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Abstract—The first step to deal with the significant issue of
air pollution in China and elsewhere in the world is to monitor
it. While more physical monitoring stations are built, current
coverage is limited to large cities with most other places under-
monitored. In this paper we propose a complementary approach
to monitor Air Quality Index (AQI): using machine learning
models to estimate AQI from social media posts. We propose a
series of progressively more sophisticated machine learning mod-
els, culminating in a Markov Random Field model that utilizes
the text content in social media as well as the spatiotemporal
correlation among cities and days. Our extensive experiments
on Sina Weibo data from 108 cities during a one-month period
demonstrate the accurate AQI prediction performance of our
approach.

I. INTRODUCTION

Air pollution is a significant issue in China and elsewhere
around the world. For example, in 2013 Beijing had 58 days
when the Air Quality Index (AQI) was higher than 200 or
“heavy pollution.”1 In December 2013 the east and central
regions of China, which have more than 600 million people,
experienced heavy pollution for more than two weeks. Air
pollution is harmful to people’s health, causing “eye irritation,
lung and throat irritation, lung cancer and problems with babies
at birth” 2

To better deal with the problems of air pollution, the first
step is to monitor air quality. From January 1 to November
1, 2013, the coverage of physical monitoring stations has
increased from 74 cities to 108 cities in China. Also, the
Chinese government has started to include PM2.5 (a major
and dangerous air pollutant) into AQI monitoring3.

The cost of establishing and maintaining physical moni-
toring stations limits their deployment currently to large and
medium cities only. As a result, AQI monitoring in many
regions such as small cities and rural towns is still lacking.
To help people in these regions obtain air quality information,
we consider the following question: can we estimate AQI
without physical monitoring by using other, already available,
information sources?

In this paper we estimate AQI using social media data
as the information source. Social media is a rich and timely
information source about air pollution in China. The most
popular social media site in China, Sina Weibo, has about 100
million messages posted every day from all over the country4.
Our key observation is that high AQI (poor air quality) in a
region causes more Weibo posts from that region to discuss

1http://www.cnemc.cn
2http://www.cdc.gov/air/particulate matter.html
3The PM2.5 information in China is reported at http://www.cnemc.cn
4According to http://en.wikipedia.org/wiki/Sina Weibo

air pollution. For instance, here are some random Weibo posts
(in Chinese) that contain the word “mai” ( , haze):

In fact, the word “mai” is positively correlated with AQI
as shown in Figures 1(a,b). Figure 1(c) further visualizes the
frequency of some Chinese characters that co-occur with “mai”
in Weibo posts.

Our main machine learning model is a Markov Random
Field that exploits this and other correlations. This paper
demonstrates that our method can accurately estimate AQI
from publicly-available Weibo posts, thereby offering an inex-
pensive way to obtain information about air quality in diverse
areas in China, not limited to cities with AQI monitoring
stations.

We also point out the main limitations of our approach
upfront. First, our model does not forecast future AQI but
rather estimates current AQI from near-realtime population
reactions in social media. Second, our model is subject to
the availability of social media posts and therefore does not
apply to remote regions with extremely low social media user
populations. Still, this work provides complementary value to
existing AQI monitoring approaches, and can be an integral
part in the overall solution to the air pollution problem.

The present paper is related to a line of recent work that
attempts to gather air pollution information based on sources
other than monitor stations. Honicky et al. [3] suggested col-
lecting air pollution information by sensors attached to mobile
phones. Poduri et al. [4] estimated the extent of airborne
particulate matter by commodity cameras that are commonly
used in mobile phones. Aoki et al. [1] used vehicles to monitor
air quality by deploying mobile air quality sensing platforms
on street sweeping trucks in San Francisco. Recently, Zheng et
al. [6] and Chen et al. [2] estimated the air quality in big cities
by fusing monitor stations data with meteorological and traffic
data. Our computational model is distinct and builds upon the
recent work by Xu et al. [5], which monitored spatial-temporal
signals from social media. However, we focus on predicting air
pollution from the text content in social media, whereas they
only counted the number of wildlife roadkill event occurrences
in social media.

http://www.cnemc.cn
http://www.cdc.gov/air/particulate_matter.html
http://www.cnemc.cn
http://en.wikipedia.org/wiki/Sina_Weibo
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(a) Beijing (b) Shanghai (c) word cloud (d) 108 monitoring cities
Fig. 1: (a,b) Daily proportion of the word “mai” (haze) in Weibo posts vs. AQI in Beijing and Shanghai between November
13 and December 12, 2013. The correlation coefficient ρ are 0.799 and 0.709 for Beijing and Shanghai, respectively. (c) Word
cloud showing the most frequent Chinese characters that occur in Weibo posts containing “mai,” produced using tagxedo.com.
(d) The 108 cities with air quality monitor stations in China.

