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Abstract

Computational vision is about why a biological vision system functions as it does and how to

emulate its performance on computers. The central topics of this thesis are how a differential

geometry language can be used to describe the essential elements of visual perception in both

2D and 3D domains, and how the components of this geometric language can be computed in

ways closely related to how the human visual system performs similar functions.

The thesis starts by showing that at the earliest stage of vision, biological systems imple-

ment a mechanism that is computationally equivalent to computing local geometric invariants at

the two-dimensional curve level. The availability of this information establishes the foundation

for computing components of a differential geometry language from sensory inputs. The math-

ematical framework of scale space that makes this computational approach possible, likewise,

has its biological basis.

On the other hand, visual perception is a global phenomenon that occurs generally in a 3D

space. To understand this process and design computational systems that have comparable per-

formance to humans requires specification of how a 2D local computational mechanism can be

used in this global 3D environment. This goal is achieved through two steps. First, a global

surface representation formulation is extended from the 2D framework. It is shown how local

geometric features that are sparse and perceptually meaningful can be naturally used to repre-

sent global 3D surfaces. Second, active motion by an observer is introduced as an additional

dimension to the data set so that the observer becomes mobile and can react to observations

or verify hypotheses actively. This also makes dynamical data such as optical flow available



ii

to the observer. These added abilities enable the observer to perform tasks such as surface

recovery and 3D navigation. In addition, the modeling process of 3D objects is naturally con-

strained by the computational resources available to the observer so that the model is inherently

incremental.

This thesis contributes in the following areas: (1) direct computation of 2D differential

geometric invariants from images using methods comparable to the human vision system, (2)

perception-based global representations of 2D and 3D objects using geometric invariants, (3)

novel methods for optical flow computation and segmentation, and (4) active methods for global

surface recovery and navigation using both stationary contours, apparent contours and textured

surfaces.
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Chapter 1

Introduction

Computational vision is about both visual perception and how computers can perform com-

parable tasks as a biological system. So, we study computational vision to understand the

mechanism underlying the human visual system, and to design systems that are comparable to

the performance of a biological system. In this research,visual perceptionis used in the con-

text of the human visual system, whilecomputationis applied to both biological systems and

computers.

Research on computational vision, inspired by the incredible visual abilities in the bio-

logical world, has a long history of establishing theories that are based on signal processing

and geometric modeling. Computationally, both approaches use descriptions that require large

amounts of information, either in the form of raw data (e.g., pixels) or analytical descriptions

(e.g., spline parameterization). The adoption of these approaches is a direct consequence of

failing to constrain visual tasks effectively and, as a consequence, inordinate amounts of com-

putational resources have to be spent in order to derive general descriptions that are useful for

all tasks. This is particularly true when vision is treated to some extent as an inverse problem of

computer graphics, i.e., designing algorithms to transform image data to geometric languages

used in computer graphics (Figure 1.1).

One critical issue at the earliest stage of vision is to design highly data-selective processing
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early processing

2D image processing

global optimization

feature extraction

scene

computer graphics graphics descriptions geometric modeling

image sensing

local computation by visual modules

Figure 1.1: General approach to computational vision.

modules that extract those relevant data that will be useful for all tasks. This is the concept

underlying the design of “early-processing” modules that are tuned to critical visual features.

The study of existing biological mechanisms provides insight into how the capability of a vision

system is specified as well as the nature of the computation performed. The results from this

study also enable us to describe formally the relationship between computational models and

visual perception.

In spite of this insight and sound mathematical modeling techniques, it becomes increas-

ingly difficult when it comes to the interpretations of the computation and specifications of

tasks. We will need certain “contexts” to interpret the results of computation and evaluate

how well a task is performed. In this research, the major task is 3D object representation and

recognition, and the context is both perceptual and geometric.

The research presented in this thesis suggests that the information necessary for complet-

ing a visual task can be highly constrained and put in effect early in the processing pipeline.

With an adequate choice of the underlying geometric language, the results available from the

computation at the early stage can be interpreted in both perceptual and geometric contexts.

These interpretations lead us gradually to increasingly more abstract and more powerful con-
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cepts such as curves and surfaces in the geometric language. However, in contrast to methods in

computer graphics, these geometric concepts have direct computational and perceptual compo-

nents, which allow us to compute, for example, surfaces based on the input sequence of images

and their local properties computed at the visual system front-end. In addition, the perceptual

interpretations enable the observer to actively seek out the missing parts of the computation or

verify current hypotheses regarding object shape.

1.1 Problems and Core Issues

The initial computational problem encountered in vision is to determine which parts of the im-

age data should be retained for further processing. This selection process is imperative in view

of the overwhelming data available at the photoreceptors, when considering the dynamic nature

of vision in both the spatial and temporal domains. On the other hand, what is discarded as

irrelevant cannot be restored later. Consequently, this data selection process also determines

the nature of the vision system, including what tasks it can perform and how much resource is

needed in order to perform an individual task. Hence, the decision can only be reached by con-

sidering the tasks to be performed. The diversity of vision systems in nature demonstrates how

resources can be used differently and effectively for the design of a system when facing differ-

ent tasks. In computational vision, the main focus is those highly sophisticated systems such as

a human’s with object representation and recognition capabilities. Hence the first problem to

be investigated is:

Problem 1: What are the essential computations at the front-end of a vision system that

are capable of computing representations for complex shapes?— The core issue here

is how the system can retain sufficient information to complete the essential tasks within the

constraint of available computational resources. The computational models at the front-end for

the task of shape representation are studied in Chapter 2.
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Since our major focus is oriented toward the task of object representation and recognition,

a language is needed to describe the task formally and to associate the language with the data

through computational procedures. This association closely relates to what is considered to

be “features” of an object and how the object can be represented by these features. When the

language is chosen to be geometric, we need to solve the following problem:

Problem 2: What kind of geometric language can be used to describe relevant perceptual

results in human vision and how can the elements of the language be computed from the

data received at the front-end? — The core issue here is to establish a formal geometric

description for the task and specify how the elements of the description can be derived from

the data. The geometric language and its components are described in Chapter 3. The specific

computations of these components from images are presented in Chapter 4.

When the geometric language is chosen to be analytic or has components that are locally

smooth (e.g., differential components), it has a natural relationship to the functionality of the

system front-end, since the front-end is characterized by local computations. However, visual

perception is a macroscopic or global activity and we have to answer the question:

Problem 3: How are the global properties of perception related to the results of local

computation as dictated by our choice of geometric language?— The core issue here is

to explicitly specify the global properties and show how the computation from local to global

domain can be achieved. This problem is studied in Chapter 5 and Chapter 8 by employing the

global curve model in Chapter 3 and the global surface model in Chapter 8.

The components of the geometric language are what is to be computed from the raw data.

For an analytic geometric formulation, the computation of its components requires infinite

time to complete because of the infinite resolution implied. When it is necessary to termi-

nate the computation due to finite computational resources, the resulting representation must
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have a well-defined relationship to other representations acquired from different resource re-

quirements. Hence the following problem arises:

Problem 4: When should the computation of the language terminate and what is the rela-

tionship between the representations computed under different resource constraints?—

The core issue here is to represent the results of the computation when it terminates and to

analyze the relationship between different representations such that there is a smooth transition

across different computations (incremental modeling). Incremental modeling for 3D represen-

tations of surfaces are presented in Chapters 8.

The information used for object representation is part of the sensory input and all the above

problems will be studied under the assumption that those input data are useful for the task.

This is the passive view of how the task is handled. In general, the assumption can be false

and we should not impose, as is commonly done in computer vision, further assumptions that

agents outside the system can supply the relevant data. To close the loop for data acquisition,

we should also answer the following question:

Problem 5: How can an autonomous system actively seek out information based on what

has already been observed?— The core issue in this problem is to specify sound procedures

that can be effectively used to navigate and acquire essential information that are missing for

completing a task. This problem is handled within the active vision paradigm. The case of

computing surfaces from stationary surface curvilinear features is studied in Chapter 6, and

active 3D navigation is studied in Chapter 8, while the computation of optical flow is studied in

Chapter 7.

1.2 Thesis Statement and Contributions

This research covers two major categories of problems in computer vision: the computation of

geometric features from 2D images, and 3D object modeling by an active observer. The results
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are mathematical formulations of how perceptually meaningful, 2D geometric properties can

be embedded in early processing modules, and how active processes can be used to facilitate

3D modeling and object recognition based on the results of the 2D computation.

The central thesis of this research is:

1. The language employed by visual perception to represent objects is intrinsically both

perceptual and geometric, and this nature has to be reflected in all stages of information

processing.

2. The nature of visual information processing is active rather than passive.

The major contributions of this research can be categorized as follows (Figure 1.2).

1.2.1 Contributions

Geometric Feature Computation Using Receptive Fields The mathematical modeling of

visual information processing is formulated based on foundations from the biological nature of

the human visual system. This modeling is effective in bridging the gap between visual percep-

tion and the geometric language. By employing the framework of scale space, the information

domain is effectively smooth for differential computations and, yet, can be interpreted globally

for perception. It is shown how intrinsic properties of 2D curves can be locally computed from

an image using filters from a receptive field family.

Global Curve Modeling and Surfaces from Stationary Contours The computed 2D curve

properties are used to construct global object models used by a new scheme for 2D object

recognition. The 2D framework and results are readily extended to 3D when we consider

stationary curvilinear markings on a surface. It is shown that an active observer can navigate

the surface to recover the surface geometry around these markings.
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Optical Flow Computation and Segmentation For a textured surface, new methods for

optical flow computation and segmentation are developed so that the observer can determine

the object boundaries using local motion. We also demonstrate how an active observer can

control its movement in order to control how an optical flow field is decomposed. This ability

allows the observer to choose vantage points to obtain better spatial relations with the surface

during navigation.

3D Navigation and Perception-Based Incremental Modeling For the problem of 3D sur-

face representation, a new theory of 3D incremental modeling is presented so that an observer

can infer feature points and curves on a surface that are both intrinsic to the surface geomet-

rically and meaningful for visual perception. We also present navigation theorems that enable

the observer to actively verify hypotheses formed from the current observation. It is proved

that, computationally, navigation will terminate for the task of surface recovery.

and
active navigation

optical flow computation

observer
active

image sensing

2D curve modeling

geometric processing

global 2D matching

perceptual-based geometric computation

3D incremental modeling

hypotheses verification
and

matching2D modeling

3D modeling

resource estimation

object database

scene

Figure 1.2: Approach and contributions.
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1.3 Methods and Assumptions

1.3.1 Base Filters

The computational models at the system front-end are based on filters of “limited bandwidth in

both space and frequency domains.” These filters are chosen on the basis of the assumption that

there are both spatial and spectral components in visual information processing. Consequently,

scale-space variants of Gabor and Gaussian filters are natural candidates for the modeling of

these components. This choice is also supported by results from physiological research.

1.3.2 From Local to Global Domain

Visual perception is a global activity [8], even though all the computations at the system front-

end are local. Hence, it is assumed that a computational theory of vision needs to explain how

this gap between local computation and global perception can be bridged.

1.3.3 Geometric Language, Perception and Representation

The assumption is made that it is the geometric events occurring in 3D Euclidean space that are

perceived and should be computed from the raw image. In this research, the geometric language

is chosen to be differential in nature, i.e., the measure of distances between data properties is

infinitely smooth. This idealization is appropriate by making scale-space a foundation of the

modeling. A consequence of this approach is the emergence of “families” of base filters (i.e., the

Gaussian functions) that are indexed by the scale-space parameters. On top of the language, it

is also assumed that the representation is shape-oriented so that there are well-defined processes

that can recover the object shape from the representation.
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1.3.4 Task-Oriented, Closed-Loop Approach and Active Vision Paradigm

The logical structure of a vision system has two parts: (1) to compute high-level geometric

properties from low-level data, and (2) to ensure the coherence of the computation by verify-

ing the high-level results in the low-level domain. This ability can be acquired if we adopt

a “closed-loop” processing model and provide the observer with voluntary mobility. That is,

methods of active vision will be used to establish the hierarchy of geometric structure from

low-level data to high-level object representation. This is achieved by actively seeking out rel-

evant information and verifying hypotheses in case of insufficient information. Furthermore, it

also implies that the observer can incorporate the task specification so that only task-oriented

information needs to be located.

During the limited span of both spatial and temporal intervals, the imaging information

can be processed by a system without closing the processing loop (i.e., there is no feedback

from later stages to earlier stages). Since the propagation and processing of signals require

time, it is always possible to define such a time span so that only open-loop systems need to

be considered. However, this restriction greatly limits the tasks that can be performed by the

system (e.g., only the reflexive movements that bypass the cerebral cortex). It is hypothesized

that only the early stage of the system can benefit from a complete open-loop design.

1.4 Motivation and Related Work

1.4.1 Visual Information Model

There are two extremes in the spectrum of human-computer vision problems: the raw data

(signal) available at the sensory front-end and the 3D modeling of the physical world. The

analytical capability of methods from signal processing simplifies greatly the problem formu-

lation in computational vision, but applying these methods directly in vision makes it difficult
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to interpret the results in terms of visual perception. It is also inherent in these methods that

the information is uniform across both space and time, while visual perception is more than

discriminating signal and noise. Without an information model to interpret which part of the

signal is relevant, computational problems in vision will be very difficult to solve (Figure 1.3).

zero crossing

information filter

ω

signal filter

x

y

Figure 1.3: The signal model only concerns the separation of noise from signal, while the
information model specifies that only zero-crossings are relevant.

Perception as Part of the Model The emergence of Marr’sprimal sketchrepresentation [77]

drew results from physiology and psychophysics and made explicit statements about what is

computed for shape representation. This model motivated a number of theories regarding early

processes of vision and culminated in theories such as optimal edge detection [22], 2D inter-

pretation of 3D shapes [11], and integration of visual modules [4]. One of the consequences

of this model is the critical decision of which part of the input data is relevant for intended

tasks at the early stages, and this decision is based on visual perception. The computational

problem regarding an appropriate (geometric) information model for shape representation and

its relationship to visual perception is one of the major themes in this thesis.
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Information models such as the primal sketch are 2D-based, and the inverse problems of

inferring 3D information from these 2D models are ill-posed [13]. Consequently, additional

assumptions have to be made in order to make this process feasible. For example, by imposing

assumptions regarding the nature of image formation, some properties of the object surface can

be inferred from the primal sketch (shape-from-X approaches [51]). Or, by minimizing certain

error energy functions to regularize the solution space [86] or integrate visual cues for surface

representation [99].

Hypothesis Verification as Part of the Model Imposing hypotheses is a way of introducing

additional structure on the relatively primitive data and transforming it into more structured

information. However, the transformations resulted from these hypotheses are not intrinsic to

visual perception and hence is superficial to the problem. For a biological system, the route

from 2D information model to 3D shape representation is naturally an active one, which in-

volves exploring and navigating the 3D environment. There is no additional assumption being

imposed here. Instead, assumptions are verified or falsified by actively collecting evidence.

This process is another major theme of this research.

1.4.2 Early Vision and Biological-Based Modeling

Early stages of visual information processing are characterized by local computation that uni-

formly selects the parts of the raw signal that are useful for all tasks. The implementation of

the early modules for these stages also define the capability of the vision system per se. These

computations are generally considered to be the first stage of a hierarchical structure of a vi-

sion system. As such, research efforts have been made to “optimize” these processes so that

subsequent stages can rely on these initial computations. Other than properties that are directly

related to local computation such as edge detection and optical flow, it is also considered essen-

tial to derive increasingly global properties (e.g., surface geometry and motion segmentation)
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from these stages. However, devising local operators for these goals has proven exceedingly

difficult, even though there is evidence that biological systems are able to obtain global proper-

ties from local computations [53, 73].

Static and Dynamic Modeling According to their intended inputs, the models of the early

visual modules generally are of two categories: static and dynamic, though the physiological

foundation of both is essentially dynamic (e.g., a stabilized image fades quickly without sac-

cadic movement [75]). The static models are developed for the processing of static images, and

are proved to be effective for operations such as edge detection and texture analysis [77]. The

dynamical models, on the other hand, are for motion analysis, in which the input images are

also sampled in the temporal domain.

Receptive Fields The biological mechanisms responsible for the local computations in early

vision are the “receptive fields” [3, 30, 52, 71], whose computational properties are modeled

extensively in vision research [27, 66, 91]. Both spatial and frequency domain methods have

been used for modeling early vision modules [27, 28, 29, 92].

Scale Space One of the parameters inherent in the receptive field modeling is the size of

each field. In terms of the sampling topology implemented by the receptive fields, the size

parameter defines ascale space[54, 58, 114, 116] for what is being computed. This formulation

is essential in bridging the local computation [37, 65] and global representation gap. Since it is

embedded in the receptive field modeling, the information structure computed by the receptive

field naturally inherits a scale space structure as well [37, 67].

1.4.3 2D Geometric Modeling

Image contours exhibit good correspondence between image structure and the physical world

at early stages of visual perception. They also bridge the gap between local computations of
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the 2D image signal and perception (organized globally). When considered along with 3D ge-

ometry, 2D contours can even be used to constrain 3D surfaces to a certain extent [11, 88].

For a given 2D curve, there is no single description that is canonical in its geometric content.

However, there are descriptions with parameters such as curvature extrema that are meaningful

perceptually [8, 35, 36, 87], and invariant under restricted affine transformations (rigid transfor-

mations plus uniform scaling) [49]. In other words, these parameters characterize the essential

geometric structure of an image contour. This observation, combined with the acknowledgment

that the structure of an image contour can be described at multiple scales, has led to such con-

cepts as curvature space [87, 81], scale-space primal sketch [72], curvature primal sketch [7],

and curvature scales [67].

Computation of Contours In order to make the structure of an image contour explicit, a

geometric model [67, 80] of the contour needs to be computed from the image, which is also

implemented by biological systems [32, 61]. In computational vision, two methods are com-

monly employed: (1) local edge detection followed by global curve tracing [81, 84], and (2)

global interpolation or energy optimization [57, 118]. The difficulty with the first approach is

the strictly one-dimensional sequential processing model and data dependency, e.g., the estima-

tion of curvature depends exclusively on the current edge locations and their estimated tangents,

which, in turn, depend only on the resolution provided by an edge detector. Hence errors pro-

duced in early stages propagate to and are amplified by all later stages. Recognition of this fact

results in the general consensus that higher order geometric invariants of image contours (such

as curvature) are noisy and unstable computationally [112]. The method of energy optimiza-

tion, on the other hand, requires a careful design of energy terms to stabilize the results, and

both methods do not perform well across tangent or curvature discontinuities.
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1.4.4 2D Object Recognition

The problem of 2D object recognition can be defined as: Given a 2D object described by a

representation method and a set of known instances described by the same method, identify

efficiently the degree of similarity between the object and the known instances, and, if nec-

essary, a set of well-defined transformations that are needed in order to make the similarity

explicit. The method of representation should be stable under noise and should preserve 2D

shape information. The method of identification should not be dependent on the number of

known instances in terms of computation time.

One of the major issues in object recognition is to find object representations and matching

processes that are invariant under view variations and are computationally efficient. Invariance

with respect to a specific kind of variation requires representations that either are independent

of the variation or have a well-defined behavior in the presence of the variation. The matching

process identifies similarity between object representations and a set of known instances (i.e.,

models), and should be as independent as possible of the size of the database. In addition,

any proposed representation and matching method must be stable in the sense that limited

variations in the input produce limited variations in the representation and the performance

of the matching process. This stability enables us to define a metric for matching as well as

dealing with some of the invariance issues mentioned above. Commonly used invariants are

projectiveandaffineinvariants as well as proper subsets of these two groups, e.g., scaling and

rigid transformations.

2D Representation For 2D object representations, the descriptors or primitives are curvilin-

ear contours [114], regions or image templates [55, 111]. Object representations by curves

are associated with perceptual organization [115] and curve partitioning [35, 36], in which

perception-related criteria are used to partition the curves of object boundaries. Both spatial

and Fourier domain representation methods have been developed. Spatial domain methods
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generally isolate interesting parts (e.g., curvilinear features) from background noise and estab-

lish one or more descriptions based on these isolated parts [114], while Fourier methods are

commonly used for image templates.

To address the problem of view invariance in 2D object recognition, the 2D primitives

used for the representation are either constructed from invariants for a carefully selected set

of features (primitive or invariance-based)[6, 82] or from multiple views (appearance or view-

based) [63]. Invariants can be selected either from local or global representations. In general,

local representations (differential-based) of curves are not stable against noise but do preserve

curve information, while global representations (e.g., moment-based [98]) are more stable but

do not preserve curve information. In cases where image templates are used directly as known

instances, either partial transformation (deformations) functions (scaling and translation) are

recovered during a point-based matching process [55], or an invariant transformation such as

the magnitude of the Fourier transform is used [111].

2D Matching The matching process generally involves graph-matching, relaxation methods

or topological distance measures. In cases where searching is involved in the matching process,

the computational complexity with respect to the number of known instances in the database has

been a difficult problem and has been tackled from the perspectives of both searching strategies

[41] and invariance indexing [89]. Techniques such as hashing and indexing have also been

developed in order to solve this problem [12, 89, 95, 103]. A major problem with indexing is the

many-to-one mapping from object representation to indexed space, i.e., the representation can

not be recovered from the index itself. Under this condition, the probability that multiple objects

or noise resolve to the same index is high. Consequently, algorithms with time complexity that

is approximately independent of the size of the object database are needed.
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1.4.5 3D Representations

3D computer vision, in which 3D geometry is inferred from image analysis, has generally been

considered as a complementary problem of computer graphics where images are produced by

analyzing the interaction of light and 3D geometry. In either problem domain, 3D geometry

is considered a substrate and essential for problem solving. However, the geometric models

in computer graphics are designed to generate visually appealing images, while in computer

vision, local and usually differential, properties are identified first and assembled later into

geometric models by applying additional global constraints. The resulting surface shapes in

vision are often represented in a way closely related to computer graphics such as quadrics

[34], superquadrics [9, 85], and dynamic meshes [99]. Consequently, the criteria used in the

representation are generally without perceptual significance. This causes difficulties in deter-

mining how the results from the front-end should be connected to the 3D representation. In

other words, the choice of geometric models dictates what should be computed and, often, how

to compute it. In contrast, the “reconstruction” of a surface from its representation as a means

of, for example, visual communication can naturally employ computer graphics techniques,

since the process need not go through the same hierarchy of the visual processing to fulfill the

purpose. A complete framework for 3D representation should, however, contain both parts, i.e.,

representation and reconstruction.

Representation and Reconstruction of Surfaces Other than the desirable connection be-

tween a representation and visual perception, viewpoint or even affine invariance is needed

for tasks such as 3D object recognition. This subject was studied extensively in the form of

geometric invariance [82]. For a smooth region of a surface, intrinsic surface properties of dif-

ferential geometry are usually employed [31]. Gaussian curvatures, critical points [14, 90], and

extended Gaussian images [50] are among the commonly used intrinsic surface properties. To

reconstruct surfaces from a point-based, local representation, both variational methods such as
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thin plate [41] and energy minimization [16, 18, 99] have been used. The extension of point

properties to curves appears in the form of principal patches [93], surface primal sketch [7, 19],

planar curves and asymptotes [19]. Reconstructing surfaces from arbitrary surface curves have

used the formulations of Gordon-Coons patches [33] or tensor-product surfaces [56], while

some of the methods to reconstruct surfaces from intrinsic surface curves were studied in [19].

The interaction of scale and curve features has also been studied [7, 36]. In these represen-

tation methods, the surface is always described by uniform coverage with computation applied

to every part of the surface. Hence, it is not possibly to represent the surface “incrementally.”

Computation of Surface from Curvilinear Properties The desirable goals of representing

3D surfaces using intrinsic geometric properties that are also perceptual meaningful prompts

us to look into computational procedures that link these two goals together. This investigation

also provides a natural extension from 2D curve representations to 3D.

(a) Face with shading
information.

(b) Face with appar-
ent contour only (for a
Lambertian surface).

Figure 1.4: The information conveyed by shading and apparent contour.

The way a 3D surface is projected onto the image plane is dependent on the light source,
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surface geometry and the projection process. Inversely, these factors can be effectively inferred

if various information from visual modules can be integrated [4, 99]. From this point of view,

we can talk about the “amount” of information available for the observer to compute surface

geometry, if the light source and projection process are known or assumed. When only a single

module is used to compute the surface, the available information is, in a sense, “minimal” and

the problem is generally harder in this case. In this research, we specifically consider Lam-

bertian surfaces, where the shape can be computed from extremal contours only, and textured

surfaces, where optical flow is available for the surface (Figure 1.4). In the latter case, an active

observer can isolate the foreground from the background using optical flow even when both the

object and background are similarly textured.

One specific kind of extremal contour, the occluding contour, (or apparent contour) can be

used to effectively constrain the surface [10]. Subsequently, the surface can be recovered from

occluding contours by observing the contour “sliding” across the surface as the vantage point

changes [19, 25, 39, 102]. On the other hand, stationary contours (curvilinear markings on a

surface) and discontinuous contours only constrain the surface along a single dimension like a

strip for a smooth surface [60]. Consequently, stationary contours have been studied mostly in

the context of qualitative surface characterization [26, 59, 96, 117].

1.4.6 Active Vision, Optical Flow and Navigation

Given a task, the data necessary for performing the task depends on the task itself. So, for

example, collision avoidance does not require surface shape recovery. On the other hand, many

problems in vision are ill-posed or not well constrained because of the lack of sufficient data.

These two cases indicate the close interplay between a problem and relevant data in computer

vision. A balance can be struck if the observer is allowed to interact with the scene by contin-

uous observation, i.e., the current observation is analyzed based on the nature of the task and

data already acquired. These two aspects constitute theactive vision paradigm[5].
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Methods that seek additional data in the environment determined by the problem generally

involves relative motion between the scene and the observer. This relative motion could come

from either voluntary observer motion or the dynamical nature of the scene. In either case, the

additional data made available by these processes are either the motion field computed from

optical flow when the surface is textured, or the deformation of smooth surface features and

features such as occluding contours.

Optical Flow Optical flow conveys information about a surface through depth cues. This

information may be used to identify object boundaries (optical flow segmentation) [2], to deter-

mine the observer’s egomotion (passive navigation) [51, 21], and to recover surface geometry.

Biologically, optical flow can be modeled by filtering the visual signal at different time intervals

and making appropriate comparisons [47, 101]. This approach is readily extended to filters of

spatio-temporal receptive fields [1, 42, 43, 108].

The computational domain of optical flow is a spatio-temporal volume of the images. Since

the motion field conveyed by the optical flow is relatively simple and involves only locally rigid

motion such as rotation and translation, the result is easier to interpret than those computations

in the spatial domain only (e.g., edge detection). This simplification comes from theoptical

flow constraint[51] which states that, for a locally rigid motion, the optical flow generated by

a stationary point on an object will be smooth relative to its neighborhood if the neighborhood

is entirely embedded in the same surface. This property has been applied globally to estimate

optical flow. However, the condition where this equation holds breaks down frequently with

an image of natural origin, and the problem of computing the motion field from optical flow is

itself an ill-posed problem (e.g., due to the aperture problem [101]). On the other hand, when

certain natural conditions of the surface are assumed (for example, finely textured), there is a

well-defined correspondence between the motion field and optical flow, and the computation

can be carried out effectively using spatio-temporal filters [45, 46].

Optical flow itself provides depth cues of the scene [74], and its segmentation generally
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corresponds to object boundaries (the apparent contour). However, there is a close interplay

between the computation and the segmentation of optical flow, which may be separated to

some degree by using iterative methods [51] or multiple scale filtering [110]. Optical flow

also conveys useful information regarding surface geometry [62, 64]. When the spatial and

temporal derivatives can be computed reliably, the surface geometry can be also recovered

[109, 97, 100]. On the other hand, for navigation tasks that do not require full scene recovery,

optical flow analysis is useful in exposing the relationship between the observer and the scene

[17, 24].

Segmentation of an optical flow field is qualitatively similar to segmentation of image ir-

radiance. The goal is to locate one-dimensional boundaries that correspond to actual object

boundaries.

Deformation of Curvilinear Features For an active observer, when the surface is smooth

and uniform in shading, the only reliable information about surface shape comes from the pro-

jection of occluding contours onto the image plane, which usually coincides withsilhouettes.

On the other hand, object surfaces often contain stationary curvilinear features (or surface mark-

ings). Both stationary and occluding contours are curvilinear features on the object surface and

they constrain surface shape in a similar way, i.e., they tell us something about the tangent

direction and degree the surface curves away from this direction. However, for a stationary

observer, these two kinds of contours appear to be locally identical and, therefore, cannot be

distinguished. On the other hand, the fact that an occluding contour slides across the object

surface while a stationary contour is fixed on the surface present themselves quite differently to

an active observer. This observation also makes the task of classifying contours an important

problem for strategies that infer surface shape from contour [25, 69, 117].

For occluding contours, an active observer can recover surface shape fromknownocclud-

ing contours under orthographic projection [39] or arbitrary observer motion under perspective

projection [25]. The same method also provides a procedure to identify the type of contour after
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the surface shape is recovered. However, this identification method requires accurate measure-

ment as well as the recovery of the surface shape as a prerequisite. An alternative method is an

affine-invariant basedre-projectionapproach [69], though surface recovery using this method

is limited to areas where the surface shape contains occluding contours. In summary, methods

used to recover surface shape from occluding contour require accurate measurement of ob-

server motion, camera calibration, and is, in general, very sensitive to noise. The advantages of

these methods are twofold: contour features can be extracted more easily and reliably, and they

can strongly constrain the surface shape and characterize the surface directly (e.g., how occlud-

ing contours relate to sign of Gaussian curvature on the surface) [19, 59]. Active occluding

contours have also been successfully applied to dynamic tracking of objects [57, 25].

