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Abstract

A partch-based approach called Markov information
propagation (MIP) is introduced for texiure synthesis. The
method is fast because it uses a simple horizontal and verti-
cal parch filling process that preserves local structural sim-
ilarity between the input texture and the synthesized texture.
Results on both artificial and natural textures are presented
and compared with some earlier methods.

Keywords: Texture synthesis, Markov information prop-
agation, paich-based approach.

1 Introduction

Texture analysis has been an active research area in both
psychology and computer vision for forty years, yet it is
still difficult 1o accurately represent a wide variety of natural
textures. Because of this, realistic texture synthesis using
a synthesis-by-statistical-analysis approach has had limited
success lo date.

For example, Heeger and Bergen 5] analyzed texture in
rerms of histograms of filtered images at multiple scales
and orientations, and texture synthesis was accomplished
by matching the histograms of the to-be-synthesized texture
with the input sample. This method works well for stochas-
tic textures, but fails for more structured textures. Zhu et al,
[11] defined a FRAME model, which incorporated the fil-
ters and marginal histograms with a Markov Random Field
model [2], and learned the model parameters using an en-
tropy criterion. For synthesis, a stochastic sampling method
was used, equipped with the learned distribution parame-
ters. De Bonet {1] used a multi-resolution filtering approach
to analyze texture images, and then matched the joint proba-
bilities for synthesis. Portilla and Simoncelli [8] also used a
filtering approach to characterize texture images combined
with a complicated optimization procedure.

It is generally difficult for synthesis-by-analysis meth-
ods to synthesize structured textures. So, instead, Efros and
Leung [3] assumed a Markov Random Field model with-
out any parameters, and synthesized a texture by comparing

the local structural similarity between the input texture and
the synthesized texture. Inspired by their work, many other
direct synthesis methods have been proposed recently. For
example, Wei and Levoy [9] used a tree-structured vector
quantization approach to accelerate the synthesis process.
These direct synthesis methods represent a structural ap-
proach to texture synthesis because they compare texture
structures directly and explicitly for the purpose of synthe-
sis, without any statistical modelling. Fig. 1 lists some rep-
resentative examples of these two major approaches.
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Figure 1. Categorization of texture synthesis
methods. At the leaf nodes, some represen-
tative references are listed.

Using the structural approach, synthesizing one pixel at
a time has drawbacks because a lot of searching is wasted
on pixels that already know their fate [4]. Consequently,
patch-based synthesis methods have been proposed recently
[4] [10] [7]. Efros and Freeman [4] introduced a quilt-
ing method to stitch patches together. Patch-based methods




[10] [7] [4] share a common property, i.e., to compute the
degree of overlap between a new patch and existing ones (o
determine if this new patch can be added to the synthesized
image.

We propose a novel patch-based, structural method for
texture synthesis. Rather than finding a patch that has a
large degree of overlap with an existing patch, we simply
pick, if possible, the patch that is the direct neighbor of the
current patch in the input texture. We explain the under-
lying mechanism and give a simple algorithm in next two
sections. Experimental results are shown in Section 4.

2 Motivation

Assume there are two neighboring patches p and q in
the synthesized texture image T, and p’ and q' (of the same
size as p and q) are two neighboring patches in the input
texture image 1. The basic idea is that if p is structurally
similar to p’, then q should be similar to q'. We illustrate
this local similarity in Fig. 2. Consequently, if we already
have a patch p in the synthesized image T, we can sim-
ply duplicate patch @’ in T as q in T. We call this strategy
Markov information propagation (MIP) because it locally
propagates patch data to adjacent patches. In addition, since
patches p’ and q' are seamlessly connected in the input tex-
wre I, p and q will be seamlessly connected too, if they are
duplications of p’ and ¢'.
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Figure 2. lllustration of the MIP strategy for
texture synthesis. Patches p’ and ¢’ are
neighbors in the input texture, while p and
q are neighbors in the synthesized image.