II. COLLECTION AND PROCESSING OF DATA

A. Data Collection

We collected posts to Sina Weibo from 108 cities (i.e., all
cities with publicly available AQI data) in China during the
time period November 18 to December 18, 2013. The location
of the 108 cities is shown in Figure 1(a). The collection was
done by calling the “nearby photos” API of Sina Weibo5.
There are constraints: the API returns at most 200 posts; the
posts’ GPS coordinates should lie within a 10-km radius circle
defined by the center’s coordinates; and the time when the
posts were posted should be in a specific one hour long period.
We specified the center of the circles at each city’s geographic
center found by Google Maps. Due to the limitation of the API,
we collected at most 200 posts per hour per city. On average,
we obtained about 1,380 posts in each spatiotemporal bin (city
and day).

We collected AQI information for these 108 cities every
hour from the Ministry of Environmental Protection of China
6. These hourly data were averaged to produce a daily AQI
value for each city. Table I shows the data distribution.

TABLE I: Distribution of spatiotemporal bins according to AQI
AQI [0, 100) [100, 200) [200, 300) ≥ 300 All

Number of bins 1422 1313 397 185 3317
Proportion of bins 42.87% 39.58% 11.96% 5.57% 100.00%

B. Text Processing

From each Weibo post we extracted the text information
contained in the posts. First, we used the open-source Chinese
segmentation software ANSJ7 to segment the Chinese text in
each post. Each output segment in each post was regarded as
a word. We filtered out all the stopwords using the stopword
list at http://nlp.csai.tsinghua.edu.cn/thulac/. We created a vo-
cabulary by removing all word types appearing less than 10
times in the whole dataset. Our vocabulary contained 100,000
word types. We aggregated all the posts in one (city, day) bin
as one “document.” Finally, we represented each document as
a bag-of-words vector to be defined below.

5http://open.weibo.com/wiki/2/place/nearby/photos
6http://113.108.142.147:20035/emcpublish/
7https://github.com/ansjsun/

C. Evaluation

We first introduce our notation for the data. For spa-
tiotemporal bin (s, t), the bag-of-words vector representing the
pooled Weibo posts in that bin is denoted xs,t, and the daily
average AQI is denoted ys,t. For evaluation, we divided the
cities as training cities Strain and test cities Stest. All bins
(s, t) with s ∈ Strain form the training set. The other bins
form the test set. Our goal is to estimate ys,t in the test set
given the AQI and Weibo content in the training set, and the
Weibo content in the test set.

In the rest of the paper we introduce a series of machine
learning methods for estimating AQI. The differences between
these methods will shed light on the merits of different features
and spatiotemporal correlations in predicting air pollution. To
compare different machine learning methods, we used mean
square error (MSE) between the predicted AQI ŷtests,t and
the actual AQI ytests,t to evaluate the performance: MSE =

1
#TestDataPoints

∑
s,t(ŷ

test
s,t − ytests,t )2.

III. AQI PREDICTION BASED ON “MAI”

A. The Models

To begin, we consider very simple regression models based
on only one feature: the proportion of the word “mai” in each
bin. This proportion is one element of xs,t and we denote it
as xmais,t . This assumption captures the intuition that poor air
quality (i.e., high ys,t values) will lead to more complaints
about “mai” in social media, and is justified by Figures 1(a,b).

