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Abstract.

This paper presents a general framework for image-based analysis of 3D repeating motions that ad-
dresses two limitations in the state of the art. First, the assumption that a motion be perfectly even from
one cycle to the next is relaxed. Real repeating motions tend not to be perfectly even, i.e., the length of a
cycle varies through time because of physically important changes in the scene. A generalization of period
is defined for repeating motions that makes this temporal variation explicit. This representation, called
the period trace, is compact and purely temporal, describing the evolution of an object or scene without
reference to spatial quantities such as position or velocity. Second, the requirement that the observer be
stationary is removed. Observer motion complicates image analysis because an object that undergoes a
3D repeating motion will generally not produce a repeating sequence of images. Using principles of affine
invariance, we derive necessary and sufficient conditions for an image sequence to be the projection of a
3D repeating motion, accounting for changes in viewpoint and other camera parameters. Unlike previ-
ous work in visual invariance, however, our approach is applicable to objects and scenes whose motion
is highly non-rigid. Experiments on real image sequences demonstrate how the approach may be used
to detect several types of purely temporal motion features, relating to motion trends and irregularities.
Applications to athletic and medical motion analysis are discussed.

1. Introduction point affect the apparent motion. In particular,

the projection of a repeating motion with a mov-
Repeating motions abound in nature as well as ing camera will generally not produce a repeating
in the man-made world. Examples include the sequence of images. In order to determine salient
motions of a heart beating, an athlete running, features of the underlying motion in the scene, the

and a wheel rotating. Repeating motions have an
intrinsic temporal structure that describes how a
motion varies from one cycle to the next. The tem-
poral structure is invisible in any single image, but
becomes apparent when images are compared and
correlations are analyzed in the temporal domain.
Fig. 1 shows temporal image correlation plots for
a repeating and a non-repeating motion. Observe
that the repeating sequence (a) exhibits a pattern s ) ;
of dark contours corresponding to pairs of images so we can make use of principles of affine invari-
with high correlation. In this paper we show that ance (Koenderink and Van Doorn, 1991; Tomasi
this pattern can be analytically modeled to recover and Kanade, 1992; Shapiro et al., 1994).

repeating component must be isolated. We de-
scribe a technique for analyzing repeating motions
that is invariant with respect to (1) changes in the
position, orientation, and scale of the moving ob-
ject(s), and (2) changes in viewpoint and camera
parameters such as focal length and aspect ratio.
The key observation is that effects due to both (1)
and (2) can be modeled by affine transformations

meaningful information about motion trends and Although many real motions are intrinsically
irregularities in the underlying scene. repeating, few are perfectly periodic. For in-
Analyzing 3D repeating motions from image se- stance, a walker’s stride frequency may vary vis-

quences is challenging because changes in view- ibly from one cycle to the next and a heart may
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Fig. 1. Temporal correlation plot for a repeating motion (a) shows a pattern of dark contours. The specific form of the
contours encodes the motion’s variation from one cycle to the next. No such pattern arises from a non-repeating motion
(b). Dark regions in plot (b) correspond to intervals with little or no motion. The plots were formed by comparing every
pair of images in the sequence and plotting correlation values as intensity (light — low correlation, dark — high correlation).
The image comparison functions, d 4 and dy, are described later in this paper.

beat slower or faster according to changing activ-
ity levels. We use the term cyclic to describe mo-
tions that repeat but lack a constant period. An
analog of period can be defined for cyclic motions,
which we call instantaneous period, that gives cy-
cle length as a function of time. In applications
such as cardiac image analysis the instantaneous
period can be used to extract individual cycles and
to obtain correspondences between cycles, provid-
ing a means of tracking changes in a heart over
time.

Meaningful information about irregularities
can be inferred by comparing different cycles of
a cyclic motion. If two cycles are of different
lengths, one is irregular with respect to the other.
The exact point in time where an irregularity oc-
curs can be determined by considering the deriva-
tive of cycle length (which we define in Section
3.4). Furthermore, the nature of the irregularity

can be recovered, indicating how the motion varies
locally relative to the norm.

Detection of irregularity information has ap-
plications in athletic and medical motion analy-
sis. By analyzing the variance of the period in
several cycles of a runner’s gait or a swimmer’s
stroke, anomalies can be located providing feed-
back on specific areas which may need improve-
ment (Perry, 1990). Medical imagery can be ana-
lyzed using the same techniques, for instance to
detect unevenness in a heart’s beating motion.
Finally, a motion’s periodic variance provides a
purely motion-based signature that can be used to
detect certain qualities of a motion based on the
pattern of irregularities that the motion exhibits.

The remainder of the paper is structured as
follows. Section 2 discusses related work on pe-
riodic motion analysis. Section 3 formally defines
cyclic motion and introduces the notion of period
trace. Section 4 introduces several motion features



that can be derived from the period trace. Section
5 describes our method for affine-invariant image
matching. Section 6 presents a method for auto-
matically recovering a motion’s period trace using
an optimization approach. Section 7 describes ex-
periments on real image sequences.

2. Related Work

Several researchers have investigated ways of mea-
suring periodicity information from image se-
quences. Allmen and Dyer (1990) described an
approach for detecting periodicity under ortho-
graphic projection. They used the curvature scale
space of point trajectories to detect repeating
patterns of curvature maxima and hence infer
a period. Polana and Nelson (1993) presented
a method for detecting periodic motions using
Fourier transforms of several point trajectories. In
theory, the period of the motion could be detected
as well by averaging the fundamental frequencies
of the point trajectories, although the authors in-
dicated that determining the period in this way
was unreliable. Tsai et al. (1994) described a sim-
ilar technique, using Fourier transforms of curva-
ture values, where the period was determined from
a single point trajectory.

None of these approaches are appropriate for
analyzing repeating motions that lack a constant
period; in particular, they cannot be used to de-
tect or locate motion irregularities. Furthermore,
they rely on detecting periodicity in 2D and fail
to account for changes in camera viewpoint and
reference frame. For example, consider the mo-
tion of a person running along an arbitrary path.
The runner’s motion is periodic in a 3D reference
frame that moves with the runner. With a station-
ary camera, however, the motion of points on the
runner will not project to periodic image paths,
due to the runner’s constantly changing attitude
relative to the camera. Therefore, methods based
on detecting periodic image paths will fail to de-
tect many 3D repeating motions.