For stationary contours, most results obtained are qualitative in nature, including the conjec-

ture that parts of the surface shape from stationary contour deformation might be recovered [96].

The deformation of image contours can be studied in general terms by relating observer motion

parameters to the deformation of image contours [23]. It can be shown, for example, how the

sign of normal curvature can be determined from properties of projected image contours (e.g.,

inflection points) [25], and at least three views of a contour are required to distinguish between

a space curve and an occluding contour [117].

1.5 Thesis Outline

The central issue investigated in this thesis is the systematic usage of geometric models in

computer vision. This involves the development of a geometric language for the modeling of

both visual perception and high-level cognitive tasks (e.g., object recognition) in the human

vision system as well as the computation of essential components in the geometric language.

The biological basis of the human visual system and the mathematical modeling of receptive

fields are presented in Chapter 2 as a foundation for the study. This is followed by the spec-
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ification of a 2D and 3D geometric language in Chapter 3 to prepare us for the development

of 2D geometric computation from receptive fields, which is given in Chapter 4. The results

of local computation for 2D curves are extended and used as a basis for global curve repre-

sentation and 2D object recognition in Chapter 5. This result is extended to 3D in Chapter 6

when we consider stationary contours on object surfaces. The need for an active observer and

their navigation ability also becomes apparent here. The active capability is further strength-

ened by optical flow computation and segmentation, which is developed in Chapter 7. Finally,

the different characteristics of localized movement needed for optical flow computation and

global navigation needed for full surface recovery and representation are combined and studied

in Chapter 8.
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Chapter 2

Biological Basis and its Mathematical

Modeling

Computer vision is at once both formal and experimental. In spite of the immense comput-

ing power of current technology, computational mechanisms that are comparable to the visual

abilities of natural systems still elude us. In light of this, the prominent and relevant aspects

of natural vision systems are examined first for their possible insights to our problems. The

emphasis here is the local computational properties at the front-end of the processing layers.

It is particularly interesting to observe how the spatial variation embedded in the continuous

influx of light could be filtered and organized even at this foremost part of biological systems.

These principles and their mathematical descriptions are the major topics in this chapter.

A biological system determines how to conduct local computations at the system front-

end as part of the data selection process. This selection process also defines the nature and

capabilities of the system itself. Insights to both the data selection process and formal properties

can be obtained by studying systems whose capability we desire to emulate on computers.

In addition to understanding what kind of information is relevant to a set of tasks, the study

of mathematical models of biological systems will also help us understand the formal nature

of the data as part of “information” (interpreted within a pre-defined context) as opposed to
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“signal” (interpretation-free). This is essential for vision since at certain points we need to

cease considering the data as a neutral signal free from any interpretation and start bringing in

additional assumptions that not only constrain the problem but also make the problem context

clear. This goal can only be achieved when the mathematical models of the vision front-end are

well established for the desired tasks.

In this chapter the study of the physiological and mathematical models of the system at the

level of photoreceptors establishes that the essential elements of the computation and the data

selection process at the front-end are:

• overlapping computational units that have local scope in both spatial and frequency do-

mains

• these units are parameterized by a scale parameter that has a non-uniform distribution

across space

• the results of the computation are complete in signal space

The mathematical model thus established is also verified by predicting hyper-channels in the

human vision front-end.

The organization of this chapter is as follows. The essential facts about the physiology of

the human visual system are reviewed first as a prelude to formulating mathematical models for

operations specially designed to examine the information contents of visual signal. The formal

models are shown to be complete in signal space and examples in image coding are given. Fol-

lowing this, the distinction between signal and information is explicitly spelled out and several

models for processing the information content are presented. Examples are also given as appli-

cations of a new model that conforms to the psychophysical data. The resulting mathematical

language in this chapter and the expansion of it in the form of geometric languages in the next

chapter will become the theoretical framework of this thesis.
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2.1 Fundamentals of the Human Visual System

Among the structures and functionality in the human visual system, the front-end (including

the photoreceptors and their adjacent layers) is better understood than other parts higher in

the visual pathway. This and related areas in the visual cortex will be our main focus in the

development of formal models.

2.1.1 Retina

The front-end of the human visual system is the optic transducer, or the retina. A schematic

digram of the stratification of cells in retina is shown in Figure 2.1. Incoming light is first trans-

duced directly by the photoreceptors, which can be classified into cone and rod cells. In addition

to cones and rods, the retina contains four classes of cells: horizontal, bipolar, amacrine and

ganglion cells. The basic inter-cell connections can be classified into an outer plexiform layer,

where photoreceptors synapse with both horizontal and bipolar cells, and an inner plexiform

layer, where bipolar cells synapse with both amacrine and ganglion cells. Finally, the axons of

ganglion cells are bundled into the optical nerve and run through the blind spot to the lateral

geniculate nucleus (LGN) and the visual cortex. If this signal transforming process is treated

as an input-output system, then each output, i.e., the signal carried along the optic nerve of a

single ganglion cell, can be defined by areceptive field(rf), which is the region of the retina,

usually roughly circular, where afferent stimulation affects the overall firing rate of the output

neurons. There is a large collection of literature treating the classification of receptive fields.

Roughly, there are three types of rf: X, Y and W types. Each rf type is characterized by the

effective area of the response and the way it responds to either a stationary or a transient input,

as well as the responding speed.

It is important to observe that tradeoff of design is ubiquitous in various biological vision

systems. The first example is the mechanism of color detection. It serves an extremely impor-
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Figure 2.1: Structure of the eye.

tant role in the human visual system. However, a retinal cell that is sensitive to a particular color

implies the loss of light energy associated with other parts of the visible spectrum. This in turn

implies the failure of detection of moving objects in dim light. Consequently, for species whose

optic sensors are used primarily for detection rather than recognition, it may not be worthwhile

to have this capability. Besides humans, other color sensitive animals include the diurnal birds,

reptiles, and octopus, while dogs, cats and frogs are color blind.

This compromise in sensitivity also occurs within the eyes of individual organisms. In the

human retina, the cone cells are responsible for detailed vision and are color sensitive. The

distribution of the cones is most condensed and uniform in the small area around the fovea. On

the other hand, the rod cells are almost two orders of magnitude more sensitive to light than the

cones and are incapable of detecting color.

It is worth noting that there are about 126 million photoreceptors in each eye, of which

120 millions are rod cells and 6 million are cone cells, but there are only 1 million nerve fibers

exiting each eye. Hence, on average, the information compression rate is about 126:1. However,
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neither the distribution of photoreceptors along the surface of the retina nor the distribution of

ganglion cells rf with respect to the photoreceptors is uniform. In terms of the theory of signal

processing, we have two sampling schemes, one is the sampling of incoming light by the mosaic

of photoreceptors and the other is the equivalent sampling of incoming light by the receptive

fields, which is achieved through the inner and outer plexiform between ganglion cells and

photoreceptors. Schematic diagrams for the sampling mosaic of photoreceptors (cones) and the

equivalent rf are shown in Figure 2.2 .

Figure 2.2: Sampling topology of the retina.

The layout of optic receptors has maximum uniformity and density at the center of the optic

axis of the eye, and decreasing density and regularity with increasing eccentricity. In the human

fovea, cones are spherically packed in a hexagonal array and there are almost a corresponding

number of ganglion cells connected to these cones. However, there is an intense overlapping

of the receptive fields [71]. It was argued by Levick [71] that the notion of different types of

receptive fields overlapping a common area leads naturally to a parallel pathway design of the

visual system. The property that there are almost equal numbers of rf and corresponding cones

implies, at least theoretically, the lossless information processing from the fovea to the optic

nerves. Overlapping is depicted in Figure 2.2 as part of the sampling mosaic.

One of the basic requirements for a system ensuring high spatial resolution is regular spac-

ing of the sample points. Irregularly spaced sample points introduce positional noise and reduce
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visual acuity [104]. The mosaic of ganglion X cells shows neither square nor hexagonal sym-

metry, but the distances between cells seem to be regular [104].

2.1.2 Visual Pathway

The major stations visited by the optic nerve exiting from the retina are the lateral geniculate

nucleus (LGN) and the visual cortex. The LGN is largely responsible for the relay of visual

information to the visual cortex, which is roughly subdivided into three areas: areas 17, 18, and

19. The results of Hubel and Wiesel [52] showed that the so-called simple cells in area 17 are

orientation selective according to the physical structure of “hyper columns.” Each column is

selective to only one direction. Later other results were established concerning the frequency

selectivity of the simple cells (DeValoiset al. [29]). Today, it is well acknowledged that simple

cells are characterized mainly by these two properties — orientation and frequency selection. It

is also established that the response of simple cells is roughly linear [27, 79]. This property of

linearity is the basis for a whole range of theories. There are, of course, highly nonlinear cells

in the visual cortex. These cells are termed “complex” and “hyper complex” cells and are the

main occupants of areas 18 and 19. There is no coherent theory about these areas except that

they respond to more complex combinations of image structures.

As Daugman [28] explained, vision research has debated the basic functional organization

of early visual representation since the 1960’s. Both local feature detection in the spatial domain

and frequency domain decompositions based on linear transformations such as Fourier analysis

have been proposed. Marˇcelja [79] argued that if linearity holds for the cells being modeled,

an adequate theory based on spectral transformation can be established and both domains are

complementary to each other.

Some of mathematical models formulated along this line of thought will be reviewed in

the next section, especially Gabor filtering [27, 79], and how these models can be used to

distinguish the representation of visual “signal” and “information.” A theory of image coding
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is also reviewed, which is motivated by this knowledge about the receptive field of the retina

and the selectivity properties in frequency and orientation of simple cells in the visual cortex.

2.2 Retinal and Cortex Modeling

Our knowledge of the front-end mechanisms in the visual pathway, as reviewed in the previous

section, will be formalized in this section and serves as a foundation for the subsequent chapters.

The emphasis is to show how the narrow exit of the visual front-end and local computations

as performed by the physiological mechanism of the exiting information path can be described

elegantly by mathematical formulations.

2.2.1 Modeling Using Gabor Filters

Gabor [38] proved that for a given temporal signal, the degree of simultaneous localization

in both time and frequency domains, which is measured by the multiplication of the standard

deviations of the signal in both time and frequency domains, is lower-bounded by 1/4π . He

also derived the general form of the signal that actually achieves this lower bound. This signal

form is known as the Gabor function :

ψ(t;µ, σ, λ) 4= exp

[
−(t − µ)2

2σ 2
+ iλt

]
(2.1)

and has the Fourier transform:

9(ω; λ, σ, µ) = (2π)1/2σ exp

[
−σ

2(ω − λ)2

2
− i (ω − λ)µ

]
. (2.2)
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If the effective spread in the temporal and frequency domains is defined as4t = (t − t)
1/2

,

and4ω = (ω − ω)
1/2

, then the Gabor signal satisfies the condition:

4t4ω = 1

4π
.

It can also be shown thatψ is orthogonal in the sense

∫∫ ∞

−∞
ψ(t;µ, λ)ψ∗(s;µ, λ) dµ dλ = 2π3/2σ exp

[
−
(

t − s

2σ

)2
]
δ(t − s). (2.3)

Hence,

∫∫∫ ∞

−∞
ψ(t;µ, λ)ψ∗(s;µ, λ) f (s) dµ dλds = 2π f (t). (2.4)

Figure 2.3: Two-dimensional Gabor signal
in the spatial domain.

Figure 2.4: Two-dimensional Gabor signal
in the frequency domain.

The traditional concept of the rf profile of a cell is a representation of the cell’s response in

terms of a bivariate function. It is defined as a weighting function, which describes the weighted

contribution of light at each point in the receptive field to the response of the cell. It has been

shown by Daugman [28] that the receptive field profile of the visual cortex simple cells can be
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adequately described by a two-dimensional Gabor filter (Figure 2.3 and 2.4):

ψ(x; µ, σ , λ) = ψ(x1, x2;µ1, µ2, σ1, σ2, λ1, λ2)

4= exp

[
−(x1 − µ1)

2

2σ 2
1

− (x2 − µ2)
2

2σ 2
2

]
exp[i λ · x]

(2.5)

or, equivalently, in Fourier form:

9(ω; λ, σ ,µ) = 2πσ1σ2 exp

(
−1

2
|σ · (ω − λ)|2

)
exp[−i µ · (ω − λ)].

It can be observed that, geometrically,ψ is a Gaussian envelope centered at(µ1, µ2) and su-

perimposed by a planar sinusoidal grating with spatial frequency(λ2
1 + λ2

2)
1/2 and orientation

θ = tan−1 λ2/λ1. The Fourier transform ofψ is a Gaussian envelope centered at(λ1, λ2) and

superimposed by a sinusoidal grating with spatial frequency(µ2
1 + µ2

2)
1/2. Also, the standard

deviation along axisω1 (ω2) is the inverse of the standard deviation along axisx1 (x2) (see

Figure 2.5).

frequency domain

spatial domain

Figure 2.5: Relationships of Gabor filters between spatial and frequency domain.

If a receptive field is characterized by the profilep(x, y), then its response to an input image
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f (x, y) is

r =
∫∫ ∞

−∞
p(x, y) f (x, y) dx dy. (2.6)

If p(x, y) is a prototypical profile at(0, 0) of the image plane, then, for a set of receptive fields

at (xi , yi ), we can acquire the following set of responses:

r (xi , yi ) = p(−x,−y) ∗ f (x, y)|x=xi ,y=yi

= F
−1{P(−u,−v)F(u, v)}|x=xi ,y=yi ,

whereP andF are the Fourier transforms ofp and f , respectively. Hence, the response of the

rf at (xi , yi ) would be the sample value ofF−1{P∗F} at (xi , yi ) if p is real.

An actual set of Gabor filters designed by Watson [105] includes eight filters with spatial

frequencies spanning from 0.25 to 32 cycles/degree; each has a bandwidth of one octave. The

orientation of the filters at a specific frequency includes ten filters with orientation spanning

from 0 to 360 degrees and each has a bandwidth of 36 degrees.

For a specified Gabor profile, the most useful property is apparently that the center of the

profile in the frequency domain characterizes the properties of selectivity of both spatial fre-

quency and orientation of the profile. Furthermore, both the orientation and the spatial fre-

quency bandwidth of the profile are highly dependent on the shape of the profile as well as the

center frequency. However, from data supplied by psychophysics [29, 30] and psychology [28],

the visual system of the macaque monkey has the following characteristics:1
4 < σ1/σ2 < 1,

the median frequency bandwidth is about 1.4 octaves, and the median for orientation full band-

width is about 40◦ (the frequency range of human perception is about 0 to 60 cycles/degree).

Based on these data, the stability of the orientation half-bandwidth can be guaranteed by the

approximate relation(λ2
1 + λ2

2)
1/2 � σ1, σ2.
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2.2.2 Signal and Information Representation

2.2.2.1 Signal and its Representation

A signal is defined with respect to its source. Hence it is desirable to preserve as much as

possible the original signal when devising a representation for it. As a consequence, the ideal

signal representation process is a bijective mapping between two Hilbert spaces, in which the

destination of the mapping from the source signal is called the representation of the signal, and

vice versa. The mathematical properties of the representation depend to a significant degree on

the choice of the bijective mapping. In this section, three kinds of mappings on a well-behaved

(commonly equivalent to the concept of smoothness) two-dimensional signal will be compared.

Among them, two are uniform Fourier transforms on the whole Euclidean plane coordinated

by Cartesian and polar coordinates, respectively, and one is a localized Gabor transform. It is

shown that, on theL2 Hilbert space, there can be defined a correspondingcompleteset of basis

signals for each mapping.

Fourier Transform in Cartesian Coordinates Given a signalf (x, y) in the 2D Euclidean

space with Cartesian coordinatesx andy, the Fourier transform pair is defined as

F(u, v)
4= F{ f (x, y)} =

∫ ∞

−∞
f (x, y)e−i (ux+vy) dx dy

and

f (x, y)
4= F

−1{F(u, v)} = 1

4π

∫ ∞

−∞
F(u, v)ei (ux+vy) du dv.
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Fourier Transform in Polar Coordinates If the polar coordinates inx − y andu − v planes

are defined as




x = r cosθ

y = r sinθ




u = ρ cosφ

v = ρ sinφ

then f (x, y) can be transformed intof (r, θ) and expressed as the expansion of a Fourier series:

f (r, θ) =
∞∑

n=−∞
Cn(r )e

inθ .

The Fourier transform off (r, θ) is

F(ρ, φ)
4= F{ f (r, θ)} =

∞∑
n=−∞

2πcnn(ρ)e
−inφ

where

cnn(ρ) =
∫ ∞

0
rCn(r )Jn(rρ) dr

is then-th order Hankel transform ofCn(r ).

Gabor Transform For the Gabor transformψ(x; µ, σ , λ) with σ1 = σ2 being constant over

the space(µ, λ), the transform off (x) is defined by

F(µ, λ)
4=
∫∫ ∞

−∞
ψ(x; µ, λ) f (x) dx (2.7)

and it can be shown that the inverse transform is

f (x) = 1

4π2

∫∫∫∫ ∞

−∞
F(µ, λ)ψ(x; µ, λ) dµ dλ. (2.8)
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It is well known that the discrete version of the Fourier transform in either Cartesian or

polar coordinates is complete and the coefficient corresponding to each basis function can be

obtained in an elegant manner [94]. On the other hand, the coefficients of the discrete version

of the Gabor transform, while complete, requires solving a set of linear equations [79]. This is

due to the pseudo orthogonal property of the discrete Gabor kernels.

2.2.2.2 Information and Second-Generation Image Coding

Information is meaningful only when the purpose of using the information and, hence, the infor-

mation itself is clearly defined. When images are encoded for the purpose of visual perception,

the criterion for a successful representation of the information can only be judged under the

scrutiny of human eyes. In this section, theories and results from Kuntet al. [68] and Watson

[106] are presented in the context of information representation. Following this, an operational

model for human visual information encoding is considered, which, instead of using uniform

filtering over the entire image plane like those of Kuntet al.and Watson, makes use of a sparse

coding. The concept of sparse coding has a natural correspondence in the physiology of the

human visual system [20], as will be described later.

It is known that under some specific conditions such as band limitation, the discrete repre-

sentation of a continuous signal is perfect. Furthermore, if there is no a priori knowledge about

an image, the canonical signal representation of the image would be the sampled locations in

the two-dimensional space along with the quantized amplitude at each location. The purpose of

image coding is to reduce the amount of storage needed to reconstruct the original image. This

is possible only when redundancy exists in the picture. Traditionally this is achieved through

information theory, i.e., using a signal processing approach to select a string of messages that

characterize the original image and then applying source coding theory to code the messages

in either a lossless or lossy manner. The techniques of processing may either be spatial in

nature (such as PCM, predictive coding), or characterized by transformational methods (such
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as Karhunen-Lo`eve transform or Fourier transform). In the review paper by Kuntet al., it is

observed that the compression ratio of these so-called “first-generation coding techniques” has

reached a saturated value of 10:1 in recent years. In the same paper the “second-generation

coding techniques” were described, which originate from studies of brain mechanisms of vi-

sion. What differentiates these two approaches to image coding is attributed basically to the

different points of view concerning “information” and “information loss.”

It is known from both physiology and psychophysics that in general the response of various

biological cells to a sustained input rapidly fades away. On the other hand, within cells there are

two major categories. One is characterized by a longer persistence of response and the other

is more transient in nature. The existence of mutual inhibition between these two categories

[20] implies that the parts of an image that are primarily textural and the parts that are pri-

marily consists of contours may have different information content. This leads to the so-called

“contour-texture” techniques. It can be argued that the transient parts of the afferent signal

arouse attention and demand higher visual resolving capability. This is where the contours be-

come essential. On the other hand, the significant difference between a line drawing picture

and its fully textured version hints at the role played by the texture. This “contour-texture” or

“high-frequency, low frequency” technique was implemented by Huntet al. as two frequency

bands along with a bank of directional filters.

Figure 2.6: A set of directional filters decomposed into high and low pass components.
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Let a set of high pass filters be defined (Figure 2.6) with the response

Hi (u, v) =




1 if φi < tan−1(v/u) < φi+1 and (u2 + v2)1/2 > ρc,

0 otherwise.

(2.9)

with

φi = (i − 1)π/2n

φi+1 = (i + 1)π/2n,

whereρc is the cutoff frequency of the low pass filter (hence, the high pass filters). If an image is

filtered byHi and the corresponding low pass filter and the high band zero-crossing is detected

and encoded for both its magnitude and location, then the original image can be reconstructed

by combining the low pass result and the interpolated high pass result.

Watson [106] used a set of “cortex transforms” to explore this scheme of coding in the con-

text of human visual perception. The cortex transform is designed to cover the whole frequency

plane. Special techniques such as quantization using contrast masking and sub-sampling of im-

age layers by the cortex transform (most of the layers have a bandwidth smaller than the original

image) were also used.

Watson argued that a biologically feasible coding is achieved by the fixation of the eye,

that is, stabilizing the image on the retina and fixing the fovea at a particular point. He also

maintained that to extend the resolving capability of the fovea to the entire image plane, which

is his case, has practical usage in image compression. It may not be evident what the difference

is between the encoded information for recognition purposes and for visual communication

purposes. However, due to the diversity exhibited in individual perception across all human

beings, the information for communication might be more than what is necessary for individual

use.
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On the other hand, a 2D Gabor filter (Eq. (2.5)) is indexed by three set of parameters,µ, σ ,

andλ. If this filter is expanded to cover the full image plane for fixedσ , then this can be termed

a cortex filter as in Watson’s sense. If we design the filter so that the parametersσ are indexed

by eccentricity, the filter can then be adequately called aretina filter. Watson argued in [107]

that this kind of coding can be useful only for one fixation. Nevertheless, single-point fixation

coding with adequate selection ofµ, σ , λ might prove to be more economical for image coding

in the context of human vision. This kind of coding can be named “sparse coding.” However,

three problems must be resolved before this coding can be really beneficial. The first difficulty

is to be able to delineate the object boundary by its contour. This requires at least the capability

of being able to analyze texture and color. Stereopsis is helpful but not necessary. The second

problem is a pre-analysis of the image is required, which serves the purpose of choosing the

fixation point and then the retina filtering can be used to encode the image. The last problem is,

in the case of complex objects which cannot be decomposed, to establish a temporal association

mechanism for the coding of multiple fixations.

2.2.3 Channel Models of Receptive Fields

The incoming visual signal for a biological observer is necessarily distributed across both phys-

iological structure and information space (e.g., the space of retinal filters). Consequently, it will

be beneficial to explore this distributed structure in information extraction and filtering as well

as the uniformity of the computational process..

For biological systems, the classic work of Hubel and Wiesel provides evidence of orien-

tation distribution in visual signal processing. Combined with other work on spatial frequency

selectivity, the distribution of visual information in 2D orientation-frequency space has become

a research topic. It has been proposed that along with other quasi-independent major modules

in early vision systems, the orientation-frequency selectivity module serves important roles in

edge detection, attention control, and visual memory coding.
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For a Gabor filter, the sinusoidal grating serves as a shifter in the frequency domain. There

are other filter forms similar to sinusoidal grating such as the Marr’s Laplacian of Gaussian,

Wilson and Bergen’s DOG channel model, and Canny’s optimized edge operator [22]. They

all have the similar form of interleaving excitatory and inhibitory regions (Figure 2.7). The

difference is the number of interleaving regions. Hence, a more general form of orientation-

frequency selectivity is

ψ(x1, x2; λ, θ) = Gσ (x1, x2)S(λ, θ)

whereGσ is the envelope with finite support controlled byσ and S(λ, θ) is an orientation

selection function of the spatial frequencyλ and the orientationθ .

The specific form ofS(λ, θ) depends on other constraints on the desired visual information.

A particularly useful one can be derived by observing that in the psychophysics-based data of

Wilson and Bergen’s channel model, the ratio of excitatory area to the difference of excitatory

and inhibitory area is approximately zero (9.4 × 10−3) for the two highest channels,N and

S, and hundreds of times higher for channelsT andU . In reality, the total area ofS(λ, θ)

controls the contrast sensitivity of adjacent areas. Hence it is more appropriate using Wilson

and Bergen’s data in higher channels.

Wilson and Bergen’s channel model [113] has the explicit form:

S = Ci (x)
4= exp

(
− x2

σ 2
i

)
− ci exp

(
− x2

(biσi )2

)
(2.10)

wherei is indexed by the channelN, S, T andU . Hence the orientation-frequency selection

functionGσS is

exp

[
−
(−x1 sinθ + x2 cosθ

σ

)2
]

Ci (x1 cosθ + x2 sinθ)
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Figure 2.7: Prototypical visual sampling
cell in both spatial and frequency domain.

Figure 2.8: Visual sampling by five bands
Gabor cells.

or in its frequency domain form:

exp
[
−π2σ 2(−u sinθ + v cosθ)2

]
·
[
exp

(
−π2σ 2

i (u cosθ + v sinθ)2
)

− bi ci exp
(
−π2b2

i σ
2
i (u cosθ + v sinθ)2

)]
.

The constraint mentioned above is equivalent tobi ci = 1.

In order to actually maintain a quasi-circular receptive field, the value ofσ should be deter-

mined fromCi (x) by fitting a Gabor filter toCi (x). This process also determines the approxi-

mate spatial frequency ofCi (x), which is 9.8, 5.0, 2.6 and 1.5 forN, S, T andU , respectively.

However, as Marret al. [78] pointed out, a channel with higher spatial frequency should exist

and the diameter of the central excitatory region is predicted to be between 1’ and 2’. Us-

ing the aforementioned constraint for the high frequency channel and extrapolating the spatial

frequency to 20 (as predicted by the arithmetic sequence of 2.6, 5.0 and 9.8), the “smallest

channel” can be derived with the parametersbi = 1.604, ci = 0.623, andσi = 0.014. This

channel has a central excitatory region with diameter around 1.5 minute, in conformity with

Marr et al.’s prediction.
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Though the temporal response is essential for attention control, it is reasonable to conceive

that the degradation of resolution with increasing eccentricity serves the purpose of establishing

a visual information hierarchy in a static context, as Burt’s Laplacian pyramid does. Bearing

this in mind, a further step taken is to assess the effectiveness of the approach in the extraction

of essential visual information, such as edges.

Figure 2.9: Original gray level image of a
house.

Figure 2.10: H channel information of the
house.

As is explicated by Kuntet al. [68], these biologically motivated coding techniques can

achieve an image compression ratio of more than 50 or even 90. However the issue which

addressed in their paper is the reconstruction problem, and as far as cognition is concerned,

the focus of computation is inevitably shifted to somewhat different properties such as edge

information extraction and fixation control. To illustrate this, Figure 2.8 is used as a model for

the layout of visual information sampling in the frequency domain. Due to the duality between

the spatial domain and the frequency domain, the layout also serves as a model for the spatial

distribution of sampling cells within the visual field. The modeling is based essentially on the

NSTU model of Wilson and Bergen plus the hyper-channel derived above, and will be called the

HNSTU model. However, the computation is partly implemented by a general Gabor scheme;

that is, the other dimension of the HNSTU model is fit into two-dimensional Gabor form.
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Figure 2.11: N channel information of the
house.

Figure 2.12: S channel information of the
house.

The flatness of the response of the layout can be observed by actually operating each channel

independently on a test image and recovering the image by arithmetical summation. In the

experiment a uniform sampling aperture across the visual field is assumed; hence no actual

degradation is observed with respect to the visual fixation point. By optimizing the flatness of

the Gabor covering, the standard deviation of the profile is around 0.28 of the central frequency,

which implies that the spatial overlap between adjacent cells is controlled to the extent that it

conveys the same amount of information as the center of each cell does. This is somewhat

smaller than the result obtained by fitting the HNSTU model to the Gabor profile, which is

around 0.42 of the central frequency. The additional overlap is related to the compensation of

computation across the boundary of cells during the optimization, i.e., the diminishing response

toward the cell perimeter is compensated by adjacent cells.

On the other hand, the crucial aspect of the visual information hierarchy is to explore the

information contents at various resolutions. The result obtained by the additional consideration

of degradation of resolution with increasing eccentricity is shown in Figure 2.13 and 2.14. One

of the fixation points is chosen to be the position with maximum response to the computation

of edge information, and the other fixation point is chosen at a corner point. In both cases,
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the physiological data of approximate double the size of visual sampling cells for every 4◦ of

eccentricity is assumed. Also, the extent of the visual field is taken as 20.5◦, which is based on

the results of psychophysics.

Figure 2.13: Girl image with fixation cen-
ter around eyes.

Figure 2.14: Girl image with fixation cen-
ter at lower-left corner.

2.3 Summary

A data-processing system involves both the data model and the processing model. In this chap-

ter we looked into some of the processing models built into biological systems. The insights

provided by the biological construction hint at how certain operations are beneficial in ana-

lyzing the information carried by the incoming light. The formalization of early stages in this

analysis is also done in this chapter following the presentation of some of the unifying princi-

ples in biological systems. The mathematical formulations thus acquired is not only a faithful

model for biological systems but also a foundation upon which crucial geometric information

can be extracted and manipulated.

