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The goal of global illumination is to generate photo-realistic images by taking into account

all the light interactions in the scene. It does so by simulating light transport behaviors based on

physical principles. The main challenge of global illumination is that simulating the complex light

interreflections is very expensive. In this dissertation, anovel statistical framework for physically

based rendering in computer graphics is presented based on sequential Monte Carlo (SMC) meth-

ods. This framework can substantially improve the efficiency of physically based rendering by

adapting and reusing the light path samples without introducing bias. Applications of the frame-

work to a variety of problems in global illumination are demonstrated.

For the task of photo-realistic rendering, only light pathsthat reach the image plane are impor-

tant because only those paths contribute to the final image. Avisual importance-driven algorithm

is proposed to generate visually important paths. The photons along those paths are also cached

in photon maps for further reuse. To handle difficult paths inthe path space, a technique is pre-

sented for including user-selected paths in the sampling process. Then, a more general statistical

method for light path sample adaptation and reuse is studiedin the context of sequential Monte

Carlo. Based on the population Monte Carlo method, an unbiased adaptive sampling method is

presented that works on a population of samples. The samplesare sampled and resampled through

distributions that are modified over time. Information found at one iteration can be used to guide

subsequent iterations without introducing bias in the finalresult. After obtaining samples from

multiple distributions, an optimal control variate algorithm is developed that allows samples from

multiple distribution functions to be combined optimally.

Stephen J. Chenney Charles R. Dyer
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ABSTRACT

The goal of global illumination is to generate photo-realistic images by taking into account all the

light interactions in the scene. It does so by simulating light transport behaviors based on physical

principles. The main challenge of global illumination is that simulating the complex light inter-

reflections is very expensive. In this dissertation, a novelstatistical framework for physically based

rendering in computer graphics is presented based on sequential Monte Carlo (SMC) methods.

This framework can substantially improve the efficiency of physically based rendering by adapting

and reusing the light path samples without introducing bias. Applications of the framework to a

variety of problems in global illumination are demonstrated.

For the task of photo-realistic rendering, only light pathsthat reach the image plane are impor-

tant because only those paths contribute to the final image. Avisual importance-driven algorithm

is proposed to generate visually important paths. The photons along those paths are also cached

in photon maps for further reuse. This approach samples light transport paths that connect a light

to the eye, which accounts for the viewer in the sampling process and provides information to

improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits

coherence among important light paths. To handle difficult paths in the path space, a technique is

presented for including user-selected paths in the sampling process. This allows a user to provide

hints about important paths to reduce variance in specific parts of the image.

A more general statistical method for light path sample adaptation and reuse is studied in the

context of sequential Monte Carlo. Based on the population Monte Carlo method, an unbiased

adaptive sampling method is presented that works on a population of samples. The samples are

sampled and resampled through distributions that are modified over time. Information found at
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one iteration can be used to guide subsequent iterations without introducing bias in the final result.

This is the first application of the population Monte Carlo method to computer graphics.

After getting samples from multiple distributions, how theestimator is constructed for Monte

Carlo integration has a big impact on the variance in the rendered images. Combining the idea

of importance sampling and control variate, an optimal control variate algorithm is developed

that allows samples from multiple distribution functions to be combined optimally. Its optimizing

nature addresses a major limitation with control variate estimators for rendering: users supply a

generic correlated function that is optimized for each estimate rather than a single highly-tuned

one that must work well everywhere.

The population Monte Carlo rendering framework and optimized unbiased estimator result in

more efficient and robust algorithms for global illumination. Significant improvements in results

are demonstrated for various commonly existing environments such as scenes with non-uniform

variance on the image planes and scenes with difficult but important paths.
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Chapter 1

Introduction

Applications from special effects to product design demandrealistic, physically based render-

ings of complex scenes. Images from physically based rendering algorithms not only look plausible

but also can accurately predict the appearance of the real world or a virtual environment. Because

of their realism and predictiveness, those images can be used to answer questions such as “what

would this theater look like if we arrange lights at certain locations?” without actually installing

those lights or even building the theater. As a result, physically based rendered images find ap-

plications in many fields such as light design, movies, architectural design, pilot training, and fine

art. Even for less rigorous applications such as computer games and virtual reality walk-throughs,

physically based rendering greatly enhances the visual appeal.

To see the differences between a non-physically based rendered image and a physically based

rendered image, Figure 1.1 shows that while the image with only direct lighting and ambient

lighting on the left looks realistic, it misses some important lighting effects such as color bleeding,

soft shadows, and caustic that show up in the physically based rendered image on the right.

The goal of this thesis is to develop efficient algorithms foroff-line physically based render-

ing. While there are many interesting applications for non-physically based rendering (e.g., non-

photorealistic rendering [61] and interactive rendering [99]), they sacrifice realism for either artistic

expression or interactive speed. Using principles of physics to simulate light transport, physically

based rendering aids our understanding of the fundamental principles of image rendering, makes it

possible to evaluate rendered images, and provides the basis for non-physically based applications.



2

Figure 1.1: Image with direct lighting only vs. image with global illumination.

The reminder of this chapter presents the statement of problems, a brief summary of contribu-

tions, and an overview of the methods that will be developed in subsequent chapters.

1.1 The Global Illumination Problem

The input to a physically based rendering system is a full description of the 3D scene including

the light sources, scene geometry, surface materials and camera information. In order to generate

physically accurate images, we need to simulate all inter-reflections between the lights and objects

in the scene model; this is called the global illumination problem [4, 92].

The physical foundation for image synthesis in global illumination is the rendering equa-

tion [47, 43] to which both finite element and Monte Carlo methods have been applied. Finite

element methods, or radiosity algorithms [33], are most effective in purely diffuse scenes. Gener-

alizations for non-diffuse surfaces and complex geometries turn out to be very difficult practically

and theoretically. On the other hand, Monte Carlo methods forphysically based rendering handle

general reflectance functions and geometric representations. Kajiya [47] proposed the first unbi-

ased Monte Carlopath tracingalgorithm and introduced a range of sampling strategies to improve

the method.
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While demonstrated to be the most general and robust method, the main disadvantage of Monte

Carlo for global illumination is that it is very expensive to compute if applied naively; if not enough

samples are taken, noise appears in the resulting images andnoise is reduced only slowly with

increasing samples. This has limited the use of global illumination in production environments.

Industry reports [93, 11] that the average computation timefor rendering a single complex scene is

still multiple hours using modern computers. Over the years, researchers have continued to develop

new Monte Carlo algorithms with various trade-offs in speed,accuracy and generality [47, 107,

54, 102, 44, 103, 27, 13].

The efficiency of rendering can be improved significantly if more samples can be concentrated

in the part of the sample space which matters the most and if the high-contribution samples can

be reused. In computer rendered images, not all areas have the same impact on human perception.

Some regions are more complex and detailed than others; someregions have high contrast; and

some regions capture more human attention. Figure 1.2 showshow noises vary across the image

plane in a global illumination image. It can be seen on the left image that the noise level on the

shadowed ground regions is perceptually much higher than onthe un-shadowed ground. The noise

level difference can be several orders of magnitude. In thisexample, most of the noise is due to

variation in incoming illumination: around the shadow boundary, those occluded light samples

have zero contribution while the others have high contribution. This causes high sample variance

on the rendered image. The variance can be reduced by either putting more image rays on those

shadow boundary regions (i.e., adapt image plane) or by casting more shadow rays towards the

visible light than the occluded light (i.e., adapt hemispheric direction).

The goal of this thesis is to develop robust and efficient unbiased Monte Carlo methods

for the global illumination problem, which allows adaptively generating samples and reusing

important samples. For these demands, we present a novel statistical frameworkbased on se-

quential Monte Carlo (SMC) methods [21, 59] for physically based rendering. It is demonstrated

that sequential Monte Carlo methods can be used to efficientlygenerate and reuse path samples for

physically based rendering.
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Figure 1.2: A global illumination image and its noise distribution. Whiter regions on the right
image indicate higher noise on the left image.

Mathematically, the problem can be stated as follows: Givena target probability distribution

π(x) defined on a common measurable spaceΩ, and a measurement function,f(x), wherex ∈ Ω,

introduce a sequence of intermediate proposal distributions,πt(x), t = 1, · · · , N , which are cali-

brated to converge toπ(x) alongN iterations so that the Monte Carlo estimator for
∫

Ω f(x)π(x)dx

based on all the samples from those distributions will converge quickly with low variance and be

unbiased.

Figure 1.3 shows how sequential Monte Carlo methods can help sampling a target distribution.

In the target distribution,π(x), there are two modes that we assume are a combination of two

underlying distributions,p1(x) andp2(x), but the weight functions,w1(x) andw2(x), are unknown

(Sequence 0). Note that the weighting functions could be nonlinear and their values depend onx.

Since noa priori information about the weighting functions is available in the initial step, we

set them uniformly and generate samples from0.5p1(x) + 0.5p2(x) (Sequence 1). Based on the

samples from the previous iteration, the importance function can be adjusted to get closer to the

target distribution,π(x) (Sequence 2). Repeating this process results in a sequence ofintermediate

distributions that converges towardsπ(x).
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To address this problem in the context of global illumination, we subdivide it into the following

three sub-problems.

• How to design and evolve the sequence of distributions so that the later distributions

can be improved based on the performance of previous distributions?

In Monte Carlo algorithms for the global illumination problem, it is essential to use good

sampling techniques so that noise in the rendered image willbe reduced quickly. However,

the optimal sample technique is often difficult to choose beforehand because it depends on

parameters whose values are only known during the sampling process; for example, the

material and geometry of the surface point that the sampled ray intersects.

In the Checker scene (Figure 1.4), there are two area lights ofdifferent sizes, and three

surface materials – diffuse, specular and glossy. If we pre-set a fixed sampling strategy such

as BRDF sampling or light sampling, it would be good for one region, but very bad for other

regions. For example, light sampling works very well for diffuse surfaces but does a poor

job for the specular regions in front of the big area light.

The problem is how to detect lighting conditions and crate the best importance function

without introducing bias. In order to efficiently estimate the direct lighting for all surface

points, a sensible sampling strategy should take into account of a combination of factors that

affect the sampling, and adjust the sampling technique on the fly based on the performance

of the samples. This thesis shows that population Monte Carlomethod can be used to solve

this problem. In the scene above, we would like to detected that the light sampling technique

for the specular regions in front of the big area light generate high variance samples, and

then use BRDF sampling instead.

• How to generate samples and reuse the high-contribution butdifficult samples for one

single target distribution?

Due to the geometric setting and material properties, some light path samples may be more

difficult to detect in the sample space. For example, the caustic path in the Cornell Box scene
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and light paths starting from the back room and passing through the ajar door in the Room

scene (Figure 1.5). After those samples are generated, theyshould be reused to locally

explore nearby important paths. We present an algorithm based Metropolis sampling and

photon caching for samples reuse. Population Monte Carlo canbe used for it too.

• How to optimally combine the samples from a sequence of distributions to minimize

the estimation variance without introducing bias?