We consider two machine learning models: ridge regression
and support vector regression. Ridge regression learns the
slope β1 and the offset β0 by solving the following opti-
mization problem on the training set, argminβ0,β1

1
2

∑
s,t(ys,t−

β1x
mai
s,t − β0)2 + C

2 (β
2
0 + β2

1), where C is the regularization
parameter to trade off between training loss and model com-
plexity. Letting zs,t = [1, xmais,t ] and β = [β0, β1], then the
problem has the standard notation:

argminβ
1

2

∑
s,t

(ys,t − βT zs,t)
2 +

C

2
‖β‖22. (1)

Another commonly used linear regression model is support
vector regression (SVR). It solves the following constrained

http://nlp.csai.tsinghua.edu.cn/thulac/
http://open.weibo.com/wiki/2/place/nearby/photos
http://113.108.142.147:20035/emcpublish/
https://github.com/ansjsun/


TABLE II: Prediction performance with only one feature,
“mai”

AQI [0, 100] (100, 200] (200, 300] (300, 1000) All
MSE for Ridge Regression 4739± 74 15494± 167 38562± 677 65048± 1601 17032± 470

MSE for SVR 4718± 23 16511± 130 40791± 511 68485± 1880 17914± 430

optimization problem,

argminβ

1

2
‖β‖22 + CSV R

∑
s,t

ξs,t

s.t. |ys,t − βT zs,t| ≤ ε+ ξs,t; ξs,t ≥ 0 (2)

where CSV R is a regularization parameter and ε is the toler-
ance of error.

B. Experimental Results

We randomly divided the 108 cities into a training set with
80 cities and a test set with 27 cities. The parameter C, CSV R
and ε were tuned using 5-fold cross-validation (CV) and the
best values were C = 106, CSV R = 105 and ε = 10−2. The
average test MSEs of five runs on random train/test splits are
shown in Table II. the overall prediction MSE is large (a MSE
around 17000 translates to roughly off by 130 in AQI value).
Therefore, prediction based on only the most intuitive feature
is not enough. We need to utilize more information, as we
explain in the next sections.

IV. AQI PREDICTION USING FULL BOW FEATURES

A. The Models

We generalize the above methods as regression based on all
Weibo bag-of-words features (with dimensionality 100,000).
The same ridge regression and SVR as in Eq (1) and Eq (2)
are used except for higher dimensional parameter vectors. We
re-tuned the parameters with cross-validation.

B. Experimental Results

The experiment settings were exactly the same as in
Section III-B. The best parameter settings tuned by 5-fold CV
were C = 103, CSV R = 103 and ε = 10−2.

Table IV shows the results. The prediction performance
using the full BOW vector is much better than prediction
based on only “mai”. The overall MSE reduces to about
3500, which roughly translates to AQI error of less than 60.
For spatiotemporal bins with AQI< 200 (“light pollution” 8),
the prediction has MSE less than 2300 (AQI error less than
50). For bins with AQI> 300 (“severely polluted”), the AQI
prediction is off by no more than 150 on average. So it
usually does not predict a severely polluted day as good air
quality (with AQI ≤ 100). As before, the MSEs of ridge
regression and SVR are similar. Therefore, the problem is not
very sensitive to the specific form of training loss (hinge loss
in SVR or L2 norm in ridge regression).

We are also interested in the words with the largest absolute
value of weights (i.e., top words). First, we removed the
top words which are city names because they are not easily
interpretable. Then, the words with the largest positive weights

8The definition of AQI levels can be found in http://en.wikipedia.org/wiki/
Air quality index

and the smallest negative weights learned in ridge regression
are shown9 in Table III. The words with the largest positive
weights are all strongly indicative of poor air quality. The
words with the smallest negative weights are indicative of good
weather and perhaps cold fronts which sweep air pollution
away. Therefore, our regression utilizes the Weibo content
strongly related with air quality to estimate the AQI accurately.

TABLE III: Features with extreme weights
Chinese word English translation weight
霾 haze 12496

污染 pollution 8865

室内 indoor 5562

严重 heavy 5501

停留 stay 5396

指数 index 5214
... ... ...
阳光 sunshine −4181
晴 sunny −5087
冷 cold −5715

Even though these prediction models are much improved,
they only perform estimation on each spatiotemporal bin in
isolation. We also want to know if the performance could be
improved by considering the spatial correlation of the cities.
After all, air pollution occurs in large pockets that often span
several nearby cities. This will be investigated next.