Data models in a visual processing system will be covered in the next chapter. These include

models for images, one-dimensional curvilinear features in an image and on the surface of an
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object, and three-dimensional surfaces.
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Chapter 3

Image, Contour, and Surface Modeling

The most fundamental data in a vision system are images. Further up in the data abstraction,

there are curves and surfaces that provide geometric descriptions of the images. In this chapter

multiple models of these fundamental geometric concepts are presented according to different

contexts, since the relevancy of representation and models is tied closely to the tasks to be

handled.

The essential characteristic of the processing models in the previous chapter is the biolog-

ical functionality of natural systems. In this chapter, however, the emphasis is on the formal

properties of the data models of images, curves and surfaces as well as their perceptual founda-

tion.

The task that most interests us is the manipulation of objects. This requires us to define a

shape description language that is both geometric in nature (so that spatial relationships between

objects can be measured) and invertible by computational processes, i.e., the specification of

the language needs to be operational in the sense that a natural computational procedure is

associated with each element in the language. This not only enforces the computational nature

of the problem but also dictates a structural hierarchy starting from an image all the way up to

3D shapes that are to be manipulated.

The sampling mosaic of the photoreceptors provides us with a way to restore the continuous
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form of the image so that a differential geometry language can be used to describe the required

geometric structure for a given task. Several formal models of curves and surfaces are pre-

sented in their analytical and computational form so that they form a computational substrate

for the following chapters. It is also shown how perceptual features can be mapped to geometric

features.

The chapter begins by applying the theory of sampling to images so that its continuous form

can be restored and differential operations can be applied with known effect due to the sampling

noise. Two-dimensional curves are treated next. Several formulations for modeling curves are

presented in a logical way which leads finally to a representation in geometric feature space

using Hermite functions. Finally, surfaces are considered from the point of view of triangulated

patches and principal curvatures. The former is a natural formulation when an observer tracks

points on a textured surface, while the latter is derived from recovering curves on the surface.

3.1 Image Models

A digital image is usually modeled in a discrete 2D domain byI (x, y) with x and y taking

only integer values within the range(0, N − 1). This discrete model will have to be somehow

rectified if we need to establish a mathematical foundation upon which both geometrically

meaningful and differential structures are to be organized.

A natural way of representing images for the purpose of establishing a continuous structure

is to fit the discrete grid to a continuous model so that gaps between points can be “filled”

smoothly. However, the continuous data model has to satisfy some “well-defined” conditions

and support operations that are essential for manipulating the geometric structures. Historically,

this is achieved by representing the image redundantly as a parameterized family, in which each

member has a definite relationship with other members of the family and can be derived from

a common source—theimage generator. Pyramids, multi-grid and scale-space are examples
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upon which this family can be built.

3.1.1 Image Generator

Theoretically, an image is a continuous signal in a two-dimensional space. The physical im-

ages available for processing in both biological and artificial systems are derived from this

continuous source by a sampling process. The well-known sampling theorem informs us that

the representation of an analog signal by a digital version is reversible if the sampling rate is

higher than theNyquist rate. That is, full content of the analog signal can be recovered from

the sampled version providing the sampling rate is higher than the Nyquist rate.

By following the rule ofcircular convolution, all computations in the analog domain can

be executed equivalently in the digital domain up to the precision of the computational process.

Hence the size of a digital image is constrained by the Nyquist rate and all the information

is contained within a bandwidth of(−B, B), where B = π . The bandwidth is expressed

in angular frequency with sample intervalT = 1 [83]. However, this equivalence is only

valid if the continuous signal is defined completely, a situation that is never true in the real

signal. Consequently, we will have to look into other kinds of equivalence for our computational

purpose.

Let’s consider an imaging process that is directly responsible for converting the continuous

irradiance into a sampled version and all subsequent processing is done on this sampled signal.

We will denote this initial sampled signalI (x) = I0(x) and name it theimage generatoror

justgenerator(calledinner scalein [37]). I (x, y) can be viewed as corresponding to the finest

resolution available from the optical sensor (e.g., retina) [58]. As discussed above, ifI (x) is

transformed into the frequency domain, each of its samples cannot be more thanπ/N apart,

whereN is the number of samples in one dimension.

Since properties important to visual perception are intrinsically geometric, these properties

are necessarily invariant to rotational and translational coordinate transforms. The local geo-
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metric properties can be naturally acquired through differential geometry. However, since dif-

ferentiations of various order are involved, conventional techniques for differentiating images

are not very useful because of their numerical instability. This instability can be eliminated

if we never compute differentials on the generatorI (x) (see the convolution property of the

Gaussian kernel in the next section). This assumption can be readily justified if we adopt the

convention that we always make use of an imaging device with a resolution higher than the

highest resolution that we will ever need for the computation.

3.1.2 Image Representation Using Gaussian Kernels

Gaussian filters are ubiquitous in natural visual systems and are used traditionally for modeling

image blurring. At the pixel level, any filtering operation using a Gaussian kernel will result

in information loss and a lossless representation of an image will have to include all sizes,

starting with a physically determined lower boundσmin (see Section 4.3.1). This is because

the information in an image that is derived by convolving the generator with a Gaussian kernel

of a particular size always contains the intensity information of images that is derived by con-

volution with Gaussian kernels of larger sizes. Henceforth, images computed by convolving

with Gaussian kernels will all be redundant except the generator, since all the information can

be generated from the generator alone. However, as we will see shortly, there are important

computational reasons for this redundancy.

A one-dimensional Gaussian kernel is defined as

ψ0(x; σ) = 1√
2π σ

exp(− x2

2σ 2
) (3.1)

and a two-dimensional kernel is defined as

ψ00(x; σ) = ψ0(x; σ)ψ0(y; σ). (3.2)



49

Let thei -th order differential ofψ0(x; σ) be denoted byψi (x; σ). Since the two-dimensional

Gaussian kernel is separable, we have

ψi j (x, y; σ) = ψi (x; σ)ψ j (y; σ). (3.3)

These filters will be referred asreceptive fieldshenceforth (its biological counterpart is de-

scribed in Section 2.1.1). The similarity of their forms and response profiles of receptive fields

in biological systems have been observed (see e.g., [66]). The first-, second- and third-order

differentiation ofψ0 are given by

ψ1(x; σ) = −xψ0(x; σ)/σ 2

ψ2(x; σ) = −(1 − x2/σ 2)ψ0(x; σ)/σ 2

ψ3(x; σ) = x(3 − x2/σ 2)ψ0(x; σ)/σ 4

(3.4)

These basis functions are depicted in Figure 3.1.
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Figure 3.1: ψ kernel and its 1st, 2nd, 3rd-order differentiation.

These filters have some important properties that are crucial for our computation (see [66]),
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especially theconvolution property:

∂ i+ j

∂xi ∂y j
[ψ00(x, y; σ) ∗ I (x, y)] = ψi j (x, y; σ) ∗ I (x, y) = ψ00(x, y; σ) ∗ Ii j (x, y). (3.5)

It is this convolution property that allows us to eventually replace differential operations on

the image by integral operations when the image is parameterized in a scale-space and avoid

the problem of noise amplification by differential operations. However this advantage comes

with the expense of expanding the spatial range of computation as the order of differentiation

increases.

An image sequence, called thescale-spaceof the image generator, can be generated from

the generator and the Gaussian kernels, withσ being thescale, as follows:

Iσ (x) = ψ00(x; σ) ∗ I (x) (3.6)

The redundancy ofIσ (x) can be readily observed in theconcatenationproperty above. How-

ever, the real computational advantage comes from theconvolutionproperty, since it replaces

the differential operation of a member in image scale-space by an integration (i.e., convolu-

tion) of the generator and an analytical kernel. Using the scale-space notation, the convolution

property can be rewritten as

∂ i+ j

∂xi ∂y j
Iσ (x) = ψi j (x, y; σ) ∗ I (x). (3.7)

A scaled imageIσ (x) can be represented locally atx = (x1, x2) as ([65]):

I (x1 + ξ, x2 + η; σ) =
∞∑

n=0

1

n!
(
ξ
∂

∂x1
+ η

∂

∂x2

)n

I (x; σ)

=
∞∑

n=0

n∑
i=0

(
n

i

)
c(n−i )i

ξn−i ηi

n! ,

(3.8)
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where

cpq = ∂ p+q

∂x p
1 ∂xq

2

Iσ (x) = I (x) ∗ ψpq(x; σ) (3.9)

If the local expansion ofIσ (x) is truncated atk, the resulting representation is called thelocal

representation of order k, andcpq is called local structure of order k. Hence, all the local

structure of orderk in the imageIσ (x) can be obtained from therf family {ψnm | n,m =
0 . . . k}. For example, a local representation of order 2 for an imageIσ (x) at scaleσ is

I (x1 + ξ, x2 + η; σ) = Iσ (x)+ I (x) ∗ (ψ10(x; σ)ξ + ψ01(x; σ)η)
+ 1

2
I (x) ∗

(
ψ20(x; σ)ξ2 + ψ11(x; σ)ξη + ψ02(x; σ)η2

)

Koenderink and van Doorn [65] maintained that onlyψ20, ψ21 andψ30 are relevant in visual

information processing. However, we will see shortly that the first-orderrf, ψ10, also plays

an important role in the acquisition of local geometric information about contours, including

tangents, curvatures and curvature change rates along the contour.

The formulation above emphasizes the structures at the pixel level, e.g., isophotes, patches

or blobs. However, the essence of perception is in the representation of variational information.

This emphasis on variational information transforms the representation from the intensity level

(point-based) to the contour level (curve-based), and we will need a different formulation at

the contour level. The differences between the formulations can be described in terms of the

mapping from the spatial domain to the representation domain. At the irradiance level of an

image, visual information is conveyed through functions of typeI : R2 → R, while at the

contour level the information is embedded in functions of typec : R2 → {0, 1}.
In the next section we present a new low-level representation of images using Gabor kernels,

which is also based on Gaussian kernels but is not redundant. The representation is more closely

related to natural vision systems because of the similarity of its kernel and the physiology of
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biological cells.

3.1.3 Image Representation Using Gabor Kernels

The Gabor filter in Eq. (2.5) provides us with an alternative interpretation of Gaussian differ-

entials. In the case of nonuniform differentiation of a two-dimensional Gaussian (e.g.,ψ20),

the shape of the resulting kernel is actually Gabor-like, and the Gabor form allows us to conve-

niently interpret the differential of the kernel more meaningfully. For example, Gabor kernels

can be interpreted in terms of spatial and Fourier localization, spatial orientation, and scale

decomposition in Fourier space [28]. Mathematically, representation using Gabor kernels is a

complete representation in the sense of the transformation pair in Eqs. (2.7) and (2.8).

In the Gaussian kernel representation, the information in an image is overlapped in such a

way that finer scale representations always contain coarser scale representations (see above).

On the other hand, the Gabor kernels represent the information in an image by non-overlapping

filters, each of which contribute to the complete representation. From an information-theoretic

point of view, a non-redundant representation is clearly desirable, but this representation issue

is complicated by the need to compute local variational information efficiently.

3.2 Contour Models

Contours are part of the hierarchy in the geometric structure of images and can be two- or three-

dimensional. However, depending on the dimensionality of the contours (i.e., whether they are

embedded in an image or on a surface) or the role they play in the analysis (e.g., identifying

the boundary of an object in an image or computing surface shape), the representations can

take different forms. We will describe three forms of representation and each of them will play

different roles in later chapters.

In the following, the term “curve” and “contour” will be used interchangeably since curve
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is a geometric term, while the embodiment of it in the context of visual perception is contour.

3.2.1 Models in Geometric Space

Given a pointP on a 3D space curve, the Serret-Frenet equations relate an orthonormal frame

{t̂, n̂, b̂}, known as theFrenet frame, to two metric variables,κ andτ , known ascurvatureand

torsion:

t̂′(s) = κn̂(s)

n̂′(s) = −κ t̂(s)− τ b̂

b̂′ = τ n̂.

(3.10)

Given a well-defined curvec(s) parameterized by the natural parameters (curve length) in

two-dimensional Euclidean space, the Taylor expansion ofc(s) is of the form:

c(s0 + ε) =
∞∑

n=0

εnc(n)(s0)

n! .

Using Eq. (3.10) (τ = 0 in this space), the first three terms (up to second-order differentiation

of c(s)) of the expansion can be expressed directly in terms ofκ, κ ′, t(s) andn(s) :

c(s0 + ε) = c(s0)+
(
ε − κ2ε3

3!
)

t(s0)+
(
κε2

2
+ κ ′ε3

3!
)

n(s0)+ R (3.11)

This is thelocal canonical formof the curvec. The implication of this form is that the curve can

be decomposed locally into components along the Frenet frame(t, n) and these components,

up to a third-order approximation, can be expressed in terms ofκ andκ ′ (derivative ofκ with

respect tos). As a matter of fact, thefundamental theorem of the local theory of curvesasserts

thatκ(s) is all we need to specify the curve uniquely (up to a rigid transform) [31].
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3.2.2 Models in Signal Space

A piecewise-continuous curve is a one-dimensional geometric object and has infinite bandwidth

if treated as a two-dimensional object. By imposing a finite-bandwidth constraint, a cluster of

curves can be represented in the two-dimensional domain. It is shown here how this is achieved.

In later chapters, it will be used to construct an invertible hyperspace for their representation.

3.2.2.1 2D Curve Representation Using Gaussian Filtering

Consider a planar curvec : c(s) in two-dimensional Euclidean space. The two-dimensional

representation ofc(s) in the image plane is defined by

Rc(x)
4=
∫ ∞

−∞
δ(x − c(s)) ds (3.12)

whereδ(x) is the two-dimensional Dirac delta function. Sinceδ is singular and does not have

finite spatial or frequency content, a finite approximation of the representation can be derived

using a Gaussian kernel:

R̃c(x)
4= g(x) ∗ Rc(x) =

∫ ∞

−∞
g(x − c(s)) ds (3.13)

where∗ is the convolution operator andg(x) is the unit-area two-dimensional Gaussian kernel

with symmetricσ :
g(x)

4= 1

2πσ 2
exp(−|x|2

2σ 2
).

Sinceg(x) is localized in both the spatial and frequency domains, the approximation essentially

imposes a finite-bandwidth constraint on the visual processing system.
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3.2.2.2 2D Curve Representation in Fourier Space

In the previous section we showed how a planar curve can be represented in a two-dimensional

image space. The representation is localized in its information content. In this section we

consider how the information can be represented in the discrete domain and with more global

scope (as opposed to a local representation).

The sampling theorem tells us that as long as the bandwidth of a signal is limited, the

continuous signal can be represented exactly by a set of discrete samples of the signal. This al-

ternative representation becomes an approximation when the signal does not completely vanish

above a finite bandwidth or when the number of samples does not reach what is required by the

sampling theorem. Here we provide a rationale for using both approximations when converting

representations from the continuous to the discrete domain.

Localized representations have exponentially decaying profiles as provided by the Gaus-

sian kernels. This process produces a limited-bandwidth signal for the two-dimensional image

space. On the other hand, Gaussian profiles have the same form in both the spatial and Fourier

domain, i.e., smooth and exponentially decaying, and each sample in the Fourier domain car-

ries information that globally affects the signal space. These properties allow us to reduce the

number of samples drastically without losing essential information while at the same time ben-

efiting the matching process, which will be explained in the next section. Formally, the Fourier

transform of the two-dimensional representationRc of the planar curvec(s) is:

RF(c)(ω) = F(R̃c(x))

4=
∫∫ ∞

−∞
g(x − c(s)) exp(−i ω · x) ds dx

= exp(−σ
2|ω|2
2

)

∫ ∞

−∞
exp[−i ω · c(s)] ds

= A(ω) exp(i θ(ω)),

(3.14)

where A(ω) is the amplitude part andθ(ω) is the phase part of the representation. Note that
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these two parts do not correspond to the terms inside and outside the integral since the magni-

tude of the integral does not equal unity.

It can be observed in Eq. (3.14) that for each point on the curve only the phase encodes

information about the curve. The amplitude term is independent ofs and only signifies how the

energy is constrained locally.

3.2.3 Models in Geometric Feature Space

The geometry of a curve is embedded in the description of the curve, and there is in general

no canonical description. However certain descriptions do have parameters that are meaningful

for visual perception. These perceptually relevant parameters arefeaturesof the objects being

described and the collection of features along with the characteristics of the geometric space

constitute ageometric feature space. In other words, a geometric feature space is the result

of mapping prominent geometric metrics in the geometric space onto itself. The term “promi-

nent” is a subjective one and is more or less perception-oriented. Here features are taken to be

curvature extrema and the curve is derived from the interpolation of feature points as proposed

by Attneave [8]. Hermite splines are the primary interpolant used to recover the curve. It is

known that piecewise interpolating the feature points on a planar curve can compensate for the

oscillatory behavior of a polynomial interpolant, since the order of the polynomial can be min-

imized. This is especially true when we choose theknotsof the interpolation to be the highly

curved areas, namely, curvature extremum points. Additionally, the availability of higher or-

der differentials at the feature points enable us to proceed without estimating these properties,

which is the primary drawback of Hermite interpolation. Hence, a planar curve can be concisely

understood from its curvature changes. By identifying curvature extremum points, the curve

can be represented by interpolating only the position and first-order derivatives of these points.

Hence, the extremum changes of curvature in planar curves are not only important locally but

also strongly constrain the global curve shape. This aspect is demonstrated here using Hermite
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interpolation.

An observer can generally perceive a particular contour at different scales by simply con-

trolling his visual receptors. Hence the structure of a two-dimensional contour varies according

to the one-dimensional parameter family of scales [114]. It will be assumed that a proper scale

has been chosen for the contour and the concentration will be on second-order differential prop-

erties of the contour. It should be noted that by computing in scale space with sampled data,

there is really no significant difference computationally between local and global properties.

3.2.3.1 Curvature Extrema as Feature Points

For a continuous and smooth (up to second-order differentials) two-dimensional curve, the

structure of the curve is determined by the curvature (Eq. (3.15)) whose extrema define “fea-

tures” along the curve. A complementary characterization of a curve segment with features is

a featurelesscurve segment, which is a curve segment with no curvature extrema between two

end points and hence is a region where curvature either remains constant or changes mono-

tonically. We will use the termlocal extensionto indicate the procedure to compute the curve

segments between feature points (i.e., curvature extrema).

The explicit relationship between a curve and its curvature, parameterized by the curve

length is the following. Given the curvature functionκ(s), the planar curvec(s) with the spec-

ified curvature can be determined up to a translation(a, b) and rotationφ as:

c(s) =
(∫

cosθ(s) ds+ a,
∫

sinθ(s) ds+ b

)
(3.15)

where

θ(s) =
∫
κ(s) ds+ φ.
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3.2.3.2 Curve Representation

Since the curvature for the part of curve between adjacent extrema is relatively flat and smooth,

the reconstruction problem will be to interpolate the curve using these feature points and

their associated geometric properties, i.e., we want to find a curve segment connecting two

pointsP1(x(t1)) andP2(x(t2)), where both first (tangent) and second (curvature) derivatives are

known. Let thekth derivative ofPi with respect parametert is given byPk
i . This goal can be

accomplished using Hermite interpolation:

x(t) =
2∑

i=1

2∑
k=0

Pk
i Hk,i (

t − t1
t2 − t2

)

whereHk,i are Hermite functions (Figures 3.2 and 3.3).
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Figure 3.2: Cubic Hermite splines.
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Figure 3.3: Quintic Hermite splines.

We test the formulation in Figure 3.4. The “centripetal” parameterization [70] is used,

which takes the square root of the cord length betweenP1 andP2 as the curve parametert . The

curvature versust plot is given in Figure 3.5 with the corresponding feature points identified

in both plots. Using the position coordinates, and the first and second derivatives at the feature

points, the interpolated curve is shown in Figure 3.6 and the corresponding curvature is plotted

in Figure 3.7, both as solid lines. The original curve and curvature are given as dashed lines.
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Figure 3.4: A planar curve with feature
points identified.
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Figure 3.5: Curvature plot of the planar
curve.
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Figure 3.6: The Hermite spline curve us-
ing identified feature points.
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Figure 3.7: Curvature plot of the spline
curve with centripetal parameterization.
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We also compare a quintic Hermite spline with a cubic Hermite spline, which does not

use second derivative information. The curve is shown in Figure 3.8 and the corresponding

curvature is shown in Figure 3.9. It can be seen that the cubic splines are as good as the quintic

original    
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Figure 3.8: Hermite spline curve using
only first order derivative.
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Figure 3.9: Curvature plot of the spline
curve with only 1st derivative.

splines, though the latter also interpolate the curvature. This shows the dominant importance

of feature locations and their tangent vectors. This is also attributed to the fact thatHi, j for

i, j = 0, 1, show all the essential curvature features, including reflection points.

3.3 Models for Local Surface Shape

The primitives for describing surfaces are intrinsic to the surfaces (intrinsic frame) and inde-

pendent of the coordinate system (viewer’s frame) used to describe them. The lowest order

local properties that are intrinsic are differential curvatures. However, perceptually, differen-

tial variation is indiscernible and local properties can never be computed reliably. Hence we

need a global way to constrain and guide the local computation. Since local computation is

what happens (being observed) in the first place, any global (top-down) constraints can be con-

sidered as a “guess” and can only be verified at the local level. From the point of view of a
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mobile observer, global constraints are guides for motion so that object shape can be revealed

and represented efficiently.

One of the natural global constraints pertaining to local intrinsic properties is the normal

curvature passing through a specific point on the surface. From the theorem on local surface

geometry, it is already known that three of these normal curvatures toward different directions

determine local shape completely. On the other hand, a single surface curve says something

qualitatively about the surface irrespective of how it is projected into the image plane. If the

projection can be characterized formally, the curve-surface becomes quantitatively related. One

such formal surface curve which does not require observer motion is the apparent contour,

since the projected curvature is the normal curvature along the tangent direction of the apparent

contour. However, any static surface curve can be so characterized when the observer can move

voluntarily (see Chapter 6).

Surface shapes can be acquired from multiple sources. The traditional shape-from-X meth-

ods do not require a mobile observer. In the paradigm of active vision, shape-from methods

compute surface shape from deformations of computable surface properties, such as image

curves [26] and apparent contours [25]. For these curvilinear-based methods, surface shape is

computed in a stripe-like way and the whole two-dimensional surface is assembled after enough

stripes are acquired.

The combination of the capability of an active observer and the shape cues provided by two-

dimensional surface patches rather than curvilinear features will enable us to compute surface

shape in abatchfashion.

3.3.1 Surface from Triangulated Normal Interpolation

3.3.1.1 Triangulated Patches

Consider any three points,P1, P2, P3 on an object surface that can be tracked by an observer.

Assume these points are close enough so that the surface enclosed by them can be considered
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flat. This assumption can be verified algorithmically later. Since these points are close enough,

the projection model can be orthographic since the effect of perspective projection is negligible.

Let the length of the segment connecting these points bedi j , wherei, j = 1, 2, 3 and their

corresponding projections onto the image plane beρi j . If the observer’s frame is oriented

toward the surface and thez-axis of the frame is the viewing direction, then foreshortening

dictates that

ρi j = di j cosθ

whereθ is the angle between viewing direction and the surface normaln̂ = (nx, ny, nz) of the

plane defined by the three points. If we rotate the viewing direction by an amount ofδθ , the

foreshortening will be

ρ′
i j = di j cos(θ ± δθ)

where the sign depends on the sign ofρi j − ρ′
i j . Solving these two equations we get

tanθ = ±
(

cotδθ − ρ′
i j

ρi j sinδθ

)
.

Hence for any single segment between two points, the equation indicates that the surface normal

has to lie somewhere on a cone withz-axis being the center axis and the apex angle beingθ ,

i.e., n̂ = (nx, ny, cosθ), sincen̂ · ẑ = cosθ . If we choose the pointP1 = (x1, y1, z1) as our

reference point and computeθ from d12, then since the plane also passes throughP2 andP3 we

have

n̂ · d12 = n̂ · d13 = 0

i.e.,

(
nx ny cosθ

)



x2 − x1

y2 − y1

z2 − z1


 =

(
nx ny cosθ

)



x3 − x1

y3 − y1

z3 − z1


 = 0.
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Solving fornx andny we have

nx = (z2 − z1)y3 − (z3 − z1)y2

x2y3 − x3y2

ny = −x3(z2 − z1)+ x2(z3 − z1)

x2y3 − x3y2

(3.16)

Since(zj − zi )/ρi j = tanθ we have

nx = ρ12y3 − ρ13y2

x2y3 − x3y2
tanθ

ny = −ρ12x3 + ρ13x2

x2y3 − x3y2
tanθ

(3.17)

Let

µ = ux

uy
= ρ12y3 − ρ13y2

−ρ12x3 + ρ13x2

and we have

n̂ =
(

µ sinθ

(1 + µ2)1/2

sinθ

(1 + µ2)1/2
cosθ

)
. (3.18)

Hence the plane is completely defined.

3.3.1.2 Surface Normal Interpolation

An object surface can be explored by tracking a set of points and triangulating the surface with

patches. Since theoretically with an external reference frame this process can be carried out

with arbitrary precision, we will consider that the tracked points are data with no measurement

errors. On the other hand, we want to restrict our shape computation to be based solely on static

features on the surface and in the case of point features, the surface formed by a triangular patch

is the best approximation we can get from this approach. Hence the patch normal computed

in this way is also considered to be accurate and is essentially asampledrepresentation of the

object surface.
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The first approximation we are going to make for global surface computation and represen-

tation is to determine surface normals at points other than within the patches, and these points

are where patches meet each other, that is, the vertices (Figure 3.10).

Figure 3.10: Compute vertex normal from neighboring patches.

The real object surface will pass through the vertex and all its neighboring vertices and,

among all the possible surfaces, we are only interested in those surfaces that are smooth within

each patch and are characterized by a surface normal that is coincident with the patch normal.

The best guess we are going to make is the surface that can be fit to the above constraints with

the least-square-errorcriterion.

Let the vertex whose normal is to be computed be the origin of our coordinate system and

all the other points are expressed in this frame. Since the accuracy of subsequent computation is

determined by how we choose our basis, we can make a first approximation of the vertex normal

by averaging over the adjacent patches. Let the coordinate basis beû, v̂, ŵ and approximating

bivariate function bef (u, v) = au2+buv+cv2+du+ev. If there areM neighboring vertices

(ui , vi , wi ) and N adjacent patches with patch normalnj = (nj
u, n

j
v, n

j
w), we can choose a

characteristicpoint (u j , v j ) within each patch in theu − v plane. The normal computed from

f (u, v) at u = u j andv = v j will be

n j = xu × xv = (−(2auj + bv j + d),−(buj + 2cv j + e), 1)
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wherexu = (1, 0, 2auj +bv j +d) andxv = (0, 1, bui +2cv j +e) are tangent vectors off (u, v)

at (u j , v j ). The function f (u, v) can be determined by minimizing the least-square-error:

ε(a, b, c, d, e) =
M−1∑
i=0

[wi − f (ui , vi )]
2 +

N−1∑
j =0

[
nj

u

n j
w

+ 2auj + bv j + d

]2

+
N−1∑
j =0

[
nj
v

nj
w

+ 2cv j + buj + e

]2

.

(3.19)

The solution will be the linear system defined by

∂ε

∂a
= ∂ε

∂b
= ∂ε

∂c
= ∂ε

∂d
= ∂ε

∂e
= 0.

Letting g(u j , v j ) = nj
u/n

j
w + 2auj + bv j + d andh(u j , v j ) = nj

v/n
j
w + 2cv j + buj + e, the

linear equations become

∑
j

g(u j , v j ) =
∑

j

h(u j , v j ) = 0 (3.20)

and

∑
i

[wi − f (ui , vi )] ui = 0

∑
i

[wi − f (ui , vi )] vi = 0

∑
j

[
g(u j , v j )v j + h(u j , v j )u j

]−
∑

i

[wi − f (ui , vi )] ui vi = 0.

(3.21)

Let ū = 1
N

∑
j u j , v̄ = 1

N

∑
j v j andᾱ = 1

N

∑
j

n j
u

n j
w

, β̄ = 1
N

∑
j

n j
v

n j
w

. From Eq. (3.20) we have

d = −(ᾱ + 2aū + bv̄)

e = −(β̄ + 2cv̄ + bū).
(3.22)
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Substitutingd ande into Eq. (3.21) we have

∑
i

(
wi + ᾱui + β̄vi

)
ui = a

∑
i

(ui − 2ū) u2
i + b

∑
i

(ui vi − ui v̄ − vi ū)ui

+ c
∑

i

(vi − 2v̄) ui vi

∑
i

(
wi + ᾱui + β̄vi

)
vi = a

∑
i

(ui − 2ū) ui vi + b
∑

i

(ui vi − ui v̄ − vi ū) vi

+ c
∑

i

(vi − 2v̄) v2
i

(3.23)

and

a


∑

i

u3
i vi + 2

∑
j

u j v j − 2ū

(∑
i

u2
i vi + Nv̄

)

+ b


∑

i

u2
i v

2
i +

∑
j

(
u2

j + v2
j

)
− v̄

(∑
i

u2
i vi + Nv̄

)
− ū

(∑
i

ui v
2
i + Nū

)

+ c


∑

i

u3
i vi + 2

∑
j

u j v j − 2v̄

(∑
i

ui v
2
i + Nū

)
 =

∑
i

[
wi + ᾱui + β̄vi

]
ui vi + N

(
ᾱv̄ + β̄ū

)−
∑

j

[
nj

u

n j
w

v j + nj
v

nj
w

u j

]
.

