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ABSTRACT

Many efficient linear methods are known for interpolation
to plane curves which turn through an angle of less than 180°.
Among these methods, linear "spline' interpolation is especially
versatile. We describe below various methods for interpolating
to genergl plane curves, including interpolation by (nonlinear)

mechanical splines and "elastica', and discuss their relatiom to

an adaptation of linear splines proposed by Fowler and Wilson.




NONLINEAR SPLINE INTERPOLATION

"Linearized splines", defined by piecewise cubic polynomial
functions y = £(x) of class C2, have recently been effectively used
to represent smooth plane curves whose tangent direction & changes
by lesg than 180°, At least two proposals ([1], [?]) have been made
for modifying this approach to define "nonlinear spline interpola-
tion" between points on arbitrary smooth plane curves. The purpcse
of this note is to relate these proposals to true '"nonlinear spline
interpolation" by mechanical splines, and to interpolation by more
general "elastica'". In all cases, we suppose given n + 1 points
Pi-= (xi,yi), i=0,1], *++, n, on a smooth plane curve [', and we

interpolate a smooth approximating curve through these pointsf

The most natural way to do this is by trying to minimize the

strain energy (B/Z)-[K2 ds of a mechanica} spline of "stiffness" B
passing through these points —- K denoting the curvature and s the
arc-length. Local minima of this functional describe the positions
of stable equilibrium of a meghanical spline constrained to pass
through these points, but otherwise free to deform or slip. For

such a spline, the Euler~Lagrange variational équations are, if

dots refer to derivatives with respect to arc-length,




(1) 2K+ K3 =0 if and only if 6‘}”K2 ds = 0 ,
which reduces to yIV = 0 in the linearized approximation.

True nonlinear spline interpolation consists in passing a curve

of class C2 through the Pi’ which satisfies (1) (or, equivalently,
(2)) at all points other than the "joints" P.
Except in the trivial case K = 0 of a straight line, such minima
can be only local. For, otherwise, the (positive) integral can be
made arbitrarily small by interpolating large circular loops of length
0(r) and curvature K = 0(1/r), thus making J[‘Kz ds = 0(1/r) less than

any preassigned positive number.

We note that, in rectangular coordinates, the ordinary DE (1)

assumes the rational form
12
(2) (1+yv2) yIV-Sy'y"y"'-%y"3+18x—-J—-—- =0 .

This defines an interesting well-set two-endpoint boundary value

problem, if one is given y(a) = y(b) = 0 and small endslopes
y'(a) = y;, y'(b) = y;. We have not studied its effective computa-
tional solution, and have written down the preceding DE's (which are

invariant under the four-parameter similarity group) mostly for

purposes of comparison.




PSEUDOSPLINE INTERPOLATION

True nonlinear spline interpolation, defined mathematically in
§1, should not be confused with analogous but different schemes.,
Among these, the most promising one seems to be that proposed by
A. H. Fowler and C. H. Wilson. This scheme, which we will call Eseudq-

spline interpolation, replaces the nonlinear two-endpoint problem of

§1 by linearized spline interpolation. It may be described in somewhat
simplified form as follows.

o ————

Each curvilinear segment Pi—l Pi is described, relative to

Cartesian coordinates {,n whose axes are respectively parallel to the
chord Pi—l Pi and perpendicular to it, by a cubic polynomial
n o= fi(i), i=1, -++«, n. At each interior joint Pi= continuity of

slope and curvature are required.

We now describe a procedure, which involves only rational oper-

ations, for effectively computing the curve defined by these conditions.

Let

- = - - N AR
(3) a =X - ® e b=y -y e mfa b2
and ' ‘ S :
(4) xgo= (g +%0/2, oy = Oy % y /2.

eop———

Then, on the i-th curvilinear segment (-1 Pi’ we make a similarity

transformation to the new coordinates



(5a) E(x,y) = a,(x = x) + b, (y = ¥),

{5b) n(x,y) = b (x - x) - a,(y ~ y,).

The inverse transformation of coordinates is

(6) X = X, + (aig + bin)/ci, Yy =y + (biE - ain)/ci.