For example, in computing the direct lighting for the Checkerscene (Figure 1.4), the es-

timator that combines the samples from BRDF sampling and lightsampling makes a big

difference on the image variance. A naive linear combination of the samples from different

sampling techniques does not work well because if any of those sampling techniques has

high variance, then the estimator produced by the linear combination will have high variance

as well. A OCV estimator is proposed to address that problem.

Sequential Monte Carlo methods provide a mechanism for meeting these requirements. The

key idea is that samples from the previous distribution in the sequence can provide information to

improve the proposal distributions and be reused to discover other high-contribution samples.

SMC techniques offer four major advantages over existing methods: (1) they reduce estimation

variance by choosing samples correlated across the distributions without introducing bias; (2) they

make it easier to find important, rare light paths by sharing information among the distributions;

(3) they provide a natural way to discard low contribution samples and retain high contribution

samples based on the sample weight; and (4) this framework unifies many existing rendering algo-

rithms such as path tracing, metropolis light transport, energy redistribution path tracing, multiple

importance sampling, and adaptive importance sampling.

1.2 Summary of Contributions

We introduce novel applications of the sequential Monte Carlo method to computer graphics

that lead to new adaptive sampling algorithms for physically based rendering. Our main contribu-

tions are the following:
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• Metropolis Photon Sampling (MPS):As a way of generating and reusing important path

samples, we propose a visual importance-driven algorithm for populating photon maps. Our

approach samples light transport paths that join a light to the eye, which accounts for the

viewer in the sampling process and provides information to improve photon storage. Paths

are sampled with a Metropolis-Hastings algorithm that exploits coherence among important

light paths. We also present a technique for including user selected paths in the sampling

process without introducing bias. This allows a user to provide hints about important paths

or reduce variance in specific parts of the image.

• Population Monte Carlo Rendering (PMCR): Based on population Monte Carlo, we de-

velop an unbiased adaptive sampling method that works on a population of samples. The

sample population is iterated through distributions that are modified over time. Information

found in one iteration can be used to guide subsequent iterations, without introducing bias

in the final result.

• Optimizing Control Variate (OCV): Combining the idea of importance sampling and con-

trol variate, OCV allows samples from multiple distributionfunctions to be combined in one

algorithm. Its optimizing nature addresses a major limitation with control variate estima-

tors for rendering: users supply a generic correlated function which is optimized for each

estimate rather than a single highly-tuned one that must work well everywhere.

1.3 Thesis Outline

Chapter 2 of the thesis gives an overview of Monte Carlo methods. After a brief history of

Monte Carlo methods, the principle of Monte Carlo integration, which uses Monte Carlo sim-

ulation to estimate an integration, is described. Next, some variance reduction techniques such

as importance sampling and control variates are introduced. We further introduce the concept of

MCMC – metropolis sampling. For sequential Monte Carlo methods, two approaches most ap-

plicable to computer graphics are discussed: Sampling Importance Resampling and population

Monte Carlo.
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Chapter 3 introduces the basic concepts related to global illumination and physically based

rendering. After providing the definition of the four most commonly used terms in radiometry,

surface BRDF and the rendering equation are presented. A summary of existing representative

rendering algorithms involving Monte Carlo methods to solvethe global illumination problem is

given.

Chapter 4 presentsMetropolis Photon Sampling(MPS), a visual importance-driven algorithm

for populating photon maps. A technique for including user-selected paths in the sampling process

without introducing bias is presented.

Chapter 5 presents a novel statistical framework for image rendering calledPopulation Monte

Carlo Rendering(PMCR). PMCR works on a population of samples that is iterated through distri-

butions that are modified over time. We show its application to a number of problems in realistic

rendering.

Chapter 6 discusses theOptimizing Control Variateestimator, a new estimator for Monte Carlo

rendering that combines the samples from different distributions in a provably good way.

Chapter 7 concludes with a summary and the original contributions in the thesis, and identifies

some future research directions.
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Figure 1.3: SMC distributions. Sequence 0 shows the target distribution π(x) and the two un-
derlying basis distributionp1(x) andp2(x). Sequence 1 uses1

2
p1(x) + 1

2
p2(x) as an importance

distribution to generate samples. Based on the samples in sequence 1, the weighting functions
ŵ1(x) andŵ2(x) are adjusted so that the importance distribution is closer to π(x). New samples
are generated from the updated densityŵ1(x)p1(x) + ŵ2(x)p2(x). Repeating the process hope-
fully leads to an importance distribution that is very closeto the target distributionπ(x) so that the
sample variance is low.
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Figure 1.4: Checker scene (top) consists of two area lights of different sizes, and three different
surface materials. Light sampling (bottom-left) does verypoorly in the specular region in front of
the big area light, while the BRDF image (bottom-right) appears very noisy on the diffuse surface.
Both do poorly in glossy regions.
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Figure 1.5: Difficult paths. In the Cornell Box scene, the light paths shownin the top-right image
are very difficult to sample because they have to bounce from the mirror to a certain region on the
glass ball to form caustic. The light paths marked for the Roomscene (bottom-right) are difficult
because they have to pass through a narrow door way after bouncing from a wall or the door.
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Chapter 2

Monte Carlo Methods

This chapter introduces some basic statistical concepts and Monte Carlo methods. After a brief

overview of Monte Carlo methods, the principle of Monte Carlo integration is introduced. Then,

a number of variance reduction techniques such as importance sampling, control variate, and de-

terministic mixture sampling are described. We also present Metropolis-Hastings sampling, which

is a Monte Carlo method using dependent samples and is the basic building block for Markov

chain Monte Carlo (MCMC). Sequential Monte Carlo (SMC) methods extend the idea of generat-

ing samples from one single distribution to a sequence of distributions. Good references on basic

Monte Carlo methods include Kalos and Whitlock [48], and Hammersley and Handscomb [38].

Spanier and Gelbard’s book [86] is an authoritative source for Monte Carlo applications to nu-

clear transport problems. More advanced topics on Monte Carlo methods can be found in [80].

Gilks et al. [31] is an excellent starting point for MCMC. More details on sequential Monte Carlo

methods are available in [21, 59, 80]. A useful websitehttp://www-sigproc.eng.cam.ac.uk/smc/is

maintained at Cambridge University for SMC related research.

2.1 Monte Carlo Methods: A Brief History

The generic term “Monte Carlo method” refers to all numeric methods involving statistical

sampling processes for approximate solutions to quantitative problems. It can be used not only for

probabilistic problems, but also for non-probabilistic problems such as optimization and numerical

integration. Application domains range from economics to nuclear physics to computer sciences.
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The earliest documented example of Monte Carlo computation is an experiment done by Comte

de Buffon in 1777. He performed an experiment by throwing a needle of lengthl at random onto

a board marked with parallel lines a distanced apart to infer the probabilityp that the needle will

intersect one of those lines.

Later, Laplace pointed out that the experiment by Comte De Buffon can be used to estimate

the value ofπ. Suppose the needle is thrown times andM is a random variable for the number of

times the needle intersects a line. Then

p = E(M)/n [2.1]

whereE(M) is the expectation ofM . It is not difficult to analytically obtain the probabilityp as

p =
2l

dπ
[2.2]

Connecting the above two equations and rearranging, we get a Monte Carlo estimator forπ:

π̂ =
n

M

2l

d
[2.3]

In 1864, Captain O. C. Fox did three such experiments to estimate π. Interestingly, Fox im-

proved his second experiment by rotating the ruled board between drops to eliminate the bias due

to the position of dropping the needle. In his third experiment, he adjusted the values ofl andd so

that the needle could cross multiple lines in a single toss. In this way, he reduced the sample vari-

ance in the estimation and improved his estimation ofπ from 3.178 in his first attempt to 3.1416

in the third experiment with similar numbers of drops,n.

In 1873, A. Hall [36] published a paper on the experimental determination ofπ. Other isolated

examples of using Monte Carlo methods include that Lord Kelvin used random sampling to esti-

mate time integrals of kinetic energy in 1901, and, Student (W. S. Gosset) used random sampling

to help him discover thet-distribution in 1908.

The modern history of Monte Carlo methods starts in the early 1940’s when scientists at Los

Alamos systematically used them as a research tool in their work on developing nuclear weapons.

One of the key figures was Stanislaw Ulam [62], a Polish mathematician who worked for John von
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Neumann during World War II. Ulam did not invent the statistical sampling method, which had

been used to solve quantitative problems long before. However, with the development of the first

electronic computer, ENIAC, Ulam was the first one to realize the potential of using computers to

automate the statistical sampling process. Together with John von Neuman and Nicolas Metropo-

lis, he developed algorithms and explored the means to convert non-random problems into random

forms so that statistical sampling can be used for their solution. One of the first published papers

on this topic was by Metropolis and Ulam [63] in 1949. The name“Monte Carlo” was suggested

by Metropolis after the famous Monaco casino.

2.2 Estimators and their Properties

A functionF of random variables is called anestimatorfor an unknown population quantityθ if

its meanE(F ) is a usable approximation ofθ. A particular numerical value ofF , after instantiating

the random variables with the known sample data, is called anestimate.

For any given quantity, there exist many possible estimators. Generally, we would like to

use Monte Carlo estimators that provide good estimates in a reasonable amount of computational

time. In order to choose one estimator over another, some criteria are needed. Those criteria are

usually based on the following properties of an estimator: mean squared error, bias, consistency

and efficiency. However, it is worth pointing out that in manycases there may not exist a clear

choice among estimators, even though in some cases some estimators can be clearly better than

others.

• Mean Squared Error

The quality of an estimator is generally judged by its mean squared error. The mean squared

error (MSE) of an estimatorF of a quantityθ is defined as the expected value of the square

of the difference betweenF andθ:

MSE(F ) = E[(F − θ)2] [2.4]

• Bias
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F is called an unbiased estimator ofθ if its expected value is exactly the same as the true

value ofθ. If not, the difference between them is the bias:

β = E[F ]− θ [2.5]

One advantage of using an unbiased estimator is that it is guaranteed to get the correct value

of θ if enough samples are used. Also, the expected value of an unbiased estimator will be

the correct value after any number of samples, which makes itmuch easier to analyze the

error of the estimator. Rewriting Equation 2.4, we have

MSE(F ) = E[(F − θ)2]

= E[((F − E[F ]) + (E(F )− θ))2]

= E[(F − E[F ])2] + 2E[F − E[F ]](E(F )− θ) + (E[F ]− θ)2

= V ar[F ] + 2(E[F ]− E[F ])(E(F )− θ) + β2

= V ar[F ] + β2 [2.6]

If the estimatorF is unbiased, thenβ is 0. This means that the MSE for the estimator is

the same as its variance. So, in order to estimate the error for an unbiased estimator, we just

need to compute the sample variance of the estimator.