Motion information has proven useful in a num-
ber of related recognition problems. Johans-
son’s pioneering work on moving light displays
(MLD’s) (1973) demonstrated that human mo-
tions such as walking and running can be recog-
nized solely based on the trajectories of a small
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number of bright spots attached to different parts
of the body. Since then, motion-based recognition
has become an active area of study within com-
puter vision. These efforts include identification
of pedestrians (Hogg, 1983; Rohr, 1993), MLD-
based motion recognition (Goddard, 1989), hand
gesture recognition (Darrell and Pentland, 1993;
Davis and Shah, 1994), interpretation of facial
expressions (Yacoob and Davis, 1994; Essa and
Pentland, 1994), and temporal textures (Polana
and Nelson, 1992). An overview of work in this
area, including a more thorough list of references,
is available in a recent survey article (Cedras and
Shah, 1995) and an upcoming book (Shah and
Jain).

Cyclic motion analysis is unique among motion-
based recognition approaches in that it does not
require any type of object- or motion-specific
model. Other motion-based recognition tech-
niques (Hogg, 1983; Rohr, 1993; Darrell and Pent-
land, 1993; Yacoob and Davis, 1994; Essa and
Pentland, 1994; Polana and Nelson, 1992) require
a priori models of the underlying object and/or
the motion in the scene, although these models
can potentially be learned (Darrell and Pentland,
1993; Baumberg and Hogg, 1994; Bobick and Wil-
son, 1995). In contrast, periodicity is a universal
motion characteristic that can be detected and de-
scribed without knowledge of the underlying ob-
ject and without reference to a previous instance
of the motion. Therefore, the techniques in this
paper can be used to interpret image sequences of
completely unfamiliar objects and motions.

In Seitz and Dyer (1994a) we introduced a
match function that permits view-invariant com-
parison of images and removes the restriction of a
stationary observer. In Seitz and Dyer (1994b) we
described a technique for analyzing irregular cyclic
motions using the period trace. Here we present a
unified framework for the analysis of periodic and
cyclic motions from image sequences based on the
period trace and view-invariant image matching.

3. Motion Classes

Most existing representations of motion describe
how a set of intrinsic parameters of a specific
object model change over time. Examples in-
clude feature trajectories (Gould and Shah, 1989),
spatiotemporal surfaces (Baker and Bolles, 1989),
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joint angle paths (Goddard, 1989), and evolving
physically-based representations (Terzopoulos et
al., 1988). In many applications, however, we are
interested in the temporal evolution of an object
or a scene and not its instantaneous shape. Con-
sequently, in this section we introduce an alter-
native, purely temporal approach that is indepen-
dent of an object’s spatial properties. Our tempo-
ral motion representation, called the period trace,
describes how the period changes throughout the
course of a motion and contains a wealth of use-
ful motion information. Because no assumptions
are made about the spatial structure or represen-
tation of the scene, the period trace can be recov-
ered from any of several standard motion represen-
tations, including (Gould and Shah, 1989; Baker
and Bolles, 1989; Goddard, 1989; Terzopoulos et
al., 1988), and be used to analyze both rigidly and
non-rigidly moving objects and scenes. To moti-
vate the period trace, we first define what it means
for a motion to be periodic and, more generally,
cyclic.

3.1. Periodic Motions

We define a motion M(t) to be a function whose
value at time ¢ is the instantaneous configuration
of a continuously-moving object or scene!. We
call a motion P periodic if it repeats with period

p,ie.,

P(t +p) = P(t) (1)

for some constant p > 0 and all times ¢ in a given
time domain. The smallest such constant p is the
period and the set Py, = {P(t) | to < t < to +p}
is called the cycle beginning at time tg.

3.2.  Cyclic Motions

The notion of periodicity defined by Eq. (1) has a
very restrictive temporal constraint, namely, that
the motion is perfectly regular from one cycle to
the next. This constraint is relaxed with the intro-
duction of a period-warping function, ¢, as follows:

DEFINITION 1: A motion C is called cyclic if

C(4(1)) = C(t) (2)

for all times t in a given time domain and some in-
creasing continuous function ¢ satisfying ¢(t) > t.
A function ¢ satisfying these properties is called
C-warping.

Intuitively, ¢(¢) corresponds to the start of the
next cycle after the cycle beginning at time ¢. The
increasing condition on ¢ ensures that a cyclic
motion is order preserving, i.e., t; < to implies
@(t1) < ¢(t2). Notice that all periodic motions are
cyclic and that a cyclic motion is periodic when
Eq. (2) is satisfied for ¢(t) = t + p, with p the pe-
riod. Although not all cyclic motions are periodic,
any cyclic motion can be warped into a periodic
motion by appropriate temporal transformations
(see Section 4.4).

We emphasize that Definition 1 describes in a
very general sense what it means for a motion to
be cyclic, as opposed to a signal or a texture. The
terms cyclic and periodic have been used previ-
ously to mean different things in different con-
texts. Some authors (Allmen and Dyer, 1990; Tsai
et al., 1994) have used the term cyclic to describe
strictly periodic phenomenon. On the other hand,
a somewhat broader notion of cyclic is often used
to characterize one-dimensional signals that vary
both in frequency and amplitude. The advantage
of Eq. (2) is that it applies equally to one-, two-,
and three-dimensional motions, and is expressed
purely with respect to temporal quantities.

3.8. Match Functions

Examples of cyclic motions include a rotating
wheel, a spinning top, a beating heart, waving ges-
tures, and an athlete running in place. However,
many familiar motions that we intuitively char-
acterize as being repeating do not satisfy Defini-
tion 1. For instance, consider a runner who moves
along an arbitrary path. The runner’s motion can
be decomposed into a cyclic component (running
in place) and a component consisting of whole-
body movement along the path?.

Definition 1 can be generalized to describe
partially-cyclic motions, such as running, by re-



placing equality with equivalence under a cer-
tain class of transformations. Towards this end,
we introduce the concept of a match function,
d : P(C) = R, a non-negative real-valued func-
tion on the power set P(C) consisting of all sub-
sets of configurations of a motion C. Match
functions can be used to identify configurations
that belong to a given equivalence class, i.e.,
d({C(t1),C(t2),...,C(tr)}) = 0 if and only if
C(t1) = C(t2) = ... = C(tg). Various forms of
invariance can be achieved by using appropriate
match functions. In particular, a view-invariant
match function is presented in Section 5. In ad-
dition to incorporating forms of invariance, match
functions also provide a natural way of incorporat-
ing different methods for comparing images. This
framework incorporates existing metrics such as
frame difference, optical flow, Hausdorff distance
(Huttenlocher et al., 1993), and recent rigidity
tests (Seitz and Dyer, 1994a; Soatto and Perona,
1994; McReynolds and Lowe, 1995). Eq. (2) is
generalized to incorporate a match function d as
follows:

d({C(¢'(t) | i€ 2}) =0 3)

where
i

. ——N—
¢'(t) = (gpodo...09)(t)

3.4. The Period Trace

A C-warping function ¢ contains information con-
cerning the temporal variation of a cyclic motion
C. However, Definition 1 does not determine
a unique C-warping ¢ for a given cyclic motion
C. For instance, if C is periodic with period p,
¢(t) = t + kp for any positive integer k satisfies
Definition 1. We therefore introduce the notion of
instantaneous period:

DEFINITION 2: Let C be a cyclic motion. Let
¢1 = pointwise-infimum {¢ C-warping}

Define 71 (t) = ¢1(t) — t. 71 is called the instan-
taneous period of C.
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The fact that ¢; is C-warping follows from
the continuity of C: Let A = {¢ C-warping}
and let {¢;}32, be a subset of A converging to
¢1 at t. Then C(¢;(t)) = C(t) for each i,
so lim C(y;(t)) = C(t). But lim C(¢;(t)) =

11— 00 71— 00
C(¢1(t)) by continuity of C. Hence C(¢y(t)) =
C(t) for all values of t, i.e., ¢; is C-warping.