Hence, writing y' = dy/dx, we have the formula

- t
bi aiy a——

dn
(7 on P _, P.

o O T
d§ ai + biy

The condition that n = fi(g) be a cubic function is satisfied by

setting
(8 £(8) = (482 - Dok + 8, ] < ¢/2,

where the constants a and Bi determine the endslopes

{9) fi(" Ci/.z) = 'Ai' fl'l(cilz) o ui,

and are given by

H 3 u
(10) P Salle: N Wi Y




Applying (7) to (9), the condition for continuity of slope i{s found

to be
E, +D.u
(11) | M+ 1)1 -'Eiu1 ’
1~ By
where
] = ; = = -
11’ Dy = aja,4y) * bybis E; = abigr ~ P34 -

One considers these slopes Hge Wp» L Moo (oxr xl, LR e An) as the
unknowns to be computed by imposing the condition of continuity of
curvature, or equivalently, of y'' which is given in the (&i, ni)

coordinate system by

LI BN S 1y 3
(12) y cg“ /(ai + biﬁ_) R
where

(12") n' = dn/dE, n'' = d2n/d¢2 ,

The i-~th cubic fi(E) cornecting Pi¥1 to Pi and the (1 + 1)-th

cubic f1+1(£) connecting P1 to Pi+1 are joined at Pi by continuity of

value, slope, and curvature. In particular at the joint Pi one obtains

from (8) -~ (10) the relations

v o= T .
(13) ng = My ng (4ui + zxi)/ci



and

(13") - (4

' = " oa
"4 < Mer Min Mt W)/
Substituting into (12) from (13) and (13') respectively, and equating,

one obtains

3
ci(lwi + Zki)/(ai + biui)

(14)

b, .2

- ' 3
i Phpag + 200/ (B F M)
Equation (13) may be simplified using the bilinear transformation in

(11) to express (a + b1+1A1+1) in terms of (ai + biui)’ namely

i+l

& - 3
(15). (@41 ¥ Ppartian) = Cpag (8 * Bgu)/ Oy = Eyupd
Substituting (15) into (14) the coupling equation can be written as
- 3 2 =
(16? (D1 Eiui) (4Ai+1 + 2M1+1) + €% 41 (Au1 + ZAi) 0.

Our experiments suggest that the (n - 1) equations (16), although
nonlinear, are well suited to fast iterative solution for any set of
reasonably behaved (i.e., regularly spaced) points representing a

plane curve.



INTERPOLATION BY ELASTICA

interpolation by mechanical splines is a special case of inter-
polation by "elastica” or "thin beams", defined by equations first
derived by the Bernoullis and Euler [2, p. 3]. Given the sequence

Po, P rme Pn’ we define interpolation by elastica with joints at

1!
the Pi’ as a curve P(s) = (x(s), y(s)) whose position P = (x,y) as a

function of arc-length s satisfies the equilibrium conditions for a
thin beam of constant stiffness B, acted on only by forces through
the joints Pi' Denoting differentiation with respect to s by dots,

these conditions [2, §§ 254, 255] are equivalent to:

(18) P(s) {5 a continuous function of s,

(1§') P(si) = Pi for suitable 0 = 89 <81 < < s =L,

(18'') %(s) y(s) = ¥(s) x(s) = a;x + By +y, on Py B,

where a5 B are 3n appropriate comnstants.

1 Yy

In (18''), the case a, = B1 = 0 gives a circular arc of curvature

i
Y5 it is the case that the stress in Pi-l Pi is a pure couple with
bending moment BYi' Otherwise, the stress iIn Pi-l Pi is equipollent
to the force ?i = B(- Bi’ ai) acting along the straight line
X + Biy + A\ 0.

On each i-th segment Pi-i Pi’ some other basic relations are
* E "’ X B
worth noting. If @ is the angle between Fi and the tangent to the



spline, then the curvature K = 8 and aii + Bi§ = - R1 sin 9§

(R, = (ai2 + 812)1/2). Hence, differentiating (18''), we get

se

(19) 8 = a,x + Bi§ =-R

i sin 6,

i

just as in [2], p. 401, (8) (with B = i). This "simple pendulum"

equation can be integrated to give

(20) -% 82 = R cos 8 + Ags

cf. [2], pp. 401-403, Egs. (7), (9), (13).