(3.24)

Solving fora, b, andc using Eqs. (3.23) and (3.24), we can computen̂ at the vertex from

Eq. (3.22) as

n̂ = (−d,−e, 1)

(1 + d2 + e2)1/2
.

3.3.2 Surface Curvatures

There are several ways to compute surface curvatures once the surface normal is determined

for a set of points on the surface. In this section we introduce two methods and analyze their

accuracy and error propagation behavior.
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3.3.2.1 Euler’s Formula

Given at least three patches around a given vertex on an object surface, Euler’s formula (i.e.,

the second fundamental form in the local frame defined by the principal directions) can be used

to determine the principal directions and principal curvatures.

Given three normal curvatures,κ1, κ2, κ3, Euler’s formula relates them to the two principal

curvatures,κmax, κmin, by the equations:

κ1 = κmaxcos2 θ + κmin sin2 θ

κ2 = κmaxcos2(θ + φ2)+ κmin sin2(θ + φ2)

κ3 = κmaxcos2(θ + φ3)+ κmin sin2(θ + φ3),

(3.25)

whereθ is the angle between the direction ofκ1 and the maximum principal curvatures, and

φ2, φ3 are the angles betweenκ2, κ1 andκ3, κ1, respectively (see Figure 3.11). Solving for

θ, κ1, κ2 we have

θ = 1

2
tan−1

(
2
κ1(cos2φ3 − cos2 φ2)+ κ2(1 − cos2φ3)+ κ3(cos2φ2 − 1)

κ1(sin 2φ2 − sin 2φ3)+ κ2 sin 2φ3 − κ3 sin 2φ2

)
(3.26)

and

κmax = κ2 sin2 θ − κ1 sin2(θ + φ2)

cos2(θ + φ2)− cos2 θ

κmin = κ1 cos2(θ + φ2)− κ2 cos2 θ

cos2(θ + φ2)− cos2 θ
.

(3.27)

In this method any error in computing the surface normal will propagate to the curvature

computation and will be amplified by the differential process used in computing normal curva-

ture along the associated patch directions. One way to improve on this is not to compute the

normal curvatures and subsequently solve Euler’s formula but to use the normal interpolated at

the vertex and fit a bivariate function on the tangent plane at the vertex. This method will be
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Figure 3.11: Computing the principal curvatures using Euler’s formula.

discussed next.

3.3.2.2 Bivariate Approximation

Given a vertex, the surface normal at this point and all its neighboring points, we can fit a

bivariate function on the tangent plane defined by the surface normal [44]. This is the function

of lowest order that has the same tangent plane and curvature as the object surface at the given

point.

Given the normal̂n at the point, we can express all coordinates and vectors in the tangent

frame (Figure 3.12)(û, v̂, n̂) with n̂ = û × v̂ and the bivariate function will have the form:

f (u, v) = au2 + buv + cv2.

If we rotate the orthogonal(û, v̂) frame aroundn̂ by an angleθ the new representation of
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Figure 3.12: Compute curvature using bivariate interpolation.

f (u, v) will be

g(u′, v′) = f (u′ cosθ − v′ sinθ, u′ sinθ + v′ cosθ)

=
(
a cos2 θ + bsinθ cosθ + csin2 θ

)
u′2 + ((c − a) sin 2θ + bcos 2θ)u′v′

+
(
a sin2 θ − bsinθ cosθ + ccos2 θ

)
v′2.

(3.28)

By choosing

θ = 1

2
tan−1 b

a − c

we can eliminate the cross termu′v′ and identify the principal curvatures as

κ1 = a cos2 θ + bsinθ cosθ + csin2 θ

κ2 = a sin2 θ − bsinθ cosθ + ccos2 θ
(3.29)

For a set of neighboring verticesPi , i = 0 . . .m − 1, the desired equation is




u2
0 u0v0 v2

0
...

...
...

u2
m−1 um−1vm−1 v2

m−1







a

b

c


 =



w0

...

wm−1




4= Ax = w.
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Solving the least-square-error equation is equivalent to solving thenormal equation

ATAx = ATw.

However, normal equations are generallyill-conditionedand tend to be singular or susceptible

to rounding errors. To remedy this, we use, instead, thesingular value decompositionmethod

to solve the problem. The matrixA has a singular value decomposition of the form

A = USVT

whereS is a diagonal matrix with its diagonal elements(s0, s1, s2) being thesingular valuesof

the matrixA. It can be proved that the vector

x = VS−1UTw

solves the least-square-error problem. The ill-conditioned difficulty can be resolved by setting

the inverse of small singular values to zero.

The accuracy of this method will be governed by how the surface normal is estimated, and

one way to estimate the surface normal at a given point is to solve the normal interpolation

problem and the resulting bivariate function.

3.4 Summary

The mathematical foundation for handling geometric structures in images was presented in this

chapter. The emphasis was on the computation and representation of the information models

for a computational vision system. Correspondence between perceptual features and geometric

models of curves and surfaces was established. These relationships as well as their computa-
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tional formulation will be used extensively in the remainder of this thesis.

Formal components in the models have been interpreted in the context of visual perception

as well. The logical question of how may these geometric features be computed in the local

computation model (Chapter 2) is answered in the next chapter.
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Chapter 4

2D Local Curve Computation

Images as sources of visual information consist of organized variations of brightness on the

image plane. The front-end of the system is designed so as to select only those parts that

have spatial variations (see Chapter 2). In addition to this selection process, the hypothesis

that the image is a representation of the physical world directs the system to search for spatial

organization that is relevant and organized. The organization considered here is geometric (see

Chapter 3), and the language used is differential calculus, which is justified from the scale-space

formulation of images and their representations.

In this chapter the correspondence between perception and geometric features in 2D domain

is investigated by formulating the computational mechanism that is responsible for computing

these perceptual features. It is shown that not only the contours (commonly referred as “edges”

when considered not structured) but also the tangents, curvatures and higher-order intrinsic

invariants can be computed from the mechanism of receptive fields, which are local compu-

tationally and, henceforth, can be considered part of the front-end. This result makes formal

models such as the local canonical form of a curve particularly meaningful.

The chapter begins by formulating the contour computation in the framework of antisym-

metric receptive fields. Computing tangents is a logical development of this formulation. This

is followed by showing how curvature and derivative of curvature can be computed in the same
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framework. Various examples are given to demonstrate the effectiveness of the computational

procedure. The chapter concludes with some considerations on the relationship between local

geometric features and visual attention control.

4.1 Contour and Its Geometric Invariants

Theconvolution property(Eq. (3.5)) provides us with a means to replace differential operations

with integral operations—a process that averages out noise rather than amplifies it (see Sec-

tion 4.3.2 for some discussion on differentiation using the convolution property). This property,

combined with the language of scale space and differential geometry, enables us to systemati-

cally compute some of the most useful geometric invariants of contours.

4.1.1 Contour

A curvilinear contour is locally linear and is characterized locally by its tangent vectort̂ =
(cosθ, sinθ). An operator that can signal the presence of a local linear segment must have a

preferred response in the directionθ . One of the simplest prototypical filters in our family of

receptive fields isψ01 (Figure 4.1), which has preferred orientation in theŷ direction. The filter

form of arbitrary orientation can be acquired through rotation of coordinate systems.

When a coordinate system is rotated by an angleθ , the coordinate of a point(x, y) in the

original system is now represented by a new coordinate(xR, yR) given by

(xR, yR) = (x cosθ + y sinθ,−x sinθ + y cosθ). (4.1)

Define a 2-D antisymmetric receptive field with orientationθ as [66]:

Pk(x, y, θ; σ) 4= −ψ01(x
R, yR; σ) (4.2)
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A local image contour with orientationθ at scaleσ is defined to be a distribution of irradiance

I (x, y) such that

[(∇ Pk(x, y, θ; σ) · n) ∗ I (x, y)] = 0, and

[ Pk(x, y, θ; σ) ∗ I (x, y)] 6= 0
(4.3)

wheren̂ = (sinθ,− cosθ) is the normal vector to the contour (i.e.,t̂). The term(∇ Pk ·n) is the

directional derivative ofPk(x, y, θ; σ) in the direction ofn̂ and, in terms of the receptive field

ψ (see Eq. (3.3) and Figure 3.1), has the explicit form:

∇ Pk · n̂ = ψ02(x
R, yR; σ). (4.4)

The response of the image to the kernelPk has maximum rate of change when moving in the

direction orthogonal tôt (see Figure 4.1). The additional condition is needed to exclude uniform

contrast areas of the image. Note thatψ02(xR, yR; σ) is in the form of a Gabor filter (Eq. (2.5)).

The location(x, y) defined by Eq. (4.3) is the maximum response of the antisymmetric kernel

Pk along the directionn and is analogous to the output of an oriented edge detector using the

Gabor kernel.

In the following we will drop theσ term in various expressions when it is clear that we are

dealing with a particular scaleσ .

4.1.2 Tangential Field Along a Contour

The tangent vector at(x, y) and scaleσ along an image contour (Eq. (4.3)) is defined as the

unit vectort̂ with orientationθ such that

8(x, y, θ; σ) 4= ∂Pk(x, y, θ; σ)
∂θ

∗ I (x, y) = 0 (4.5)
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Figure 4.1: Contour defined by the response of image toψ01 kernel at a particular orien-
tation.

This definition comes from the fact that when kernelPk(x, y, θ) is aligned with the local image

contour (with orientationθ ), the response of convolving the kernel with the image will be max-

imum with respect to the orientation parameterθ . The equation8(x, y, θ; σ) = 0 implicitly

definesθ as a function of(x, y), that is,θ = θ(x, y).

Equation 4.5 is in the form of convolving a kernel with the imageI (x, y). Hence it is

convenient to consider properties of the kernel alone and call the kernel “associated” with the

resulting function after the convolution operation. Define the kernel associated with8(x, y, θ)

as

φ(x, y, θ)
4= ∂Pk(x, y, θ)

∂θ
= ψ10(x

R, yR) (4.6)

where(xR, yR) is given by Eq. (4.1). For a given point(x, y), theorientation spaceat this

point is defined as

9(θ; σ) = φ(x, y, θ; σ) ∗ I (x, y).
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4.1.2.1 Estimation of Tangent

Sinceθ is a continuous parameter, the orientation of the tangent can only be estimated by

quantizing the orientation space, i.e., we need to determine the resolution of the orientation

space in order to locate zero points accurately.

Physiological evidence suggests a quantization resolution ofπ/18 (36 quantizations) for

the mammalian vision system [53]. It is shown in this section that a resolution ofπ/4 (8

quantizations) is sufficient if we assume a step edge model.

The orientation space at the origin for a horizontal step edge is given by

9(θ; σ) =
∫ 0

−∞

∫ ∞

−∞
φ(x, y, θ; σ) dx dy= sinθ√

2π σ
(4.7)

where the edge is going from 1 to 0 when crossing from the negative y-axis to the positive

y-axis. The above expression is the output of applying the local kernelφ(x, y, θ) to the step

edge image. We would like to find theθ that defines the tangent field without knowledge of the

closed-form solution (which is sinθ for a step edge but unknown otherwise).

θ

θ

-

+

sin

ε

θ

sin

sinθ
+

θ
-

Figure 4.2: The response of a step edge to theφ kernel. The ideal response is the sinusoid.
The zero-crossing point of the sinusoid can be approximated by a straight line connecting
a point on the negative and a point on the positive side.

Since the sinusoidal function is linear around the zero point, we can estimate the resolution
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needed by estimating the linearity of the sinusoidal function in the range(−π, π). If we denote

the two points around 0 asθ− andθ+ for negative and positive orientation samples, respectively,

then the error between the linear approximation and the actual sinusoid will be (see Figure 4.2)

ε = θ− sinθ+ − θ+ sinθ−

sinθ+ − sinθ− . (4.8)

Hence, by keepingθ− andθ+ within π/4 we can keep the estimated error of the zero point

within 1.3◦ for this case. The estimated zero pointθ(x, y) is

θ(x, y) = 8(x, y, θ+)θ− −8(x, y, θ−)θ+

8(x, y, θ+)−8(x, y, θ−)
. (4.9)

4.1.3 Curvature Along a Contour

By definition, the curvatureκ is dθ/ds, wheres is the natural parameter (curve length). For a

given tangent field,θ(x, y), using the chain rule and implicit differentiation, we have

κ = ∂θ

∂x

∂x

∂s
+ ∂θ

∂y

∂y

∂s
= ∇θ · (cosθ, sinθ). (4.10)

The explicit form of∇θ can be acquired by differentiation of the equation8(x, y, θ) = 0

(defined in Eq. (4.5) with respect tox andy, since, for example,

∂8(x, y, θ(x, y))

∂x
= ∂8(x, y, θ)

∂x
+ ∂8(x, y, θ)

∂θ

∂θ

∂x
= 0

and it is straightforward to show that

∇θ = −∇8
8θ

, (4.11)
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where8θ
4= ∂8/∂θ . Hence

κ = −∇8 · t
8θ

(4.12)

For simplicity we will use subscripts to denote derivatives (e.g.,8θ for ∂8/∂θ ). As stated

above, since8(x, y, θ) is defined asφ(x, y, θ) ∗ I (x, y), we can directly associate8 with the

kernelφ. Using the same terminology, the explicit forms of kernelsφx, φy, φθ associated with

8x, 8y and8θ , respectively, are:

φx(x, y, θ) = ψ20(x, y) cosθ + ψ11(x, y) sinθ

φy(x, y, θ) = ψ02(x, y) sinθ + ψ11(x, y) cosθ

φθ (x, y, θ) = −ψ10(x, y) sinθ + ψ01(x, y) cosθ = ψ20(x
R, yR).

(4.13)

The explicit expressions for∇8 · t and∇8 · n are

∇8 · t = ψ20(x
R, yR) ∗ I (x, y) (4.14)

∇8 · n = ψ11(x
R, yR) ∗ I (x, y) (4.15)

It should be noted that these two expressions are invariant with respect to rotation. From

Eq. (4.14) and Eqs. (4.12) and (4.13) we have the explicit form of curvature at(x0, y0), which

can be directly used for computation:

κ(x0, y0) =
∫∫∞

−∞ψ20(xR, yR)I (x0 − x, y0 − y) dx dy∫∫∞
−∞ψ01(xR, yR)I (x0 − x, y0 − y) dx dy

(4.16)

A similar formulation of curvature was proposed by Koenderinket al. [61] for image blob

boundaries defined by iso-luminance (the neighborhood around a point on an image contour

can be approximated by an iso-luminance contour). However, the tangent orientation cannot be
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computed accurately in their formulation and their expression of curvature for image contours

can only be approximated by a third-order differential.

4.1.4 Derivative of Curvature Along a Contour

The same method used to derive curvature can also be applied to formulate higher-order ge-

ometric invariants. In particular, we will derive the derivative of curvature,dκ/ds, since it is

also part of the expression of the local canonical form and possesses perceptual importance

[48]. Using Eq. (4.10) the differentiation of curvature with respect to curve length is

dκ

ds
= θxx cos2 θ + θyy sin2 θ + 2θxy sinθ cosθ

− (θx sinθ − θy cosθ)κ
(4.17)

We have already derived(θx, θy) = −(8x, 8y)/8θ . By differentiating this equation with

respect tox andy, we can deriveθxx, θyy andθxy in terms of various orders of differentiation

of 8:

θxx = −(8xx8
2
θ − 28x8θ8xθ )/8

3
θ

θyy = −(8yy8
2
θ − 28y8θ8yθ )/8

3
θ

θxy = −(8xy8
2
θ −8x8θ8yθ −8y8θ8xθ )/8

3
θ

(4.18)

Hence we have expressed the derivative of curvature in terms of first and second order

differentiation of8(x, y, θ). Using Eq. (4.13) we can directly computeφxx, φxy andφyy. If

we define

λ
4= −∇8 · n

8θ
(4.19)
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then it can be shown that

dκ

ds
= κλ− 1

8θ

(
ψ30(x

R, yR) ∗ I (x, y)
)
. (4.20)

This formula can also be derived by applying the directional derivative ofκ in thet direction.

4.2 Examples

The images in Figure 4.3 will be used to illustrate the method. Initially the scale-orientation

Figure 4.3: Image of two synthetic geo-
metric shapes.

Figure 4.4: Image of a vase from Smithso-
nian archive.

space is partitioned into 4× 4 cells, i.e., using four scale partitions ofσ = 1.5, 2, 3, 4 and

four orientation partitions ofθ = 0, π/2, π, 3π/2. This scheme enables us to locate contours

through operations in the Fourier domain, which is equivalent to performing operations uni-

formly in the image domain. At this stageθ is treated as a quantized parameter and does not

get estimated. Next, the orientation space is repartitioned into eight cells and the tangent field

is estimated along the contours. In this second passθ is treated as a continuous parameter, and

the computation is conducted in the image domain at those contour points.
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For the ellipse in Figure 4.3, the theoretical and estimated tangent are shown in Figure 4.5.

The orientation is plotted versus the curve length along the ellipse. Similar comparison is also

done for curvature and is shown in Figure 4.6. The computation of the curvature and derivative

of curvature for this image are shown in Figure 4.7 and Figure 4.8 respectively. The accuracy

and correctness of the results can be best observed by examining them along the boundary of

the irregular shape.
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Figure 4.5: Comparison between theoretical and computed tangent along the boundary
of the ellipse in Figure 4.3.

We also computed the curvature for the vase image along the left boundary and the top (an

ellipse) of the vase and the result is shown in Figure 4.9. The highest peak of the curvature

comes from the concave discontinuity near the vase handle.

4.3 Discussion

We have shown that for each of the invariants in the local canonical form of a contour, we

can derive a set of local kernels that can be used to compute the invariant directly from the

raw image. The steps are: (1) compute image contours using the kernel(∇ Pk · n) (Eq. (4.3)),

(2) compute the vector tangent fields forI (x, y) and express them in the form of(x, y, θ),
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Figure 4.6: Comparison between theoretical and estimated curvature along an ellipse.
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Figure 4.7: Computed curvature for Figure 4.3.
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Figure 4.8: Curvature derivative of Figure 4.3.
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Figure 4.9: Curvature computation of the left boundary of the vase image.



84

where the vector fieldt is (cosθ, sinθ) (Eq. (4.5)), and (3) for points where the tangent field

is non-vanishing, compute the curvature (Eq. (4.16)) and, after that, the derivative of curvature

(Eq. (4.20)).

The kernels derived above for computing local geometric invariants along image contours

can all be found in biological systems [53, 66] though the antisymmetric kernels are not as

populated as the symmetric ones. However, they can all be derived from the Gaussian kernel

with expanded kernel sizes as the differential order increases. These properties suggest possible

connections between the computation of geometric information and the organization of natural

visual systems.

In the rest of this section some further considerations about the computation in this approach

are discussed.

4.3.1 Scale and Size of Kernels

When a continuous signal is considered in the modeling process, scales are bounded only by

the object systems being modeled. However, when the signal is converted to the digital domain

by a sampling process, the range of scales is also dictated by the sampling process. In addition,

the local kernels of the receptive fields will increase in size due to this conversion.

The expressions forψi (x; σ) in Eq. (3.4) are all normalized so that the total area under each

is unity. This is important since they function as filters on images. In order to maintain this

property, the normalization factor is proportional to the order of differentiation. This implies an

expansion of the filter size for a constant numerical precision. This increase of the kernel size

also constrains the range of scales because the bandwidth of the sampled image is constrained

by the Nyquist rate. In fact, the image size determines both the upper and lower bounds of the

scale space. If the scale is taken to be multiples ofσ (e.g., scale =ασ , with α ∈ I ) in the

Gaussian kernel, then the upper bound isσmax = N/2α, where the image size isN × N. On

the other hand, takingN as the Nyquist rate dictates the scale lower bound to beσmin = α/π .
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4.3.2 Differentiation Using Convolution Property

Replacing differentiation by integration using the convolution property is advantageous under

two conditions: (1) the available information is considered valid only above a certain scaleσ0,

and (2) there is no truncation in computing the convolution. Because the Gaussian filter does

not preserve the function it operates on (for images, it is the image generator), the differen-

tiation obtained by the convolution property is not the real differentiation of the function but

a smoothed version of it. The second condition is necessary to avoid truncation noise. Weiss

[112] proposed to replace the Gaussian filter withpower preserving filtersfor these two reasons.

The first condition is equivalent to treating fine variations belowσ0 as sampling noise, which

should be discarded by the implied smoothing of the receptive fieldψi j (x; σ) for σ > σ0. In a

biological system, these fine variations are smoothed out by the sampling mosaic and the tem-

poral response characteristics of each receptive field. The second condition is satisfied when

σmin < σ < σmax.

4.3.3 Contour and Tangent Computations

Theoretically, we can use Eq. (4.3) to compute the tangent orientationθ . However, as described

earlier, we can compute image contours in the Fourier domain by treatingθ as a quantized pa-

rameter. This greatly increases the efficiency of computation at the price of being less precise in

estimatingθ . On the other hand, after potential contours are located, we need only compute the

geometric properties at these contour points and, because of the sinusoidal property indicated

by Eq. (4.7), we can then estimateθ with great precision.

4.3.4 Curvature and Foveation

Curvature has been considered as an informative feature for foveation—a process of shifting vi-

sual attention to a specific part of the image and conducting detailed analysis of the local region



86

[8, 32]. This process is illustrated in Figure 4.10 and 4.12, in which curvature extrema are used

to locate foveation points for detailed contour analysis. Figure 4.13 illustrates the contours that

have connected paths to the attended points, while Figure 4.14 shows the magnitude-encoded

curvature along these contours.

Figure 4.10: Attention points for the vase image.

Figure 4.11: An image of miscellaneous
shape of blocks.

Figure 4.12: Attention points for the
block image.
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Figure 4.13: Spatial localization using at-
tention points.

Figure 4.14: Curvature along contours
with magnitude encoding.

4.4 Summary

In this chapter it was shown that various local geometric invariants of image contours can be

computed directly and reliably from an image as part of the local computation process (Fig-

ure 4.15). This new approach eliminates the drawbacks of error propagation in conventional

approaches and the need for global processes such as energy minimization.

Being able to accurately and reliably compute higher order differential invariants such

as derivative of curvature allows us to explore the connection between perception and these

geometric invariants (e.g., curve partitioning and representation [48]). This also makes two-

dimensional visual processes such as perceptual organization more meaningful.

The ability to compute local geometric features at the early stages of processing provides

us with a much more powerful set of primitives to work with. This is essential for geometry in

3D domain and global representation to be disccussed in the following chapters.
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Figure 4.15: The process of computing geometric information from an image.
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Chapter 5

Global 2D Curve Description

Perception is global phenomenon. However, the foundation of a vision system is its local com-

putational process. Therefore it is necessary to bridge the gap between local computations and

global results that characterize visual perception. In mathematical analysis, global attributes of

functions are the results of integration on local properties, which are analyzed by differentia-

tion. For example, the property that a surface is curved can only be established if we observe

two adjacent geodesics on the surface for a substantial distance. If the deviation of the two

geodesics varies from a constant, then the surface is curved. This approach cannot be used in

perception simply because the vision system is not a good analyzer This is exactly why the

earth appears to be flat to us, and it is even harder for us to accept that the physical 3D space

of our existence could be curved. In contrast, the vision system relies on strategic identifi-

cation of local features in space and tries to generalize the local shape of space into a global

characterization. This happens in both 2D and 3D spaces.

One specific question is the focus of this chapter: what kinds of global processes that are

meaningful for visual perception can be defined on a set of local properties? This is not re-

stricted to elements of a particular geometric language. In essence, it is part of an attempt to

capture the capability of an observer who can identify 2D patterns that do not have an explicit

organization. This is exemplified by the recognition of patterns such as a seemingly random
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combination of curves without being able to describe its geometric structure. Hence, the local

elements used here are not geometric but point-based. In other words, the underlying space is

the signal space rather than the information space.

In this chapter a Fourier-based representation scheme for 2D objects is developed that pre-

serves both curve information and is stable against input noise. A high dimensional representa-

tion space is derived from this scheme and it is shown that, for each type of viewpoint-dependent

variation, there is a corresponding well-defined matching process which is independent of the

size of the database to be matched against. The sensitivity of the matching processes under

various variations is also analyzed. Examples of object recognition from a database of musi-

cal instruments are shown. The algorithm is also shown to be effective in the presence of a

combination of perspective, translation, scaling, and rotation transformations.

This chapter is organized as follows. The mathematical construct of the abstract space that

contains each curve as a subspace (that is, hyperplane) is described first. This is followed by

showing that the set of all affine transformations (i.e., a rigid transformation plus scaling) for an

object can be formulated using this hyperplane geometry and the matching process has constant

time complexity. Examples are given at the end of the chapter.

5.1 Representation SpaceD

The Fourier representation fully preserves the spatial information in a curve—one of the im-

portant criteria in curve representation. However, the representation itself is not invariant to

several important transformations. This deficiency can be remedied by introducing a new space

spanned by the Fourier coefficients and studying the subspace induced by these transformations.

The 2D representationRc of a planar curvec(s) is given by Eq. (3.12). Its Fourier transform

is given by Eq. (3.14). Because of the localization property ofRF(c)(ω), there is a neighborhood

with radiusµ around the origin in Fourier space where a given percent of the energy is within
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a given bound, i.e.,µ is considered to be the approximation of the bandwidth ofR̃c(x). Under

this approximation, the required number of samples along a single dimension will be 2µ and for

the 2D representation ofc(s) the total number of samples will be 4µ2 when using a rectangular

sampling grid. Let the samples be atωi j = (ωi , ω j ), wherei, j ∈ [0, n − 1] (hence,n = 2µ),

and the coefficients ofRF(c) atωi j beci j (a complex number in either Cartesian form or polar

form). Consider a one-to-one mapping from the pair(i, j ) to an integer:f (i, j ) = k. Let the

inverse mapping be(i, j ) = (h1(k), h2(k)). Using the mappingf (i, j ), ci j can be re-indexed

asck. Denote the polar form ofck as(r2k, r2k+1), that is,

ci j = RF(c)(ωi j ) = ch1(k)h2(k)
4= ck = r2k exp(ir 2k+1) (5.1)

Consider the tuples:

r = (r0, r1, · · · , r N−1) (5.2)

whereN = 8µ2 and the new Euclidean spaceD contains pointsr . For eachk = 0, . . . , N − 1,

designate a point along thekth dimension inD with coordinaterk. Under this construc-

tion, the curvec, as represented in Fourier space, becomes a point inD with coordinates

r = (r0, . . . , r N−1) (Figure 5.1). The capacity of spaceD depends on the resolution and

range of the Fourier coefficients. If the coefficients are all converted to integer and are in the

range[0,M], the total capacity ofD is M N .

Next, some critical properties regarding stability, rigid transformation, and scaling ofRF(c)

in spaceD will be analyzed.

5.1.1 Stability of Representation inD

Traditional methods for curve representation generally involve thresholding when the curve

is converted from piecewise-continuous to either piecewise-linear or a selected feature space.
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Figure 5.1: Representation spaceD and hyperplaneT spanned byτ 0 and τ1.

Whenever thresholding is involved, the representation will not be stable against input noise. In

another words, given a measure of distance, a new representation due to the finite variation of a

curve at a certain point does not have a bounded distance from the original representation. Since

no such thresholding process is involved when converting the curvec(s) to theN−dimensional

representation spaceD, and all the mappings are continuous and invertible, the pointr in D is

stable with respect to local perturbation ofc(s).

5.1.2 Translation inD

Let theD space representation of a curvec(s) be r0 = (r0, . . . , r N−1). A translated curve of

c(s) along a vectorp has the formct (s) = c(s)− p. The corresponding Fourier representation

is

RF(ct )(ω) = exp(i ω · p)RF(c)(ω) = A(ω) exp[i (θ(ω)+ ω · p)] (5.3)

Let RF(c)(ω) be represented byr in D. It can be observed from Eq. (5.3) thatRF(c−p) has

the same amplitude coordinates (thoser2k) asRF(c), while the phase coordinates (r2k+1) atωi j
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undergo a translation (inD) of −ωi j · p. Hence the translated curve has the representation:

r = r0 − (0, ωh1(0)p1 + ωh2(0)p2, . . . , 0, ωh1(N−1) p1 + ωh2(N−1) p2)

4= r0 − p1τ
1 − p2τ

2
(5.4)

whereτ k = (0, ωhk(0), . . . , 0, ωhk(N−1)) for k = 1, 2. In the above we make use of the one-

to-one mapping of(i, j ) = (h1(k), h2(k)). The vectorsτ1 andτ2 are constant vectors deter-

mined by the one-to-one mapping functions and Eq. (5.4) defines a parameterized hyperplane

T in D (Figure 5.1). The hyperplaneT is actually parallel to those amplitude axes defined by

(1, 0, . . . , 0), . . . , (0, . . . , 1, 0), i.e., thoseN/2 vectors inD with 1 at one of its even-indexed

coordinates and zero elsewhere. Hence all possible translations of a curve are confined within

the hyperplaneT in D. The scope ofT is determined by the scope of possible translation

vectorsp. We will discuss this aspect when we consider matching in Section 5.2.

5.1.3 Scaling inD

It can be observed that, from Eq. (3.14), the scaled curvecs(s) = ac(s) of c(s) has the Fourier

representationRF(cs)(ω) :
∫∫ ∞

−∞
G(x − ac(s)) exp(−i ω · x) ds dx = exp(−σ

2|ω|2
2

)

∫ ∞

−∞
exp(−iaω · c(s)) ds

= exp

[
−σ

2|ω|2(1 − a2)

2

]
RF(c)(aω)

(5.5)

Thus scaling in the spatial domain has a corresponding scaling effect in the Fourier domain.

