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BICUBIC SPLINE INTERPOLATION
By Carr DE BooR

1. Introduction. Let values w;; = wu(z:, y;) be given at the mesh-points
(z:, y;) of a rectangular mesh, (¢ = 0, -+, I;j = 0, -+, J); let the normal
derivatives be given at the boundary points of the mesh, ie., pi; = w.(z:, y5)
fori =0andj =0, ---,J,and ¢i; = w(z;,y;) fori=0,---,Iand j =
0, J; finally, let s;; = uq(2:, ¥;) be given at the four corners of the mesh. The
problem is to fit & “smooth” function u(w, ) ¢ C* through these given values.

The bicubic spline interpolation method to be described yields a piecewise
bicubie polynomial function u(x, y). This is defined in each rectangular cell
Rij:i2ea =2 2 xi;yja £y =y, of the grid as a bicubic polynomial, i.e.,

(@, y) = (@, Y) = Domnmo tma(x — 200)™(y — yi)"y (%, 9) ¢ Bij.

It is shown in §3 that there exists exactly one such piecewise bicubic polynomial
function which assumes the given values and is of class C*. In §§4-5, an efficient
procedure for computing the coefficients am, is deseribed.

2. Linearized Spline Interpolation. Bicubic spline interpolation is a two-
dimensional analog of “linearized spline interpolation” (cf. [1, p. 258]) for func-
tions of one variable. Some apparently unpublished properties of this
interpolation procedure are needed to establish this analogy. A short résumé of
linearized spline interpolation is, therefore, given here.

Tor functions of one variable, linearized spline interpolation defines a func-
tion u(x) of class C* which assumes given values u; = u(x;) at given points
2,1 =0,---, 1,20 <3 < --- < z:, and given slopes p; = u'(z;) at the
two endpoints z¢ and z;. The interpolating function is & cubic polynomial in
each of the intervals {z;,, z], 2 = 1, -+-, I. Thepoints z;,7 =0, ---, I, are
called the joints of u(z). Let S(z; 21,22, -7, 20), 21 < 22 < --+ < z,, denote
the linear space of all functions u(z) of class C* on the interval [z , z.], which
are equal to a cubic polynomial in each of the intervals [z;;, 2], 2= 2, -+, n,
i.e., plecewise cubic.

Tacorem 1. For each set {up, %, -+, %r, po, p;} of values there exists
exactly one u(x) ¢ S{(z; %, - -+, z;) such that

(1) wlz) =ue, 1=0,---,I, u(x) = pe,

Proor. We first recall a well-known result.
LEmma 1. There is exactly one cubic polynomial ¢(z) = S van(z — @)™
which assumes given values for ¢(z) and ¢’{(x) at the endpoints of any interval

E“S.awm@.,HEmﬁoqcoBmm:m
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w'(xr) = pr.
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The first statement follows from the fact that the determinant of the matrix
connecting c(a), ¢’(a), e(b), ¢’(b) and the four coefficients a,, is (b—a)" =0
for b # a. Equation 2 then follows by inspection.

CoroLLARY. If u; and p; are given for ¢ = 0, - - -, I, then there exists exactly
one piecewise cubic polynomial u(z) e C" with joints zq, - - - , r , which satisfies
w(w:) = weand w'(x;) = p;, ¢ =0, ---,1I. ,

Lemma 2. Let 2o, 21, 2, be such that Azg = 2, — 7, # 0 and Az = 2, —
z; # 0, but not necessarily zo # z,. Let v(z) and w(x) be cubic polynomials
satisfying »(2:) = w(z) = w and v'(z1) = w'(71) = p:. Thenv”(2,) = w” (1)
if and only if

Az v (20) + 2(Az1 + Azo)pr + Azow' (22)
AWV Ary

= wﬁwalaw (w(z2) — wi) +N|um, (w1 — aﬁaovvu—.

Proor. Seta = x,, b = 20, ¢(z) = v(x) in (2); then

2 v{zo) — u '
ey —Hw T v (zo) —~ w@@.

Similarly, set @ = x;, b = 2, ¢(x) = w(z) in (2); then

W —Hw scﬁunmv ..I,...S
Ew gu
Thus w”{z;) = »”(z,) if and only if (3) holds.