Intuitively, 71 (¢) is the length of the cycle begin-
ning at time ¢. For instance, if C is periodic, 7y is
the period. From 7, several useful quantities are
computable, including 7,,, the instantaneous com-
bined length of the next n cycles. Accordingly,
let ¢, = ¢™ for integers n > 0, where product
implies functional composition. Then the nth in-
stantaneous period, T, is defined as

Tn(t) = ¢n(t) —1t (4)
In addition to being continuous, 7, has the follow-
ing property:

Ta(t + h) — T (1)
h

> —1 (5)

which follows from Eq. (4) and the increasing con-
dition on ¢;. If 7, is differentiable, Eq. (5) is
equivalent to the condition 7, > —1.

The inverse functions exist and are defined as

$n = (¢n)_1
T—n(t) ¢—n(t) -1

for n > 0. 7_,(¢t) has the intuitive interpretation
as the combined length of the previous n cycles
ending at time ¢. Its value is always negative.

We refer to the set of functions {7, | n # 0}
as the period trace of a cyclic motion C. For in-
stance, the period trace of a periodic motion is a
set of constant functions: 7, = np, where p is the
period, as shown in Fig. 2. The period trace is a
comprehensive map of all the cycles in a repeating
motion and identifies all corresponding configura-
tions in different cycles. These properties make
the period trace a useful tool for comparing dif-
ferent cycles and tracking changes in a repeating
motion over time.
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4. Trends and Irregularities

The period trace of a cyclic motion describes how
the motion varies from one cycle to the next. Con-
sequently, many important attributes of a motion
can be computed directly from the period trace,
without reference to the spatial structure of the
underlying scene. In this section we present sev-
eral features that quantify temporal trends and
irregularities in cyclic motions.

4.1.  Local Features

Because the period trace reflects the cumulative
motion of n cycles, it is not obvious that local
temporal information can be derived from it. In
this section we show that local temporal irreg-
ularities can indeed be computed from deriva-
tives of the instantaneous periods. Any interval
[t,t + h] in which 7, is not constant, for some n,
is said to be an irreqular interval. The quantity
Ta(t + h) — 7, (t) gives the cumulative change in
the nth period, and M is the mean rate
of change of 7, in the interval [¢t,t + h]. Letting
h — 0, the mean rate of change converges to the
instantaneous rate of change, 7/, (t). Henceforth,
we denote 7, as the one-sided derivative defined
I} 1 Tn(t+h)—7n (1

by 71, (t) = ’llli% %

Values of ¢ for which 7),(t) # 0 are irregular
points, i.e., points where the motion is faster or
slower at ¢,(t) than at t. Moreover, 7;, provides
both the sign and magnitude of the irregularity.
For instance, 7{(t) = 1 indicates that the period
at time ¢ is increasing at a rate of 1 unit, i.e., mo-
tion is faster at ¢ than at ¢;(¢) by 1 unit. Because
the motion is faster at the beginning of the cy-
cle than at the end, it must slow down during the
course of the cycle, thereby causing a net increase
in the period.

Generally, not all points ¢ where 7/, (t) # 0, for
some n # 0, correspond to times where the motion
is globally uneven (see Fig. 2). A nonzero value
of 7/ (t) only indicates that motion is irregular at
time ¢ relative to time ¢, (t). A point ¢ where the
motion is globally irregular satisfies 7, (t) # 0, for
all n # 0 (see Fig. 2 (f)).

The total first-order irregularity of a cyclic mo-
tion C at a point in time ¢ can be defined as

irregc(t) = mean {|r, ()| | n # 0} (6)

Higher order irregularities may also be relevant
in certain situations. For instance, consider a jog-
ger whose stride frequency is steadily decreasing.
Due to the changes in speed, 7/, will be nonzero
and second-order irregularities may be more in-
teresting, i.e., where 7)/(t) # 0. Unless otherwise
qualified, the term irregularity refers to a first-
order irregularity.

4.2.  Global Features

The period trace can also be used to compute var-

ious global features of a cyclic motion. These in-

clude

e period

e cyclic acceleration

e shortest and longest cycle

e regular and irregular points, cycles, and inter-
vals

The simplest of these is the period. If 7{ (t) is uni-

formly O then 7 is constant and corresponds to

the period. Similarly, if 7{ = ¢, where ¢ > 0, then

the period is uniformly increasing at a rate of c.

In the case of a decelerating jogger, 7| gives the

change in speed in terms of the rate of change of

the stride period. The mean value of 7| gives the

mean rate of increase of the period, which we call

the average cyclic acceleration.

In addition to trends such as the period and
cyclic acceleration, the period trace can be used
to compute globally significant points, cycles, or
intervals in a motion. For instance, a longest
(shortest) cycle is given by any interval [t, ¢1(t))
for which 7 (¢) is maximal (minimal).

Highly irregular points can be found by max-
imizing Eq. (6). Similarly, the irregularity of a
cycle is measured by integrating Eq. (6) over the
entire cycle:

1 ¢1(t)
—t)/ irregc(s) ds
t

irreg(Cy) = i

Another useful feature is the median® cumulative
irregularity of an interval:
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Fig. 2. Effects of an irregularity on the instantaneous period. A periodic sinusoid signal (a) has a constant period (b) and
a period trace consisting of multiples of the period (c). A small irregularity is introduced (d) by temporarily slowing by a
factor of 10. The irregularity shows up in two places in the instantaneous period (e), where a ramp occurs once when the
irregularity enters the current cycle and once where it leaves. The ambiguity is resolved using the period trace (f) where
the ramps “line-up” only at the true irregularity (i.e., in a small interval around time 1.5).

irregc(ti,t2) =
median {|1n(t2) — Ta(t1)| | n #0}

4.8. Motion Signatures

Some types of cyclic motion produce telltale tem-
poral signatures. Examples include periodic mo-
tions and motions with uniform cyclic accelera-
tion, both of which have instantaneous periods
that are linear. The form of a motion’s period
trace may also indicate something about the dis-
tribution of irregularities. Cyclic motions that
contain isolated irregularities have very distinct
signatures (see Figs. 2, 6, and 8); the instanta-
neous period of a motion of this sort is piecewise-
constant except at isolated intervals whose loca-
tions and extents correspond to the irregularities.

