference, one
obtains, among other terms, exactly the term in (3.2) corresponding to thisK.
Symmetry considerations then would suggest that, after rewriting (5.5) as a
weighted sum of pK over K ∈

(
IH

d−1

)
, the resulting, quite complicated, ex-

pression multiplying such a pK and involving various divided differences of g
must equal the corresponding simple coefficient of pK in (3.2), thus supplying
a remarkable set of conjectured multivariate divided difference identities.
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6apr09: The case #IH = d+1 of Theorem 3.1 is due to Shayne Waldron;
see [S. Waldron; The error in linear interpolation at the vertices of a simplex;
SIAM J. Numer. Anal.; 35(3); 1998; 1191–1200].
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