CoroLrarY. Let u(z) be a piecewise cubic polynomial of class C" with joints
To, "+, 2r. For given u; = u(z:),¢ =0, ---, I, and po = w'(x0), pr = w'(21),
there exists exactly one set of values p; = w/(2;),¢ = 1, ---, I — 1, such that
u(x) e C* :

Proor. By Lemma 2, the continuity of w”(z) for u(z) ¢ C" is equivalent to
a set of I — 1 linear equations

Az pia + 2(Azi + Az ) pi + ATy pinn

Y Auyg Ay
— . + . i u. > = “-n. —
3 ﬁb.e?# = + Az, D“P.LH_ , it =1, I =1

v (21) =

w” A.\hﬂv = o .S\ A&mv — MNS.H— .

for the I — 1 unknowns, p;, ¢ = 1, ---,I — 1. The tridiagonal matrix of this
linear system is strictly diagonally dominant, hence* has only non-zero eigen-
values and is thus non-singular. The I — 1 equations (4) are, therefore, linearly
independent and hence determine the p;, 1 = 1, ---, I — 1, uniquely.

The Corollaries to Lemmas 1 and 2 imply Theorem 1, which concludes the
proof.

Lemmas 1 and 2 may be used to devise an efficient computational scheme
for the evaluation of the interpolating funection u(z) for given u;, po, pr. In
this scheme, one computes values p; = w'(z:),72 = 1, ---, I — 1, from equation
(4). Since u(z) equals a cubic polynomial ¢;(z) in each interval [z, , z:], one

* This follows from Gershgorin’s Circle Theorem, ¢f. {2, Thm. 3.3.(a), p. 11].
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then uses equation (2) to compute u(z) = ¢:(x) from ¢;(z:) = ux and ci(zy) =
e,k =1¢— 1,1 forzelria, z
Theorem 1 has as & consequence
CoroLLarRY 1. S{(z; 20, -+, z;) 18 an (I + 3)-dimensional linear space.
Proor. Equation (1) assigns to each u(z) eS(z; %o, -+, z;) a unique
vector {uo, +--, %r, Ppo, Prj. Theorem 1 shows that equation 1 assigns, con-
versely, a unique u(z) e 8{(z; 2o, -+ , z1) to each veetor {uo, -+, Ur, Po, Pi}-
CororrAry 2. The set of ¢i(x) e S(x; 20, -+, 1), t = 0,--,I 4+ 2, de-
fined by the conditions
0,2 #j . .
wie) = ={¥ 170 e =g =0, fox i=0,1,
Amv ﬁ~+~AH¢.v = Avm.fwA.\h—.v = Qu for i = Q~ Ty .N.‘
bra1(zo) = ¢rea(zs) = 1, dr41(21) = ¢ryalze) = 0,

is a basis of the linear space S(z; 2o, - - , 21).

3. Bicubic Spline Interpolation. We are now ready to treat bicubic spline
interpolation.

For the (J -+ 3)-dimensional linear space S(y; %o, **-, ys), let {¥:{()},
Jj=0,:-+,J + 2, denote the basis defined in Corollary 2 of Theorem 1. Con-
sider the tensor product T' = S(z; 2o, -+, 21) ® S(¥; Yo, ---, ys). T is the
(I + 3)(J + 38)-dimensional linear space of all functions of the form

(6) B (T, ¥) = D Dot Bundm(2)¥nly).

The ¢, and ¥, are piecewise cubicand of class C®on Rize S 2 S 21300 S ¢ <
ys . Therefore, any product or linear combination of the ¢. and ¢, is piecewise
bicubic and of class C? i.e., u(z, y) € C" on R for any choice of the coefficients
Bmn . Conversely, every function, which is a bicubic polynomial in each of the
rectangles Rij 12ia S 2 S Z5;9;a < y < y;,andisof class C*on R, isin T,

TeeoREM 2. Let there be given values

ui; = u(x, ¥5), i=0,---, ;7 =0,---,J,
0,1;;=0,---,J,
0,---,I;7=0,J, and
0,1;7=0,J.

-,
Il

Di; = (i, Y5},

(N
g = uy(2s, 45),

-,
I

™,
Il

8i; = Un(Zi, ¥j),

Then there exists exactly one piecewise bicubic function u(z, y) of the form (6),
which satisfies (7).
Proor. Equations (5) (and their analogs for ¥,.(y)) imply that, for functions

* Clearly, the higher order partial derivatives 4zzy , %zyy ; Uszzy  Of U are continuous on
R ag well,
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of the form (6), equations (7) are equivalent to
‘EAH-. ) @C.v
I+2

= m=( .u.-.”uo Eﬂaﬁﬂﬁﬂmvﬁaﬁm\mv = Qmu.u & = O» sy Nu.w = Ow Ar ..N.