TABLE IV: Prediction performance with the full BOW vector
AQI [0, 100] (100, 200] (200, 300] (300, 1000) All

MSE for Ridge Regression 2231± 97 1101± 25 6990± 281 22904± 929 3469± 121
MSE for SVR 1705± 58 1291± 47 8275± 313 25772± 868 3598± 141

V. AQI PREDICTION BY KNN

A. The Model

To exploit the spatial correlation among cities, we start
with a method that uses only nearby cities’ AQI information:
k-nearest-neighbor (KNN) method. In KNN, the AQI of a test
data point ytests,t is predicted by the average of AQIs in the
nearest K training cities (denoted as KNNtrain(s)) in the same

day t. That is, ŷtests,t =

∑
s′∈KNNtrain

(s)
ytrain
s′,t

K . The distance
between cities is the straight-line distance. Note that this KNN
does not use any social media information.

B. Experimental Results

We first tuned the number of nearest neighbors K, by 5-
fold CV. The CV MSE for different values of K from 1 to 64

9We report that similar phenomenon is observed for SVR.

TABLE V: Prediction performance with KNN
AQI [0, 100] (100, 200] (200, 300] (300, 1000) All

MSE for KNN 1336± 108 1910± 104 4396± 204 12607± 620 2646± 75

TABLE VI: Prediction performance with MRF
AQI [0, 100] (100, 200] (200, 300] (300, 1000) All

MSE for MRF 1534± 96 1150± 77 3878± 231 11710± 782 2312± 105

http://en.wikipedia.org/wiki/Air_quality_index
http://en.wikipedia.org/wiki/Air_quality_index


and the MSE is the smallest when K = 3. This K potentially
suggests the characteristic size of a pollution pocket. With K =
3, the test set MSE is shown in Table V. The KNN prediction
is surprisingly good, considering that it does not utilize any
Weibo content. This is an important observation. It suggests
that there can be synergy between spatial correlation and text
content, which we explore in the next section.

We point out that the earlier linear regression models are
still valuable despite their slightly inferior MSE performance.
KNN cannot predict anything without knowing the nearby
cities’ AQI, whereas our linear regression models can predict
AQI based on a completely separate information source: Weibo
text. When there are no nearby cities with AQI information, or
should the AQI information become unavailable in the future
for any reason, the linear regression models still work.

VI. MARKOV RANDOM FIELD FOR AQI ESTIMATION

A. The Model

The KNN results show the strength of spatial correlation
and the regression model shows the power of Weibo content.
Combining them together may further improve performance.
Therefore, we now consider both in a Markov Random Field
(MRF) model to model the correlation between AQI ys,t and
social media information xs,t. As in linear regression, we
assume that ys,t is related to the dot product between some
weight β and xs,t, plus Gaussian noise ε with zero mean and
σ2 variance ys,t ≈ β>xs,t+ε where ε ∼ N (0, σ2). We also
assume that the weight β is drawn from a Gaussian distribution
with 0 mean and covariance σ2

βI: β ∼ N (0, σ2
βI). This leads

to a log potential term in the MRF:

φ(y,X,β) ,
∑
s,t

(ys,t − βTxs,t)
2

2σ2
+
‖β‖22
2σ2

β

. (3)

To take into account the spatial correlation between cities and
the temporal correlation within the same city, we define the
potential term between two spatiotemporal bins φ(ys,t, ys′,t′).
For AQI values on the same day t, nearby cities should
have similar AQI. Therefore, we define KNN(s) as the set
of K nearest neighbors of city s measured by geographical
distance. And we define two cities s, s′ as similar, denoted as
s ∼ s′, when s ∈ KNN(s′) or s′ ∈ KNN(s). Then we define
φ(ys,t, ys′,t) as φ(ys,t, ys′,t) = 1

2αSI(s
′ ∼ s)(ys,t − ys′,t)2,

where I() is an indicator function and αS controls the strength
of spatial correlation (tuned using cross validation).