By similarity transformations, one can obtain all non-circular

"elastica' with given Wy = Ai/Fi from any one curve satisfying

[ ] l'-.z-_-.
(20") 7 © cos 8 + u,.
Typical such curves are graphed in [Z], pp. 404-405. For uy = -1,
the curve is a straight line; for Iuil-; 1, it has inflection points;
for My > 1, it does not. The case of circular elastica corresponds

to l-l1= @,
Differentiating (20') and dividing through by é_, we get also

@ = — gin 6., Differentiating again, we get

D

] .

. X - L B2
cos © 0 (ui 2 ) )




Setting ® = K and simplifying, this gives

(21) 2K + K3 = 2u K.

The preceding equation, which reduces to (1) when My ™ 0, is the

Euler-Lagrange equation for the variational conditicn

(21'") s[f(xz - Zui)]ds = 0.

Formulas (1), (21), and (21') are not in [2), and may be new.

Comparing (21) with (1), we see clearly that interpolation by
mechanical splines is the case Mg ™ Hp = ottt mH ™ 0 of interpolation
by elastica, in which tangential forces are permitted to act at the

“joints., In (20'), the case of mechanical splines (true nonlinear

spline interpclation) gives a curve similar to

(22) g = de/v’Z cos 9.

CORRELATION

We now correlate the three interpretations of '"nonlinear spline

interpolation' described in §§ 1-3, respectively.

This correlation depends on the mechanical interpretation

of equation (20), based on



B6=3 =N, BRicose=-T
(where N is the bending moment and T the tension acting on the spline

at the point considered) from which we get by (20)
1 1 ..2__1
(23) 2 N B T+ A,.

The most direct correlation concerns "mechanical splines" and
"elastica". Mechanical splines are always elastica with Ai = 0. More

generally, suppose that we require

1) All external forces at internal joints are (finite)
shear forces. As a consequence, the tension BT and bend-
ing moment BK will be continuous, the latter being
stipulated already in (18); therefore, by (23),

A will be continuous, which means that A will be the

same constant for all segments. As R can be assumed

to be non-negative, this restricts A/R to have the
same sign for the entire beam, but only for A = 0
will A/R be constant. In general, no further re-

strictions on the u, can be imposed.

i
A further natural condition is

i1) Zero bendihg moment, i.esy, K = 0 at the endpoints

PO’Pn' Then, by (23), a tension T = A has to be

- 10 -




applied at the endpoints. Therefore, A = 0 is

implied by

i11i) At all joints, PO’ Pl’ sy Pn only (finite) shear

forces are exerted on the beam.

On the other hand, the Fowler-Wilson method of §2 is not
specifically an approximation to nonlinear splines. It is equally
closely related to other families of curves which reduce to cubics
in the linearized approximatioh. Another such family is provided
by "Euler's spirals" or clothoids. These are plane curves whose

governing DE has the simple form

(24) k = Q, or K= a+ bs,

These evidently include circles (the case b = ), and are thus more

advantageous for some applications than '"mechanical splines", for which

Bo= 0 above (circles are Yo1astica" with Wy = ®),

The Effect of Tension. If one wants to consider interpolation
by general elastica imposing only condition i) on the external forces,
one has to decide on the parameter A which is related to bending
moment N and tension T at the endpoiﬁts PO’ Pn through (23).
Schweikert [4] discusses this in the linearized limit, and shows that
for some finite tension all extraneous inflection points disappear.
Similarly, in the nonlinear case a choice of the parameter A can be

used to select a "reasonable'" interpolation based on criteria other

- 11 -




than those contained in the data, which may sometimes be desirable.
For instance, the sequence of points PO = (1,0), P1 = (2,0), Pz = (0,2),
P3 = (0,1) for n = 3 permits "reasonable" interpolation for a wide

range of positive A,* but no solution satisfying both i) and 1ii).
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