Pi = .:.QAH: Qn.v = MUMU.@S:«F‘:AR.V__@:AQV = AE~+~L. u\..“ - Ov H u = Ou Ty ,Nu

Uis

Brie.s y 0= I
— — Nl oy JBi1, 7 =0 .
qi; = ﬁeﬁ.e-._ m\hv = MMH&::GSAHL%aA@nv = . . y ¥ = Ou e g .Hu
m-..~+n~.w =J
Bre1,041 .s” =0,j=0
8ij = Uzy A&...u .Qu.v = M MU Bomn nv“; A&..v .w.“. G\hv = QI.H..I.m vs. - Q‘u =J

Brieop,t=1,j=0"
Brizgsz,t =Lj=J

(8)

Since each B, occurs exactly once in the last members of the preceding (I 4 3)
(J 4+ 3) equations, and each of these equations is equivalent to one of the (I + 3)
(J + 3) conditions (7}, the theorem follows.

4. Derivatives at Mesh-points. In §3, the existence and uniqueness of a
piecewise bicubic function u(z, y) € C* of the form (6) satisfying the conditions
(7) was proved. In the following pages, an efficient computational scheme for
the evaluation of %(Z, §) defined by (6) and (7) at a point (&, §) e R is derived,
which makes use of the piecewise polynomial character of «(z, y). The procedure
is a two-dimensional analog of the one described at the end of §2 for “linearized
spline interpolation”. The relevant equations are derived in the following
Lemmas 3 and 4. .

By definition, the interpolating function u(z, y) equals a bicubic polynomial

(9) cii(T, Y) = Dmno¥mn(® — 2ea)™(y — yia)"

inRj:ziaSz=25y2 Sy = y;.

Lemma 3. Let ui;, pis, q:; and s;; be given at the four corners of the rectangle
R;;. Then there exists exactly one bicubic polynomial c,;(z, y) (9) which as-

sumes the given values. The matrix T; = || v/ || of coefficients in (9) is given
in terms of the matrix K;; of given values by the matrix equation
T
(10) A(Az;1) KA (Ay4) = Ty,
where
Biiia! Biay ‘ . Umn @mn
K = |-2222T0 2220 with Bua = ,
4 ' .W:.L.IH " w-.». DPmn Smn
and the matrix A (k) is defined by
1 0 0 0
0 i 0 0
AR =| _spr _om 3w —1m |

2/h? /R —2/K° 1/R?
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Proor. The first part of the lemma is the special case I = J = 1 of Theorem
2. Since equation (10) is linear in K;;, the second part of the lemma may be
verified by computations showing its correctness for the sixteen basis functions
(z —2e)"™ (v — ys0)", mymn =0, -+, 3.

Lemma 4. If the values (7} are given, then, for u(z, y) of the form (6), the
values Py = gaﬁﬁa‘u @.mv“ An = H_.u e u.N - Hu.w = Ou T Hvu Qi; = Q\:AHF.» @_u,vu
(i =0, L=, e, T — 1), and s;; = Uz (T4, yi), (=1, smepd = I3
J=0J,and{ =0, ---,I;=1,---,J — 1), are uniquely determined by
thefollowing 27 + J -+ 5 linear systemsof altogether3IJ + 1 + J — 5equations:
forj =0,---,J,

AZiy Pin; + 2(Azia + Az py + Azipia;

(11) Azs s
=3 _H D&..F (eyr; — uif) + Da..w_ (ui; — SI_.“.V“_V i=1---,] -1,
forj=0,J,
AZiasin; + 2(Azi0 + Azid s + ATisi,;
(12) Az Az:
= w__!! DHa.H A@e..THL. - ﬂ_mu.v + Duﬁp...n.h Am_aw - QTHLV; y 4 = Hu + vy .N i H-

fore=20,-.-,1,
AYi1 giin + 2(8y5 + AYs) gs + Ay; gii
(13) A .
Yi—1 Ay; .
=3 S = Wl T =1 --- — 1
_HPS (ti,41 — us5) +>$L (ui; — s 5 HL. i=1--,J -1
fori=0,---,1,

AYjia 8iip1 + 2(Ay;oa + Ayy) s + Ay; sija

= 3| 22 (pijp1 — pis Y5 (e = Ds =1, d —
T,,S (Pijt1 — Pii) + Ay (pij — pij) |, 7=1,---,J — L

Proor. Along each mesh-line y = y;,5 =0, -+, J,
u(@, ) = v;(@) e S@izo, -+, 20), and w.(z, y;) = o] (z).