The locations of irregularities in the period
trace provide other important qualitative clues
about the behavior of a moving object. Any cyclic
motion containing at least one irregularity has a
period trace with ramps in various places, e.g.,
see Fig. 2 (f). There are two categories of ramps;
those that line-up, recurring at the same place in
each cycle, and isolated ramps that don’t recur.
Generally, irregular motions will have both types
of ramps, but certain motions have only ramps
that line-up. These are motions where irregulari-
ties occur at roughly the same point in each cycle.
For instance, a heart may contract at a different
rate in each cycle, resulting in a series of ramps
that line-up at each contraction. A similar phe-

nomenon is shown in Fig. 8.
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4.4. Measuring Relative Speed and Removing Ir-
reqularities

The period trace provides detailed information
about cycles and changes in speed but does not
explicitly give instantaneous speed as a function
of time. Consider the motion of a jogger whose
stride frequency varies through time. Suppose we
wish to describe these variations not as changes
in stride frequency, but in terms of differences in
speed relative to the norm. For instance, we might
say that the jogger is currently running twice as
fast as normal (e.g., 15 mph versus 7.5 mph).
This can be achieved by recovering a time-warping
function that maps a perfectly regular, e.g. peri-
odic, motion into the uneven motion of the runner.

Any cyclic motion can be warped into a peri-
odic motion by flattening its period trace. This
flattening transformation and its inverse are the
time-warping functions we’re after. The first step
is to find a function that maps a cyclic motion
into a periodic motion. In other words, given a
cyclic motion, C(t), we wish to find a reparam-
eterization s = o (t) such that 7;(s) is constant,
where

i(s) = (0ogroo t)(s) —s

The result is that C(s) is periodic, satisfying
Eq. (1).

For any cyclic motion, C(t), there exist innu-
merable reparameterizations, s = o(t), such that
C(s) is periodic. A natural choice is one that syn-
chronizes the motion with respect to a particular
cycle. The result is that the reference cycle re-
mains intact and all other cycles are aligned to
match the reference cycle. This approach is at-
tractive because a cycle may be chosen that sat-
isfies a particular criterion and the whole motion
will be rectified to conform to the criterion. For
instance, irregularities may be removed by choos-
ing a regular reference cycle, using the techniques
of Section 4.2. Similarly, choosing a cycle that has
a particular anomaly will result in a motion with
a corresponding anomaly in every cycle.

Let C(t) be a cyclic motion and choose a cy-
cle, C,,, starting at time ¢y. Define time warping
function ¢ and its inverse as

o(t) = ¢—n(t) + n71(to)
for t € [pn(to), Pni1(to))

g_l(s) = ¢n(s — n71(tg))
for 071 (s) € [n(to), Pnt1(to))

Cramv: C(s) is periodic, where s = o(t)

Proof: Fix a value of s. Suppose, without loss of
generality, that 071 (s) € [¢n(to), Pnt1(to)). Then

71(s) = (0061 0¢n)(s —n7i(to)) — s
= (p—n-10¢10¢n)(s —n7i(to))
+(n+ D1i(to) — s
s —n1(to) + (n+ )7 (to) — s
71(to)

Therefore 71 (s) is constant so C(s) is periodic with
period 71 (to)- [ |

Assuming a constant frame rate, a cyclic image
sequence represents a motion sampled uniformly
in the ¢ domain. Rectification involves selecting
an image subsequence corresponding to a uniform
sampling in the s domain. Uniform s sampling
ensures that the new sequence is periodic when
played back at a constant frame rate. The rectified
sequence may be constructed using ! as follows:
given an initial image sequence I, I, ..., I, the
rectified sequence is

Ia_l(l)a Io.—l(2), . 710_1(19)

where k = |o(m)|. The effect is that all irregu-
larities are removed and there is no variation in
speed from one cycle to the next.

Whereas 0! can be used for making a sequence
periodic, o is useful for describing how a cyclic
motion deviates from periodicity. The derivative
of o gives the factor by which motion is locally
faster with respect to the reference cycle. Con-
trast this with 77, which gives the local change in
cycle length as a function of time; ‘fi—‘z gives rela-
tive speed directly, but requires a reference cycle.
For instance, ‘;—‘:(tl) = 2 indicates that the mo-
tion at time ¢; is twice as fast as normal. In Sec-
tion 7 these techniques are used to measure rel-
ative speed and to demonstrate the rectification
process for a real image sequence.



5. Affine Invariance

Three-dimensional motion analysis from image se-
quences requires isolating salient 3D motion char-
acteristics from artifacts arising from the projec-
tion process. For instance, consider the problem of
measuring the stride frequency of an athlete filmed
while running along a path. Both the relative
movement of the runners’ limbs and his change in
attitude relative to the camera contribute to the
motion in the image sequence, but only the former
is relevant to the stride frequency. Equivalently,
the athlete may be running in place while the cam-
era moves. We would like to be able to determine
the stride frequency in a way that is not affected
by changes in viewpoint. This is accomplished us-
ing a view-invariant match function that equates
a set of images if and only if they represent views
of an object in the same configuration.

5.1. Projected Match Criterion

Formally, we want to determine if a set of images
match, i.e., correspond to views of the same 3D
configuration of an object or a scene. Our for-
mulation assumes an affine camera model (Koen-
derink and Van Doorn, 1991; Mundy and Zisser-
man, 1992; Shapiro et al., 1994) which is a gen-
eralization of orthographic, weak perspective, and
paraperspective projections. An image sequence
is represented as a sequence of 2 x n matrices
I,...,1,, where each column is the instantaneous
position of one of n image features. It is assumed
that corresponding columns of I; and I represent
projections of the same scene point. Hence, the
correspondence between features in different im-
ages is assumed to be known. An object or scene
is represented as a 3 X n matrix S with columns
corresponding to the 3D coordinates of features in
an object-centered affine reference frame. With-
out loss of generality, assume that each row of
I; has zero mean; choose the origin of each im-
age to be the centroid of the feature points. Un-
der an affine projection model a set of images,
I'={L,,...,1}, match if and only if

I; =1L;S (7)

View-Invariant Analysis of Cyclic Motion 9

for some fixed 3 x n matrix S, i = 1,...,k, and
2 x 3 matrices Iy, , ..., I, .