3 Markov Information Propagation for Tex-
ture Synthesis

The Markov information propagation (MIP) strategy is
different from overlap-focused methods such as [4] [10] [7]

in that if a patch is selected from the input texture, we al-
ready know the information in its adjacent patches. We
can use the data from adjacent patches directly, rather than
search for a different patch in the whole input texture to find
one with some degree of overlap to the current patch [10]
[7] [4]. Furthermore, adjacent patches in the input texture
are obviously connected seamlessly. When they are pasted
together in the synthesized image, there is no need to worry
about the boundary between them. Our MIP strategy tries
to make direct use of the information from the input tex-
ture largely whenever possible, instead of always searching
for a new patch cach time when one is to be added to the
synthesized image.

In texture synthesis, maybe the fastest and simplest
method is to tile small patches (or even the input texture
itself) together, if they are tileable. Our MIP strategy shares
the simplicity of tiling, that is, adjacent patches in the in-
put texture can be “tiled” seamlessly with the patch that is
surrounded by them.

In the MIP sirategy, there is one big issue to address,
i.e., whenever patch p’ is close to the boundary of image
1. For instance, if p’ is close to the right side, we cannot
obtain its right neighbor q’ in the input texture I. To deal
with this problem, we need to find another patch p’inl,
which is perceptually and structurally similar 1o the patch
p. Therefore the question is how to define this kind of local
and structural similarity. There are two criteria in general to
determine this kind of local similarity. The first is to com-
pute the difference between two patch images. Ideally, if
the difference is zero, and hence two patches are the same,
they are definitely structurally similar. But this measure is
too strict in most cases. The second criterion is to measure
only at the boundary regions where two adjacent patches
meet, and the goal is only to keep the connection perceptu-
ally seamless. Currently, we simply use the summed square
difference (SSD) to measure the local structural similarity
between patches p and p”, which satisfies the first but not
second criterion.

The MIP algorithm works as follows:

e Select randomly a patch p’ from the given texture
image I, and paste it to some position in the to-be-
synthesized texture T'; mark the position as p.

o Paste one neighbor q’ of the patch p’ in I to the posi-
tion q in T, where q is the corresponding neighbor of
pinT.

o If p' is close to the boundary of I, find another patch
p” in 1, which is structurally most similar to p, and
paste its appropriate neighbor q” to position qin T.

e Add patches continuously along pre-defined directions
until the whole image T is filled.



Figure 3. A simple approach for using Markov information propagation for texture synthesis. The
left image is the input texture (128x128). A randomly selected patch from the input is pasted in
the center of the to-be-synthesized image, and then patches are added successively along both the
horizontal and vertical directions. Next, these patches are used as the starting patches for adding
other horizontal and vertical patches until the output image is filled.

In the above algorithm, we do not address the issue of
how to propagate local information. Currently, we use a
simple method. We put the first randomly selected patch in
the center of the synthesized image (it is empty in the begin-
ning), and new patches are added along either the horizontal
or vertical direction. The synthesis process is demonstrated
in Fig. 3. In future work, we will investigate expect more
complex pasting methods such as along the diagonal direc-
tion based on a pair of adjacent patches.

4 Texture Synthesis Results

We used the MIP algorithm to synthesize both artificial
and natural textures. Some results are shown in Fig. 5. The
size of all the input textures is 128x128, and the output is
256x256. The patch size is fixed at 16x16. In this figure,
the first two rows show some artificial textures (from [8]).
The last three rows show the synthesis of some natural tex-
tures. While the images in the last row are not as good, the
reason is probably because of the simple filling method cur-
rently used. The synthesis process is fast, and can be further
accelerated (in searching for patch p” in 1) by fast nearest
neighbor search [9].

We compared our texture synthesis results with other
methods, using the same images as in [4]. The comparison
results are shown in Fig. 4. Our results on these three im-
ages are comparable to the image quilting results [4], and
better than Wei and Levoy’s results [9]. The synthesis re-
sults based on the methods of Portilla and Simoncelli [8]
and Xu er al. [10] are not shown here, but are given in [4].
One can see from [4] that our results are better than those
obtained by (8] and [10] on these three images.

5 Conclusions

We introduced a Markov information propagation (MIP)
strategy for texture synthesis, and described a simple, fast
algorithm. Some preliminary results for both artificial and
natural textures were presented. Further research is needed
to improve the similarity measure and pasting style used in
the method. Finally, the MIP algorithm can also be used for
constrained synthesis or hole filling, although we did not
address that problem in this paper.
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Figure 4. Comparison of different texture synthesis methods. The results of [8] and [10] are not
shown here, but can be found in [4].
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