On the other hand, a biased estimator may still not give a correct estimate forθ even with

an infinite number of samples. The error for a biased estimator is generally more difficult

to estimate than an unbiased estimator. However, in some cases, a biased estimator may

have some desirable properties, such as smaller variance, over any unbiased estimator. For

that and other reasons, it is sometimes preferable not to limit oneself to unbiased estimators.

Generally, we seek the estimator minimizing the MSE that is acombination of both bias and

variance.

• Consistency
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An estimatorF is called consistent for the quantityθ if and only if F converges toθ with

probability1 as the number of samples goes to infinity. That is,

prob{ lim
N→∞

F (X1, · · · , FN) = θ} = 1

Note that the condition for consistency is stronger than simply requiring the bias,β, go to0

as the number of samples approaches infinity. One sufficient condition for an estimator to

be consistent is that both its variance and bias go to0 asN increases. There exist situations

where an unbiased estimator is not consistent, for example when its variance is infinite. For

a biased estimator with finite variance, the estimator is consistent if its bias diminishes to0

asN increases.

• Efficiency

For any estimator, increasing computation time almost always decreases the variance, so the

tradeoff is whether a decrease inV [F ] will more than compensate for the increase in time,

T [F ]. The efficiency of a Monte Carlo estimator is defined as the inverse of the product of

the variance and the running time to reach that variance [38]:

ǫ[F ] =
1

V [F ]T [F ]

2.3 Monte Carlo Integration

One important class of applications where Monte Carlo methods can help greatly is to evaluate

the integration of functions or, equivalently, the expectations of functions. It is usually not difficult

to formulate a quantity as an expectation and to propose a naive Monte Carlo estimator. Actually,

at least in a trivial sense, every application of the Monte Carlo method can be somehow represented

as a definite integral.

Suppose we want to evaluate the integral

I =
∫

Ω
f(x)dx [2.7]
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where domainΩ is a region in multiple-dimensional space andf(x) is the integrand. The idea of

Monte Carlo integration is to estimate the integral with an expected value using random samples.

I can be interpreted as the expected value of random variablef(X), whereX is a random variable

uniformly distributed inΩ. If we draw a set of samples,X1, · · · , XN , uniformly in Ω, then an

approximation toI can be obtained by its arithmetic mean:

ÎN =
1

N

N
∑

i=1

f(Xi) [2.8]

Based on thelaw of large numbers, ÎN is an unbiased estimator forI. We call ÎN in Equa-

tion 2.8 the crude Monte Carlo estimator. The variance of the crude Monte Carlo estimator is

V ar(ÎN) = V ar(
1

N

N
∑

i=1

f(Xi)) =
1

N
V ar(f(X)) [2.9]

So the standard error of̂IN is σ/
√

N , whereσ2 = V ar(f(X)).

Two conclusions can be drawn from the variance in Equation 2.9: (1) the standard error of the

crude Monte Carlo estimator decreases with the square root ofthe sample sizeN , and (2) it does not

suffer from the curse of dimensionality, i.e., the computation does not increase exponentially with

the dimensionality of the integral (methods such as the Newton-Cotes rules or Simpson’s method

suffer from the curse of dimensionality). The statistical error is independent of the dimensionality

of the integral.

While the statistical error of the crude Monte Carlo estimatorremains constant in

high-dimensional problems, there are two potential difficulties: (1) it may not be possible to uni-

formly sample an arbitrary spaceΩ, and (2) for a high-dimensional space, the function of interest,

f(x), may be0 in most regions while having high values in some very small regions. Uniformly

samplingΩ may cause the varianceσ to be extremely large.

With a trivial manipulation, we can rewrite Equation 2.7 as

I =
∫

Ω
f(x)dx

=
∫

Ω

f(x)

p(x)
p(x)dx [2.10]
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where p(x) is a PDF inΩ. Instead of uniformly samplingΩ, we can generateN samples

X1, · · · , XN from p(x) and compute the following estimator

Îp =
1

N

N
∑

i=1

f(Xi)

p(Xi)
[2.11]

It is easy to see that̂Ip is an unbiased estimation ofI and the variance of̂Ip is σ2
p/N , where

σ2
p =

∫

(
f(x)

p(x)
− I)2p(x)dx

=
∫ f 2(x)

p(x)
dx− I2 [2.12]

The crude Monte Carlo estimator is a special case of the estimator Îp if p(x) is chosen to be a

uniform distribution function inΩ. The estimator̂Ip has the same two properties as the crude Monte

Carlo estimator: the statistical error decreases with
√

N and it is not affected by the dimension of

the sample spaceΩ.

One major advantage of Monte Carlo methods for integration isthat it is easy to understand

and simple to use. The only thing needed is a density function, p(x), from which we can generate

samples, and the ability to evaluate the sample weightsf(Xi)
p(Xi)

, i = 1, · · · , N . Another advantage of

Monte Carlo methods is flexibility – they can be applied to a wide range of problems. In situations

like high-dimensional integration, Monte Carlo methods maybe the only feasible solution. For

example, the problem of global illumination in computer graphics must evaluate the integral over

the space of all light paths. Consequently, its domain has infinite dimension, but Monte Carlo

methods provide a natural way of handling it.

2.4 Variance Reduction Techniques

The major disadvantage of Monte Carlo methods for integration is its RMS error converges at

a relatively slow rate ofO(N−1/2), which means that we need to quadruple the number of samples

in order to reduce the standard deviation by half.

In order to speed up Monte Carlo simulation, users need to use techniques for variance reduc-

tion. Even in early applications of Monte Carlo at Los Alamos,von Neumann and Ulam refined

their simulations with some variance reduction techniquessuch as Russian Roulette and splitting.
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The variance reduction methods commonly used include importance sampling, control vari-

ates, and stratified sampling. These and other more advancedvariance reduction techniques are

discussed in the next sections.

2.4.1 Importance Sampling

Obviously, the variance,V ar(Îp), of the Monte Carlo estimator̂Ip in Equation 2.12 depends

on the choice of the density functionp(x) from which we draw the samples. Intelligently choosing

p(x) to reduce the variance of the Monte Carlo estimator is calledimportance sampling. p(x) is

called theimportance density. For each sampleX(k) from p(x), f(X(k))/p(X(k)) is called the

importance weight. The only two constraints for using importance sampling are: (1) it is possible

to generate samples fromp(x), and (2) we must be able to evaluate the importance weights.

Equation 2.12 suggests that more samples should be put in the“important” regions in the

sample space, wheref(x) has relatively high values. This is very important especially for high-

dimensional problems since the target function,f(x), could have nonzero values in only a very

small portion of the whole sample space. Uniformly samplingthe whole sample space is doomed

to fail in these simulations.

The optimal density functionp∗(x) that minimizes the asymptotic variance isc|f(x)|, where

the c is the constant termc = 1/
∫

f(x)dx. p∗(x) leads to zero variance. Unfortunately, using

an optimal density function is not practical because it requires knowledge of the normalization

constant,c, which involves the value of the desired integral,I. However, it suggests a good impor-

tance sampling density should have a shape similar to|f(x)|. Typically, a functiong(x) may be

obtained by using some factors off(x) or approximatingf(x) with the major components in its

Taylor expansion. Ifg(x) obtained that way is possible to generate samples from, thenwe can set

p(x) ∝ g(x).

2.4.2 Control Variates

Another important technique for variance reduction iscontrol variates [48]. The basic idea of

control variates is to replace the evaluation of an unknown expectation with the evaluation of the
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Figure 2.1: Control variates.

difference between the unknown quantity and another expectation whose value can be integrated

analytically.

Assuming we are interested in the integral in Equation 2.11 and we can find a functiong(x)

that can be integrated analytically and has the following property:

V ar(f(x)− g(x)) ≤ V ar(f(x)) [2.13]

then an estimator of the form

F =
∫

g(x)dx +
1

N

N
∑

i=1

f(Xi)− g(Xi)

p(Xi)
[2.14]

will have a lower variance than̂Ip in Equation 2.11.

Generally, a good choice of control variate for a function,f(x), is the sum of the first several

terms of its Taylor series. For example, Kalos and Whitlock [48, pg. 108] showed that by using

the first two terms of the Taylor series ofexp(x), 1 + x, as the control variate, the Monte Carlo

variance was reduced from0.242 to 0.043 with the same uniform samples in (0,1).

If we have a functiong(x) which is an approximation off(x), g(x) may be good as either

a control variate or importance sampling density. In general, if f(x) − g(x) is approximately

a constant (absolutely uniform), usingg(x) as a control variate in correlated sampling is more

efficient than using importance sampling. On the other hand,if f(x)/g(x) is nearly a constant

(relatively uniform), it would be more appropriate to useg(x) as importance density in importance
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sampling [37]. Furthermore,g(x) should be integrable analytically to be used as a control variate,

while g(x) has to be easy to sample to be used as an importance sampling density.

2.4.3 Defensive Importance Sampling

A common pitfall of importance sampling is that importance sampling can fail if the target

function,f(x), has a heavier tail than the importance sampling density function,p(x), even though

p(x) might have roughly the same shape asf(x). In that situation, when a sample is generated

from the far tails ofp(x), the importance weight for that sample may be orders of magnitude larger

than the typical values for the samples at modes. This will cause very high variance in the estimate.

In the extreme case thatp(x) decreases towards0 faster thanf 2(x) asx moves towards its tails,

the variance will be∞.

Defensive importance sampling (DIS) [41, 42] is a techniquethat fixes the above problem with

importance sampling. Assume we want to compute the integral

I =
∫

Ω
f(x)q(x)dx [2.15]

whereq(x) is a target density function onΩ. Let p(x) to be a probability density function that is

close to the optimal importance sampling density,|f(x)|q(x)/I. Instead of usingp(x) alone as the

importance density function, defensive importance sampling uses adefensive mixture distribution

that has the form

pα(x) = αq(x) + (1− α)p(x) [2.16]

where0 < α < 1.0.

Using a defensive mixture distribution makes the sample weight q(x)/pα(x) bounded by1/α.

It also guarantees the variance of defensive importance sampling is less than or equal to1/α times

the variance of the simple Monte Carlo estimate using a uniform distribution.

If we can not use the target distribution,q(x), in a defensive mixture because either it is un-

known or it is difficult to sample from, then a mixture distribution with more than two components

can be used so that all the important regions in the sample space will be represented. For example,

if q(x) can be decomposed into a product of several density functions, q1(x), · · · , qn(x), and each
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PDF is easy to sample from, then we can use a mixture distribution of the general form

pα(x) =
n
∑

k=1

αkqk(x) + α0p(x) [2.17]

where
∑n

k=0 αk = 1.0 andαk > 0.

2.4.4 Mixture Sampling

Mixture sampling as defined by Owen and Zhou [69] combines importance sampling with

control variates in a way that uses a mixture density for importance sampling while employing the

mixture components as control variates.