Define the measurement matrix Mr of a set of
images to be the concatenation of the image mea-
surements:

I,
Mr =
I,

If the images I' match, then by Eq. (7), we can
express Mr as follows:
11,
11,,

Therefore Mr is the product of two matrices, each
having rank at most 3. It follows that Mr has
rank 3 or less. This is the Rank Theorem, due
to Tomasi and Kanade (1992), and generalized
for an affine camera. Conversely, any measure-
ment matrix of rank 3 or less can be decomposed
as in Eq. (8) using singular value decomposition
(Tomasi and Kanade, 1992). Therefore, we have
the following;:

GENERALIZED RANK THEOREM: A set of im-
ages, ', match if and only if Mr is of rank at
most 3.

Under orthographic projection (the case con-
sidered by Tomasi and Kanade), the rank condi-
tion alone is not sufficient to determine that a set
of images match. However, it is both necessary
and sufficient under the more general affine cam-
era model. Hence, the Generalized Rank Theo-
rem can be used to detect if a set of images could
have been produced by a 3D cyclic motion. Ac-
cordingly, let Iy, ..., I, be a sequence of images,
let ¢ be an integer-valued function, and denote
Ty = {Iiy | 1 < ¢'(t) < m}. The following
result is a consequence of the Generalized Rank
Theorem and Eq. (2):

PROJECTED MATCH CRITERION: An image se-
quence, I1,...,1,,, is the affine projection of a
3D cyclic motion if and only if there exists an
increasing function satisfying ¢(t) > t such that
rank(MF?) <3fort=1,...,m.
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Such a function ¢ is called I-warping. The Pro-
jected Match Criterion suggests a provably-correct
way of detecting cyclic motions: check all pos-
sible I-warping functions. Under an assumption
of periodicity, this brute-force strategy is feasible
(Seitz and Dyer, 1994a) but exhaustive search is
too costly in general. A more efficient method is
described in Section 6.

5.2.  Affine-Invariant Image Matching

Because rank measurements are highly sensitive to
numerical errors, a more robust measure of match
quality is needed. We can characterize the resid-
ual error of a sequence of images by the amount
by which features must be perturbed in order to
make the images match. Define the match error
of a set of images as follows:

dist 4(T') = min {||E|| | rank(Mr + E) < 3}

Tms

||E[l,,,, is the root-mean-squared norm of the ma-

trix E defined by [|E|lyms = /55 >, Efe Al

ternatively, dist4 can be expressed in terms of the
singular values of Mr:

THEOREM: dist4(T) =

01 .. .0, are the singular values of T'.

Proof: Singular value decomposition gives
Mr =UXV

where U and V are orthogonal matrices and the
singular values of M appear along the diagonal of
3 (a 2k xn diagonal matrix). The above equation
can be rewritten as

Mr = UXV + UX'V (9)

where 3 and X' are structured as

0 0

04

o1

o L
Y= s Y = 0

On

Eq. (9) can be expressed as
Mr = MF + MIF

where Mr = UXV and M} = UX'V.

Mr is the optimal (in an RMS sense) rank-
3 approximation of Mr (Stewart, 1973). Hence,
MY, is the minimal perturbation of Mr that pro-
duces a match. Therefore, dist 4(T') = ||Mp||rms-
The latter term is just ||X’||rms since U and V are
orthogonal, and the result follows. [ ]

The measure dist4 gives the average amount
(in pixels) necessary to additively perturb the co-
ordinates of each image feature in order to produce
a set of matching images. In the case where there
are only two images we abbreviate dist4({I5,1;})
as dist 4(I5,1;). dist has the following proper-
ties:

o dist4(T") = 0if and only if the images, I, match
exactly.

o dist 4 is well-behaved with respect to noise (see,
for example, Stewart (1973)).

e dist 4 is defined in image coordinates and can
be directly related to measurement errors.

e dist 4 is always zero when less than five features
are considered.

e dist, may be non-zero when the features are
co-planar. Therefore co-planarity of the feature
set does not cause problems, in contrast to re-
lated techniques (Koenderink and Van Doorn,
1991; Tomasi and Kanade, 1992; Shapiro et al.,
1994).

e For n features, dist4(Is,1;) =

5= and the
vn
evaluation cost is O(n) arithmetic operations.

For m images, the evaluation cost is the smaller
of O(nm?) and O(mn?).

5.8. A Simplified Match Function

The match function dist4 is appropriate when a
large number of features are continuously visible
throughout an image sequence. For real world ap-
plications however, this is seldom the case due to
factors such as noise and occlusion. Therefore,
we use a simplified match function that computes
pairwise correlations between images that have a
suitable number of features in common:

da(T) = mean {dista(Iy;,I;;) | 1 <i<j<k,
I;; and Iy; share at least 5 features}



Note, however, that d4(I") = 0 is only a necessary
condition for a set of images to match, whereas
dist o(T'") = 0 is both necessary and sufficient.

6. Recovering the Period Trace

In order to detect cyclic motion features such as
those introduced in Section 4, we must be able
to recover functions 7,(t) for each integer n # 0
from a cyclic motion C. Because the complete pe-
riod trace can be computed from 71, it is sufficient
to determine ;. For periodic motions, 71 is con-
stant and can be determined using unconstrained
scalar optimization methods. More generally, the
recovery of 7 is posed as a constrained functional
minimization problem.

6.1. The Periodic Case

If a cyclic motion is known to have a certain form,
this information may be used to help recover its
period trace. Particularly, if an a priori motion
model is available, e.g., linear or piecewise con-
stant, the model can ameliorate the task of deter-
mining 7 by reducing the search space and mak-
ing the recovery procedure less sensitive to noise.
Existing techniques for recovering periodicity in-
formation (Allmen and Dyer, 1990, Polana and
Nelson, 1993; Seitz and Dyer 1994a; Tsai et al.,
1995) implicitly use this strategy, exploiting the
assumption of a constant period. The case where
such a model is not available is treated in the next
section.

The instantaneous periods of a periodic motion
are constant and correspond to the multiples of
the period. Therefore, the period trace of a pe-
riodic motion can be found by optimizing some
function over the set of candidate periods. To-
wards this end, we introduce a tool for assessing
the significance of a candidate period or period
trace.

A Significance Measure In the presence of
noise and quantization effects it is unlikely that
corresponding configurations of a cyclic motion
will match precisely, yielding the zero match
scores predicted by Eq. (3). Matching configura-
tions can nevertheless be detected by minimizing
a well-behaved match function d. However, it is
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still necessary to evaluate the significance of a so-
lution in order to discriminate between a cyclic
and a non-cyclic motion. For this purpose we use
a statistical measure based on the Kolmogorov-
Smirnov (K-S) test (Press et al., 1988) .