By the Corollary to Lemma 2 (in §2), the numbers v () = U (z:, yi) = pis,
t=1,.--, I — 1, are uniquely determined if v;(z:), ¢ = 0, --- , I, and v; (o),
v;(z;) are known. Since vi(@) = wi;, ¢ =0, ---, I, and v;(20) = pos, vi(as) =
Pr; are given for j = 0, --- , J, it follows from the Corollary to Lemma 2 that
Pij, =1,---, ] —1;5=0,---,J) is uniquely determined by the J 4+ 1
sets of (I — 1) equations (11), given the values (7). By similar reasoning, equa-
tions (13) determine ¢;;, (4 = 0, --- I;j = 1,---, J — 1), uniquely, given
the values (7). Along each mesh-line y = y;, Jj=0,4J,

(2, y;) = 2 ($ulz) (D Banln(y))) = wi(z) € S(z; 20, - , 7)),
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and un(z, y;) = w;(x). Since w;(z;) = 8i5,1= 0,1, and wi(z;) = qi;,7 =
0, ---,I,isgiven forj = 0, J, equations (12) determine s;;, (i = 1, -+-, I — 1;
j = 0, J}, uniquely, given the values (7). Finally, for each ¢ = 0, ---, I,

u(ze, 4) = 2:y) € S %0, -+, 9s), and wun(zi,y) = 2i(y).

Foreach¢ = 0, .-+, 1, 2:{y;) = uz:, 9y,),5 = 0,---, J, is either given or
can be uniquely determined from (11), and 2:(y;), j = 0, J, is either given or
can be uniquely determined from (12). We invoke the Corollary to Lemma 2
a last time to conclude thats;;, (¢ =0, ---,I;5 =1, ..+, J — 1), is uniquely
determined by equations (14) with (11) and (12), given the values (7). This
proves Lemma 4.

5. Computational Procedure. We are now ready to describe the computa-
tional procedure. First compute the values p;;, ¢i; , and s;; from the given values
(7) at all mesh-points (z:, y,), at which they are not given, using equations
(11)-(14). The computation of these numbers p;;, ¢i; and s;; from these equa-
tions can be done very efficiently and aceurately by Gauss elimination, since
the matrix of each of the 2I 4 J 4 5 systems of equations (11)~(14) is tri-
diagonal and strictly diagonally dominant. In solving such a linear system
Bz=4d,B= = bij : and tridiagonal, z = {21, 2, - - - y 23}, & = m&uu&wu =ty da}y

by Gauss elimination, one first computes quantities b;; by

!

(15) by = bu , bii = bi — biiabig,i/biti, 1= 2, -, n.
One then computes a vector &’ = {d;, dz, -+ - , dn} by
(16) di = dy,

r

di = di — bisadina/biaen, §=2,--+,n,
and, finally, finds the solution by the recursion formula

Evyuﬁﬁf zi = (di — biipizisn)/bis,

i=n—1,n—2 ---,1.

Since only two distinct matrices appear in equations (11)—(14), one has to use
(15) only twice, and then solves each of the 2I + J =+ 5 systems (11)—(14) in
turn, using (16) and (17) only.

Having solved equations (11)-(14), and stored the results together with
the given values (7), one then has the value of u, u. , u,, and u,, available at
every mesh-point (z:, ;) of the mesh. Now use equation (10) in each rectangle
R;; to compute the coefficients v,/ of the bicubic polynomial (9) in that ree-
tangle from the values of u, u,, %, and u., at the four corners of R;; . Once the
coefficients v/, of (9) are computed for each rectangle R;;, the evaluation of
the interpolating function u(z, y) at a point (£, §) e R reduces to finding indices
(%, j) such that (%, 7) ¢ R:;, followed by the evaluation of the bicubic poly-
nomial (9).

The method of bicubic spline interpolation can be generalized, using tensor
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products, to functions of #» independent variables of class C* on an n-dimensional
hypercuboid, following the pattern outlined in §§3-5. This generalization will

be presented elsewhere.
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