In order to analyze how this will affect the pointr (representingc(s)), we need to relate the

Fourier coefficients atωi j with those coefficients ataωi j . However, there is no direct correlation

between these two sets of coefficients and other strategies are called for.

Since RF(c)(ω) is a continuous function ofω and is a result of integrating a continuous

function of the curvec(s), it follows that the mappings fromc(s) to RF(c) to r in D are all
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continuous and smooth. In addition,r is a continuous function of the scale factora. Hence,

instead of having a scale invariant formulation of matching inD, the Fourier representation

RF(c)(ω) could be scaled in advance and matched inD. This corresponds to the multi-channel

model in Chapter 2, where its biological foundation is described.

If we represent a scaled curve in logarithmic space, its Fourier representation embodies an

effect identical to the translation case and, for a fixed scale factor, the differential ofRF(cs)(ω)

with respect toa will be linear in the sum of the frequencies with respect to the Fourier coeffi-

cients. That is, in logarithmic space,

∂RF(cs)(ω)

∂a
= ω1 + ω2

a
RF(cs) (5.6)

whereω = (ω1, ω2). Hence it is natural to divide Fourier space logarithmically during the “pre-

scaling” process. This strategy is similar to some used in modeling biological vision systems

[76].

5.1.4 Rotation inD

The rotation ofc(s) about the origin is given by

cr (s))
4= c(s)


 cosφ sinφ

− sinφ cosφ


 = c(s)Q (5.7)

From Eq. (3.14),cr (s) has the Fourier representation ofRF(cr )(ω) :
∫∫ ∞

−∞
G (x − c(s)Q)exp(−i ω · x) ds dx

= exp(−σ
2|ω|2
2

)

∫ ∞

−∞
exp

(−i (ωQT) · c(s)
)

ds

= RF(c)(ωQT)

(5.8)
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since|ω| = |ωQT |. This is similar to scaling where changes of axes are necessary inD because

the new Fourier coefficients are identical to the original coefficients at a different frequency.

Again the solution is to rotateRF(cr )(ω) in the Fourier domain and then convert to the space

D representation for matching. However, since full rotation invariance is generally not imple-

mented by biological systems (for good reasons), we only need to “pre-rotate”RF(c)(ω) within

a range,[−φr , φr ], where rotation invariance is desired.

5.2 2D Matching

Given the framework presented so far, matching involves locating the point in the spaceD

representing the curve to be matched. Since there is no representation for curves that is invariant

to the effects of translation, scaling and rotation, we need to apply the theory developed thus

far regarding these effects.

The matching scheme begins with the specification of a set of 2D planar curves,c(s), for

the characterization of a 2D object. The Fourier representation of each curve is computed using

Eq. (3.14) and the correspondingD space representationrc is computed from Eq. (5.1) using

the mappingf (i, j ) andh1(k), h2(k) for each sampling frequencyωi j = (ωi , ω j ). Matching

succeeds if there are pointsr in theε-neighborhood ofrc, i.e.,

|r − rc| < ε. (5.9)

Only at this final decision is a threshold used. At this point the metric inD and the threshold

value ε remain to be decided and the decision is independent of the rest of the recognition

process.
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5.2.1 Translation

The requirement for translation invariance is equivalent to searching a subspace (the hyperplane

T ) in the representation spaceD. The scope of the search is governed by the 2D translation

vectorp. The theoretical values forp are ([−∞, ∞], [−∞, ∞]). However, when imple-

mented in a biological system, the visual resolution is not uniform across photo receptors and

the visual field is not a full panorama. A general strategy for limiting the values ofp is to bring

c(s) to the center of the visual field (foveation). In this case,p has scope([−P, P], [−P, P])
and the hyperplaneT as parameterized by Eq. (5.4) has a domain of 2P × 2P.

5.2.2 Scaling and Rotation

The control parameter in scaling is the scale factora which, again, has the theoretical value of

(0,∞]. The same argument used in the previous section regarding translation applies and the

factor will be big enough forcs = ac to be above the finest visual resolution and small enough

for cs to be entirely within the visual field. This puts both a lower and an upper limit on the

possible values ofa, i.e.,a ∈ [amin, amax].
In the case of rotation, a linear division between the scope[−φr , φr ] is needed and the

number of divisions will depend on the threshold valueε.

5.2.3 Matching Complexity and Partial Matching

It is highly desirable to have a matching mechanism that is approximately independent of the

size of the database, at least for a certain plausible size. On the other hand, it is not possible to

have a “canonical” representation of an object other than the simplest one. This implies that an

object may have multiple presence in the database and this aspect should not have a noticeable

impact on matching performance.

Since none of the algorithms described here depends on the size of database, the recognition
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process has a constant time complexity. Because of this property, it will be beneficial to have

multiple representations of a single object, not because of the necessity to “pre-scale” and “pre-

rotate” but to encode functional “parts” of an object (Figure 5.2). This redundancy is valuable

for recognition under partial occlusion.
            

Figure 5.2: Parts of a violin.

5.2.4 Algorithm Summary

Given descriptions of objects in terms of their curvilinear features (Eq. (3.12)), a 2D Fourier

representation is acquired using Eq. (3.13) and Eq. (3.14). Based on the resolution used (µ), a

subset of the coefficients in the representation is used to construct the representation spaceD

using Eq. (5.1) and Eq. (5.2). If a similar object is in the database, any translated version of the

object will be represented by points within a hyperplaneT in D (Eq. (5.4)), which has a finite

scope of([−P, P], [−P, P]), whereP depends on the scope of the optical receptors of the

system. The scaled and rotated version of the same object will be represented by unpredictable

points inD (Eq. (5.5) and Eq. (5.8)). This problem can be solved by pre-scaling and pre-rotating

the unknown object and matching each one to the database (each matching still has constant

time complexity). The final decision of similarity is controlled by the metric in Eq. (5.9).
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5.3 Examples

We used a database of musical instruments (Figure 5.3) to test our method. The curvilinear

features that characterize each of the objects are shown in Figure 5.4.
            

Figure 5.3: A database of musical instruments.

            

Figure 5.4: Curvilinear features of the database.

Three different resolutions atµ = 8, 16, 32 were used for comparison purposes. The di-

mensions ofD are 512, 2,048 and 8,192, respectively. The corresponding visual information

represented for a double-bass is shown in Figure 5.5. The translation scopeP is set to 20 pixels
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and hence the domain of the hyperplaneT is 40× 40. Pre-scaling is done at scale factors 0.75,

0.875, 1.125, and 1.25, while pre-rotation is done at angles from−π/4 toπ/4 in increment of

π/12.
            

Figure 5.5: Encoding at multiple resolutions (µ = 8, 16, 32) of a double-bass.

Different choices of the metric|r − rc| may cause drastically different responses to various

transformations. Our choice of the Euclidean metric is because of its smoothness and simplicity.

However, this does require moving back and forth between the polar representation used inD

and the Cartesian representation. All matching measures were normalized to the same number

of samples.

One of the important parameters is the thresholdε for measuring matching similarity. This

value depends not only on the amount of curvilinear information of objects being encoded, but

also on the sensitivity of the transformations when applied to objects. For a typical object, the

sensitivity of distance measures inD with respect to translation is shown in Figure 5.6, while

the sensitivity for scaling and rotation is shown in Figure 5.7 and Figure 5.8, respectively. It

can be observed that higher resolution corresponds to higher selectivity against transformations
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µ pipa violin clarinet flute guitar
8 104475 19365 102446 102856 113172
16 39797 16764 37400 37059 42208
32 16959 11446 16203 15737 17709

Table 5.1: The matching measures of a double-bass against other instruments at various
resolutions.

and hence should have a higher value ofε for recognizing slightly scaled and rotated objects.

Forµ = 8 a translation offset around(δx2 + δy2)1/2 = 10 has about the same error distance as

a rotation ofφ ≈ π/20 (i.e., 9◦) or as a scale factor of about 0.86. Atµ = 32, the same value

will only allow φ ≈ π/90 (i.e., 2◦) of rotation and a scale factor of 0.97. On the other hand,

at higher resolutions, due to the fact that more complex curvilinear features are compared,ε

should be lowered in order to recognize the similarity between, say, a double-bass and a violin.

In our implementation, the valuesε = 20000 atµ = 8 andε = 12000 atµ = 32 were chosen

because of these considerations.
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Figure 5.6: The error surface inD with respect to translation for µ = 8.

The matching measure for the double-bass in Figure 5.5 compared to the database in Fig-

ure 5.3 is shown in Table 5.1.

An image of a violin and its curvilinear features under perspective transformation, spatial

translation ((δx, δy) = (−6, 2)), rotation (φ = π/6), and scaling (factor = 0.898) is shown in
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Figure 5.7: Error curves for scaling in D for µ = 8, 16, 32.
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Figure 5.8: Error curves for rotation in D for µ = 8, 16, 32.
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Figure 5.9. The recovered object is shown in Figure 5.10.
            

Figure 5.9: An object under various transformations.

            

Figure 5.10: Recognized object under the transformation:(δx, δy) = (−10, 2), φ = π/6
and scaling factor=0.875.

5.4 Discussion

The matching process introduced here is essentially applied directly to the images of curvilinear

features. However, the decision regarding which part will constitute the characterizing features

is beyond the system described here. In the example, the characterizing features were manually

selected. Since the formulations are based on stable curvilinear features of 2D objects, it is

highly desirable that only characteristic parts are represented (e.g., see Figure 5.9).

Two interrelated parameters are critical in the system: the resolutionµ used in the repre-

sentation and the similarity criterionε in D. As can be observed in Figure 5.5 and Table 5.1,
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a higher resolution results in a lower discernible similarity measure, in spite of the visual sim-

ilarity between a violin and a double-bass. This can be accounted for by noting the fact that

more details are being compared. The relationship between these two parameters can further

be seen in Figures 5.6, 5.7, and 5.8. The higher the resolution, the higher the sensitivity against

variations. In other words, it is harder for the visual system to achieve invariance against view

point variations when attending to the details. However, we don’t have to compromise by se-

lecting a single resolution representation, since the matching process is independent of the size

of the database. As mentioned above, multiple and redundant representations of objects can be

valuable in this regard.

The problem of translation invariance has been handled by methods such as using the mag-

nitude part of the Fourier transform [111]. This is equivalent to using the metric (see Eq. (3.14))

|r − rc| 4= |A(ω − Ac(ω|.

Since the representation used for measuring similarity does not preserve essential visual infor-

mation, there is a high-collision rate in the representation space.

The large capacity of the representation spaceD implies the sparse nature of the space. This

is handled traditionally byhashingthe representation inD. However, this is a problem at the

implementation level.

5.5 Summary

In order for the representation about objects to be useful for recognition as well as other vision

tasks, the representation has to be stable against noise while still preserving essential visual

information of objects. It is also essential for the recognition system to be invariant to cer-

tain classes of variations. This latter goal can be achieved by either designing representations

out of desirable invariants or designing a matching process that has a well-defined and pre-
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dictable behavior in the presence of these variations. In addition, the matching process should

be independent of the size of the database in order to handle real-world applications. In this

chapter it is shown how these goals can be accomplished for 2D object recognition using a

high-dimensional representation space, derived from Fourier domain descriptors of curvilin-

ear features. The associated matching process is between images of these features rather than

between invariants derived from the features. For each class of variation, it is shown that a cor-

responding matching algorithm exists in the representation space and they are all independent

of the size of the database.

Recognizing 2D objects in signal space is the concentration of this chapter. In the following

chapters the primary problem will shift back to the geometric language that has been developed

in previous chapters, and the problem domain will be in Euclidean 3D space.
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Chapter 6

Surface Recovery from Curvilinear

Features

Information regarding the 3D world can be inferred from sequences of 2D images resulting

from the relative motion between the scene and the observer. When the observer does not

initiate voluntary movement and is considered stationary relative to an external reference frame,

the information from the image sequence is theoptical flow, which will be studied in the next

chapter. The reverse situation when the observer actively navigates through a static environment

is the topic of this chapter and Chapter 8.

In this chapter, the focus is on the quantitative constraints imposed by stationary contours

on surface shape. It is shown that an active observer can exploit these constraints and move

deterministically to theosculating planeof a given point on the contour, and from there can

recover the normal curvature of the surface as defined by the contour and the associated Frenet

frame of the contour. Furthermore, when two non-collinear stationary contours intersect, and

one of the principal directions is known, local surface shape can be completely recovered.

This is both qualitatively and quantitatively different from the existing methods of recovering

surface shape from occluding contours in which a surface parameterization is obtained when

the occluding contour slides across the surface [25, 39, 102].
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In the first part of this chapter it is proved that the observer can explicitly choose its motion

so that the projected curvature of a stationary surface contour monotonically decreases. The

lower bound on this projected curvature is reached when the observer reaches the osculating

plane defined by the surface contour. During the motion, the observer can either choose to

fix the optical axis of the image plane or to rotate the optical axis so that the observed point

on the contour is always on the optical axis. The latter is achieved through a combination of

camera translation and rotation and is more natural. However, when external references are

available, choosing a fixed optical axis properly produces the shortest path to the destination.

Both schemes are presented and results proved.

The second part of the chapter describes how the Frenet frame can be recovered once the

observer reaches the plane where the projected curvature for the given point on the contour

reaches its minimum. In the process of reaching this position the observer can verify if the

contour is indeed stationary. Our method for discriminating occluding from stationary contours

differs from previous ones in that: (1) no motion parameters are used, and (2) it is applicable

within areas where no occluding contours slide across the surface (i.e., elliptic concave parts

of the surface). The recovered Frenet frame can be used by the observer to trace the stationary

contour in order to recover the same information for all points on the contour (by always stay-

ing in the osculating planes). Furthermore, if there are points where two stationary contours

intersect, the recovered Frenet frame can be used to parameterize the surface and this parame-

terization is unique if one of the principal directions (the direction where the normal curvature

is either maximum or minimum at the given point) is known. This uniqueness is also true if

more than two contours pass close to each other.

Finally, results of various recovered surfaces for a synthetic scene are shown as well as the

paths an observer actually takes to reach the osculating plane under purely translational motion,

and under translational combined with rotational motion. The validity of the theory is further

enforced by showing the results of recovering the surface of a textured vase.
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6.1 Theoretical Framework

When a 3D surface is projected into a 2D image plane, the image formed is dependent on the

lighting, surface properties, and the location of the image plane. The problem of 3D shape

recovery is to describe the surface in a parametric form from a set of 2D images.

In order to parameterize a surface locally, we need to designate two independent basis vec-

tors and an origin. We also need three parameters to characterize how distance (metrics) is

measured on the surface and an additional three parameters to measure how the surface tangent

turns away from the surface locally. Since these six parameters are not independent, but tied

by a set of threecompatibility equations[31], we need a minimum of three equations relat-

ing these parameters to completely characterize the local surface. The problem of recovering

surface shape from contours is to derive these equations from a finite number of observations.

In this section we describe the surface geometry and imaging model that will be used in the

subsequent presentation. We will use(x̂, ŷ, ẑ) to denote unit basis vectors in the 3D Euclidean

coordinate frame(x, y, z).

6.1.1 Curves and Surfaces

Given a reference coordinate frame and a pointP on a smooth surfaceS in space, the local

shape ofS at P is a set of parameterizations of the form(x(u, v), y(u, v), z(u, v)). Each

parameterization differs from the others by a rigid transformation (compositions of translation

and linear orthogonal transformations). The fundamental theorem of the local theory of surfaces

asserts that the first and second fundamental forms uniquely define the surface up to a rigid

transformation. These two forms, in turn, can be determined from the surface normal and first

and second derivatives of the surface along two principal directions, where the surface curves

most and least. This observation is the operational principle for our methods.

For a stationary curve on an object surface, the normal of the curve is always uniquely
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defined if the curvatureκ is not zero. If we determine an orientation for the curve and its

tangent direction, the binormal of the curve is then determined byb̂ = t̂ × n̂. In the following

we will use the convention of orienting the observer and the tangentt̂ so thatx̂ · t̂ > 0 (see

Figure 6.1). Hence the direction ofx̂ is an “upward” reference direction.
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Figure 6.1: Locating the osculating plane
for a stationary curve on a convex surface.
The plane is reached at locationOs.
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Figure 6.2: Locating the osculating plane
for a stationary curve on a concave sur-
face.

6.1.2 Contour Curvature under Projection

Consider the projection of a stationary curve segmentC onto the image plane (Figures 6.1 and

6.2). A pointP on the curve is represented by the vectorr in the observer frame. Let the Frenet

frame atP be {t̂, n̂, b̂}, and assume the observer is located atO and looks in the direction

(viewing direction)z. The image plane is at(0, 0, 1). The projected curvatureκp of Cp at point

P can be expressed in terms of the Frenet frame{t̂, n̂, b̂} as (see Appendix A.1):

κp = κ|r · b̂|
[(|r × t̂)|2 − (r , t̂, ẑ)2)/(r · ẑ)2]3/2 (6.1)
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where(r , t̂, ẑ) is a shorthand forr × t̂ · ẑ. The advantage of Eq. (6.1) is the use of vector

expressions in both the fixed Frenet frame and the observer frame, which is under control of the

active observer. These variables are invariant to the observer’s frame except forr andẑ.

Since we haven’t distinguished a stationary contour from an occluding contour at this point,

the curve could be of either type. In the case of occluding contours, the expressionκp actually

reduces to the equation relating thegeodesiccurvature and the surface normal curvature [25,

59].

From Eq. (6.1) it can be seen thatκp has minimum value 0 whenr · b̂ = 0. This is the case

when the observer is in the plane defined by the binormalb̂, called the osculating plane, where

the stationary contourC projects onto the image plane as a locally straight line. This is a well

known result and we state it formally as follows:

Proposition 6.1.1. Given a spatial curve on a smooth 3D surface and a point on the curve, the

minimum projected curvature at this point is zero and will be obtained when the observer is in

the osculating plane containing this point.

In the next section we show how an observer can reach this plane (that is, determine the

binormalb̂ at a given point on curveC) from any location in space.

6.2 Moving to the Osculating Plane

The formulation above is in the frame of the observer, which we called theobserver frame. By

using the vector representation, we have some advantages when changing the observer frame

during motion. However, it can be inconvenient when coordinate transformations are necessary.

This difficulty can be circumvented by working in theobject framewith the origin atP. These

two frames can either be related by a pure translation or by a translation plus rotation. In the case

of pure translation, the two frames can be transformed back and forth through a translation at

any given location of the observer. This case will be referred to as thetranslation scheme. More
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generally, the observer can choose to orient the observer frame with respect to the object frame

in any convenient way and the two frames are related through an arbitrary rigid transformation

at a given observer location. This case will be called therigid transformation scheme. Both

cases will be analyzed. In the following we will user∗ to denote the observer’s location in the

object frame.

6.2.1 Translation Scheme

When an active observer can control its motion so that only pure translation is performed (by

using an external reference frame, for example), the observer and object frames are related by

x̂∗ = x̂, ŷ∗ = ŷ, ẑ∗ = ẑ. Consequently,r∗ = −r . The observer may choose its frame arbitrarily

as long as it satisfiesr · ẑ > 0 for the selected point on the surface, i.e., the viewing direction

r generally “agrees” with the optical axisẑ. The following definition formalizes the statement

that vectorsr andẑ are pointing generallyin the same direction.

Definition 6.2.1. Given a spatial curve C and the Frenet frame{t̂, n̂, b̂} at a point on the curve,

an observer frame is anagreeable framefor the point if for all possible observer movements,r

andẑ are in the same octant defined by the Frenet frame.

Considerκp in the object frame as a scalar field ofr∗ (i.e., at any given pointr∗ in space,

there is an associated field valueκp(r∗)) and consider the observer as a detector of the scalar

field; that is,

κp(r∗) = κ|r∗ · b̂|
[(|r∗ × t̂)|2 − (r∗, t̂, ẑ)2)/(r∗ · ẑ)2]3/2 . (6.2)

Note thatκp takes the same form in both the observer and the object frames. Conceptually,κp

is a quantity to be observed in the observer frame, but in the object frame it is a scalar field

defined in three-dimensional space.

Let c
4= r × t̂ = (c1, c2, c3). Let’s go back to the observer frame and consider how various
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vectors project to the image plane and analyze their properties. The plane defined byc intersects

the contour on the surface at pointP and intersects the image plane along the direction oft̂ p,

which is the projection of̂t on the image plane (see Figure 6.1), and is given by

t̂ p = (c2,−c1, 0)

(c2
1 + c2

2)
1/2
. (6.3)

The orthogonal direction of̂t p is cp, which is also the projection of the normal of the plane

(i.e.,c) on the image plane, and is given by

cp = (c1, c2, 0).

Let r⊥ be defined byr⊥
4= (−c2, c1, (c2x−c1y)/z). Thenr⊥ is orthogonal tor , sincer ·r⊥ = 0

andcp is orthogonal tor⊥. Hencer⊥ is the normal of the plane spanned byr andcp.

In Appendix A.2, it is shown that the change of projected curvatureκp in the direction of

cp takes the form

∇κp · cp = κp
cp · b̂

r · b̂
. (6.4)

Note thatκp is not a differentiable function atr · b̂ = 0, butκ2
p is. This is the reason that at

r · b̂ = 0, ∇κp 6= 0.

Since we want to locate the osculating plane, we should move in a direction that reducesκp

until eventually reaching it. Sinceκ is bounded below, this is guaranteed if we can always find

the desired direction at any given point in space. The osculating plane is defined byr ·b̂ = 0 and

this plane divides the space outside the object into two regions:r · b̂ < 0 (regionI ) andr · b̂ > 0

(region I I ). We will show that, in the translation scheme, the observer can deterministically

move either in directioncp or −cp according to the region the camera is in, in order to reduce

κp. In particular, we prove the following proposition in Appendix A.3 (see Figures 6.1 and 6.2):
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Proposition 6.2.1. For a contour on a convex surface, if the observer chooses anagreeable

frame, the direction of motion that reducesκp in the region defined byr · b̂ < 0 is cp, and the

direction of motion in the region wherer · b̂ > 0 is−cp. For a concave surface, the direction is

reversed for each of the regions.

6.2.2 Rigid Transformation Scheme

During active motion, the observer often needs to move by rotating as well as translating. One

reason for this type of motion is to adjust the viewing direction so that the surface point being

observed is in the direction normal to the image plane. That is,

ẑ = r
|r | .

This case is considered in this section.

Under the above condition, Eq. (6.1) takes the form

κp = κ|r · b̂|
(|r × t̂|2/|r |2)3/2 = κ|r · b̂|

A3/2

whereA = |r × t̂|2/|r |2. In the object frame, this becomes

κp(r∗) = κ|r∗ · b̂|
(|r∗ × t̂|2/|r∗|2)3/2 = κ|r∗ · b̂|

[|c∗|2/|r∗|2]3/2 . (6.5)

At each new camera position, assume the camera also rotates so that the direction ofẑ is co-

incident withr . The value ofκp, then, depends only onr , t̂ and b̂. Since the gradient vector

needs to be computed in order to determine the dependency between the motion direction and

the change ofκp, and the object frame is the only one where we can perform the gradient



113

operation, we have to use Eq. (6.5) directly in its general component form, that is,

κp = κ|r∗ · b̂|
[(c∗2

1 + c∗2
2 + c∗2

3 )/(x
∗2 + y∗2 + z∗2)]3/2 . (6.6)

It then can be shown that

∇κp = ± κ

A5/2

[
Ab̂ − 3

(r∗ · b̂)
|r∗|2 (c∗ × t̂)− |c∗|2

|r∗|2 r∗
]
. (6.7)

Sincec∗ · (c∗ × t̂) = 0 andc∗ · r∗ = 0 we have

∇κp · c∗ = ± κ

A3/2
(c∗ · b).

Using Eq. (6.5), we have

∇κp · c∗ = −∇κp · c = κp
c∗ · b̂

r∗ · b̂
. (6.8)

We can then prove a proposition similar to the one for the translation scheme:

Proposition 6.2.2. For a contour on a convex surface, if the observer chooses its frame so that

ẑ = r/|r |, the direction of motion that reducesκp in the region defined byr · b̂ < 0 is c, and

the direction of motion in the region wherer · b̂ > 0 is−c. For a concave surface, the direction

is reversed in each region.

Note that in the observer frame,c is actually orthogonal tôz sinceẑ andr are coincident.

Hencec = cp and the above two propositions become identical. The only difference is that for

the translation schemecp is always on the same plane, while in the rigid transformation scheme

c translates and rotates as the observer approaches the osculating plane.
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6.2.3 Discussion

We have shown that the observer can always move deterministically in either region outside

the object surface to reach the osculating plane for a given marked point on the object surface.

The direction of movement,cp, is always orthogonal to the projected tangent,t p. In the case

of pure translation, the observer always moves within the established image plane and the point

where it reaches the osculating plane will be on the intersecting line of the image plane and the

osculating plane. Hence the length of path from the initial location to the osculating plane is

determined by the initial viewing direction. Furthermore, without an external landmark, it is

very difficult to verify if the motion is purely translational. This is not the case for the rigid

transformation scheme since the surface mark itself is the external reference. The observer also

has better control over the path from the initial position to the osculating plane because the

viewing direction can be guided by the reference rather than arbitrarily chosen. This difference

is shown in Section 6.5.

If the marked point becomes occluded during the observer motion, an alternative path has to

be found. This is generally achieved by choosing a different direction of motion while keeping

the projected curvatureκp constant. During this action, the observer essentially “moves around”

the obstacle while keeping same “distance” from the marked point (see Chapter 8). This will

be the real Euclidean distance when the marked point is on a constant curvature surface.

On the other hand, when there are no well-defined stationary marks on the contour, point-

wise correspondence across observations becomes problematic and the rigid transformation

scheme cannot be used. However, if the observer motion can be assured to be translational only

(by external reference, for example), the plane formed by the initial observation direction,r ,

and the direction of movement,cp, will intersect the object surface at the pointP. In this case,

the translation scheme will be the only one applicable.
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Once in the osculating plane the surface binormalb̂ can be recovered by

b̂ = ± r × t̂ p

|r × t̂ p|
. (6.9)

The sign of the above expression is determined by the local shape of the surface along the

contour (negative for convex and positive for concave).

Propositions 6.2.1 and 6.2.2 also provide a way to determine the shape of the surface along

the contour qualitatively, i.e., if it is a convex or concave surface strip [26, 60]. For example, if

the projection of the contour is convex to the right (open to the left) and moving right decreases

κp, then the surface strip is convex; otherwise it is concave.

Based on an expression similar to Eq. (6.1), Cipolla [26] derived qualitative results regard-

ing surface shape. He also showed that if image velocity can be computed accurately, the

deformation of stationary contours can be used to compute the curvature of the contours and to

constrain the viewer motion.

Next we show how the rest of the Frenet frame can be recovered.

6.3 Frenet Frame Recovery

Once we have found the osculating plane, the recovery of the rest of the Frenet frame becomes

possible. Consider Figure 6.3.

6.3.1 Curvature

If the observer chooses its frame so thatẑ = −b̂, then as long as the observer translates only

along b̂, we always havêt = (x′, y′, 0) andc = r × t̂ = (−yz′, zx′, 0). Hence Eq. (A.4)
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Figure 6.3: Recovery of Frenet vectors when moving away from the osculating plane along
the binormal direction.

becomes

κp = κ|r · ẑ|
(x′2 + y′2)3/2

= κ|r · ẑ|
|t̂|3 = κ|r · ẑ|. (6.10)

Consequently, if the observer moves in the direction alongb̂ a distanced, the contour curvature

κ at P is

κ = κp

d
.

In this process, the exact measurement system used by the observer to measure the distanced is

not important as long as the projected curvatureκp is measured against the same system. How-

ever, if the contour curvatureκ is used to recover surface shape (see below), the measurement

system has to be consistent with the metric used for the surface.

It should be noted that the requirement that the observer translate strictly alongb̂ implicitly

assumes the existence of some external references. In another words, this action cannot be

“intrinsic” and some kind of external reference must be used to accomplish this motion.
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6.3.2 Tangent and Normal Vectors

From Eq. (6.3) we get

t̂ p = (c2,−c1, 0)

(c2
1 + c2

2)
1/2

= (x′, y′, 0). (6.11)

Hence the components oft̂ are identical to the components oft̂ p in the selected observer frame.

This result gives us the tangent. Finally, fromn̂ = b̂ × t̂ we get the last member of the Frenet

frame, the normal.

Hence the Frenet frame can be recovered by observing the deformation of geometric in-

variants (the curvature of the projected contour) without knowing the depthz, which can be

recovered from the triangulation ofOsOP in Figure 6.3 if external reference points can be

found. Next we show that all the geometric metrics for the space curveC can be recovered.

6.3.3 Torsion
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Figure 6.4: Curve projection onto planes defined by the Frenet frame.

From the Serret-Frenet equations (Eq. (3.10)), if the coordinate system is chosen to be the
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Frenet frame (i.e.,̂x = t̂, ŷ = n̂, ẑ = b̂), we can derive thelocal canonical formof C :

x(s) = s − κ2s3

6
+ Rx

y(s) = κs2

2
+ κ ′s3

6
+ Ry

z(s) = −κτs3

6
+ Rz.