Suppose we havem different PDFs,p1(x), · · · , pm(x), and we can construct a mixture density,

pα(x) =
∑m

i=1 αipi(x), whereαi > 0 and
∑m

i=1 αi = 1. As described by Owen and Zhou, the mix-

ture componentspi(x) can also be used as control variates. If we generaten samples,X1, · · · , Xn,

from pα(x), the estimator that results for the integralI =
∫

f(x)dx using mixture sampling is

Ĩα,β =
1

n

n
∑

j=1

f(Xj)−
∑m

i=1 βipi(Xj)

pα(Xj)
+

m
∑

i=1

βi [2.18]

where theβi are a set of real-valued variables. This estimator is unbiased, and its variance is

σ2
α,β =

∫

(

f(x)−∑m
i=1 βipi(x)

pα(x)
− I +

m
∑

i=1

βi

)2

pα(x)dx [2.19]

If β∗, the optimal set ofβi which minimizesσ2
α,β, is used, then Owen and Zhou showed that

σ2
α,β∗ ≤ minm

i=1 α−1
i σ2

pi
. In other words, usingn samples from the mixture with the control variate

estimate is no worse than drawingnαj samples from thebestcomponent of the mixture.

We do not knowβ∗, but we can obtain an estimate,β̂, by multiple regression off(Xj)/pα(Xj)

on predictorspi(Xj)/pα(Xj). With this method,β̂i = β∗
i + Opα

(n−1/2) for i = 1, · · · ,m, and

Ĩα,β̂ = Ĩα,β∗ + Opα
(n−1).

In practice, deterministic mixture sampling (DMS) is preferred over ordinary mixture sampling

because DMS has provably smaller variance. In DMS, the number of samples from each compo-

nent,pi(x), is allocated deterministically asni = nαi, wheren is the total number of samples.

Frompi(x), we generateni independent samples,Xij, i = 1, · · · ,m andj = 1, · · · , ni. Then the
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estimator is

Îα,β =
1

n





m
∑

i=1

ni
∑

j=1

f(Xij)−
∑m

i=1 βipi(Xij)

pα(Xij)



+
m
∑

i=1

βi [2.20]

2.4.5 Multiple Importance Sampling

For a target distribution with multiple modes, sampling according to a single importance den-

sity may not be able to capture all the important regions of the integrand. Instead, several PDF’s

may be constructed and each of them can generate samples for some specific, important regions.

For the estimation of the integral in Equation 2.7, suppose we haven different PDFs,

p1(x), · · · , pn(x), and generateni samples{Xi,1, · · · , Xi,ni
} from pi(x). The question is how to

combine those samples in a manner that minimizes the estimation variance without introducing

bias. Simply averaging those samples generally will not produce an optimal result.

Veach and Guibas [102] introduced multiple importance sampling (MIS) in the context of

global illumination and studied the above problem. To use all the samples,{Xi,j}, 1 ≤ i ≤
n, 1 ≤ j ≤ ni, to estimate the desired integral, amultiple-sample estimatoris defined as

F =
n
∑

i=1

1

ni

ni
∑

j=1

wi(Xi,j)
f(Xi,j)

px(Xi,j)
[2.21]

where the weighting functions,w1, · · · , wn, give the weight,wi(x), for each samplex drawn from

pi. In order for the multiple-sample estimator to be unbiased,the weighting functions should

satisfy
∑n

i=1 wi(x) = 1 andwi(x) ≥ 0.

One obvious choice for the weighting functions is to use

ŵi(x) = ci
pi(x)

q(x)
[2.22]

where

q(x) = c1p1(x) + · · ·+ ckpk(x) [2.23]

ci ≥ 0 and
∑

i ci = 1. It is “obvious” in the sense that if we sample according to the mixture PDF

in Equation 2.23, a classical importance sampling estimator will give the same estimation as the

multiple importance sampling estimator with the above weighting functions.
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If ci is set in proportional to the number of samples from each PDF,ci = ni/
∑

i ni, it leads to

ŵi(x) =
nipi(x)

∑

k nkpk(x)
[2.24]

This weighting strategy is called the balance heuristic. Balance heuristic weighting is nearly

optimal, which means no other combination is much better. InAppendix A, we show that MIS with

balance heuristic weighting can be treated as a special caseof defensive importance sampling.

2.4.6 Stratified Sampling

The basic idea of stratified sampling is to divide the full integration space into mutually exclu-

sive subspaces (strata), and then perform Monte Carlo integration in each subspace. Suppose we

are interested in estimatingI =
∫

Ω f(x)dx, and we havem disjoint subspacesΩ1, · · · , Ωm, whose

union isΩ. If we generateni samples,Xi,1, · · · , Xi,ni
, from subspaceΩi, wherei = 1, · · · ,m, then

the estimator from stratified sampling

Î =
m
∑

i=1

1

ni

ni
∑

j=1

f(Xij) [2.25]

is an unbiased estimator forI with variance

var(Î) =
m
∑

i=1

σi

ni

whereσi is the variance off(x) in subspaceΩi.

It can be shown that stratified sampling will never have higher variance than plain unstratified

sampling [100]. Stratified sampling techniques are very useful when the population is hetero-

geneous but certain homogeneous sub-populations can be separated into subgroups. However,

stratified sampling does not scale well to high-dimensionalintegration because there are too many

dimensions to refine.

2.4.7 Adaptive Sampling

Adaptive sampling strategies allow for adjusting samplingpattern depending upon observa-

tions made during the sampling process [96]. Similar to importance sampling, adaptive sampling
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puts more samples in the more important regions for the integral. However, one major difference

between adaptive sampling and importance sampling is that the distribution for adaptive sampling

is modified “on the fly” to learn from the performance of previous samples, while the distribution

for importance sampling is seta priori before sampling starts.

There are number of applications of adaptive sampling in computer graphics for photo-realistic

rendering [65, 70, 75, 95, 6, 29]. The goal of those algorithms is to concentrate samples where

they will affect the quality of the rendered image most. There are three central issues for adaptive

sampling algorithms: refinement criteria, how to avoid bias, and how to generate samples from the

refinement distribution so that they reach the areas most in need. Much of the work in the rendering

literature has been done on developing different refinementcriteria.

The main disadvantage of adaptive sampling is that it can introduce bias if not used with

care [51]. Bias can be avoided using two-stage sampling. A better solution is to put adaptive

sampling into an importance sampling framework [8, 80]. Much of this thesis work is to develop

unbiased adaptive rendering algorithms that reuse the samples to account for spatial and temporal

coherence in the rendering.

2.5 MCMC and Metropolis-Hastings Sampling

Markov chain Monte Carlo (MCMC) methods use Markov chain simulation to sample a spec-

ified target distribution [31]. Given the state spaceΩ and a target distributionπ(x), wherex ∈ Ω,

the MCMC algorithm generates a random walk,X0, X1, X2, · · ·, from a distributionK(Xt+1|Xt)

which depends on the current state of the chain,Xt. The conditional probability densityK(·|·) is

called thetransition kernelof the chain. If the chain hasπ(x) as a stationary distribution, then after

a large number of iterations (burn-in phase), the chain will be a sequence of dependent samples

approximately fromπ(x). From a Monte Carlo point of view,π(x) can be represented by those

samples after burn-in, which means that any computation of expectations (or integrals) usingπ can

be estimated to an acceptable degree of accuracy by using those dependent samples in the Markov

chain.
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Now the problem is how to construct a Markov chain such that its stationary distribution is ex-

actly the target distribution,π(x). This turns out to be surprisingly easy. The Metropolis-Hastings

algorithm [64, 39] provides a way of generating such a Markovchain. This is done by first propos-

ing a candidatestate,X ′
t+1, using information fromXt. The algorithm then either accepts the

candidate,X ′
t+1, or rejects it and retainsXt. In pseudo-code:

Initialize X0; sett = 0.

for t = 1 to N

X ′
t+1 ← T (·|Xt)

generate a random numberr ∈ [0, 1]

if( r < α(X ′
t+1|Xt) ) then

Xt+1 = X ′
t+1

else

Xt+1 = Xt

Figure 2.2: The Metropolis sampling algorithm.

The functionα(X ′
t+1|Xt) computes theacceptance probabilityfor X ′

t+1 given the current sam-

pleXt. It is computed as

α(X ′

t+1|Xt) = min{1, π(X ′
t+1)T (Xt|X ′

t+1)

π(Xt)T (X ′
t+1|Xt)

} [2.26]

whereT (X ′
t+1|Xt) is the proposal distribution(or tentative transitional function), denoting the

probability density of going to stateX ′
t+1 given that the current state isXt. Remarkably,T (X ′

t+1|Xt)

can have almost any form and the chain generated by the Metropolis-Hastings algorithm will still

have stationary distributionπ(x). This can be seen from the following argument. The transition

kernel for the Metropolis-Hastings algorithm is

K(Xt+1|Xt) = T (Xt+1|Xt)α(Xt|Xt+1)

+ δ(Xt+1 = Xt)
(

1−
∫

T (Y |Xt)α(Xt|Y )dY
)

[2.27]
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whereδ(·) is the indicator function, soK(Xt+1|Xt) andK(Xt|Xt+1) will have the same second

part no matter whetherXt+1 = Xt or not. Based on how we compute the acceptance probability,

we have

π(Xt)T (Xt+1|Xt)α(Xt|Xt+1) = π(Xt+1)T (Xt|Xt+1)α(Xt+1|Xt) [2.28]

From Eqs. [2.27] and [2.28], we obtain

π(Xt)K(Xt+1|Xt) = π(Xt+1)K(Xt|Xt+1) [2.29]

which is called thedetailed balanceequation. Detailed balance is a sufficient condition for guar-

anteeing thatπ(·) is the stationary distribution ofK(·|·).
Metropolis-Hastings sampling is very general. It can be used to sample an arbitrary, complex

probability distribution function,π(x), known up to a normalizing constant, as long asπ(x) can

be evaluated. The proposal distribution,T (Xt+1|Xt), can have almost any form and the chain

will still eventually converge toπ(x). However, the relationship betweenT (Xt+1|Xt) andπ(x)

has a significant impact on the convergence rate of the chain,and hence the number of samples

required to get a good result for integral estimation. The key to designing a good MCMC sampler

is designing good proposal distributions.

2.6 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a set of sampling techniques that generate samples

from a sequence of probability distribution functions [22]. SMC methods are very flexible, easy to

implement, parallelizable, and applicable in general settings.

There are a variety of ways to do SMC sampling, with two approaches being most applicable

to graphics [66, 59, 60]: in an importance sampling context,the sample can be re-used and re-

weighted, resulting in sampling importance resampling (SIR); or the procedure can be framed in

both an importance sampling and a Markov chain Monte Carlo context, which leads a population

Monte Carlo framework [8].
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2.6.1 Sampling Importance Resampling (SIR)

Assume we want to estimate the integral

π(f) =
∫

Ω
f(x)π(x)dx [2.30]

The sampling importance resampling method [81, 58] extendsimportance sampling to achieve

simulation from the target distribution by resampling. SIRproceeds in two stages. The first stage

draws some independent samples from a proposal distribution, p(x). For each sample, the impor-

tance weight is computed. The second stage generates samples by resampling those samples in the

first stage based on their importance weights. The algorithmis outlined below:

1 GenerateN independent samples{x̃1, · · · , x̃M} from a proposal distributionp(x)

2 Compute importance weightswi = π(xi)/p(xi), i = 1, · · · ,M
3 GenerateM samples{x1, · · · , xN} by resampling{x̃1, · · · , x̃M} with replacement according

to probability proportional to their weights

Figure 2.3: SIR algorithm.