The AQI in the same city s on two adjacent days may also
have similar values. We denote two days t and t′ as neighbors
t ∼ t′ when |t−t′| = 1. We model this by defining φ(ys,t, ys,t′)
as φ(ys,t, ys,t′) = 1

2αT I(t
′ ∼ t)(ys,t−ys,t′)2. αT controls the

temporal correlation. It is also tuned using cross validation. In
summary, the potentials φ(ys,t, ys′,t′) defined as

φ(ys,t, ys′,t′) =


1
2αS(ys,t − ys′,t′)

2 if t = t′, s′ ∼ s
1
2αT (ys,t − ys′,t′)

2 if s = s′, t′ ∼ t
0 otherwise

form an undirected graph among the y’s.

Summing up the potential functions in Eqs. (3) and (4),
we get an MRF model that accounts for both spatiotemporal

correlations and social media. The joint probability is

p(y,X,β|σβ , σ, αS , αT )

∝ exp

−(φ(y,X,β) +∑
s,t

∑
s′,t′

φ(ys,t, ys′,t′))

 . (4)

When αS = αT = 0, the MRF only considers the correlation
between ys,t and xs,t. When σ = ∞, the MRF degenerates
to model only the spatiotemporal correlation. Therefore, our
MRF model combines both information.

B. Inference with the MRF

To perform inference using the MRF, all Weibo content X
is observable, the AQI values are divided into a training set
ytrain (observable) and a test set ytest (hidden), and the goal is
to compute the MLE of p(β,ytest|X,ytrain, σW , σ, αS , αT ).
According to Eq (4), that is

{β̂, ŷtest} = argminβ,ytest

∑
s,t

(ys,t − βTxs,t)
2

2σ2
+
‖β‖22
2σ2

β

+
∑
s,t

∑
s′,t′

φ(ys,t, ys′,t′)). (5)

We can scale the terms so that σ = 1 without
changing the solution. Then the problem be-
comes argminβ,ytest

∑
s,t

(ys,t−βTxs,t)
2

2 +
‖β‖22
2σ2

β
+∑

s,t

∑
s′,t′ φ(ys,t, ys′,t′)). This optimization problem

is nonconvex. Our strategy is to alternately optimize
β and ytest while keeping the other fixed, as follows.
Given ytest, the optimization problem for β is
argminβ

∑
s,t

(ys,t−βTxs,t)
2

2 +
‖β‖22
2σ2

β
. This is a ridge regression

problem where C = 1
σ2
β

is the regularization parameter that
trades-off the predictive error and the complexity of the
model. This problem can be solved in closed form as

β̂ = (XTX+ CI)−1XTy. (6)

Optimizing ytest given β can be formulated as
argmaxytest

∑
s,t

(ytests,t −β
Txs,t)

2

2 +
∑
s∼s′

∑
t
1
2αS(y

test
s,t −

ytrains′,t )2 + 1
2

∑
s,t αT (y

test
s,t − ytests,t+1)

2. Letting the
gradient zero, we obtain the system of equations for
ytest: (I + A)ytest = b, where b is a vector with

bs,t =
αS

∑
s′∼s,s′∈train y

train
s′,t +βTxs,t

αS

∑
s′∼s,s′∈train 1+1 , and A is a matrix with

the element at row (s,t) and column (s’,t’) defined as

as,t,s′,t′ =


−αS if s ∼ s′, t = t′∑
s̃∼s αS +

∑
t̃∼t αT if s = s′, t = t′

−αT if s = s′, t ∼ t′
.

The optimal ytest is given by

ytest = (I +A)−1b. (7)

In summary, the inference algorithm is
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Fig. 3: Predicted AQI and actual AQI for 15 test cities from November 18 to December 18, 2013
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Fig. 2: Average MSE of folds in CV for four parameters

C. Cross Validation

In our MRF model we have five parameters: the number
of iterations T , the number of neighbors K, the variance of
the Gaussian prior σ2

β, the strength of spatial correlation αS ,
and the strength of temporal correlation αT . For computational
efficiency, we simply set T = 1. That is, we only do one
iteretion in the above algorithm. The other four parameters
are tuned by 5-fold CV. The tuning curve of each parameter
with the other parameters fixed at their best values is in

Algorithm 1 Inference for MRF

Require: X, ytrain, σβ , σ, αS , αT and T
ŷtest ⇐ 0
for i = 1 to T do

update β̂ using Eq (6)
update ŷtest using Eq (7)

end for
return β̂, ŷtest

Figures 2(a)–2(d). The best parameters are K = 3, σ2
β = 10−3,

αS = 0.5 and αT = 0.0. Note that αT = 0.0 means that
exploiting temporal correlation does not help improve the
prediction performance. This may due to that the temporal unit
(a whole day) is large compared to the time scale of typical
AQI fluctuations. For exact AQI prediction, the fluctuations
between days are too large (see Figure 3).