(6.12)

The projections ofC onto thêt − n̂ andt̂ − b̂ planes are shown in Figure 6.4. As can be seen

in the equation, the local form ofC on thet̂ − b̂ plane is cubic and by estimating the third-order

slope across the origin we can computeτ . This completely determines curveC at the point.

It should be noted that we cannot actually use the chosenẑ as our observer frame since

the requirement̂z = b̂ will generally put the observer at a side view of the surface where the

stationary contour coincides with the occluding contour. On the other hand, if we chooseẑ = n̂

then the slope across thex̂ − ŷ (i.e., b̂ − t̂) plane is zero (i.e.,κp = 0), making the estimation

of τ unreliable. However, if the goal is to recover the surface geometry of the object, then

recovering the curvature and the Frenet frame (actuallyt̂) is sufficient.

6.4 Applications

6.4.1 Distinguishing Stationary Contours from Occluding Contours

There are qualitative differences between the deformations of a stationary and an occluding

contour when the observer can move in controlled ways [69]. These differences enable us to

discriminate between these two types of contours without first recovering the surface shape.

The deformation of a stationary contour occurs for two reasons. The first kind of deforma-

tion occurs during the process of locating the osculating plane, when the contour, as projected

onto the image plane, deforms according to Propositions 6.2.1 and 6.2.2. The second kind oc-

curs when the observer moves along the binormalb̂ after the osculating plane is identified. In
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Figure 6.5: An occluding contour that appears to be a stationary contour.

the second form, the contour does not actually deform locally (see Eq. (6.11)). There could be

a surface and a motion that makes the deformation of the occluding contour behave like a sta-

tionary contour in the first form (see Figure 6.5). However,all occluding contours must deform

when the observer moves along the (false) binormal because this direction is actually toward

the object surface (see Eq. (6.9) and Figure 6.5).

In the previous sections we handled the case where there are no other markings on the sur-

face. That is, there is only one contour with a marked point in the region of interest. In practice,

additional contours, texture or surface markings will make the task much easier. Nonetheless,

we show that in this worst case, the deformation of projected curvature,κp, and the Frenet

frame carry with themintrinsic information that allows us to distinguish stationary contours

from non-stationary ones.

6.4.2 Surface Shape Recovery from Multiple Contours

For a given local parameterization, the six parameters in the first and second fundamental forms

that satisfy the threecompatibility equations[31] completely determine the surface shape up

to a rigid transformation. This is the fundamental theorem of the local theory of surfaces.

Hence, there are three degrees of freedom that need to be fixed in order to determine the local
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surface shape. Since the value of the second fundamental form along a given direction equals

the normal curvature of the surface along that direction, two intersecting stationary contours

provide a local parameterization and two constraints for the three degrees of freedom. In this

section, we consider how the third constraint can be obtained.

6.4.2.1 Surface Shape from Principal Curvature

From the differential theory of surface geometry, the two principal directions where normal

curvature for the surface reaches extrema are orthogonal to each other. Any normal curvature

κn at the point relates to these two extremal curvatures byEuler’s formula:

κn = κ1 cos2 θ + κ2 sin2 θ

whereκ1 andκ2 are the two principal curvatures andθ is the angle between the tangent forκn

and one of the principal directions. If one of the stationary contours is along the principal di-

rection, we can solve for both principal directions and the associated extreme curvatures. When

neither of the two contours is along a principal direction but one of the principal directions can

be determined by other means, the two Euler equations relatingκ1, κ2, θ and the two known

normal curvatures along the two contours enable us to solve the surface geometry completely.

Since principal directions are directions where the normal section of the surface is maxi-

mally or minimally curved, we need an active procedure capable of inspecting all directions

around the surface point.Shape from occluding contourmethods work well when the surface

is elliptically convex in the neighborhood of the point, but fail otherwise.

6.4.2.2 Surface Shape from another Contour

If we cannot determine any of the principal directions by examining the surface visually, they

can still be determined algebraically. The result can be exact if there is another stationary con-

tour passing through the intersection point where the two contours intersect. In most cases, the
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shape can be estimated when additional contours pass by in the vicinity of the point. In the first

case, we have three Euler equations to solve all required parameters. In the second case, since

the third contour will intersect at least one of the first two contours, we canparallel transport

[31, 60] the tangent and curvature along this third contour from the additional intersection point

to the first intersection point and then solve the set of three Euler equations. The accuracy of

this parallel transport depends on the curvature of the surface along which we make the parallel

transport. For a locally cylindrical surface the result will be exact.

6.4.2.3 Mesh Representation

Stationary contours as visual cues are most effective in “meshed” representations of surfaces.

For example, a meshed representation of a synthetic surface is shown in Figure 6.7. Intersecting

lines with zero projected curvature along a particular direction give cues of a locally flat surface

in that direction. Consequently, by assuming the surface is locally parabolic or cylindrical in

one direction, the mesh lines in the orthogonal direction provide the needed deformation as

cues of surface shape in that direction. This is achieved through the implicit assumption that

the orthogonal direction has constant curvature and the mesh lines in that direction provide

a deformed sequence exactly as if the observer moves along that direction and observes the

deformation of a stationary contour.

Figure 6.6: A synthetic surface with sta-
tionary contours.

Figure 6.7: Mesh representation of the
surface.
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6.5 Examples

In this section both a synthetic surface and a ray-traced vase are used to show results of how

the theory can be implemented. The surface in Figure 6.6 contains peaks, valleys and saddles

and the dark contours on the surface are stationary contours and will be used by the observer to

recover surface shape at the intersection points.

The recovery process involves camera motions relative to both intersecting contours and,

for each contour, recovering the tangentt̂ and the curvatureκ. From these two tangents,t̂1 and

t̂2, the surface normal can be found as

N̂ = t̂1 × t̂2

|t̂1 × t̂2|
.

The normal curvatureκn of the surface alonĝt1 andt̂2 can be recovered by applying the formula

κn = κn̂ · N̂

wheren̂ is the normal vector in the Frenet frame for the contours.

Since we did not attempt to find the directions of the principal curvatures, it is assumed

that these two contours are actually in the principal directions. Under this assumption, all

six parameters of the first and second fundamental forms can be computed [31] and we can

parameterize the local surface by using the two tangents as two basis vectors and the intersection

point as the origin. To illustrate, we overlay on the surface members of the family of quadratic

functions that have the same parameters at the given intersecting points in Figure 6.8. This is

accomplished by using a quadratic Monge patch parameterization(u, v, h(u, v)) and solving

for all the coefficients using the parameters from the two fundamental forms. The resulting

functions are translated to the surface point and rotated according to the recovered surface

normal N̂. Locally, the quadratic functions exactly match the surface. Globally, the degree
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of fit will be determined by the variation of the normal curvatures along the principal curves

passing by the surface point.

Figure 6.8: Synthetic surface with recovered elliptic and hyperbolic surface patches.

Figure 6.9 shows the paths taken by the camera in the translation and the rigid transfor-

mation schemes starting from the same initial location. The scene is set up so thatẑ is in the

upward direction and{x̂, ŷ, ẑ} forms a right-handed system. At the surface point being tracked,

the stationary contour moves in the direction oft̂. The image plane for the translation scheme

is arbitrarily set to be in the -ẑ direction.

It can be seen that the path taken by the translation scheme is parallel to thex-y plane

and intersects the osculating plane horizontally, i.e., the observer moves completely within the

image plane. On the other hand, the rigid transformation scheme takes a more curved path

because of the gradual turning of the viewing direction. In this particular case, the translation

scheme actually reaches the osculating plane faster because of the position of the image plane.

If the observer can ensure that its movement is purely translational by referring to external

references, the path will be the shortest of the two schemes in all cases. However, this shortest

path will bring the observer directly to the surface, i.e., the path intersects the osculating plane

at the surface. This may not be desirable in practical cases.

A more realistic example is shown in Figure 6.10 in which various stationary contours on

a vase are tracked and the local surface shape at intersecting stationary marks is recovered.

Complete shape recovery is possible only at these stationary marks. For points along a contour
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Figure 6.9: Paths produced by the translation scheme and the rigid transformation
scheme.

between two marks, interpolation is used to estimate the curvature in the direction orthogonal

to the contour.            
stationary marks for surface reconstruction

stationary contours on object surface

Figure 6.10: Surface recovery from stationary contours and marks.

6.6 Summary

Curvilinear features on object surfaces are useful for constraining surface shape. In contrast to

some other kinds of contours, stationary contours do not provide two-dimensional constraints
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on surface shape under observer motion. However, from the constraints they do provide, we

have shown that the surface in the neighborhood of the contour can be recovered without know-

ing or being sensitive to measurement errors in both observer and image motion. All the pa-

rameters characterizing a stationary contour as a spatial curve can be recovered by controlled

motion of the observer. In the process, the problem of discriminating between occluding con-

tours and stationary contours is also solved. Another major result is the analysis leading to

a method an observer can use to reach the osculating plane. Depending on whether external

references other than the surface point are available or not, two different strategies for observer

motion were presented. They perform differently but both enable the observer to move in di-

rections that monotonically decrease the projected contour curvature on the image plane.

Contrary to the belief that stationary contours are only useful for acquiring qualitative sur-

face information, we demonstrated that curvilinear features on a surface can be considered as

“samples” of surface shape and as long as there are enough features in a region of interest,

the shape can be recovered quite accurately. Suggestions are given concerning how to acquire

information about the principal directions so that two intersecting surface contours can be used

to constrain the local surface completely. Error analysis for the case when we can parallel

transport a nearby point to the intersection point in order to recover the surface geometry is an

important subject for future study.

The active navigation necessary for the observer to acquire important information in order

to solve the problem of surface geometry will be further developed in Chapter 8, in which the

information content is much expanded and is not restricted to static curvilinear features as are

treated in this chapter.
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Chapter 7

Computation and Segmentation of Optical

Flow

Motion perception is essential in both shape recovery and navigation, but, for an observer,

the computation of a 2D motion field can only be carried out through observing the optical

flow which is the projection of the motion field onto the image plane. This correspondence

between motion field and optical flow is not one-to-one, even though they are coincident for

most cases [51]. In the case of local shape recovery, the inverse problem can be solved if the

surface is smooth and high accuracy measurement can be achieved for second-order variations

of the optical flow. The measurements of optical flow and its spatial variation are generally

noisy and hard to make accurate. On the other hand, the smoothness of the optical flow has

a direct correspondence in the motion field and can be computed by using only the first order

variation of the optical flow. The determination of the discontinuous boundary of an optical flow

field is the segmentation of optical flow. Discontinuities in optical flow correspond directly to

discontinuities of either the surface shape or surface orientation.

In this chapter, the focus is on the geometric properties of optical flow and the segmenta-

tion of it. A new method for computing optical flow from a spatio-temporal image volume is

presented. It is shown that kernels that are local in both the spatial and temporal domains can
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be designed to compute the optical flow.

Once the optical flow field is computed, we show that an observer can utilize its mobility to

actively control the shape of the optical flow field, which directly reflects the surface shape of

the object. Furthermore, we present an algorithm for segmenting an optical flow field, which

can be proved to be correct under smooth observer motion.

This chapter starts with the decomposition of a general vector field into divergence, curl

and deformation fields. Each provides information on the object surface relative to the ob-

server. This information can be used by the active observer to control its motion in order to

complete relevant tasks (e.g., navigation or shape recovery). Following this, a spatio-temporal

receptive field is introduced in order to compute the optical flow using a polar parameterization.

It is shown next how the eigenvalues of the optical flow decomposition can be related to the

observer-controlled motion and surface geometry. Finally, a new method of optical flow de-

composition is presented for an observer-controlled translation. This is achieved by measuring

the directional derivative of the magnitude of optical flow in the direction of the flow itself.

7.1 Theoretical Framework: 2D Vector Field Decomposition

On a 2D Euclidean manifold(ξ, η) the integral curvesof a 2D linear vector fieldu = (µ, ν)

are the family of curvesq = (ξ(s), η(s)) defined by

µ = ∂ξ

∂s
= ∂µ

∂ξ
ξ + ∂µ

∂η
η

ν = ∂η

∂s
= ∂ν

∂ξ
ξ + ∂ν

∂η
η (7.1)

wheres is curve length. Let the matrixP be

P =

 ∂µ
∂ξ

∂µ
∂η

∂ν
∂ξ

∂ν
∂η


 .
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Eq. (7.1) can then be written in the formuT = PqT . For a general vector fieldu, Eq. (7.1)

provides the first-order approximation todu (by Taylor series) in the formduT = PdqT .

P = (pi j ) can be decomposed into the sum of a symmetric matrixPs = (ps
i j ) and an

antisymmetric matrixPa = (pa
i j ) according tops

i j = (pi j + pji )/2 andpa
i j = (pi j − pji )/2:

Ps = 1

2


 2∂µ

∂ξ
∂µ
∂η

+ ∂ν
∂ξ

∂µ
∂η

+ ∂ν
∂ξ

2∂ν
∂η




Pa = 1

2


 0 ∂µ

∂η
− ∂ν

∂ξ

∂ν
∂ξ

− ∂µ
∂η

0


 . (7.2)

Since a symmetric matrix can always be diagonalized by a similar transform,Ps can be put into

the form

Ps = Q−1


ζ1 0

0 ζ2


Q

whereζ1 > ζ2 andQ is an orthogonal matrix with|Q| = 1. This transform has the property

tr Ps = ∂µ

∂ξ
+ ∂ν

∂η
= ζ1 + ζ2

Let

I2 =

1 0

0 1


 , J2 =


1 0

0 −1


 , K2 =


0 −1

1 0


 .
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Then, by the above property, we have

2Ps = 2Q−1


ζ1 0

0 ζ2


Q

= Q−1 [(ζ1 + ζ2)I2 + (ζ1 − ζ2)J2] Q

= (
∂µ

∂ξ
+ ∂ν

∂η
)I2 + (ζ1 − ζ2)Q−1J2Q. (7.3)

A more compact form can be reached by noting that if the 2D vector fieldu = (µ, ν) is treated

as a 3D field(µ, ν, 0) then

∇ · u = ∂µ

∂ξ
+ ∂ν

∂η

∇ × u = (
∂ν

∂ξ
− ∂µ

∂η
)êz. (7.4)

If we denote the only component of the curl as(∇ × u)z, the matrixP has the decomposed

form:

P = 1

2
(∇ · u)I2 + 1

2
(∇ × u)zK2 + 1

2
(ζ1 − ζ2)Q−1J2Q. (7.5)

Following [62] we will refer these three decomposed components ofu as thedivergence, curl

anddeformationfields, respectively.

7.2 Properties of the Decomposed Fields

Given the set of differential equations for integral curves as in Eq. (7.1), we can characterize

the curves by theeigenvaluesλk of the matrixP (see, e.g., [15]) defined by the equationPvk =
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λkvk, wherevk is theeigenvectorof P. The basis of the solution of Eq. (7.1) is then


ξ
η


 = eλ1sv1, eλ2sv2

whereλk is given by solving thecharacteristic equation

|P − λI2| = 0. (7.6)

Since Eq. (7.5) is the algebraic sum of three vector sub-fields, the properties of the vector field

are completely defined by these three sub-fields.

7.2.1 Divergence Field

The characteristic equation for the divergence field

1

2
(∇ · u)I2

is

λ2 − 2λ+ 1 = 0

which defines a degenerate integral curve in a “star” configuration (see Figure 7.1), since two

eigenvalues are real and identical. For optical flow, the divergence field is a result of the ob-

server moving toward or away from the object, and provides information regardingtime to

contact.



131

7.2.2 Curl Field

The characteristic equation for the curl field

1

2
(∇ × u)zK2

is

λ2 + 1 = 0

which defines an integral curve in a “vortex” configuration (see Figure 7.1), since two eigen-

values are pure imaginary and opposite in sign. For optical flow, this is a pure rotation with

surface normal coincident with the line of sight.

7.2.3 Deformation Field

Since the deformation field is defined by

1

2
(ζ1 − ζ2)Q

−1J2Q

with |Q| = 1 we can treatQ as a rotation, i.e.,

Q =

 cosγ − sinγ

sinγ cosγ




and the characteristic equation is

λ2 − 1 = 0

which defines an integral curve of a “saddle point” configuration (see Figure 7.1). The two

eigenvalues are real and opposite in sign. For optical flow, the deformation field carries in-

formation on surface orientation. Since whenζ1 = ζ2, the deformation field disappears, the
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observer can use the shape of the deformation field to control its motion with respect to a refer-

ence area on the object surface (see Eq. (7.20)).

Curl Field Divergence Field

Deformation Field

η

ξ

η

ξ

η

ξ

Figure 7.1: Integral curves of Vector fields corresponding to decomposed sub-fields

7.3 Properties of Integrated Fields

The integrated vector field is determined by three canonical subfields formulated in Eq. (7.5).

Its properties can be investigated by examining the eigenvalues ofP. The eigenvalues are

themselves functions of the image coordinates(ξ, η) defined at each point on the image plane,

as is the field itself.

If we insert the orthogonal matrixQ and letc = (∇×u)z/2, d = (∇·u)/2, e = (ζ1−ζ2)/2,
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P can be written in the form

P = d

2
I2 + c

2
K2 + e

2


 cos 2γ − sin 2γ

− sin 2γ − cos 2γ




= 1

2


d + ecos 2γ −c − esin 2γ

c − esin 2γ d − ecos 2γ


 .

Hence the characteristic equation forP is

λ2 − 2dλ+ (c2 + d2 − e2) = 0

and the eigenvalues areλ = d±(e2−c2)1/2. From this we can make the observation thate2−c2

(curl and deformation) acts as an essential factor in deciding the field characteristics. One of

the interesting cases is when the curl and deformation fields cancel each other so that only the

divergence field shows up. This is different from vanishing curl and deformation fields, but it

appears identical to the observer. The relationship between eigenvalues and observer motion

will be derived in Section 7.5.

7.4 Optical Flow Computation

The receptive field framework developed for static images can readily be extended to the com-

putation of optical flow (see Eqs. (4.2) and (4.3)). The primary difference is that the optical flow

field are localized vectors with both magnitude and orientation, while image contours have only

localized orientation, as we will see shortly.

Consider the spatio-temporal volumeI (x, t) of the image in the spatially local regionNP

of the pointP and temporally local regiont ∈ [0, 1] whenNP is moving with image velocity

u = (µ, ν) = (ρ cosθ, ρ sinθ), whereρ is the absolute velocity andθ is the direction of the
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optical flow. The trace of the point inI (x, t) will be the linex = tu, i.e., the locus of all the

possible traces will be on the cone (see Figure 7.2)|x| = ρt .

x

y

x

y

t

θ

x = ut
y = vt

θ

x2 + y2 = ρ2t2

t = τ

ρ

Figure 7.2: Optical flow in x − t frame

Let x′ = x−tu. Since the energy of the spatio-temporal line will be confined entirely within

the neighborhood of the line, we can consider a spatio-temporal receptive field of the following

form for t ∈ [0, 1]:

ψm
0 (x, ρ, θ, t; σ) = (1 − |x′|2

σ 2
) exp

[
−|x′|2

2σ 2

]
. (7.7)

This receptive field has maximum response when the feature has a radius of 2σ and the spatio-

temporal volume is exactlyx = tu. Additionally, its symmetric shape and vanishing volume

indicate that it responds only to feature points of size smaller than the specified size.

Since the local temporal scope is in[0, 1], the temporal energy of the receptive field will

always be finite. Hence, the problem of computing optical flow atx = (0, 0) is to findρ andθ
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such that the following function obtains its maximum energy:

f (ρ, θ)
4=
∫ 1

0

∫ ∞

−∞
ψm

0 (x, ρ, θ, t; σ)I (x, t) dx dt. (7.8)

The necessary condition for this optimization is for the following to be true:

∂ f

∂ρ
= ∂ f

∂θ
= 0.

Let

ψm
1 (x, ρ, θ, t; σ) = (3 − |x′|2

σ 2
) exp

[
−|x′|2

2σ 2

]

(cf. Eq. (3.4)) andmt = (cosθ, sinθ),mn = (− sinθ, cosθ). The above condition becomes

(cf. Eq. (4.5))

∂ f

∂ρ
=
∫ 1

0

∫ ∞

−∞
ψm

1 (x, ρ, θ, t; σ)(x′ · mt )I (x, t) dx dt = 0 (7.9)

and

∂ f

∂θ
=
∫ 1

0

∫ ∞

−∞
ψm

1 (x, ρ, θ, t; σ)(x′ · mn)I (x, t) dx dt = 0. (7.10)

Compared to the spatial receptive field in Chapters 3 and 4, we start with an rf form equivalent to

ψ2 (Eq. (3.4)). This is because the spatio-temporal flow is characterized by elongated volumes

rather than by a “zero-crossing” transitions as image contours do.

The above equations are a system with two unknowns. The straightforward solution of it

requires partitioning the spatio-temporal space ofx − t using 2D grids of the polar parameter-

ization in (ρ, θ). Instead, we will show that these two variables can be decoupled and, subse-

quently, we can determineθ independently ofρ. The Taylor expansion of the spatio-temporal
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imageI (x, t) at t = 0 is given by

I (x, t) = I (x, 0)+ ∂ I (x, t)
∂ t

∣∣∣∣
t=0

t + O(2).

Hence,I (x, t) can be represented, to the first order of approximation, as an algebraic sum of

static and dynamic parts. That is,

I (x, t) = Is(x)+ Id(x, t)

where∂ Is/∂ t = 0 for all x and∂ Id/∂ t 6= 0 for all x. Consider the following equation:

∫ τ

0

∂ I (x, t)
∂ t

dt = Id(x, τ )− Id(x, 0) (7.11)

SinceId(x, 0) is just a reference value, it can can be considered to be zero or, alternatively, we

can consider the image to be at rest att = 0. Eq. (7.11) specifies the spatio-temporal volume

in which the projected image att > 0 hasmt field (written asmt (x)) corresponding to the

orientation of optical flow withint ∈ [0, τ ]. Themt field can be found using the same method

as used for the computation of the tangent field. Givenmt (x), Eqs. (7.9) and (7.10) become

∂ f

∂ρ
=
∫ τ

0

∫ ∞

−∞
ψm

1 (x, ρ, θ(x), t; σ)(x′ · mt(x))I (x, t) dx dt = 0 (7.12)

To solve this, we need only a 1D grid forρ in the x plane att = τ (see Figure 7.2). If an

absolute time cannot be defined (or absoluteρ is not relevant), then we can makeτ = 1 by

normalizingI (x, t).
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7.5 Optical Flow Field Decomposition

For an active observer, optical flow can be very useful if it can be used to infer the relative rela-

tionship between the observer and the surface so that further observer motion can be planned.

In order to achieve this, we have to relate optical flow to observer motion. This was done in [64]

by expressing the canonical fields (i.e., divergence, curl and deformation) in terms of the rota-

tion� and translationv by the observer. In this section, a different formulation is developed,

which relates the eigenvalues of these fields to translational observer motion. This alternative

form makes the observer motion explicit in order to control the optical flow.

Consider a mobile observer undergoing an instantaneous translation in a static environment.

Let x = (x, y, z) be the coordinates in the observer frame andq = (ξ, η, 1) the projected image

coordinates in the 3D Euclidean space. The relative translation velocity isv = (vx, vy, vz) =
−∂x/∂ t . The observer-centered coordinate system is set up so that the image plane is located at

z = 1. The object surface can be represented as(x, y, z(x, y)). Since(zx, zy,−1) is the normal

vector to the tangent plane of the object surface atx, we will usen to denote(zx, zy,−1). In

this set-up, we have the relationships:q = x/z, and the optical flow isu = ∂q/∂ t .

When a rotation� is involved and the transversing translation velocity perpendicular to the

line of sightx̂ = x/|x| is given by

ṽt = ṽ − (ṽ · x̂)x̂

the canonical fields can be expressed as (see [64]):

∇ · u = n · ṽt + 2ṽ · x̂ (7.13)

(∇ × u)z = (n × ṽt)z − 2� · x̂

ζ1 − ζ2 = |n + êz||ṽt |
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By definition,v = −∂x/∂ t for a pointx on an object surface, so we can derive

u = ∂q
∂ t

= 1

z
(−v + vzq) = −ṽ + ṽzq (7.14)

whereṽ = v/z. By the inverse function theorem it is straightforward to show that

∂z

∂ξ
= − zxz

n · q
,
∂z

∂η
= − zyz

n · q

wherezx andzy are differentials ofz with respect tox andy. Using the above formula it can

be shown that


∂µ
∂ξ

∂µ
∂η

∂ν
∂ξ

∂ν
∂η


 = ṽzI2 + 1

n · q


µzx µzy

νzx νzy


 (7.15)

whereI2 is the 2× 2 identity matrix.

We can derive the following formulas for the divergence and curl ofu:

∇ · u = 2ṽz + n · u
n · q

= 3ṽz − n · ṽ
n · q

(∇ × u)z = (n × u)z
n · q

=
[
n × (ṽzq − ṽ)

]
z

n · q
. (7.16)

In addition, the symmetric part ofP matrix is given by

Ps = ṽzI2 + 1

2n · q


 2µzx µzy + νzx

µzy + νzx 2νzy


 .

This symmetric matrix can be diagonalized if we chooseṽ to be such thatµzy + νzx = 0, i.e.,
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(see Eq. (7.14))

ṽ · (−zy,−zx, ξzy + ηzx) = 0. (7.17)

Alternatively we can compute the rotation matrixQ such thatQPsQ−1 is diagonalized, if the

surface shape (zx, zy) is already known. The former corresponds to an observer-controlled mo-

tion and the latter corresponds to an “off-line” computation. If we diagonalizePs by observer

motion using Eq. (7.17), it can be shown that the deformation is

ζ1 − ζ2 = z2
x + z2

y

ξzy + ηzx

(q × ṽ)z
(n · q)

.

If we diagonalize explicitly by rotation defined byQ, the deformation is

ζ1 − ζ2 = (z2
x + z2

y)
1/2

n · q
(µ2 + ν2)1/2 = (z2

x + z2
y)

1/2|u|
n · q

(7.18)

with the rotation angleγ given by

γ = µzy + νzx

µzx − νzy
.

From Eq. (7.16) we can express the optical flow fieldu in terms of its curl (∇ × u), divergence

(∇ · u) and surface tilt (zx, zy):

u = n · q
z2

x + z2
y

[
(∇ · u − 2ṽz)(zx, zy)+ ∇ × u(zy, zx)

]
(7.19)

and then we can show that

γ = 1

z2
x − z2

y

[
2zxzy + (z2

x + z2
y)
(∇ × u)z

∇ · u − 2ṽz

]
.
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The eigenvalues of the linear vector field defined by Eq. (7.1) (see Section 7.3) is given by

2λ1,2 = 2
[
d ± (e2 − c2)1/2

]
= ∇ · u ±

[
(ζ1 − ζ2)

2 − (∇ × u)2z
]1/2

.

From Eq. (7.16) and Eq. (7.18) it can be shown that(e2 − c2)1/2 = d − ṽz. Hence the two

eigenvalues are given by

λ1,2 = ṽz, ṽz + n · u
n · q

. (7.20)

An alternative way of deriving this result is by directly solving Eq. (7.6). From this form, we

can see that the eigenvalues are always real, which is consistent with the elimination of the curl

field in the first place, since it is not useful in solving for scene geometry [64]. Without a curl

field, the matrixP is symmetric and the deformation is given by

|λ1 − λ2| =
∣∣∣∣n · u
n · q

∣∣∣∣ . (7.21)

If we assume that the canonical fields can be observed and computed by the observer, Eq. (7.21)

allows us to determine the surface normal without having to compute the divergence field. In

essence, the deformation field tells us the surface orientation.

7.6 Segmentation of the Optical Flow Field

One of the purposes of optical flow segmentation is to identify discontinuity of surface geome-

try. The occurrence of discontinuity is due to either the presence of discontinuous contours on

an object surface or to discontinuity in depth. Though there is no unique interpretation of the

results from segmentation, the result does strongly constrain the problem of identifying object
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boundaries.

For an observer-controlled translational motionv = (vx, vy, vz), the optical flow fieldu is

given by (Eq. (7.14))

u = −ṽ + ṽzq.

To measure the smooth characteristics of the optical flow, two factors have to be considered:

the orientation and the magnitude of the optical flow. Consequently, a natural definition for the

measure of “smoothness” ofu, ε(u), is given by the directional derivative of the magnitude of

u in the direction ofu, i.e.,

ε(u)
4= ∇(|u|) · u

|u| . (7.22)

Since

|u| =
(
µ2 + ν2

)1/2 = 1

z

[
(−vx + ξvz)

2 + (−vy + ηvz)
2
]1/2 4= A1/2

z

it follows that

∇(|u|) · u
|u| = z

A1/2

[
− A1/2

z2
(µzx + νzy)+ vzA−1/2

(
µ2∂ξ

∂x
+ µν

∂η

∂x
+ µν

∂ξ

∂y
+ ν2∂η

∂y

)]

= −u · ∇z

z
+ zvz

A
u · (µ∇ξ + ν∇η)

Simplify the expression and it can be shown that

ε(u) = 1

z

[
−(n · u)+ ṽz

(
1 − (q · u)(n · u)

|u|2
)]

(7.23)

If we treatε(u(ξ, η)) = ε(ξ, η) as a function defined on image plane, changes (i.e., discon-

tinuities) in the structure ofε will correspond to image contours. The boundary where these

changes occur is a consequence of changes in scene geometry, which involves surface normal

n and depthz as reflected in Eq. (7.23).
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7.7 Examples

The first test sequence1 to be used is shown in Figure 7.3. The spatio-temporal volume of the

sequence is shown in Figure 7.4. This is a sequence of 20 images with both curl and divergence

fields. The dynamic or differential image,Id(x, t), of the spatio-temporal volume is shown in

Figure 7.5. The integral curves of the flow field with respect to time are made apparent by

smoothing the local image structure (Figure 7.6).