The quality of a computed period trace can be
assessed by considering the problem within the
context of sampling theory. The operation of com-
paring two configurations C(s) and C(¢) can be
thought of as taking a random point sample from
match space:

M = {d(C(s),C(t)) | s,t € R, s < t}

A period trace m = {7, | n # 0} determines a
specific sample S, C M given by

S ={d(C(t), C(t + (1)) | n > 0}

For example, a period of p corresponds to the sam-
ple:

Sy = {d(C(t), C(t +np)) | n > 0}

S contains the match scores of precisely the con-
figurations that correspond, under the hypothesis
that C is cyclic with period trace w. If this hy-
pothesis is correct, the distribution of S, should
differ significantly from that of M, since corre-
sponding configurations minimize d by assump-
tion. The K-S test gives the probability, or P-
value, of a random sample of M matching the
cumulative histogram of S, i.e., the probability
that the motion is not cyclic.

In practice C(t) may be sampled both in space
and time so that the exact distribution of M is not
known. For an image sequence, I' = {I, ..., I},
M is approximated by M' = {d(I,,I;) | 1 < s <
t < k}. For details on how to calculate the K-S
statistic, consult (Press et al., 1988).

The P-value of a candidate period trace 7 is
evaluated by applying the K-S test to S; and M’.
Since the objective is to find a period trace that
minimizes d, it is necessary to assess P-values of
period traces only for which

mean(Sy) < mean(M') (10)

Candidate period traces for which this inequality
is violated are normalized by assigning P-values of
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1. The P-value of a motion is defined to be the
minimum P-value of all possible period traces.

In practice, a motion’s exact P-value is never
computed; the P-value of the period trace ob-
tained by the optimization procedure provides an
upper bound that is generally sufficient to differ-
entiate cyclic from non-cyclic motions. We have
found this test to be quite robust; real cyclic mo-
tions yield P-values that are exceedingly small, on
the order of 10729 or smaller, whereas non-cyclic
motions have P-values at or near 1. In fact, ev-
ery one of the non-cyclic motions we evaluated
had a P-value of 1. The reason is that image se-
quences are decidedly non-random; adjacent im-
ages (i.e., I; and I;y;) tend to be similar, result-
ing in a natural bias towards small periods. M’
contains match scores for all adjacent frames and
it is therefore unlikely that Eq. (10) will be satis-
fied for any period trace 7 chosen at random. As
a result, most period traces will have P-values of
1. Note that this bias helps to differentiate cyclic
from non-cyclic motions since the latter tend to
have P-values of 1. For cyclic images sequences
there is an implicit assumption that the instanta-
neous period is uniformly greater than 1. In other
words, the frame rate (images per second) should
be greater than the frequency (cycles per second),
or else the period trace cannot be detected.

Detecting Periods Using the K-S Test Us-
ing the K-S test it is straightforward both to calcu-
late the probability that a motion is periodic and
to compute the most likely period. Given a mo-
tion C(t) defined on the domain [t1, 2], evaluate
the K-S test for every candidate period p < 254
The value of p with lowest P-value constitutes the
most likely period and the corresponding P-value
gives an upper bound on the probability that the
motion is not periodic.

A potential complication arises in discriminat-
ing between the true period and its multiples. If
p is the true period, note that S, C S, for any
positive integer multiple k& of p. Hence, it is pos-
sible that mean(Sip) < mean(Sp), for some value
of k. However, the K-S test assigns greater sig-
nificance to larger samples, adding a built-in bias
in favor of smaller periods. Because S, consti-
tutes a smaller sample than S, the latter is auto-
matically assigned more significance, resulting in

a smaller P-value. Consequently, the P-value of
the true period will tend to be more significant
than those of its multiples due to the natural bias
of the K-S test. This phenomenon can be seen in
Fig. 7, where the true period has a much smaller
P-value than its multiple.

6.2. The Cyclic Case

When nothing is known a priori about a cyclic mo-
tion, the recovery of its period trace can be posed
as a constrained functional optimization problem.
Because the complete period trace can be com-
puted from 7, it is sufficient to determine 7 (t)
for each value of ¢t. Given a cyclic motion C, we
seek to minimize 7 () subject to the following con-
straints:

1. C(t) =C(¢i,(t)) for t e R, i€ Z

2. 11 is continuous

3.7(t) >0,teR

4. 1t)>-1,teR

where ¢, (t) = 71 (t) + t.

For discrete data sampled on the interval
[t1,t2], the problem is simplified by introducing
a match function, d, (see Section 3.3) and formu-
lating an energy function® to be minimized. It
is assumed that d is well-behaved near zeros so
that near-matching configurations show up as lo-
cal minima of d. The energy function, E(), has
two terms to enforce constraints 1 and 2, weighted
by a scalar factor a:

Ey(r1,t) = d{C(8%, (1) | t1 < ¢, (t) < to,

i€ Z})
Ey(1,t) = |ri(t)]
2]
E(n) = Y [Bi(n,t) + aBs(m,1)] (11)
t=t1

Constraints 3 and 4 are local and easily enforced,
although the strict inequality in constraint 4 is
relaxed (since 7| may be arbitrarily close to -1)°.

We propose a multiscale snake algorithm
adapted from (Kass et al., 1988; Williams and
Shah, 1992) for recovering the period trace by it-
eratively minimizing the energy function E. The
snake is initialized to a rough estimate of 7 and
is incrementally refined so as to reach a state of
locally minimal energy. In each iteration a value



of ¢ is selected and 7 (¢) is adjusted by 0, 1, or -1
unit so as to globally decrease E(r1) while check-
ing that constraints 3 and 4 are satisfied. A pass
consists of iterating over all successive values of ¢
in the domain of 7. The algorithm performs re-
peated passes until E converges. Convergence is
guaranteed since energy decreases monotonically
in each iteration. To avoid problems with local
minima, the optimization approach is repeated at
three scales of increasing resolution using the out-
put of each stage as the initialization for the next.

Initialization is performed by setting 71 to the
constant function that minimizes the K-S test, as
described in Section 6.1. In combination with the
multiscale approach, we have found this simple
strategy to provide adequate initialization for the
optimization procedure to converge correctly for
the sequences that we tested. However, this strat-
egy is designed for near-periodic sequences; highly
irregular cyclic sequences may require a more so-
phisticated initialization procedure, perhaps in-
corporating user interaction, as in (Kass et al.,
1988).