D. Experimental Results on the Test Set

We show the MRF’s MSE on the test set in Table VI. The
overall MSE is 2312, which is the best among the machine
learning models we considered. Therefore, combining Weibo
content and spatiotemporal correlation together improves per-
formance. For the (city, day) bins with no heavy pollution
(AQI< 200), the predictions do not deviate more than 40 (on
average). Therefore, our method rarely make false heavy air
pollution predictions on good air quality days. For the bins
with severe pollution (AQI> 300), our predictions of AQI
deviate no more than 110 (on average). So we seldom make
false negative predictions. The errors for high AQI days are
larger than the errors for lower AQI days because the training



data with high AQI (days with bad air quality) is fewer than
the data with low AQI (days with good air quality).

To visualize our MRF model’s predictions, we randomly
selected 15 different cities from the test sets of five runs. We
show the prediction AQI curves and the actual AQI curves
from 11/18/2013 to 12/18/2013 in Figure 3. Our predicted AQI
curves are close to the actual curves. Occasionally, on severely
polluted days (AQI> 300) the predictions are lower than the
actual values. However, even in this case our prediction is still
useful in that it predicts all of them as heavily polluted days
(AQI> 200). We also point out the similarity between that the
actual AQI curves in three nearby cities Hangzhou, Ningbo,
and Jinhua (see Figure 3(b), Figure 3(c) and Figure 3(d)), a
fact that we exploited using spatial correlation potentials in our
MRF. However, another nearby city, Yangzhou, in Figure 3(n)
does not has similar AQI with Hangzhou. This shows that
small cities’ AQI information cannot always be predicted by
their nearby big cities. The AQI can be influenced by many
factors, not only geographical distance.
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Fig. 4: Predicted AQI for several cities with no official AQI
information.

E. Out-of-Sample Predictions on Cities Without AQI Monitor-
ing Stations

To demonstrate that our method can help predict the air
quality in places without AQI monitoring stations, we used
our MRF model to predict the AQI for 26 additional cities
that currently lack official air quality monitoring. The Weibo
data collection and processing procedure was identical to that
in Section II except that the study period of this dataset was
from 01/17/2014 to 02/14/2014, which is after and does not
overlap with the 108-city study.

We show the predicted AQI curves for several such cities in
Figure 4. Because there is no official public AQI information
on these 26 cities, we cannot judge our model prediction by
comparing it with the true AQI. However, we are able to
give some indirect evidence to justify our predictions. First,
Figures 4(a)–4(c) all have a peak AQI value near the middle
of the study period (the 15th day or 16th day). We note
that the 15th day in the study period is Chinese new year’s
eve. Traditionally, people on this day celebrate with fireworks,

which usually emit a lot of air pollutants. We hypothesize that
the peak AQI may be attributed to these fireworks emissions.
The Chinese Ministry of Environmental Protection proclaimed
heavy pollution on that day because of fireworks in almost
all major cities, which supports our hypothesis10. Also, the
predicted AQI for Dunhuang increased during the 25th–29th
days in the study period (see Figure 4(d)). According to news
reports, Dunhuang had a dust storm in 2014 during that period,
which probably contributed to the air pollution11. Finally, the
air quality in Lijiang (see Figure 4(e)) looks much better than
other cities. This is consistent with the impression that Lijiang
is a tourist destination with good air quality.

VII. DISCUSSION

We presented several estimators for air quality based on
Weibo text content and spatiotemporal correlation between
cities. Our methods complement physical AQI monitoring by
monitoring stations. They may be particularly attractive for
regions without monitoring stations. Our information source
is inexpensively crawled from social media.

For future work, we may exploit the different behaviors of
people from large cities and small cities on the social networks.
Also, different cultures in different regions in China may be
considered. We are also interested in predicting AQI, which
depends heavily on human activities and weather. Weather can
always be predicted. Therefore, understanding the pattern of
human activities by social media may help predicting AQI.
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