The SIR estimator ofπ(f) is constructed as

π̂(f) =
1

N

N
∑

i=1

f(xi) [2.31]

which converges toπ(f) since eachxi is approximately distributed fromπ(x). As with importance

sampling, the efficiency of SIR strongly depends on the choice of the proposal distribution,p(x).

The resampling scheme used above is multinomial resampling[34]. Other resampling algo-

rithms are also available such as stratified resampling, which is optimal in terms of variance [52],

and minimum entropy resampling [15].

2.6.2 Population Monte Carlo (PMC)

The population Monte Carlo algorithm [8] is an iterated importance sampling scheme. In

this scheme, a sample population approximately distributed according to a target distribution is
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generated at each iteration. Then the samples from all the iterations can be used to form unbiased

estimates of integrals under that distribution. It is an adaptive algorithm that calibrates the proposal

distribution to the target distribution at each iteration by learning from the performance of the

previous proposal distributions.

Assume we are interested in estimating the integralπ(f) =
∫

Ω f(x)π(x)dx. We wish to sam-

ple according to the target distribution,π(x). The generic PMC sampling algorithm is given in

Figure 2.4.

1 generate the initial population,t = 0

2 for t = 1, · · · , T
3 adaptK(t)(x(t)|x(t−1))

4 for i = 1, · · · , n
5 generateX̂(t)

i ∼ K(t)(x|X(t−1)
i )

6 w
(t)
i = π(X̂

(t)
i )/K(t)(X̂

(t)
i |X(t−1)

i )

7 resample according tow(t)
i for the new populationX(t)

i

Figure 2.4: The generic population Monte Carlo algorithm.

Line 1 creates the initial population to jump-start the algorithm. Any method can be used

to generate these samples provided that any sample with non-zero probability underf can be

generated, and the probability of doing so is known.

The outer loop is over iterations. In each iteration of the algorithm, a kernel function,

K(t)(x(t)|x(t−1)), is determined (line 3) using information from the previousiterations. The kernel

function is responsible for generating the new population,given the current one. It takes an exist-

ing sample,X(t−1)
i , as input and produces a candidate new sample,X̂

(t)
i , as output (line 5). The

distinguishing feature of PMC is that the kernel functions are modified after each step based on

information gathered from prior iterations. The kernels adapt to approximate the ideal importance

function based on the samples seen so far. While this dependent sampling may appear to intro-

duce bias, it can be proven that the result is either unbiasedor consistent, depending on whether
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certain normalizing constants forπ and the kernels are known. In our applications to the rendering

problem,π is always1 and kernels are always PDFs.

The weight computed for each sample,w
(t)
i , is essentially its importance weight. The resam-

pling step in line 7 is designed to cull candidate samples with low weights and promote high-weight

samples. It takes the candidate population,
{

X̂
(t)
1 , . . . , X̂(t)

n

}

, and produces a new population ready

for the next iteration. Resampling is not always necessary, particularly if the kernel is not re-

ally a conditional distribution. Even when used, resampling and kernel adaptation (lines 3 and 7)

need not be done on every iteration. Our examples demonstrate such cases. Figure 2.5 shows the

sampling and resampling steps in SMC algorithm for the example illustrated in Figure 1.3.

At any given iteration,t, a PMC estimator given by

π̃(f) =
1

n

n
∑

i=1

w
(t)
i f(X

(t)
i ) [2.32]

is unbiased forπ(f). To see that, we have

E[w
(t)
i f(X

(t)
i )] =

∫ ∫ π(x)

Kit(x|ζ)
f(x)Kit(x)dx g(ζ)dζ

=
∫ ∫

f(x)π(x)dx g(ζ)dζ

=
∫

f(x)π(x)dx = π(f) [2.33]

whereζ is the vector of past random variates which contribute toKit and g(ζ) is an arbitrary

distribution. It concludes that̃π(f) is an unbiased estimator ofπ(f).

However, in most settings,π(x) may be known only up to a constant scale factor. Then, an

estimator with a self-normalized term has to be used:

π̂(f) = (
n
∑

i=1

w
(t)
i )−1

n
∑

i=1

w
(t)
i f(X

(t)
i ) [2.34]

In this case, the unbiasedness property of the estimator is lost, butπ̂(f) is consistent.

In practice, we can average over all iterations to improve the estimate. A cumulative self-

normalized PMC estimator over allT iterations can be defined as

π̂β(f) =
T
∑

t=0

βt

(

(
n
∑

i=1

w
(t)
i )−1

n
∑

i=1

w
(t)
i f(X

(t)
i )

)

[2.35]
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whereβt, t = 0, · · · , T , are the weights to combine the estimates from different iterations. The

optimal choices ofβt, which minimize the variance of̂πβ(f), are given by [20]:

βmin
t = σ−2

t /(
T
∑

t=0

σ−2
t )

whereσt is the variance of the estimatorπ̂(f) at iterationt.

In our work, we introduce the population Monte Carlo method tocomputer graphics and apply

it to adapting and reusing samples in the global illumination context.
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Figure 2.5: PMC sampling and resampling steps. The top diagram shows theinitial samples
from the proposal distribution1

2
p1(x) + 1

2
p2(x). The bottom-left shows the weights for the initial

samples. The bottom-right shows the samples after resampling based on the weights.
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Chapter 3

Global Illumination

This chapter provides a background for global illumination. To render photo-realistic images,

we must simulate the transport of light, starting from lightsources, interacting with surfaces in

the scene, and finally reaching the camera. In this chapter the physical quantities and equations

used for light transport and global illumination computation are described. The rendering equa-

tion provides the mathematical foundation for the global illumination problem. The path integral

formation for the rendering equation makes it convenient for applying Monte Carlo methods to

solve this equation and generate photo-realistic images. Some representative Monte Carlo based

algorithms for global illumination in the literature are summarized. The strengths and weaknesses

of those algorithms are discussed.

3.1 Radiometry

Flux Φ: The total energy passing through a surface per second. Fluxis also known as power,

and is measured in Watts (joules/second). A light source is,by definition, something that emits

power in the visible spectrum. So, for example, we can say a light bulb is 60 Watts.

Irradiance E: Flux per unit surface area. Its unit is(W/m2).

E =
dΦ

dA
[3.1]
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For an un-occluded point light source, the irradiance at a surface point,~p, that is distancer

away from the point light, isΦ/(4πr2). This fact explains why surfaces far from a point light

source are darker: the irradiance falls off with the squareddistance from the light.

Intensity I: Flux per solid angle. Its unit is(W/sr).

I =
dΦ

dω
[3.2]

RadianceL: The flux per unit projected area per unit solid angle. It has unit of (W/m2/sterd).

L =
dΦ

dA⊥dω
[3.3]

Radiance does not attenuate with distance due to its “per unitsolid angle” definition. For

example, we have the same impression of the brightness of a wall, regardless of whether we are

near or far from it.

Radiance is the most important quantity to be measured in radiometry. In particular, it is the

quantity required for quantitatively analyzing directional effects such as bidirectional reflectance.

Radiance is also the most frequently used term in computer graphics. There are two major reasons

for this. First, all the other terms can be derived from radiance. Integrating radiance over solid

angle gives irradiance; integrating radiance over area gives intensity; and integrating radiance over

both solid angle and area gives flux. Second, radiance remains constant along a ray in free space,

so it is very convenient to use in rendering algorithms such as ray tracing.

3.2 BRDF Function

In photo-realistic rendering, how light interacts with surfaces in the scene is essential for simu-

lating light transport. The Bidirectional Reflectance Distribution Function (BRDF) describes how

much light is reflected when it hits a material.

The BRDF is defined as the ratio of the outgoing radiance in the directionωo to the incoming

differential irradiance from the directionωi [67]. It is a function of incoming direction, outgoing

direction and surface point~p:

fr(~p, ωo, ωi) =
dLo(~p, ωo)

dEi(~p, ωi)
=

dLo(~p, ωo)

Li(~p, ωi) cos θidωi

[3.4]
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Figure 3.1: Bidirectional Reflectance Distribution Function.

Note that even though the BRDF is defined as a ratio, it is not unitless. The units of the BRDF

are inverse solid-anglesr−1. To understand why the BRDF is defined this way, let us look at what

the BRDF is used for: to compute the radiance leaving from a surface point~p along the outgoing

directionωo, L(~p, ωo), which is the sum of reflected radiance of the incoming radiance from all the

directions in the hemisphere. Denote the BRDF term asratio(~p, ωo, ωi) for a moment. Then,

Lo(~p, ωo) =
∑

Hemishpere

Li(~p, ωi) ∗ ratio(~p, ωo, ωi)∆ωi [3.5]

One obvious choice is to defineratio(~p, ωo, ωi) as a ratio of radiances∆Lo(~p,ωo)
∆Li(~p,ωi)

, however, then

Li(~p, ωi) ∗ ratio(~p, ωo, ωi) is a radiance, which leads the right side of Equation 3.5 to bean irradi-

ance due to the sum while the left side is a radiance. So, in theBRDF definition, we have to cancel

out the∆ωi term by using ∆Lo(~p,ωo)
∆Li(p,ωi) cos θ∆ωi

.

There are two major properties of the BRDF. Models that have these properties are considered

to be physically plausible.

• Helmholtz Reciprocity Rule

For any incoming and outgoing direction pair,ωi andωo, the BRDF is symmetric to the

directions:

fr(~p, ωo, ωi) = fr(~p, ωi, ωo) [3.6]

• Energy Conservation Law
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The energy conservation law says that the quantity of light reflected must be less than or

equal to the quantity of incident light. For any directionωo,
∫

2π
fr(~p, ωo, ω

′) cos θ′dω′ ≤ 1 [3.7]

3.3 The Rendering Equation

The goal of a global illumination algorithm is to generate photo-realistic images by taking into

account all the light interactions in the scene. It does so bysimulating light transport behaviors

based on physical principles. Mathematically, the solution to a global illumination problem is the

same as a solution to the rendering equation [47].