6.3. The Recovery Algorithm

The following sequence of operations is used to
compute the period trace and its P-value from a
sequence of images Iy,...,I,,.

e Step 1. Choose a match function d for compar-
ing images.

o Step 2. Compute P-values for each candidate
period p = 2,...,21. The candidate p with
smallest P-value is the most likely period. The
associated P-value gives the probability that

the motion is not periodic.

o Step 8. Apply energy minimization passes un-
til the snake converges at a succession of finer
scales. The snake is initialized to 71 = p at
the coarsest scale. Upon convergence, the new
snake configuration is used to initialize energy
minimization at the next finer scale.

e Step 4. Obtain the P-value of the derived period
trace using the K-S test, giving the probability
that the motion is not cyclic.
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As noted in Section 6.1, this algorithm cannot
detect periods of one frame or less. Such motions
will generally be found to be non-cyclic with a
P-value of 1.

7. Experiments

Three image sequences were used to evaluate
the performance of the optimization methods de-
scribed in Section 6 and the detection of temporal
motion features. In addition, three non-cyclic se-
quences were used as a control set to test the dis-
crimination accuracy of the algorithm. The first
two sequences illustrate the use of match functions
for view-invariant recovery of irregularity informa-
tion. The third experiment uses X-ray data of a
beating heart to show that the period trace can
be calculated from medical imagery without pre-
processing and can be used for temporal segmen-
tation and analysis. Selected images from all six
sequences are shown in Fig. 3. All three control
sequences yielded P-values of 1, indicating with
great probability that they are not cyclic. In each
case, the period minimizing mean(S,) was p = 1
frame. More experiments can be found in Seitz
and Dyer (1997).

7.1. Walking Sequence

A human subject was filmed walking in an arc sub-
tending about 70 degrees. The camera was man-
ually rotated to keep the subject in view, and the
focal length was slowly changed during filming.
To aid software feature detection and tracking, re-
flective markers were placed in areas which were
visible for the duration of the sequence (i.e., right
arm, right leg, mid torso, and head). We used the
method described in Section 6.1 to determine the
period with smallest P-value. The affine-invariant
match function, d 4, of Section 5 was used for com-
paring images. Fig. 3 shows that the algorithm
successfully detected matching images; images 1,
38, and 112 are views of the subject at roughly
the same point in her walk cycle. The algorithm
detected a period of 37 with a P-value of 1078,
The P-value of the detected period clearly beats
out all other candidates (see Fig. 5).

Because features on only one side of the torso
were tracked, the feature set was nearly planar.
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Fig. 3. Selected images from image sequences of cyclic motions. Top: Human subject walking. Middle: Rotating turntable.
Bottom: X-ray images of a beating heart. The first, third, and fourth images in each set match and these correspondences
were computed automatically from the period trace.
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1 10 20 49

Fig. 4. Selected images from three non-repeating image sequences: salesman (top), claire (center), and toy (bottom). All
three sequences yielded P-values of 1, indicating with great probability that the motions are non-cyclic.
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Co-planarity of the feature set is known to be
problematic for many shape-from-motion algo-
rithms (Koenderink and Van Doorn, 1991; Tomasi
and Kanade, 1992; Shapiro et al., 1994). Note,
however, that it does not cause a problem for our
algorithm because an explicit 3D scene representa-
tion is never computed. Note also that the entire
motion is nearly affine; the features in each im-
age can be roughly approximated by a horizontal
shear and/or reflection of the features in the first

image. In fact, we have found this property to be
true of other human locomotory motions such as
running, skipping and jumping. Since the match
function d4 equates all images that are related by
a 3D affine transformation, purely affine motions
appear stationary, and period detection fails. The
periods of nearly-affine motions, however, can be
reliably detected with our approach, but the re-
sulting P-values tend to be less significant.

P-values of Walk Periods

10e-20

10e-15 -

10e-10

P-value

10e-5 |

10e-0 0 /‘\

19

37

period (images)

Fig. 5. Period P-values of a walking human. The period with the highest level of significance is 37, with a P-value of 1018,

7.2.  Turntable Motion Sequence

A rotating turntable was filmed using a moving
hand-held video camera. Reflective markers were
placed both on the turntable and elsewhere in the
static scene. Note that although the motion of
the turntable is rigid, the entire scene moves non-
rigidly. Custom software was used to track the
markers as the camera moved about the scene
and the turntable simultaneously rotated. Twice
the turntable was briefly touched to temporarily
slow the rotation and artificially produce an irreg-

ularity. Images were compared using the affine-
invariant match function, d_4, of Section 5.

Fig. 6 shows the recovered period trace. The
figure illustrates that the optimization process
successfully located low-energy “valleys” in the
match space, corresponding to the dark contours
in the temporal correlation plot. The two regions
with the highest irregularity values correspond to
the two brief intervals in which the turntable was
touched. The width of each interval indicates how
long the turntable was touched and the irregular-
ity value determines the extent to which the ro-
tation was slowed. Notice that there are several
ramps throughout the period trace but all coin-
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Fig. 6. Period trace of the turntable motion sequence. (a) Temporal correlation plot of d4(I¢, I14s) with values shown as
intensity (white — low correlation, black — high correlation). (b) The recovered period trace (white) is superimposed on
the correlation plot. (c) A graph of 71 and 7—1 with the two most irregular intervals marked. Notice that discontinuities
appear in various places but “line up” only at actual motion irregularities. The ground truth turntable frequency is 33%
revolutions per minute, or 54 frames per revolution at NTSC video rate.
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Fig. 7. Image sequence rectification using the period trace. The turntable sequence was rectified, producing a periodic

sequence with irregularities automatically removed. (a) Speed relative to the first cycle. Touching the turntable slowed the
rotational speed, producing momentary reductions in ‘di—f. Other fluctuations are present but are not significant since the
local variations in speed cancel. (b) Temporal correlation plot of the rectified sequence. Observe that the period trace (dark

lines) consists of constant functions, indicative of a periodic motion. (c) Period P-values for the rectified sequence. The
period with smallest P-value is 54, exactly matching the ground truth of 33% rpm at NTSC video rate.
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cide only in the intervals where the turntable was
touched. Image 66 in Fig. 3 is an image from a
detected irregular interval, showing the turntable
being touched.

The rectification procedure of Section 4.4 was
applied to the image sequence, producing a peri-
odic image sequence (see Fig. 7) comprised of a
subset of the images in the original turntable se-
quence. Notice that the period trace has been flat-
tened and no longer contains signs of irregularities.
The first complete cycle in the image sequence was
automatically detected and used as the reference
cycle. In the rectified sequence, the turntable ro-
tates at a constant rate of 54 frames per revolu-
tion, exactly matching the ground truth rate of
33% rpm at NTSC video rate. The turntable se-
quence was found to be cyclic with a P-value of
107229, The rectified sequence was determined
periodic with a P-value smaller than 107324, the
smallest number representable with an 8-byte dou-
ble float.