(a) First frame of an image sequence. (b) Last frame of an image sequence.

Figure 7.3: First test image sequence.

For optical flow, a window of 5 frames was used to compute the integral curve for the flow

field. These curves were computed at four scales: 1.5, 2, 3, and 4. The orientation of the optical

flow at each point was computed using the method in Chapter 4, and the result for 10th frame

is shown in Figure 7.7. The magnitude of the flow field was computed using Eq. (7.12), with

a grid ofρ = 1, 2, 3, 4, 5, followed by linear interpolation to locate the zero-crossing point.

The components of the curl and divergence fields are clear in the spiral shape of the optical

flow. The scale which was used to identify the magnitude of the optical flow is not shown in
1SOFA synthetic sequences, courtesy of the Computer Vision Group, Heriot-Watt University
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Figure 7.4: Spatio-temporal volume of the image sequence (5 of 20 images).

Figure 7.5: The differential image com-
puted by Id(x, τ )− Id(x, 0).

Figure 7.6: The differential image of Fig-
ure 7.5 after Gaussian smoothing.
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the results, but it is an indication of the nature of local texture.

Figure 7.7: The integral curve of the opti-
cal flow field for frame 10.

Figure 7.8: The optical flow field com-
puted for frame 10.

The second test sequence2 is shown in Figure 7.9. This is a synthetic sequence of 15 frames

that shows a fly-through of Yosemite valley. The segmentation method formulated in Eq. (7.22)

was applied to the optical flow of the eighth frame of the sequence (Figure 7.10). The magnitude

(|u|) and the orientation (u/|u|) parts are represented by gray-level images in Figures 7.11 and

7.12, respectively. The measure of directional derivative,ε(u), is shown in Figure 7.13, encoded

and equalized for gray-level representation. By combining the measure of segmentation and the

cues provided by the magnitude and orientation of the optical flow, the boundaries of objects

are shown in Figure 7.14.

7.8 Summary

The major results presented in this chapter are: (1) a computational mechanism for computing

optical flow using polar parameterization, and (2) a new method for optical flow segmenta-

tion. The local kernel for computing optical flow is consistent with the geometric operations
2The Yosemite Fly-Through sequence produced by Lynn Quam at SRI.
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(a) First frame of the image sequence. (b) Last frame of the image sequence.

Figure 7.9: Second test image sequence.

(a) Frame 8. (b) Optical flow for frame 8.

Figure 7.10: Frame 8 and its optical flow.
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Figure 7.11: The magnitude of the optical
flow for frame 8.

Figure 7.12: The orientation of the optical
flow for frame 8.

Figure 7.13: The gray-level representa-
tion of the segmentation of the optical
flow.

Figure 7.14: The binary segmentation of
the optical flow.
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presented in previous chapters in both its mathematical form and its interpretation in terms of

how biological systems implement similar functionality. In addition, for an active observer, its

motion can be used to control the shape of the decomposed vector field of optical flow. This

property enables the observer to determine its orientation with respect to the object surface or

navigate around the object.

The result from the segmentation of optical flow provides the observer with strong hypothe-

ses regarding the type and location of object boundaries. This information can be effectively

employed when the observer is active and can control its motion. These aspects will be exam-

ined in the next chapter.
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Chapter 8

Global Surface Representation and

Navigation

For computational vision, the global representation of 3D objects is both a perceptual and a

mathematical problem. These two aspects complement each other and have to be studied close

to each other, since our goal is both to understand the human visual system and to design

compatible artificial systems. The key issue regarding the computation of surface features and

the use of them in the representation of surface shape is to identify perceptually meaningful

properties that can be efficiently computed and effectively characterize the global surface shape.

Developing a theory for surface representation from given features is similar to studying the

equilibrium of a physical system, in which all objects are at equilibrium with each other. On

the other hand, to decide which representation to use and how the elements in a representation

can be computed is analogous to the study of the dynamical process before a physical system

reaches equilibrium. These two computational aspects of a 3D problem need to be studied

in conjunction with the mathematical and perceptual issues for a complete understanding of

vision.

In this chapter, the 3D representation problem is studied to provide a mathematical frame-

work for the perceptual process, and the computation of representations is investigated using
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methods of active navigation.

Surface Representation Instead of using a predefined method of 3D surface representation

(such as those used in computer graphics), a method is used here that ties perception to its

mathematical representation so that geometric “features” directly correspond to the results of

visual perception, as examined by psychology and psychophysics. Since perception itself is

constrained by the resources available (e.g., time available to examine an object) and the task

to be performed (e.g., to avoid collision or to examine an artifact), the precision and exact form

of representation is not pre-determined, i.e., it is shown that 3D surfaces can be represented

by features that are (1) perceptually meaningful (namely, derived from geometric features), (2)

can be computed efficiently (through local computation), and (3) have global significance for

the surface shape representation. This representation scheme is studied in the first part of this

chapter.

Surface Navigation When a 3D scene is projected onto the image plane and forms 2D im-

ages, there is a formal, though ill-posed, connection between the scene and the images. An

active observer can carry out controlled motions to recover this connection and establish the

scene geometry from the 2D projected images collected along the navigation path. This motion

may be used as part of a plan to collect additional information that is not available from current

observation, or as a way to verify hypotheses formed from current observation. The methods

developed in previous chapters for inferring surface shape from textured surfaces and optical

flow provide strong hypotheses about the surface shape. Consequently, navigation becomes

essential in verifying or falsifying these hypotheses. This is also a natural way of integrating

methods for the problem of surface recovery by an active observer.

In the second part of this chapter, we present methods for surface navigation using contour

information given that appropriate reference frames can be obtained, either from outside the

surface (extrinsic) or within the surface (intrinsic).
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8.1 Global Features on the Surface

Features, by their very nature, are properties of a region of the surface that present themselves to

the sensor in a way that is perceptually different from neighboring regions. It is also desirable

to have a well-defined correspondence between the feature and the region from which it is

computed. In other words, features are both perceptually distinguishable and mathematically

representative (in terms of surface geometry). Here, surface shape is considered in the sense

of differential geometry and the representation of the surface is a result of extending the shape

represented by a feature to the whole region of the surface from which the feature is computed.

In this sense, the most fundamental geometric features are points on the surface that exhibit

special geometric properties.

According to proposals by Attneave [8] and Koenderink [61, 65], perceptually, local curva-

ture is the focus of feature computation. Consequently, a point feature is a point within a region

on the surface where a second-order geometric measure attains its extremal value at this point

in relation to its neighborhood. From this geometric view, if the surface curvature at every point

can be determined or estimated, all features can be computed. In previous chapters, a series of

methods were already developed for the computation of local geometry on a surface. As a con-

sequence, we can assume here that, given a marked point on an object surface satisfying certain

“visibility” criteria, the position and local shape can be computed directly or can be estimated

by appropriately changing vantage point.

Let’s start with the definition of the formal concepts of feature and related properties. First

of all, we need to have an idea of what can be observed and what can not, since all the compu-

tation is based on observation and what cannot be seen cannot be computed. Corresponding to

static and apparent contours on the surface, the visibility of surfaces also comes in two varieties:

visible and “apparently visible.”

Definition 8.1.1 (Visibility). For an observer, a point isvisibleon the surface if there is a ray
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emanating from the point that does not intersect with any other part of the surface. A point on

the surface isapparently visibleif there is a ray tangent to the surface which emanates from the

point that does not intersect the surface.

Definition 8.1.2 (Visible Surface).The visible part of a surface is the collection of all the

visible points on the surface and the apparently visible part of a surface is the collection of all

the apparently visible points on the surface.

In differential geometry, the surface shape at a given point is defined by thenormal cur-

vatureof a parametric curve passing through the given point. It is also convenient to define a

feature point using surface curves.

Definition 8.1.3 (Characteristic Path). A surface curve passing through a given point on a

surface is acharacteristic pathfor this point if the curvature is an extremum at the point.

Definition 8.1.4 (Feature Point). A point on a smooth surface is afeature pointif it is a static

surface mark or it has a characteristic path.

Definition 8.1.5 (Prominent Feature Point). A prominentfeature point is a point where every

path passing through the point is a characteristic path for the point, with possibly a finite

number of paths of constant curvature.

Definition 8.1.6 (Feature Curve). A 3D curve is afeature curve(or curvilinear feature) if

every point on the curve is a feature point or if the curve is part of a discontinuous contour.

With these definitions, we can begin the study of the representation of surfaces under the

condition that a set of feature points is already given. The second part of the chapter will show

how an active observer can navigate around the surface and locate the features defined above.
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8.2 Global Surface Shape Representation

The local geometry of 3D surfaces is specified by the two fundamental forms in differential

geometry. This local description is smooth differentially and can describe arbitrary smooth

surfaces. However, the descriptive power requires infinite resources and cannot be used as the

basis for tasks such as object recognition. In this section, methods are developed that embody

the idea that a local extremum point in curvature space can be extended to be representative of

a global region in the neighborhood of this feature point.

The basic method employed here is interpolation of surface curves. In contrast with inter-

polation of only the location of points, we start with surface points that are described in fully

differential geometry language, i.e., two differential fundamental forms. It is shown that this

geometric description generates natural surface curves that can be used to strongly constrain

the surface shape and, subsequently, the curves can be extended from a local shape representa-

tion to a global one. The key is to keep the shape unchanged throughout its neighborhood or

changed smoothly to the next description point along an interpolated planar path.

The scheme is presented in an organic way by first introducing how a single feature point

can be representative of a region and its underlying volume. This is followed by two point rep-

resentations of the surface. Since the surface can always be triangulated when there are more

than three points, the final step is to show how a triangular patch of the surface can be con-

structed from three feature points while leaving the local shape around the feature points intact.

This method of surface representation is an example ofincremental modeling, in which each

additional piece of shape information contributes incrementally to the surface model without

imposing global changes to the original model.
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8.2.1 Surfaces From a Single Point

A point feature is prominent if it is a feature point for any planar curve passing through the

point, i.e., each planar curve has a monotonically decreasing curvature magnitude. We can use

a generic monotonic function such as a Gaussian to represent the curvature of such a curve.

However, the Gaussian function is not adequate for the curve itself because it has three feature

points rather than one (Figures 8.2 and 8.3). Instead, the Gaussian will be used to represent the

curvature of the destination curve using Eq. (3.15), i.e.,

c(s) =
(∫

cos(

√
π

2
erf(s)) ds,

∫
sin(

√
π

2
erf(s)) ds

)
(8.1)

since ∫
exp(−s2) ds =

√
π

2
erf(s)

where erf(s) is the error function. The prototypical curve with unit curvature is shown in

Figure 8.1.
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Figure 8.1: A curve with Gaussian curvature profile.

Given a smooth surface, the process of constructing another surface with local shape con-
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forming to the shape of the given one is to generate two planar curves that will become curvature

lines for the surface (Figure 8.4). Hence the surface resulting from a prominent feature point

is prominent geometrically in the local region and the part of the surface in the immediate

neighborhood is completely characterized by the two principal curvatures. This surface shape

is uniquely defined by the two prototype curves in Figure 8.1. Both an elliptic and a hyperbolic

surface specified in this way are shown in Figure 8.5.
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Figure 8.2: Gaussian curve and the curve
with Gaussian curvature.
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Figure 8.3: Gaussian curvature and cur-
vature of a Gaussian curve.

P

Figure 8.4: Surface shape extension from a single point.
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(a) An elliptic surface (κ = 2,1) (b) A hyperbolic surface (κ = 2,−1)

Figure 8.5: Surfaces with elliptic and hyperbolic curvatures.

8.2.2 Surfaces From Two Points

When two surface curves are defined, one of the natural surface interpolation schemes is the

tensor-product surface[56]. However, to maintain the shape of two surface feature points, three

curves need to be defined from two single point extensions and a planar curve interpolation

between these two points (Figure 8.6) and therefore the tensor-product surface method is not

applicable. In this section, another method is developed for this case.

Assume we are given a surfaceS:x(u, v) parameterized by(u, v) and three distinct curves

on the surface: two kernel curvesC1,C2 given byx(u, 0) andx(u, v2), respectively, and a path

curveCp:x(0, v). We want to formalize the concept that the surface can be considered as the

result of movingC1 alongCp while at the same time gradually deforming it until it reaches

v2 where it eventually becomesC2. We will consider the case where the deformed curve is

transformed fromC1 by a linear transformation. This is pertinent in our case since bothC1

andC2 are locally extended from a single surface point using the same principle (see previous

section).
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Figure 8.6: Surface shape extension from two surface points.

Let the transformation rule be

x(u, v) = L(x(u, 0), v)
4= Ls(v).

SinceL0(v) maps toCp (i.e.,x(0, v)), we have

x(u, v) = (x(u, 0)− x(0, 0))L(v)+ x(0, v) (8.2)

whereL(v) is a linear transformation, withL(0) = I . For a givenv, Ck andx(u, v) are parallel

and there is a constant vectorp such that

p · x(u, v) = b(v) (8.3)

whereb(v) is a scalar function oft . From Eq. (8.2) and Eq. (8.3), we have

p · (x(u, 0)L(v)) = a(v) (8.4)
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wherea(v) = b(v)+ p · (x(0, 0)L(v)− x(0, v)). Since

p · (x(u, 0)L(v)) = (pL T (v)) · x(u, 0)

Eq. (8.4) becomes

(pL T (v)) · x(u, 0) = a(v).

Since this is the plane occupied byx(u, v) and is parallel to the plane with normalp, the

following condition must be satisfied:

pL T (v) = λ(v)p.

That is, the normal vector,p, of the plane whereCk resides is the left eigenvector of the linear

transformationL T . Let the eigenvalues beλi (v), i = 1, 2, 3, and the corresponding eigenvec-

tors bepi . If matrix S = [p1p2p3] we have

L T (v) = S−1



λ1(v) 0 0

0 λ2(v) 0

0 0 λ3(v)


S

SinceL(0) = I , it follows thatλi (0) = 1.

Given shape descriptions for two points,P1, P2, (complete fundamental form description)

on a surface, the planar curveCp is given by the curve connectingP1 and P2 on the planeEp

determined byP1, P2 and the surface normal vectorn1 at P1. The planar curveCk is defined

by the surface curveC1 passing throughP1 and on a planeEk orthogonal to the planeEp.

Furthermore, for a given parameterizationv of Cp, the planar curveC2 passing throughP2 and

orthogonal toEp is constrained to beC2:x(u, v2) (Figure 8.6). This latter constraint can be

used to determine the eigenvalues sincex(u, v2) = (x(u, 0) − x(0, 0))L(v2) + x(0, v2). Let
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x(u, v) = (x1(u, v), x2(u, v), x3(u, v)). It can easily be shown that ifC2 is similar to C1 in the

sense that fori = 1, 2, 3,

xi (u, v2)− xi (0, v2) = (xi (u, 0)− xi (0, 0)) fi (v2)

L(v) will be diagonal withλi (v) = fi (v). The similarity condition formalizes the notion that

the deformation ofCk alongCp should be uniform along theu parameterization and, hence,fi

should be independent ofu. λi (v) can be determined by the boundary values

λi (0) = 1,

λi (v2) = xi (u0, v2)− xi (0, v2)

xi (u0, 0)− xi (0, 0)

This similarity condition is guaranteed by the local extension ofP1, P2 in theu direction and

we can choose, e.g.,u0 = 1 to deriveλi (v2), and Hermite functions can be used to interpolate

these two endpoints:

λi (v) = H0,0(
v

v2
)+ H0,1(

v

v2
)λi (v2)

From Eq. (8.2) our surface extended from the two pointsP1, P2 becomes

x(u, v) = (x(u, 0)− x(0, 0))



λ1(v) 0 0

0 λ2(v) 0

0 0 λ3(v)


+ x(0, v) (8.5)

Since the planeEk is orthogonal to the planeEp we can alway choose, for example,Ek to be the

x−z plane andEp be they−z plane in Cartesian coordinates. In this case, we can immediately

see from Eq. (8.5) thatλ2(v) = 1, and onlyλ1(v) andλ3(v) need to be determined.

In Figure 8.7 the surface extended from two known pointsP1, P2 is given, withP1 being an

elliptic (Gaussian curvatureK > 0) point andP2 being a hyperbolic point (K < 0). TheCp
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curve is given in Figure 8.10. The surfaces with both points elliptic and both hyperbolic but the

sameCp, are given in Figures 8.8 and 8.9, respectively.

1

C2

Cp

P

C
P 2

1

Figure 8.7: Surface shape extension from one elliptic and one hyperbolic point.

Figure 8.8: Surface shape extension from
two elliptic points with positive curvature.

Figure 8.9: Surface shape extension from
two elliptic points with negative curvature.

8.2.3 Surface From Multiple Points

When there are three or more feature points in a region with known local shape, a triangular

mesh is formed and the surface can be constructed by patching the part whose shape is not

specified by the feature points. Given three disparate feature points and their associated surface

shape, we have inherited three patches as a constraint. To construct a surface patch connecting

these three patches under the constraint, an area will have to be delimited around each feature

point so that the shape can be kept intact. The triangular region defined by connecting the three
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Figure 8.10: TheCp curve.

points while excluding the reserved areas forms a six-sided patch. Hence the problem becomes

the construction of a six-sided patch with given boundary curves. One method for solving this

problem is the Gordon-Coons surface patch.
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Figure 8.11: The construction of a six-sided Coons patch.

When given four boundary curvesx(u, 0), x(u, 1), x(0, v), x(1, v) on the surface and their

tangent derivatives along the curves, a patch with continuous first-order derivative is given by
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the Coons patch:

x(u, v) = hc(u, v)+ hc(u, v)− hcd(u, v)

where

hc(u, v) = H0,0(v)x(u, 0)+ H0,1(v)x(u, 1)+ H1,0(v)xv(u, 0)+ H1,1(v)xv(u, 1), (8.6)

hd(u, v) = H0,0(u)x(0, v)+ H0,1(u)x(1, v)+ H1,0(u)xu(0, v)+ H1,1(u)xu(1, v) (8.7)

(8.8)

and

hcd(u, v) =
(

H0,0(u) H0,1(u) H1,0(u) H1,1(u)

)
× (8.9)



x(0, 0) x(0, 1) xv(0, 0) xv(0, 1)

x(1, 0) x(1, 1) xv(1, 0) xv(1, 1)

xu(0, 0) xu(0, 1) xuv(0, 0) xuv(0, 1)

xu(1, 0) xu(1, 1) xuv(1, 0) xuv(1, 1)




×




H0,0(v)

H0,1(v)

H1,0(v)

H1,1(v)




(8.10)

The six boundary curves formed byC1 to C6 can be partitioned into two rectangular para-

metric patches by connectingC3 andC6, while the tangent vectors at corner pointsCi along the

curves can either be computed from the patch surface defined by the feature points (e.g., along

curveC6 − C1 from P1) or interpolated from two patch surfaces (e.g., along curveC1 − C2 as

interpolated fromP1 and P2). The latter is accomplished by constructing a cutting plane that

cuts throughC3 andC6 (Figure 8.12).

The four cutting planes cut out the two regions that will be connected by the existing feature

patches and two yet-to-be-constructed Coons patches (Figure 8.13). The tangents atCi in the

direction along the boundary curves on the three feature patches can be computed directly

from Eq. (8.1), while the tangents atCi along the three cross-patch curves can be interpolated
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C3

C 6

Figure 8.12: The additional cutting plane for Coons patching.

from the two associated cut-out curves (e.g., the cutting plane forC1 − C2 intersects patchP1

andP2 at two cut-out curves associated withC1 − C2). The problem in joining the two Coons

patches together to form a single surface is when crossing the common boundary (i.e., the curve

C3 − C6). If the two Coons patches are computed individually, the tangents along the common

boundary will not coincide in general since they are interpolated from different vectors (one

from curvesC6−C1 andC2 −C3 while the other from curvesC5−C6 andC3−C4). We solve

this problem by projecting each interpolated vectort2 on the second Coons patch to the plane

spanned by the interpolated vectort1 of the first patch and the tangent vectort on the curve

C6 − C3 (Figure 8.15).

The formulation used in Eq. (8.9) requires both first- and second-order differentials on the

boundary curves. We have already discussed how the first-order differentials can be computed

directly or interpolated from the given feature patches. The second-order differentials are re-

ferred to traditionally as “twist vectors” and can be estimated from the given boundary condi-

tions in order to prevent the Coons surfaces from being “flat.” It is set to zero here to simplify

the computational process since the aesthetic appearance of the surface is not a primary concern

here.



163

C

C1

C3

C4

5

C6

2

C

Figure 8.13: The cutting curves for Coons patching.

Figure 8.14: The tangent vectors used for
Coons patching.
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t2
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C 5

Figure 8.15: Fitting tangent vectors for two
Coons patches.
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Figure 8.16: The feature patches and Coons patches.

Figure 8.17: Alternative feature patches and Coons patches.
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8.2.4 Curves and Structured Features

A surface curve can be perceived as a feature on the surface if it is either a static mark such as

a discontinuous contour or a curve whose characteristics are invariant to observer motion. One

of the primary uses of these features is to delimit the object surface in an operational way so

that either the surface can be partitioned into well-organized subparts or can be recovered from

these features by well-defined procedures (e.g., Figure 8.18). One other function these features

serve is navigation in which the observer can refer to these static landmarks.

P

surface curve feature

local shape extension at Pstrip geometry on surface

Figure 8.18: Surface shape extension from strip.

As we proceed from primitive features (namely feature points) to higher and more struc-

tured features (e.g., curves), the surface is represented in an operationally different way, i.e.,

different methods are employed to recover the surface, though well-defined conversions can

be used to transform between representations. This is essentially a process going from signal

processing to information and symbol manipulation. However, the conversion between repre-

sentations is more of a knowledge acquisition process than inherent in the perceptual system.

Alternatively, the conversion can be considered as additional structure imposed on the primitive

feature set. Artificial objects with regularity or symmetry are especially prone to be represented

by these structured features. Hence the symbolic features serve a primary function of embody-

ing regularity and symmetry or other highly structured organization.

Example 8.2.1.A plane or a sphere has no feature. A single number is used to describe the

shape globally.

Example 8.2.2.An ellipsoid has six prominent feature points and three feature curves.
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An invariant curve that is not discontinuous will have either all its points being feature

points (e.g., a ridge) or part of a symmetric contour (Figure 8.19).

feature point

P

symmetry curvesfeature curves

Figure 8.19: Invariant curve as surface features.

In either case, there are well-defined procedures for recovering the surface shape around the

curve (see Chapter 6). The shape in the orthogonal direction to the tangent of the curve can be

used to constrain the surface and take into account any additional point or curvilinear features

available when constructing the surface.

The advantage of using point features to describe global shape is its representational power

for individual parts of the surface or the underlying volume as shown in previous sections.

However, when there are emerging structures of higher dimensions, these structures become

better candidates to organize the representation around these structures (Figure 8.20). This is

because of their perceptual properties as stand-alone landmarks intrinsic to the surface. In the

following, these structured features will be treated both as aids to navigation and, in cases of

symmetry, for representation of surfaces. The difficulty with using higher dimensional features

directly in representation is due to the fact that these features have more structure than can be

easily handled by the perceptual system. For example, the saddle in Figure 8.19 is much more

easily represented by two planar feature curves than as a hyperbolic surface with two asymp-

totes. In other words, it is easier to identify the features than to represent them. Nonetheless,

in the case of planar curves, the representation is essentially a reduced problem of surface rep-

resentation using feature points, and the effective use of them occurs when there is a natural

correspondence between the curve and the volume. As mentioned when point features were
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discussed, it is the extension of a single feature point to a compact global volume that makes

the approach attractive. Similarly, if the representation of a planar curve is all that is needed

for representing a volume, it is natural to have the curve as part of the representation tokens.

We have already encountered one case in discussing surfaces from two feature points. Another

instance is symmetry in shape (Figure 8.21) and will be discussed in the next section.

Figure 8.20: Surface shape with feature
curves.

Figure 8.21: Surface shape represented by
planar curve.

8.3 Global Navigation

The goal of global surface navigation is to locate features that can be used to characterize the

surface. These features can be used to represent the surface operationally, i.e., well-defined

mathematical methods can be used to recover the surface such that two surfaces with similar

features will be considered similar themselves. In other words, an observer will to be able to

mark surface features and represent the surface in the region around these features. Hence the

navigation procedure involves identifying features, moving in a way so that more information

related to the features can be acquired, and representing the parts of surface that have been

traversed.

The process of navigation involves the exploration and recovery of “unknown” and “par-

tially unknown” parts of the surface. Unknown parts of the surface are demarcated by discon-
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tinuous boundaries. On the other hand, apparent contours, which turn away smoothly from

the observer, provide partial information about the surface. Parts of the surface are completely

known when they are characterized by a single point that is neither on a discontinuous contour

nor on an apparent contour. Hence these three kinds of features are most informative: point,

discontinuous curvilinear, and static curvilinear.

The features that leave explicit marks on an object surface are static point marks, static

curvilinear features and discontinuous contours. These features are useful in navigating, track-

ing and representing the surface. On the other hand, apparent contours are useful in identifying

geometric feature points such as curvature extrema. Both aspects are goals of navigation.

The shape of the visible part of a surface can be recovered when the surface is textured.

This can be accomplished through optical flow or patch computation. The recovery results in

the identification of surface features as detailed in previous sections.

8.3.1 Issues

Reference Frame Observer motion comes in two forms: local and global. Local movement

conducted by an observer has an observer-centered frame in which the observer moves in a

perturbative motion within a local region. Examples of this type of motion include small os-

cillations and differential rigid motion, which can be expanded into a significant linear term

and ignorable higher-order terms using Taylor series. This type of motion can essentially be

linearized like all perturbation formulations and henceforth can be easily reversed and tracked

[40]. This capability of being able to track where the camera is without resorting to an external

reference frame is essential for locating and verifying certain kind of geometric features (see

the following sections) as well as acquiring depth cues from optical flow. Non-local movement

generally requires an external frame to track the motion and the relative positions between the

object and the camera.
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Apparent Contours Apparent contours are a powerful but primitive entity in perception.

They reveal a great deal about the surface in the direction orthogonal to the viewing direction

and the surface normal. However, owing to the lack of effective reference frames, using local

shape information from apparent contours to assemble the global shape of a surface is inefficient

and difficult (Figure 1.4). This approach can work well when an adequate reference frame is

provided, such as the scanning a solid model placed on a rotating platform. Hence the primary

usefulness of apparent contours is for identifying plausible features as hypothesized by, for

example, texture tracking or optical flow.

Static Surface Features Point marks and stationary curvilinear contours are embedded fea-

tures on an object surface, which do not motivate navigational motion themselves. This is

because there is no apparent or dictated movement that will assure information gain. However,

these features convey surface shape information (Chapter 6), which can be useful in represent-

ing global shape from a fixed vantage point, and serve as tracking and representation references.

On the other hand, a discontinuous contour itself already imparts a great deal of information to

the observer and, additionally, suggests motion paths for maximum information gain.

The mathematical formulation of discontinuous contours is somewhat different from how

they are perceived. Hence we will characterize the “discontinuity” by the change of curvature

over a small spatial region, which is scale-dependent. Furthermore, discontinuous contours

deform because of projective geometry. This is qualitatively different from apparent contours

that deform because of surface geometry, in addition to the projective deformation. However,

there are observer movements that can eliminate the projective deformation, which will be

discussed in the next section.

For an active observer in motion, an apparent contour manifests its deformation through a

convex trajectory orthogonal to the contour along the surface. A static contour also deforms

as an observer moves, but in a different way (see Chapter 6). This difference of deformation

can only be identified if we can compute the surface shape by means other than the apparent
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contour.

Scales Scales, such asσ in the family of receptive fields, are key parameters of the sampling

process in visual perception, which preserve all the continuous properties essential for com-

putation. The hierarchy of the physical events embedded in scale space provides a means to

control the distribution of those events while maintaining the ability to examine any event in

any level of the hierarchy in a well-defined way. This is essential in both computing surface

shape from static surface marks and apparent contours.

The effects and advantages of using a scale-space structure to process two-dimensional im-

ages were already discussed in Chapters 2 and 3. These scale-space related operations are an

integrated part of the visual front-end, which directly samples the optical input. The surface

shape, in turn, is computed from the projection of the optical input (see Section 3.3.1.1). Math-

ematically, the scale-space operation is a blurring operation and will affect the number of points

being tracked but not their projections onto the image plane. This is because adjacent points

will merge into fewer ones or disperse into oblivion. In effect, this make the enclosing surface

more “flat” visually since the average distance between point features increases as the scale

gets coarser.

The scale effect is always part of the two-dimensional imaging process. However, there is

a correlation between the two-dimensional scale space and three-dimensional surface recovery,

which will become clear next.

8.3.2 Formal Properties of Features

For the purpose of identifying features for surface representation, the observer needs to evaluate

what can be computed from the current viewpoint, what is a reasonable hypothesis for the

unknown part of the surface, and determine how to move based on this information. Some

properties of features are independent of the surface geometry and other properties are useful
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for the observer to plan its motion. In this section, we will study these properties.