To understand the rendering equation, rewrite the definition of the BRDF given in Equation 3.4

as

dLo(~p, ωo) = fr(~p, ωo, ωi)Li(~p, ωi) cos θidωi [3.8]

If we integrate the incoming radiance over the hemisphere ofincoming directions centered at

~p, the outgoing reflected radiance is given by thereflection equation:

Lr(~p, ωo) =
∫

Ωi

fr(~p, ωo, ωi)Li(~p, ωi) cos θidωi [3.9]

From the law of energy conservation, the exitant radiance ata surface point along an outgoing

direction must be equal to the sum of the emitted and reflectedradiances. This gives theenergy

balance equation:

Lo(~p, ωo) = Le(~p, ωo) + Lr(~p, ωo) [3.10]

Plugging the reflection equation into the energy balance equation results in

Lo(~p, ωo) = Le(~p, ωo) +
∫

Ωi

fr(~p, ωo, ωi)Li(~p, ωi) cos θidωi [3.11]

In free space, radiance along a ray is constant. If we define a ray-casting function~p′ = t(~p, ω),

where~x′ is the first surface point visible from~p along the directionω, then the incident radiance

and outgoing radiance can be connected by

Li(~p, ωi) = Lo(t(~p, ωi),−ωi) [3.12]
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Rewriting Equation 3.11 and dropping the subscripto for brevity, we obtain therendering

equation:

L(~p, ωo) = Le(~p, ωo) +
∫

Ωi

fr(~p, ωo, ωi)L(t(~p, ωi),−ωi) cos θidωi [3.13]

3.4 Monte Carlo Methods for the Rendering Equation

The rendering equation is a form of the Fredholm equation of the second kind in which we

need to solve the unknown quantityL appearing on the both sides of the equation. The use of

Monte Carlo methods to solve this kind of problem can be tracedback decades in the statistical

literature [86, 82].

3.4.1 Path Integral Formulation for the Rendering Equation

To apply Monte Carlo to solve the rendering equation for global illumination, it is more con-

venient to convert the integral over the hemisphere into an integral over surfaces. As a result, the

rendering equation can be expressed as an integral in path space in which each path is a sequence

of surface vertices of any possible length. We follow the path integral framework introduced by

Veach [100]. The rendering equation in path integral form is

I =
∫

Ω
f(x̄)dµ(x̄) [3.14]

The integral is overΩ, the set of light transport paths that begin at a light sourceand end at the eye,

whereµ(x) is the surface area measure for the pathx, andf(x) is defined as

f(x) = W (x)Le(x0,x1)G(x0,x1)

·
m−1
∏

i=1

fr(xi−1,xi,xi+1)G(xi,xi+1) [3.15]

in which the functionW (x) takes the value 1 if the path passes through the image plane, and

0 otherwise.xi is a point on the pathx, Le(x0,x1) is the radiance emitted by a light pointx0

towardx1, fr(xi−1,xi,xi+1) is the BRDF for surface pointxi, andG(xi,xi+1) is the geometry
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term between pointsxi andxi+1:

G(xi,xi+1) = V (xi,xi+1)
| cos(θi) cos(θ′i)|
‖xi − xi+1‖2

[3.16]

θi andθ′i are the angles betweenxi→xi+1 and the surface normals atxi andxi+1 respectively. The

visibility term V (xi,xi+1) has value 1 ifxi can seexi+1 and 0 otherwise.

In the context of computing the rendering equation integralusing a Monte Carlo method, we

want to draw samples that are random light transport paths,X̄k, k = 1, . . . , n, according to some

chosen density functionp, and then compute the estimate:

Î =
1

n

n
∑

k=1

f(X̄k)

p(X̄k)
[3.17]

3.4.2 Monte Carlo Algorithms for Global Illumination

Kajiya [47] introduced the first unbiased Monte Carlo based solution calledpath tracingfor

solving the rendering equation. Over the years, many other algorithms have been developed for

solving the rendering equation. Here, we briefly summarize some important algorithms and pro-

vide an historical timeline.

3.4.2.1 Path Tracing

Introduced by James Kajiya in the paper in which he first described the rendering equation [47],

path tracing was the first general light transport algorithmto compute a complete global illumi-

nation solution. Path tracing builds random ray trees rooted at the eye and considers each valid

transport path as a sample.

Path tracing generates a path by starting a ray from the camera, recursively tracing the ray

in the scene, and ending at light sources. At each bounce, a direction is sampled according to a

distribution, for example a BRDF function or a cosine function. The contribution of the path to the

image plane is evaluated by the radiance the path carries weighted by the probability of this path

being generated.

A variation of this algorithm is to trace rays from light sources to the camera. This is called

light tracing (also known as particle tracing, or backward ray tracing). Light tracing is a dual
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algorithm of path tracing because the physics of light transport do not change when a path is

reversed. They both have advantages and disadvantages. Furthermore these two algorithms can

be coupled to improve the image results. The algorithm combing path tracing and light tracing is

called bidirectional path tracing, which is discussed next.

3.4.2.2 Bidirectional Path Tracing

Bidirectional path tracing was developed independently by Lafortune [54] and Veach [101].

They formulated their algorithms based on different statistical frameworks, however. Veach intro-

duced multiple importance sampling as the basis for his bidirectional importance sampling algo-

rithm, while Lafortune formulated his as a recursive evaluation of the global reflectance distribution

function (GRDF).

Bidirectional path tracing is a generalization of the standard path tracing algorithm. The main

observation in bidirectional path tracing is that some sub-paths are more efficiently sampled start-

ing from the light “backward” while others are more efficiently sampled starting from eye “for-

ward.” The backward sub-paths can provide important information for forward sub-paths, and vice

verse. Each pair of “backward” and “forward” sub-paths can be connected at different vertices

to form multiple full paths. Those full paths are then combined with appropriate weights to form

the estimator. The choice of weights has great impact on the variance of the estimator. Multi-

ple importance sampling [102] provides a theoretical basisand a near-optimal way for setting the

weights.

As with path tracing, bidirectional path tracing is unbiased and can handle arbitrary geometry

and lighting. It combines the advantages of path tracing andlight tracing. Bidirectional path

tracing can dramatically reduce the variance for indirect lighting estimation compared to path

tracing. However, an image created using bidirectional path tracing is still noisy and needs many

samples to converge. Because subpaths have to be connected toform valid full paths, bidirectional

path tracing is not suitable for scenes where most “forward”and “backward” subpaths are not

visible to each other.
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This has the advantage of combining both visual importance and the lights’ power, but the

disadvantage that each path is independent; while a difficult path may be located by random chance,

3.4.2.3 Irradiance Caching

Irradiance caching is a technique that exploits the fact that indirect lighting often changes

slowly over diffuse surfaces [107]. So, if the indirect lighting is computed accurately at a sparse

set of scene locations and cached into a data structure, the indirect lighting at new locations can be

approximated with an interpolation of those cached values.It works this way: when extant radi-

ance at a diffuse point is being computed, the irradiance cache is looked up to see whether one or

more acceptable nearby samples exist. If so, an interpolated irradiance value from those samples

is used to compute the new radiance; otherwise, the accurateirradiance at that point is estimated

and stored in the irradiance cache.

To make the method work, there are three questions to be answered: (1) When is it acceptable to

use nearby cached values to approximate the irradiance at the new location? (2) How are estimates

interpolated? and (3) What data structure should be used to store the computed irradiance values

so that the look up is fast?

The gradients of the irradiance [106] are used to determine when the irradiance at a new loca-

tion can be approximated with reasonable accuracy as an interpolated value of the nearby cached

values. This approach takes account of not only the distances to the nearest surfaces, but also the

irradiance gradient due to a change in position as well as orientation. This approach does not re-

quire any further samples, but simply uses a sophisticated analysis of the samples in the irradiance

estimate.

Since only the irradiance is cached, the information on the directional distribution of the in-

coming radiance is lost, and so this technique can only be used for diffuse surfaces.

3.4.2.4 Metropolis Light Transport

Metropolis Light Transport (MLT) is a robust global illumination algorithm that applies Metropo-

lis sampling to photo-realistic rendering [103]. Metropolis sampling is a Markov chain Monte
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Carlo (MCMC) technique that can generate a sequence of dependent samples from a non-negative

functionf , with f as the stationary distribution of that chain. It only requires thatf is known up

to a constant scale and can be evaluated at each point in the domain. In other words, no analytical

form for f is necessary.

Veach and Guibas showed that Metroplis sampling can be applied to infinite dimensional path

space for global illumination. The algorithm starts by generating a set of path samples using bidi-

rectional path tracing. These paths are modified using different mutation strategies to obtain tenta-

tive new paths. A tentative path is accepted as a new path according to the acceptance probability

computed as in the Metropolis sampling algorithm.

The mutation strategies in MLT correspond to theproposal distribution, which greatly affects

the convergence of the Markov chain. To make MLT efficient, mutation strategies have to be de-

signed so that the path space is efficiently explored throughthe path random walk. The mutation

strategies proposed in the MLT paper included bidirectional mutation, perturbations, and lens sub-

path mutation. Bidirectional mutations are used to make big changes to the path and guarantee the

whole path space can be visited (to ensure ergodicity of the Markov chain).

The key advantage of MLT is that various coherent structuresin the path space are explored

and, as a result, once a difficult sample path is found, this path will be reused and exploited. MLT

is very efficient in handling traditionally difficult scenessuch as light going through an ajar door.

Another advantage of MLT is that the Metropolis sampling framework ensures its unbiasedness.

MLT is also competitive with previous unbiased algorithms for relatively simple scenes.

3.4.2.5 Photon Mapping

Photon mapping [44] is a two-pass global illumination algorithm. The first pass uses standard

light tracing to shoot photons from light sources. Whenever aphoton intersects a non-specular

surface (diffuse or glossy), the intersection point, incoming direction, and flux of the photon are

stored in a cache called thephoton map. The second pass renders the image by taking advantage

of the photon maps built in the first pass which significantly speeds up the rendering process.
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The photon mapping algorithm divides the integrand into four components: direct lighting,

specular reflection, caustic, and indirect lighting (multiple diffuse reflection). Direct lighting and

specular reflection are accurately evaluated using standard Monte Carlo ray tracing. The caustics

are evaluated via a caustic map. Indirect lighting is computed through afinal gathering, which

uses the global photon map to estimate the incoming radiances. The radiance estimate from the

photon map is based on nearest neighbor density estimation,which is a well-studied discipline in

statistics. Note that the radiance estimate using a photon map introduces bias.

Photon mapping can handle all illumination phenomena, including caustics, color bleeding

and specular reflection, in a reasonably efficient manner. Another advantage is that the photon

map does not depend on the underlying scene geometry, which means it scales well with scene

complexity.

To make the final gathering step efficient, irradiance caching can be used to compute the indi-

rect lighting for diffuse surfaces. When a final gather ray hits a diffuse surface, the irradiance cache

is searched for a single nearby good sample. If found, its irradiance can be used to estimate the

outgoing radiance by multiplying the BRDF value. Otherwise, computing the irradiance is done by

using photon density estimation and adding it to the irradiance cache. Using the irradiance cache

avoids repeating some density estimation.