The graph at left in Fig. 7 shows instantaneous
speed relative to the reference cycle. The slow-
ing of the turntable is reflected by a reduction in
speed in the two intervals in which the turntable
was touched. Notice that there are four other
momentary fluctuations in speed. These fluctu-
ations, however, are not significant because the
local changes in speed cancel out. For example,
the rotational speed is twice as fast as normal in
frame 126, and half as fast as normal in frame
127. These reciprocal variations exactly cancel
each other out, producing no net change in cy-
cle length. This characteristic pattern is common
in graphs of this type and is indicative of a small
error in the recovered period trace rather than a
motion irregularity in the scene. In contrast, mo-
tion irregularities generally leave variations that
do not cancel, resulting in a net increase or de-
crease in cycle length during the time in which
the irregularity occurred (e.g., frames 66-72 and
186-202 in Fig. 7).

7.8. Heart X-ray Motion Sequence
We also tested our recovery method on a beat-

ing heart motion using a sequence of X-ray im-
ages obtained through coronary angiography. A
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few images from the sequence are shown in Fig. 3.
Because of the difficulty of automatically segment-
ing these images, we chose to match the raw data
directly, using the grayscale image intensities as
the underlying spatial representation. The match
function was just the sum of absolute pixel inten-
sity differences between image pairs:

dI(ISaIt) = ”It - I-‘5”1

Due to the poor quality of the images, the pattern
of dark contours in the temporal correlation plot is
weaker than in the turntable plot. It was distinct
enough, however, for the algorithm to find a pe-
riod trace with a P-value of 10~5!, indicating that
the motion is cyclic with very high probability.

The 71 curve shown in Fig. 8 is qualitatively
similar to an electrocardiogram (ECG), which can
also be used to detect heart periods, although dif-
ferent information is conveyed. An ECG measures
electric activity of the heart so period informa-
tion is not explicit, in contrast to the period trace
which gives cycle length as a function of time.

Fig. 8 (c) shows that the period changed from
26 frames to 27 to 24 and back to 27, but re-
mained roughly constant for the duration of each
cycle. A period trace of this form is indicative
of a motion with isolated irregularities. In addi-
tion, observe that the ramps in the period trace
(b) all tend to line up, indicating that irregular-
ities occurred in roughly the same place in each
cycle. The locations of these ramps coincide with
intervals in which the heart is at rest, indicating
that irregularities occurred between contractions
as the heart relaxed, pausing for slightly different
lengths of time in different cycles.

In addition to temporal irregularities, real mo-
tions can contain spatial irregularities where the
set of physical configurations changes somewhat
from one cycle to the next. Although the period
trace is a purely temporal representation, it can
be used in conjunction with other methods to de-
tect spatial variations between cycles. For exam-
ple, in order to visualize spatial changes in the
heart sequence, we generated a sequence of differ-
ence images comparing corresponding frames from
different cycles. Fig. 9 shows sets of these differ-
ence images corresponding to one interval in which
the heart is undergoing rapid spatial changes and
another in which it is nearly stationary. Pixels
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Fig. 8. Period trace of the heart X-ray motion sequence. (a) Temporal correlation plot of the image sequence. (b) Period
trace superimposed on correlation plot. (c) Enlargement of the instantaneous period. Notice that the instantaneous period
is roughly piecewise-constant, corresponding to the predicted model of a motion with isolated irregularities. Qualitatively,
the motion is seen to be relatively even except in certain short intervals (near frames 20, 40, and 70), suggesting that the
period variation is due to uneven motion solely in these short intervals.
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Fig. 9. Visualizing spatial variations in the heart X-ray sequence. Difference images comparing corresponding frames from
different cycles where a heart is moving quickly (left) and slowly (right). Frames 57 and 81 correspond, as do frames 14
and 38. Similar pixels appear as neutral gray. Note that changes are much more rapid at left than at right. Light and
dark regions in image 14-38 reveal significant spatial differences, indicating that the heart passed through slightly different

configurations in the two cycles.
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with higher (lower) intensity in the first image ap-
pear lighter (darker) in the difference image. Sim-
ilar pixels appear as neutral gray. These differ-
ence images provide simultaneous visualization of
both instantaneous velocity and spatial irregular-
ities between cycles. For instance, the left col-
umn of Fig. 9 shows that the configuration of the
heart is changing very rapidly relative to the frame
rate. However, the overall match is visually quite
good between images 57 and 81, indicating that
the heart is passing through nearly the same con-
figuration at this point in the two cycles. In con-
trast, the difference images in the right column
of Fig. 9 have similar gray-values almost every-
where, indicating an interval where the heart is
nearly stationary. Images 14 and 38 yielded the
locally best match score, yet the difference image
shows several areas of disparity, revealing that the
heart paused in slightly different configurations in
the two cycles. The patterns of light and dark
regions provide a way of visualizing spatial irreg-
ularities between cycles. Optical flow techniques
could be used to gain a more quantitative mea-
sure of these changes, provided that the changes
are small. These images illustrate that the pe-
riod trace can be used in conjunction with other
methods to visualize spatial as well as temporal
variations in cyclic motions.

8. Conclusion

This paper presented two main contributions to
the field of motion analysis. First, we introduced
a novel motion representation, called the period
trace, that provides a complete description of tem-
poral variations in a cyclic motion, and can be
used to detect motion trends and irregularities.
Unlike previous motion representations, the pe-
riod trace is purely temporal, describing the evo-
lution of an object or scene without reference to
spatial quantities such as position or velocity. Sec-
ond, we derived necessary and sufficient conditions
for determining whether an uncalibrated image se-
quence is the projection of a 3D cyclic motion in
the scene, using principles of affine invariance. In
contrast to most previous work on visual invari-
ance, however, our approach is applicable to ob-

jects and scenes that undergo non-rigid cyclic mo-
tions.

Our approach makes use of a novel affine-
invariant match function, d4, that permits view-
invariant image comparisons, enabling analysis of
images taken with a moving camera. Because d 4
is invariant to 3D affine transformations of the
scene, the technique is also applicable to motions,
like an athlete running, that are not strictly cyclic
but have a cyclic component. The algorithm is ro-
bust with respect to measurement errors and per-
forms well for a wide range of image sequences.
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Notes

1. Although time is implicit, ¢ could represent another
quantity.

2. Others have referred to this decomposition in terms of
“relative” and “common” motion.

3. We have found median to be more robust than mean
in this context.

4. Optimization based directly on the K-S test leads to
numerical problems, since P-values can be exceedingly
small close to the true period trace.

5. This modification poses minor invertibility problems
for ¢¢1 .
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