Within a region without discontinuous contours, the surface is smooth and can be repre-

sented hierarchically in the framework of scale space. In the case when the surface is textured,

the initial shape of the surface can be computed from triangulated surface patches. According

to Definition 8.1.4, we can compute all the feature points for a visible surface region, given a

fixed scale and vantage point. The boundary of the region is composed of either discontinuous

or occluding contours. A discontinuous contour is itself a feature (Definition 8.1.6). For an

occluding contour, all the feature points on the contour are either prominent feature points or

part of curvilinear features or both. This property can be used for two purposes: to guide global

navigation and to identify local surface shape. Global navigation is a logical consequence of the

effort to recover surface shape around the feature points on the contour through the observer’s

movements. Two types of movement are among the most effective ones: navigation using land-

marks, and movement by localized motion (perturbative motion). Two kinds of landmarks are

useful for navigation and surface recovery: external reference frame and surface features, which

include both static surface marks and prominent feature points. A prominent feature point on an

apparent contour can be identified by local perturbative motion, since only three observations

are needed to uniquely recover the shape around the point (see Eq. (3.25)).

8.3.2.1 Scale

Given a scale, all the prominent feature points are separated by at least a distance determined

by that scale when they are projected onto the image plane. This entails a finite set of prominent

feature points on the surface, and scale space can be used to control the size of the finite set.

Part of the goal of surface recovery is to locate this finite set of features for the given scale. The

above property is captured in the following two formal statements.

Proposition 8.3.1. Given a functionf (x) with bounded second-order differentiation, there is

a scale such that the distance between any two adjacent zero-crossing points of the function is
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lower-bounded by the distance, if a fixed thresholdδ is set as the zero-crossing criterion.

From the above proposition, it follows that any finite region in the image plane can only

have a finite number of zero-crossing points for any smooth and bounded 2D function. Hence

we have the following proposition.

Proposition 8.3.2. For any bounded region of a surface, the projection of the region onto the

image plane has only a finite number of prominent feature points.

8.3.2.2 Apparent Contour

Apparent contours are one of the primary sources for navigation. Some of its formal properties

are studied here, which will be useful later.

The following proposition follows directly from the definitions.

Proposition 8.3.3. The apparently visible part of a surface is a subset of the visible part of the

surface.

A prominent feature point can be characterized by the language of differential geometry by

the following theorem, which will become useful when an observer navigates to recover the

surface shape.

Theorem 8.3.1.Given a point on a surface, if two principal paths are both characteristic paths,

then the point is a prominent feature point.

Proof. For a point p on surfaceS, the second fundamental form ofS at p is given by the

quadratic form

Q(v) = −n′(v) · v

wheren is the surface normal atp andv is a surface tangent. Geometrically, the linear mapping

n(v) is the differential of the surface normal in the direction ofv and Q(v) is the normal

curvature of the curvec(s) on Spassing throughp = c(0) with tangentv = c′(0).
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For the curvec(s), letn(s) be the surface normal on the curvec(s) andQ(s) be the curvature

on c(s) (i.e.,κ(s) = Q(c′(s))). We have

κ ′(s) = d Q(s)

ds
= − d

ds
(n′(s) · c′(s)) = −(n′′(s) · c′(s)+ n′(s) · c′′(s)).

Sincec′′(s) = κn(s) andn′(s) = −κc′(s) (Frenet formulas), the second term vanishes identi-

cally and we arrive at

κ ′(s) = −n′′(s) · c′(s). (8.11)

Let the two principal directions atp be ê1 and ê2. If the tangentv = c′(0) forms an angleθ

from e1 andκ1 andκ2 are two principal curvatures alongê1 andê2, respectively, we can derive

κ ′(0) as follows:

κ ′(0) = −n′′(cosθ ê1 + sinθ ê2) · (cosθ ê1 + sinθ ê2)

= −(n′′(ê1) · ê1) cos2 θ − (n′′(ê2) · ê2) sin2 θ

= κ ′
1(0) cos2 θ + κ ′

2(0) sin2 θ

(8.12)

The last expression follows from Eq. (8.11).

Since the two principal directions are in the tangent directions of two characteristic paths

by assumption,κ ′
1(0) = κ ′

2(0) = 0. Hence we haveκ ′(0) = 0 along any directionv at p.

It was noted before that the principal directions and curvatures can be determined from three

views of a surface point. However, when the observer moves and observes continuously, the

principal directions can be determined with only two views.

Proposition 8.3.4. The principal directions of a point on a smooth surface can be determined

by two views made by an observer moving continuously.

Proof. Given two principal curvaturesκ1, κ2, Euler’s formula states that any normal curvature
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κ in the direction ofθ to one of the principal directions is given by

κ = κ1 cos2 θ + κ2 sin2 θ.

Differentiate and we get
dκ

dθ
= (κ2 − κ1) sin 2θ.

Since this is an equation of the difference of principal curvatures(κ2 − κ1) andθ , only two

views are needed to solve it.

A feature point by itself is a local concept which may not be obvious to an observer. How-

ever, the next proposition shows that it is part of two more readily identifiable features: feature

curves and prominent feature points.

Proposition 8.3.5. A feature point on a surface is either part of a feature curve or a prominent

feature point.

8.3.2.3 Visibility of Surface

A discontinuous contour can be modeled as a piecewise-planar curve in space. Given a planar

segment, the tangent of the curve and surface tangents of the two surfaces that are normal to the

tangent determine the visibility of the surface from any given vantage point. We have already

assumed the conditions that the surface shape can be recovered, if visible. Hence the problem

is to move to the part of space where the occluded part of the surface becomes visible to the

observer. Since this is a discontinuous contour, there are at least two orthogonal triplet systems

at a given point on the segment. The condition that a surface is occluded occurs when the

quadrant encompassed by the surface tangent and surface normal does not overlap the quadrant

formed by the other surface (Figure 8.22), i.e.,n1 · t2 < 0 (this impliesn2 · t1 < 0). Fori = 1, 2,

the visibility of surface Si is constrained by the half plane defined byti andni .
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Figure 8.22: Surface geometry in the presence of a discontinuous contour.

In the following we treat individual navigations induced by apparent contours and by dis-

continuous contours.

8.3.3 Navigation Induced by Apparent Contours

Since the resolution of identifiable feature sets is controlled by scale space, a representation

using the feature sets is global and the properties of scale space ([114]) ensure that we will

not miss any features. On the other hand, since the feature points and their derived features are

based on surface curves, every visible feature point should be covered by a collection of surface

curves in the representation.

Covering a surface can be done theoretically by parameterizing the surface mathematically

regardless of the distribution of features, as is the case in computer graphics. For image pro-

cessing, this is analogous to uniform sampling according to the Nyquist rate regardless of the

spatial distribution of the image intensity (cf. Section 2.2.2.2). The advantage of these schemes

is the systematic recovery of the information being represented—object surfaces or, for image

processing, images. However, the representation has no perceptual context and the components
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(e.g., knots in a spline or a layer within a multi-resolution pyramid) used in the representation

have no perceptual meaning. Furthermore, the efficiency of completing a task is not taken into

consideration.

An apparent contour is also a surface curve that makes the feature points on the curve

explicit for observation. It also provides possible hypotheses regarding surface shape. These

two aspects are essential for active navigation and will be discussed next.

8.3.3.1 Shape Recovery

In this section it is shown that a natural mesh is formed when the observer navigates the surface

using movement induced by apparent contours and external references. The density of the mesh

is a function of the scale and the distribution of surface features. The end result is the recovery

of all the apparently visible (see Definition 8.1.1) part of the surface. In the case where the

surface is appropriately textured, the entire visible surface can be recovered by navigation.

With the aid of an external reference, the observer can plan a movement so that the ap-

parently visible part of the surface can be surveyed systematically. For each apparent contour

being observed, all the feature points on the curve and their types can be identified as follows.

Since every feature point on the contour can be part of a feature curve or an prominent feature

point or both, goal-oriented navigation is required in order to differentiate between these alter-

natives. From Theorem 8.3.1, it is necessary to find two principal paths for the point. On the

other hand, it is sufficient to find a non-characteristic path to disqualify the point as a prominent

feature point (i.e., it is part of a feature curve). In either case, the observer gains best advantage

when moving in the direction orthogonal to both the surface normal and line of sight, while

keeping a constant distance from the point under examination. This is because the maximum

change of view is achieved by moving orthogonal to the line of sight and this action traces out

a circle around the point. Hence the observer essentially rotates around the surface. This is

consistent with our experience.
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Since adjacent feature points are separated by a distance determined by the scale (Propo-

sition 8.3.1), the surface curve formed by each apparent contour will also be separated by the

same distance. In other words, the surface shape within this distance is “indistinguishable.”

Furthermore, since the number of prominent feature points is finite (Proposition 8.3.2), the

navigation process must stop deterministically.

The example in Figure 8.23 shows a prominent feature point and the recovered surface

around it using the procedure just described. Figure 8.24 displays the triangular patches used

as part of tracking the apparent contour.

Figure 8.23: Feature point on object sur-
face and the feature patch.

Figure 8.24: The triangular patches, sur-
face normals, and recovered surface.

Proposition 8.3.6. The apparently visible part of a surface can be fully recovered by navigation

using apparent contours.

Hence the primary navigation effort induced by observing the apparent contours is to iden-

tify prominent feature points. These features are not only useful for serving as object-centered

reference frames during navigation but also for contributing to the ensemble of “parts” from

which the surface is composed. However, acting alone, apparent contours are somewhat weak

for surface recovery and incur a lot more effort than required with textured surfaces or when
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there is shading information to help form hypotheses regarding the surface shape.

8.3.3.2 Hypothesis Verification

Other than navigating to systematically acquire unknown information for potential feature

points, apparent contours also motivate an observer to move in order to verify hypotheses.

Since an apparent contour tells the observer partial information about the surface shape, plau-

sible hypotheses can be formed regarding other parts of the surface. One useful hypothesis is

the constancy of the apparent contour when moving in a certain direction, e.g., a translational

or rotational invariance relative to a fixed observer frame. If the hypothesis is valid, this frame

can be determined by the aforementioned direction of motion.

Proposition 8.3.7. An object surface is rotationally invariant if the observer acquires an invari-

ant projection of the apparent contour during a rotational movement. The axis of rotational

symmetry is the center of the rotational movement. The same is true for translational invari-

ance and the direction of translational invariance is the same direction as the movement, which

is coincident to one of the lines of sight for a fixed point on the contour.

It should be noted that for orthographic projection, the observer will not be able to dis-

cern these two kinds of invariance. For perspective projection, the computational precision of

rotational invariance is proportional to the distance to the center of the symmetry.

8.3.4 Navigation Induced by Discontinuous Contours

There are two surfaces intersecting at a discontinuous contour. In addition to being a static

feature, a discontinuous contour is where the shape on one side of the contour cannot be inferred

from the shape on the other side.

Similar to the case of prominent feature points, discontinuous contours serve both as navi-

gation aids and boundaries where parts of the surface meet. The shape of the component parts
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delimited fully or partially by discontinuous contours can be determined individually by navi-

gation or by other means described in this chapter.

8.3.4.1 Shape Recovery

Discontinuous contours are essentially static surface marks, and share the same properties as

static marks (Chapter 6), i.e., they can be used to recover surface shape around the contour when

there are other static marks intersecting at points on the contour. The method of recovering

the curve geometry for the contour was given in Propositions 6.2.1 and 6.2.2. In addition,

occluding, discontinuous contours have one other advantage. These contours occur when the

angle between the normal vector for one side and the tangent vector for the opposite side is

greater thanπ/2, i.e., eithern1 · t2 < 0 or n2 · t1 < 0 on a given plane (Figure 8.22). In this

case, if permitted by other physical constraints, the observer can move to positions with the line

of sight coinciding with the tangent of either of the surfaces. This condition is guaranteed since

the reverse direction of the surface tangent falls into the half plane of visibility for the other

surface.

8.3.4.2 Navigation Aid

The static nature of discontinuous contours enables the observer to navigate without external

references. Furthermore, the observer knows exactly which part of the surface is being exam-

ined, and is able to shift focus whenever necessary. To use the contour for these purposes, the

goal of navigation is to move to a vantage point where the surface on the other side of the con-

tour becomes visible, if not already so, using the contour itself as a navigation landmark. In the

case where surface shape can only be computed from apparent contours, navigation will have

to enable the apparent contour to emerge on the other side of the discontinuous contour, i.e., the

relationship between two contours will have to be observed and tracked at the same time. The

general scenario will be the initial separation of two contours with the apparent one embedded
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completely on one side of the surface. The discontinuous one is generally invisible to the ob-

server at this point. Hence the observer will have to know when these two contours intersect

as part of the apparent contour disappears and the discontinuous one emerges. This is followed

by a complete replacement of the apparent contour by the discontinuous one. Eventually the

scenario reverses itself and the apparent contour emerges again at the other side of the surface.

Hence, the major motivation of navigation in the presence of discontinuous contours is to

steer focus toward regions demarcated by the contour, and recover surface shape along the

contour when there is occlusion. This is accomplished by moving to positions that permit full

view of the surface without the obstruction of the contour while using the contour as a reference

frame during the navigation.

8.4 Summary

There are two major themes in this chapter and the thesis in general: (1) how to represent

the shape of an object in a global, perceptually meaningful and complete way, and (2) how to

identify each individual component used in the representation, given a mobile observer.

The problem of representation for 2D curves was studied in Chapter 3, where it was shown

that the extremum curvature points can be used to represent a curve comprehensively by meth-

ods such as Hermite interpolation. The same rationale was extended in this chapter to 3D

surfaces by considering all possible planar curves that pass through a given surface point. Fea-

ture points and curves thus identified can be used to reconstruct the surface and the procedure

is algorithmically the inverse of the representation process. The representation is also “per-

ceptually complete” in the sense that the surface and its representation present the same set of

perceptual features to the observer. In other words, the original shape information is “similar”

to what can be computed from the representation when the criterion of similarity is defined

by the second-order computation of surface shape. The procedure for representing the surface
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indicates that efficient computational procedures are available for constructing the surface from

the representation.

We have established the connection between low-level visual modules and local surface

shape in previous chapters. This relationship was established within the framework of scale

space, which, in turn, provides a means to handle surface shape and its related operations

globally. The scheme that embodies this global representation as part of the perceptual process

is formulated in the first part of this chapter. In the second part of the chapter, the issue of

acquiring the geometric features necessary for the representation is studied in the form of global

navigation, in which the observer can systematically engage in voluntary motion guided by

the current observation of various surface characteristics as projected onto the image plane.

These observer motions are motivated either by the desire to identify critical features for the

representation which is only partially known, or by the effort to test hypotheses formed when

the observation is made. In either case, the end result is a full coverage of the object surface,

and the process of exploring the surface depends on whether the surface is properly textured or

if external references are available.
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Chapter 9

Conclusions and Future Work

A problem in computational vision has two core parts: the task to be accomplished, and the

computation needed to process the raw data in order to perform the task. When the task is

related to 3D shape representation, the conventional method is to treat the problem as an inverse

problem of computer graphics, in which the task is to describe surfaces using the language of

computer graphics, while the required computation is to recover the depth map of the surface

within an object-centered reference frame. The major problem of this approach is, except for the

front-end modeling, the formulation quickly swerves away from visual perception and delves

into mathematical problems such as global optimization and parametric descriptions of surface.

The central thesis of this research is a direct response to this disparity of method:

• The language employed by visual perception to represent objects is intrinsically both

perceptual and geometric, and this nature has to be reflected in all stages of information

processing.

• The nature of visual information processing is active rather than passive.

In the light of these statements, five problems were raised as core problems in computational

vision for 3D representation. This research contributes to each of them as follows.
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9.1 Thesis Contributions

Local Geometric Computation

• What are the essential computations at the front-end of a vision system that is capable of

computing representations for complex shapes

For tasks involving shape representation, the essential computation at the front-end is to select

the geometric features that are essential for all the tasks that the system is able to accomplish.

For tasks related to active navigation, optical flow is also computed using a similar mechanism.

These computations are carried out using filters in the form of receptive fields, which constitute

the primary spatio-temporal sampling mechanism.

Perception and Differential Geometry

• What kind of geometric language can be used to describe relevant perceptual results in

human vision and how can the elements of the language be computed from the data

received at the front-end?

The local computations carried out at the front-end necessarily dictate a formal formulation

using a differential language. The components of the language include tangent, curvature, and

derivative of curvature along 2D contours. Efficient and stable methods for computing these

invariants locally and directly from raw images were derived as a result of the study. The

formulations and methods for these computations are all novel.

Global Representation from Local Computation

• How the global properties of perception are related to the results of local computation as

dictated by our choice of geometric language?
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The differential geometric language is naturally embedded in a scale space intrinsic to the

sampling topology of the front-end. All the global properties of visual perception can be derived

within this scale space by using the local components of the geometric language. This is a

consequence of both the choice of the receptive fields and the formal properties of the scale

space.

Incremental 3D Modeling

• When should the computation of the language terminate and what is the relationship

between the representations computed in different resource constraint?

The computation for a specific task terminates when available computational resources can

not accommodate the computation. The resulting models of this computation relate to other

models of different computational resources through incremental modeling. Within this model,

any additional local features will only affect local shape of the representation. The perception-

based representation of 3D surfaces that embodies incremental modeling is a contribution of

the thesis that is completely new.

Active Navigation

• How can an autonomous system actively seek out information based on what has already

been observed?

The information necessary to complete a given task is dependent on the nature of the task. In

the case of shape representation, the information can be actively acquired through global nav-

igation. The formal properties of scale space guarantee the termination of the navigation as

a computational process. For a given scale, associated stationary and apparent contours can

be used effectively to identify feature points on the surface, which is the result of both geo-

metric computation and visual perception. Alternative shapes that are consistent with current



185

observations can be hypothesized and verified by navigation as well. In cases when the surface

is textured, optical flow and local texture tracking provide efficient means for navigation and

surface recovery. To relate the representation of global surface shape to both visual perception

and efficient navigation methods is a unique contribution of the thesis.

9.2 Future Work

Stability of Computation

How a given computational framework will behave in a natural environment is a vital part of

the research in computational vision. This stability issue is especially critical for a differential

framework. In this research, it has been demonstrated that local geometric computations of

high-order differentials are stable, and this stability is inherited by the global representation

using the results from local computations. However, the same study should be carried out

for optical flow computation as well as 3D shape representation. In addition, the scale space

formulation can also be useful in controlling the stability of the computation, which needs to

be studied further.

2D Matching

The problems of stable and information-preserving representation, and efficient computation

for 2D matching are studied in this research. However, there are a large number of practical

applications requiring the matching of 2D shapes. A general matching mechanism is needed

which that has constant-time matching complexity independent of the database size, and is in-

variant under various viewpoint-dependent transformations (especially scaling and rigid trans-

formations).
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Efficient Navigation

There are several propositions and theorems proved in this thesis regarding how to navigate

around a surface using current knowledge of the surface. However, efficient navigation requires

appropriate reference frames as well as route planning. These problems need to be studied

further and real systems need to be built to explore the efficacy of the methods.

3D Matching

Since the feature points used for 3D representation are also salient for visual perception, the

matching for 3D object recognition can use these feature points and their local geometric prop-

erties as inputs. This matching process is also one of the core parts in an object recognition

system, which needs to be studied as a testbed for the theory presented here.

Symbols and Information Structure

Specific to humans and primates is the ability to manipulate symbols, and to interact with the

environment as a result of this manipulation. Both are characteristics of intelligence. Hence, the

study of the relationships between symbol manipulation and perception is essential in the gen-

eral domain of artificial intelligence. From the perspective of perception, a symbol represents

essentially a piece of information that is invariant to some general contexts. Consequently, it

is closely related to the invariant structure of the information. Since invariance is a major part

of visual representation, it is natural to study how a category in visual perception can be repre-

sented by an information structure that is invariant under certain criteria, and, henceforth, can

be represented by a symbol.
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Appendix A

Curvature and Its Gradient in Observer

Frame

A.1 Projected Curvature in the Observer Frame

Let the curveC on object surface be parameterized by its curve lengths as(x(s), y(s), z(s)).

The projection ofC onto the image plane is a 2D curveCp parameterized by(ξ(t), η(t)). From

the imaging model for projection we have the standard projective equations:

ξ(s) = x(s)

z(s)

η(s) = y(s)

z(s)
. (A.1)

Since the natural parameters of C becomes a general parametert of Cp, the projected curvature

κp of Cp is:

κp = |ξ ′η′′ − ξ ′′η′|
[(ξ ′)2 + (η′)2]3/2 . (A.2)
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BecauseC is parameterized by curve length, from the definition of the Frenet frame we have:

t̂ = (x′, y′, z′)

n̂ = 1

κ
(x′′, y′′, z′′)

b̂ = t̂ × n̂ = 1

κ
(y′z′′ − z′y′′, z′x′′ − x′z′′, x′y′′ − y′x′′) = (b1, b2, b3), (A.3)

whereκ is the curvature ofC at the pointP (represented byr in the observer frame). Let

c
4= r × t̂ = (c1, c2, c3). Substituting the differentials in Eq. (A.1) into Eq. (A.2) and using

Eq. (A.3), we have

κp = |c1x′′ + c2y′′ + c3z′′|
[(c2

1 + c2
2)/z

2]3/2 . (A.4)

The quantity(c2
1 + c2

2) is the length ofcp, wherecp is the projection ofc onto the image plane

andz is the component ofr in the ẑ direction. Using the component form of the cross product

c = r × t̂ and Eq. (A.3) we can derive

c1x′′ + c2y′′ + c3z′′ = κr · b̂. (A.5)

The denominator of Eq. (A.4) can be rewritten as

(c2
1 + c2

2)

z2
= |c|2 − (c · ẑ)

(r · ẑ)2
= |r × t̂|2 − (r , t̂, ẑ)2

(r · ẑ)2
, (A.6)

where(r , t̂, ẑ) is a shorthand forr × t̂ · ẑ. Hence Eq. (A.4) takes the vector form:

κp = κ|r · b̂|
[(|r × t̂)|2 − (r , t̂, ẑ)2)/(r · ẑ)2]3/2 . (A.7)
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A.2 Projected Curvature Gradient in the Object Frame

The scalar fieldκp(r∗) given by Eq. (6.2) has steepest rate of change along the direction of its

gradient,∇κp, and the change in an arbitrary directionr is given by∇κp · r . Let

A = |r∗ × t̂|2 − (r∗, t̂, ẑ)2

(r∗ · ẑ)2
.

Then the gradient ofκp in the object frame∇κp(r∗) takes the form

∇κp(r∗) = ± κ

A5/2

[
Ab̂ + 3(r∗ · b̂)

z′

z∗2
(c∗

2,−c∗
1,−

c∗
2x∗ − c∗

1y∗

z∗ )

]
. (A.8)

Note that the sign of the expression depends on the sign of(r∗ · b̂) and thatz′ is the third

component of̂t, which is identical in both frames. Define

r∗⊥
4= (c∗

2,−c∗
1,−

c∗
2x∗ − c∗

1y∗

z∗ ). (A.9)

which, by its form, denotes a vector orthogonal tor∗ sincer∗ · r∗⊥ = 0. Eq. (A.8) can then be

expressed as

∇κp(r∗) = ± κ

A5/2

[
Ab̂ + 3(r∗ · b̂)

z′

z∗2
r∗⊥
]
. (A.10)

Sincer∗ = −r andr∗⊥ = −r⊥ we have∇κp(r) = ∇κp(r∗). This expresses the fact that the

relative translational motion of object and observer is indistinguishable. But this does not carry

over to rotational motion (see next section). Now let’s consider the wayκp changes alongc∗
p,

i.e., consider the expression∇κp · c∗
p. Sincec∗

p · r∗⊥ = 0 we have

∇κp · c∗
p = ± κ

A3/2
c∗

p · b̂.
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Furthermore, using Eq. (6.1) andc∗
p = −cp, r∗ = −r , we have

∇κp · c∗
p = −∇κp · cp = κp

c∗
p · b̂

r∗ · b̂
= κp

cp · b̂

r · b̂
. (A.11)

A.3 Proof of Proposition 6.2.1

Proof. The space outside a convex surface is defined byr · n̂ > 0. Consider regionI where

r · b̂ < 0. Sincec = r × t̂ andt̂ = n̂ × b̂, we have

c = (r · b̂)n̂ − (r · n̂)b̂. (A.12)

The vectorcp is the projection ofc onto the image plane and they are related throughc =
cp + (c · ẑ)ẑ. Applying Eq. (A.12), we have

c = cp +
[
(r · b̂)(n̂ · ẑ)− (r · n̂)(b̂ · ẑ)

]
ẑ. (A.13)

Hence

cp · b̂ = c · b̂ −
[
(r · b̂)(ẑ · n̂)− (r · n̂)(ẑ · b̂)

]
(ẑ · b̂)

= −(r · n̂)− (r · b̂)(ẑ · n̂)(ẑ · b̂)+ (r · n̂)(ẑ · b̂)2

= (r · n̂)
[
(ẑ · b̂)2 − 1

]
− (r · b̂)(ẑ · n̂)(ẑ · b̂)

4= α − β.

From Cauchy’s inequality, we have

ẑ · b̂ ≤ |ẑ||b̂| = 1.
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Since the observer is in regionI and observes a convex surface from an agreeable frame, we

haver · n̂ > 0 (convex),r · b̂ < 0 (region I ), andẑ · n̂ > 0, ẑ · b̂ < 0 (agreeable frame). It

follows thatα < 0 (the first part of the equation) andβ > 0 (the second part of the equation).

Hencecp · b̂ < 0. Consequently, for the observer in the agreeable observer frame, the change

in κp in the direction ofcp is

∇κp · cp = −κp
cp · b̂

r · b̂
,

which is always negative. Similar arguments hold for regionI I and for concave surfaces.
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Index

2D curve representation
in Fourier space, 55
with Gaussian filter, 54

active vision paradigm, 18
agreeable frame, 110
apparent contour,seeoccluding contour

bivariate approximation, 68

centripetal parameterization, 58
channel model, Wilson and Bergen’s, 39
characteristic path, 151
circular convolution, 47
coding

sparse, 38
compatibility equations, 107
completeness

Fourier transform, 33
Gabor transform, 34

contour
apparent, 168, 172
computation of 2D, 73
curvature computation of, 77
curvature derivative computation of, 79
tangent computation of, 74

contour curvature
under projection, 108

convolution property, 50
and differentiation, 85

Coons patch, 160
cutting plane, 161

cortex transform, 37
curvature

and foveation, 85
normal, 151

principal,seecurvature
surface,seesurface curvature

curvature scale, 13
curvature space, 13

diagonalization
by similar transform, 128

eigenvalue
of integral curve, 129

error function, 153
Euler’s formula, 67, 120
extended Gaussian image, 16

feature
on surface, 150
static surface, 169

feature curve, 151
feature point, 151

prominent, 151
featureless curve, 57
foveation, 85
Frenet frame, 53

recovery, 115
curvature, 115
normal vector, 117
tangent vector, 117
torsion, 117

fundamental theorem
of local theory of curves, 53

Gabor filter, 29
ganglion cell, 25
Gaussian function

used in curvature representation, 153
Gaussian kernel
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one dimensional, 48
property

convolution, 50
two dimensional, 48

geometric feature space, 56
Gordon-Coons patch, 160

Hermite function, 58
Hermite spline

cubic, 58
quintic, 58

HNSTU model, 41

image coding
first-generation, 36
second-generation, 36

image generator, 46, 47
incremental modeling, 152
inner scale, 47
integral curves, 127
intrinsic frame, 60
intrinsic primitives

of surface, 60

Lambertian surface, 18
local canonical form, 53
local extension, 57
localization, simultaneous, 29

mesh representation
of surface, 121

minimal information, 18

navigation
for hypothesis verification, 178
induced by apparent contour, 175
induced by discontinuous contour, 178
localized motion, 168
perturbative motion, 168
translation scheme, 110, 112

NSTU model, 41
Nyquist rate, 47

object frame, 109
observer frame, 109

occluding contour, 18, 105
distinguished from stationary contour,

118
optical flow, 126

segmentation, 126, 140
optical flow constraint equation, 19
orientation quantization

of mammal, 76
orientation space, 75
osculating plane, 109

parallel transport, 121
power preserving filter, 85
primal sketch, 10
principal curvatures, 154
principal directions, 173
principal patch, 17
projected curvature, 108

receptive field, 25, 49
spatio-temporal, 134

representation
information, 35
signal, 34

retina, 25
sampling geometry, 27

retinal filter, 38
rf, 25

sampling theorem, 47
sampling topology, 27
scale, 170, 171

minimum, 84
scale space, 50
signal representation, 33
silhouettes, 20
simple cells

linearity, 28
orientation and frequency selection, 28

simultaneous localization, 29
singular value decomposition, 70
spaceD, 90–91

complexity of matching, 96
matching, 95
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partial matching, 96
rotation, 94
scaling, 93
stability, 91
translation, 92

surface
elliptic, 154
hyperbolic, 154

surface curvature
geodesic, 109
normal, 109

surface normal interpolation, 63
surface primal sketch, 17
surface recovery

from multiple contours, 119
from principal curvature, 120

surface representation
of a single feature point, 153
of multiple feature points, 159
of two feature points, 155

tangent estimation
of step edge, 76

tensor-product surface, 155
time of contact, 130
triangulated patch, 61

vector field decomposition
curl, 129
deformation, 129
divergence, 129

visibility
of surface, 150, 174

visible surface, 151
visual pathway, 28