3.4.2.6 Sampling Importance Resampling for Direct Lighting

Recently, two algorithms for direct lighting were proposed based on sampling importance re-

sampling method (SIR): Bidirectional importance sampling (BIS) [7] and Resampling importance

sampling (RIS) [94]. In these algorithms, for the outgoing direction ωo along which the radi-

ance is to be estimated, firstM incoming direction samples̃ω(1)
i , · · · , ω̃(M)

i are generated from an

importance distributionp(x), which is usually either BRDF sampling or light sampling, and the

importance weights for those samples are computed. ThenN samplesω(1)
i , · · · , ω(N)

i are gener-

ated by resampling theM initial samples based on their importance weights. The estimator for the
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direct lighting alongωo is

L̂(~p, ωo) =





1

M

M
∑

m=1

fr(~p, ωo, ω̃
(m)
i )Li(~p, ω̃

(m)
i ) cos θ

(m)
i

p(ω̃
(m)
i )





(

1

N

N
∑

n=1

V (ω
(n)
i )

)

[3.18]

whereV (ω
(n)
i ) is the light visibility test for surface point~p along the directionω(n)

i . The estimator

can be interpreted as computing reflected radiance fromM direction samples without visibility

testing and scaling it by the average result ofN visibility tests of those samples having big contri-

butions to the radiance.

M is usually one to two orders of magnitude larger thanN . The key observation used in the

algorithms is that generally it is much cheaper to generate direction samples than to do visibility

testing. The algorithm gains by postponing visibility testing until the resampling step so that only

N tests are needed and visibility tests are only performed forhigh-contribution directions. Talbot

et al. [94] further showed how to chooseM andN to achieve near optimal variance reduction.

These algorithms are good for generating samples from a PDF that can be decomposed into

two factors: one is cheap to compute and incorporates most ofthe variance, and another that is

expensive to compute and has low variance. However, for the application in direct lighting, due

to not considering the visibility test in the initial sampling, the algorithm does not work well for

partially occluded regions. Actually, the algorithm will fail in the following scenario: a ball on a

floor is lighted by two lights. One light is much brighter thanthe other. For the shadow region that

is occluded from the bright light but visible to the dim light, the direct light computation using the

BIS or RIS algorithms will be very poor because almost all of theN resampled samples will be

from the bright light and turn out to be useless in the estimation due to the occlusion.

Additionally, the choice ofp(x) makes a big difference of the efficiency in the algorithm as

well. If p(x) is far away from the target distribution, most samples will end up with very low

importance weights, which means low contribution to the light estimation. Designing a goodp(x)

for this algorithm is not a trivial task, however.
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3.4.2.7 Energy Redistribution Path Tracing

Cline et al. [13] introduced an energy redistribution (ER) sampling method for estimate inte-

grals that are correlated. As an application of ER sampling to the global illumination problem,

Energy Redistribution Path Tracing (ERPT) is a hybrid global illumination algorithm that com-

bines the ideas of metropolis light transport and path tracing.

In some sense, ERPT algorithm can be understood as a parallel MLT: the algorithm starts a set

of initial paths using path tracing, and then uses each initial path as a seed for a Markov chain. As

in MLT, the current path is mutated to get a tentative path andthe tentative path is accepted with

a probability to maintain thedetailed balancefor the chain. Several path mutation strategies are

designed to redistribute the energy of the samples over the image plane to reduce variance. Instead

of using bidirectional mutation in MLT to guarantee the ergodicity in the Markov chain, ERPT just

re-generates a totally new path using path tracing with a non-zero probability. Two other mutation

strategies include lens perturbation and caustic perturbation.

This algorithm uses post-processing noise filters to reduceimage noise; however, this intro-

duces bias.
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Year Algorithm Pros Cons

1986 Path Tracing Unbiased; First general solution Very slow to converge

[47] to the rendering equation for indirect lighting

1992 Irradiance Fast for diffuse scenes Biased; Fails for caustics and

Caching[107, 106] shadow boundaries; Only works

for diffuse surfaces

1994 Bidirectional Path Unbiased; Much more efficient Not efficient to compute slowly

Tracing[101, 54] in indirect lighting than path tracing varying diffuse components

1996 Photon Mapping Works well in practice; Biased; Wrong density estimation

[44, 45] Industry standard. can lead to light leaking;

Inefficient if most lights

can not reach the image plane

1997 MLT Unbiased; Reuses path samples; Difficult to implement

[103] Handles difficult paths well

2005 SIR for Direct Unbiased; Good for scenes without Only works for direct lighting;

Lighting [7, 94] much occlusion Bad for partially occluded regions

2005 ERPT Easier to understand and implementBiased after using filter

[13] than MLT; keeps most MLT features

Table 3.1: Monte Carlo algorithms for global illumination.
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Chapter 4

Metropolis Photon Sampling

Photon Mapping [45] is the current choice of industry for scenes with general surface primitives

and reflectance functions [23]. It uses an initial pass to populate photon maps with samples of the

power arriving at points in the scene. Afinal gatherpass then uses the maps to estimate the

contribution of indirect illumination to visible pixels. It is essential that the initial pass populate

the maps with photons useful to the final gather, but the standard technique fails to do so in some

common scenes. This chapter introducesMetropolis Photon Sampling(MPS), a Monte Carlo

sampling algorithm for constructing photon maps that produces high-quality results in situations

where standard photon map construction fails. MPS also gives users a technique to control variance

over the image.

Standard Photon Mapping traces particles from the lights distributed according to the lights’

power distribution, and deposits photons when the particles interact with surfaces. It performs

poorly when little of the lights’ total power arrives at locations important to the final gather. This

situation is not uncommon in practice: indoor environmentsmay have many lights that contribute

unevenly to the image (Figure 4.1); in some scenes most lightpaths are occluded (Figure 4.5); and

local views of outdoor scenes may see little of the sun’s power (e.g., under a forest canopy or in

downtown city streets). Poor sampling results in excess noise in the indirect illumination estimates

derived from the map. Furthermore, low photon density leadsto larger search radii in accessing

photons, which causes inappropriate samples to be includedand hence severe energy bleeding.
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Both effects are evidenced in the left image of Figure 4.1, based on the photon distribution on the

left in Figure 4.2.

Figure 4.1: Leftmost is the plan of a scene in which only a small portion ofthe lights’ total power
contributes to the image. The left image was produced using standard Photon Mapping, which
under-samples some regions and over-samples others, resulting in image noise and severe energy
bleeding from the adjacent room (the cause of the incorrect illumination around the edges of the
rear wall). To the right is our result. Paths joining the eye to a light were sampled and photons
were stored only in important locations. The insets on the far right show zoomed sections taken
from the center-left of the images, and demonstrate how our method (lower) both reduces noise
and avoids energy bleeding.

One underlying cause of a poor sample distribution is the lack of visual importance infor-

mation; sampling from the light does not consider the cameralocation. Our first contribution is

a technique,Metropolis Photon Sampling(MPS), that builds photon maps using complete light

paths that join a light to the eye. By linking to the eye we account for visual importance and can

identify photon storage locations that will be useful to thefinal gather (Figure 4.2). This reduces

image noise and energy bleeding artifacts in scenes where most paths traced only from the lights

are irrelevant to the image (Figure 4.1). MPS uses a Metropolis-Hastings algorithm [64, 39, 31] to

sample over paths, but the general framework supports othersampling methods.

Regardless of the sampling strategy used, light paths that are difficult to find randomly lead

to image artifacts in Monte Carlo rendered images. In Photon Mapping this tends to manifest

itself as smooth but incorrect results, while in a pure MonteCarlo framework the result is noise.

Frequently the difficult paths are obvious to a user: light may have to pass through a small opening

or be focused by a particular scene element. Our second contribution enables a user to provide a

small set of important light transport paths that the sampling process uses to reduce variance. No
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Figure 4.2: Photon distributions for Figure 4.1. While standard Photon Mapping generates many
photons in a short period of time (left), they are almost all located in places not relevant to the final
image. Right is our result for identical computation time, with all the samples in locations useful
to a final gather operation.

bias is introduced to the result. User defined paths help whensampling from difficult geometric

arrangements, and also give a user local control over variance in the image. For instance, in

Figure 4.1 the user suggested 10 paths that carry light through the doorway from the neighboring

room. This is the first technique in the rendering literaturefor including specific user-defined

sample paths in a Monte Carlo framework.

4.1 Related Work

The rendering equation [47, 73] is the physical foundation for image synthesis. Many Monte

Carlo based algorithms have been proposed to solve the equation, such as path tracing and bidirec-

tional path tracing (see chapter 3 for a summary). Kollig andKeller [53] addressed this problem

with quasi-Monte Carlo methods, which can exploit coherencein random number space under

the assumption that paths generated with similar random choices are similar paths, which is not

necessarily the case in even mildly complex scenes.

Veach [103] presentedMetropolis Light Transport(MLT), which is a Markov chain Monte

Carlo (MCMC) algorithm designed to exploit coherence in path space. MCMC views sampling as
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a Markov process, and hence a good sample found in one step canimprove subsequent samples.

MCMC also allows multiple sampling strategies to be combinedwithout introducing bias, which

enables us to incorporate user-guided sampling. Veach’sMultiple Importance Sampling[102]

also combined different strategies, and it could also support user input of the form we propose.

An alternate MCMC approach to rendering was proposed by Kelemen et al. [49]. Rather than

sampling in path space, they sampled on a high-dimensional unit cube. MLT was extended to

support participating media by Pauly et al. [71].

A single sample may be representative of illumination over alarge region if radiance varies

slowly, as is often the case in scenes with significant indirect diffuse illumination.Particle trac-

ing algorithms, of which Photon Mapping is one, exploit this to re-use light paths. Arvo [3],

Heckbert [40] and Collins [14] proposed algorithms that useillumination-mapsto store irradiance

arriving along sampled paths. Like Photon Mapping, particles are traced from the lights, but they

require parameterized geometry for the maps. The method of Shirley et al. [84] traces particles

and builds a polygonal mesh representation that can be rendered in real time for varying view-

points. Chen et al. [9] also worked with 2D maps but, in addition, offered a progressive refinement

solution. Our sampling method could be used with any of theseexisting techniques, with some

modification to particle storage. Ward’sRADIANCEsystem [107, 105] traced rays from the eye

and cached diffuse contributions for use in subsequent estimates. Theirradiance cachingtech-

nique [106] was used to determine if the cached samples provide an adequate estimate.

Many rendering algorithms have been developed to exploit visual importance; see Christensen [10]

for a survey. Specific to particle tracing,importontechniques trace particles from the eye to con-

struct animporton mapthat is used to estimate visual importance. Peter and Pietrek [72] used the

importon map to construct importance sampling distributions for each scattering event of the par-

ticle tracing phase. The algorithm is expensive due to the cost of computing distributions at every

particle bounce, its local decisions may not produce a globally important path, and the importance

sampling produces photons with highly variable power. Keller and Wald [50] used importon maps

to avoid photon storage in areas that contribute little to the final image. Their technique reduces
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memory usage and maintains roughly uniform photon power, but gives no control over the gener-

ation of the samples in the first place. Suykens and Willems’ [89] algorithm considers the current

sample density in the photon map when storing a new sample andredistributes its power if it would

result in excess density (without modifying photon generation). Unlike existing methods, our al-

gorithm samples from complete paths joining the light to theeye and thus efficiently accounts

for visual importance without using importons. Complete paths also provide information about

important photon storage locations and hence reduce redundant photons.

Variance is typically controlled by using more samples, or designing new algorithms (not a

natural tool for most end-users). Ward [105] allows users tospecify surfaces as important sec-

ondary light sources, and the system builds their outgoing irradiance functions for use in indirect

illumination. The technique is targeted at large secondarysources, such as windows, but fails if the

secondary source itself is not easy to reach from the light orno one surface is significant enough

to warrant the attention. Our approach allows a user to specify paths through multiple reflections,

and places no restrictions on the surfaces or pieces of surface affected. A related idea to user input

is sampling based on pilot paths that are found in a random initial pass (or in the previous frame

of an animation). Dmitriev et al. [18] discuss this approachin the animation context, but it relies

on similarity in random number space to compute path perturbations. With user input, there are no

random variables associated with the paths, so this approach cannot be applied.

4.2 Light Paths to Photons

We incorporate visual importance into photon map construction by extracting photons from

completelight paths that join a point on a light source to the eye via some number of scattering

(reflection or transmission) events. Complete paths also allow us to identify the point on the path

at which a photon should be stored. Assume for the moment thatwe can produce sample light

paths. In the next section we address the way photons are extracted from the paths.



51

4.2.1 Photon Locations

Given a light path, we wish to identify the point or points along it that will be accessed during

a photon map lookup. This clearly depends on how the final gather is performed. We use a

standard Photon Mapping final gather as described by Jensen [45], to whom we refer the reader

for motivation and details. Estimation of radiance from theglobal photon map takes place at

points that lie at the second diffuse bounce on paths traced from the eye (possibly with intervening

specular bounces). Hence, we store a photon at the second diffuse point for each path that our

sampler produces. Estimation from caustic photons occurs at the first diffuse bounce, so along

caustic paths we store a photon in both the global and causticmap at the first diffuse point. In any

case, we refer to the photon storage location on a path as thestorage point.

The nearest neighbors around a point of interest,p, are used when estimating radiance from

the maps. The neighbors are assumed to be representative of the incoming radiance atp, which

requires that radiance vary slowly in the region from which they come. This assumption is more

likely to be true, and hence the estimate better, as the density of photons aroundp increases and the

neighbors fall within a smaller region. Our algorithm ensures that most stored photons lie around

points where final gather estimates are formed, and hence improves the quality of the estimate for

a given map-building effort and memory footprint.

The use of akd-tree for photon storage removes the need for a surface parameterization (allow-

ing for a wider range of surfaces and fast neighbor lookup) but this also decouples photons from

surface properties. Severe light bleeding can occur due to the breakdown of the slowly varying

radiance assumption, which is hard to detect without surface information. This is a major problem

in scenes where a light is on the back side of a thin divider, asin Figure 4.1.

A common practical solution is to store a normal vector with each photon and require that it

be similar to the normal at the point where the estimate is being taken. This reduces bleeding in

concave corners, but fails in our scenes. For instance, the floor is oriented the same on both sides

of the wall in Figure 4.1. Importon based methods (Section 6.2) fail to address the energy bleeding

through walls problem because importance can leak just as energy does, allowing photons to be

stored in unimportant regions. However, points on the back side of a wall are almost never the
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second diffuse bounce on a path from the eye, so our method automatically avoids storing them

and hence significantly reduces energy bleeding in from unimportant areas of the scene.

4.2.2 Photon Storage

As with standard Photon Mapping, for each photonj, we store the location,x(j), incoming ray

direction,θ(j), and radiant flux (power),Φ(j). In this section we describe howΦ(j) is computed

for a sampled path. Our discussion is based on the particle tracing framework introduced by

Veach [100,§4.A] and applied to Photon Mapping by Pharr and Humphreys [73]. Expressed in

terms of sampling from path space, we require that each photon j have power such that

E

[

∑

R

Φ(j)

]

=
∫

ΩR

fmap(x)dµ(x) [4.1]

where the sum is over the set of photons within a region of areaand solid angle,R. The integral is

overΩR, the set of light transport paths that begin on a light and endwithin the region,µ(x) is the

surface area measure for the pathx, andfmap(x) is defined as

fmap(x) = Le(x0,x1)G(x0,x1)

·
m−1
∏

i=1

fs(xi−1,xi,xi+1)G(xi,xi+1)

in whichxi is a point on the pathx, Le(x0,x1) is the radiance emitted by a light pointx0 toward

x1, fs(xi−1,xi,xi+1) is the bidirectional scattering distribution function forsurface pointxi, and

G(xi,xi+1) is the geometry term between pointsxi andxi+1:

G(xi,xi+1) = V (xi,xi+1)
| cos(θi) cos(θ′i)|
‖xi − xi+1‖2

whereθi andθ′i are the angles betweenxi→xi+1 and the surface normals atxi andxi+1 respectively.

The visibility termV (xi,xi+1) has value 1 ifxi can seexi+1 and 0 otherwise.

If we consider the region of interest,R, to be all the points accessed during the final gather,

Equation 4.1 takes the form of a Monte Carlo estimate of an integral. The sum on the left is over

all the photons in the map, and the integral on the right evaluates to the total power arriving in the

map,Bmap. If we sample paths according to the distributionpmap = fmap(x)/Bmap, each one of

theN photons should have the same power:Φ = Bmap/N .
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We only store photons at points relevant to the final gather, so the above discussion assumes

we are sampling over paths terminating at such points. However, the designation of storage points

relies on having the complete path to the eye, in order to count the number of diffuse bounces on

the sub-path from the eye. To obtain this information, MPS samples from the space of all paths that

join the light to the eye and stores photons only for the desired sub-paths. We sample according to

the probability distribution function (PDF) given bypeye(x) = feye(x)/Beye, where

feye(x) = W (x)Le(x0,x1)G(x0,x1)

·
m−1
∏

i=1

fs(xi−1,xi,xi+1)G(xi,xi+1) [4.2]

The functionW (x) takes the value 1 if the path passes through the image plane, and 0 otherwise.

Beye is the normalizing constant, in this case the total power arriving at the image, and should

satisfy

Beye =
∫

Ωeye

W (x)feye(x)dµ(x)

whereΩeye is the space of all paths that join a light to the eye. Following Veach [100], path

tracing is used to estimate this integral. Not many path tracing samples are required because we

are averaging over all pixels.

When we usepeye as the target distribution the resulting samples will no longer be distributed

according topmap as required for correct photon map estimation (Equation 4.1). This is accounted

for using standard importance sampling re-weighting:

Φ(j) =
1

N

fmap(x
(j)
map)

peye(x(j))
=

Beye

N

fmap(x
(j)
map)

feye(x(j))

wherexmap is the sub-pathL(D|S)∗D from a sampled path of the formL(D|S)∗DS∗DS∗E for

which a photon is stored in the global map, or the sub-pathLS∗D of an LS∗DS∗E path for

caustic photon storage. Note that we no longer requireBmap. Furthermore, when sampling ac-

cording topeye(x) we may generate paths that do not result in photon storage (i.e. not of the form

L(D|S)∗DS∗DS∗E or LS∗DS∗E). In this case,fmap = 0 and no photon is stored.

The Metropolis-Hastings sampler we use may provide many paths with the same storage point,

x(j), and incoming ray direction,θ(j). This is due either to rejection of candidate paths, in which



54

case the entire path is repeated, or a path mutation that retains the storage point while changing

some other part of the path (see Section 4.3). Instead of generating a new photon in such cases, we

accumulate the power in a single photon and hence reduce photon storage cost and look-up time.

In practice, few paths contribute to any one photon and the resulting per-photon power variation

does not create artifacts.

The scattering functionfs(xi−1,xi,xi+1) is wavelength dependent. We evaluatefs for the

standard RGB channels, and use them to computefmap,R, feye,R, etc. For the sampling process we

must attach a single probability to each path. We use the luminance channel,feye,Y , computed by

the RGB to XYZ color conversion. With this path probability, the red power for the stored photon

(green and blue are similar) is

Φ
(j)
R =

Beye,Y

N

fmap,R(x(j)
map)

feye,Y (x(j))

The framework developed to this point does not depend on the method for finding sample paths,

or even on their PDF,peye. Any sampling technique capable of generating paths from the light to

the eye, such as bidirectional path tracing, could be used. We chose a Metropolis-Hastings sampler

because it can both exploit coherence in path space and support user input.

4.3 Sampling Paths

Metropolis-Hastings algorithms use a Markov process designed to obtain a sequence of sam-

ples whose distribution converges to a target PDF. Following Veach [100], to estimate radiometric

quantities we want each sample path,x, to come from the space of all transport paths joining the

light to the eye,Ωeye. The target PDF ispeye(x). Each pathx with m segments is parameterized

by the surface intersection points at which a scattering event occurs,xi, i ∈ [1, . . . ,m− 1], along

with the final point,xm, and the point on the light source from which the particle is emitted,x0.

The Markov process generates each sample in the sequence,Xt, by proposing a candidate,X ′
t,

based on the previous sampleXt−1, and either accepting this candidate asXt or rejecting it and

repeatingXt−1. In pseudo-code:

X0 ← initialSample()
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for t = 1 to N

X ′
t ← propose(Xt−1)

r ← uniformRandom[0, 1)

if ( r < α(X ′
t|Xt−1) ) then

Xt = X ′
t

else

Xt = Xt−1

The procedureinitialSample chooses one of the paths generated by the path tracing com-

putation forBeye, according to the distributionpeye. The initial sample chosen in this way is

unbiased, so there will be no start-up bias in the Markov chain [31, 100]. The proposal func-

tion, propose(Xt−1), produces a new light path by applying a random modification to the current

sample. While the correctness conditions placed on the modifications are not difficult to satisfy,

the strategies employed are the primary factor in determining the efficiency of the algorithm (the

number of samples required for a good estimate). We describeour mutation strategies below.

The functionα(X ′
t|Xt−1) computes theacceptance probabilityfor X ′

t given the current sample.

α(X ′

t|Xt−1) = min

{

1,
feye,Y (X ′

t)T (Xt−1|X ′
t)

feye,Y (Xt−1)T (X ′
t|Xt−1)

}

[4.3]

The functionfeye,Y (X ′
t) is proportional to the target PDFpeye(x) (and the normalization constant

cancels out).

T (X ′
t|Xt−1) is the transition function (or proposal distribution) which gives the probability of

choosing, by any means,X ′
t givenXt−1. Note that the reverse transition function,T (Xt−1|X ′

t), is

also required, and in a Metropolis-Hastings sampler it neednot equalT (X ′
t|Xt−1).

4.3.1 Proposal Strategies

The techniques used in thepropose(Xt−1) procedure of the MCMC algorithm are the key to its

efficient and correct operation. There are two conflicting goals in designing a good proposal. The

candidate path,X ′
t, should be as different as possible from the current path,Xt−1, to rapidly move

around the sample state space. At the same time it should be sufficiently similar toXt−1 to exploit
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coherence in high-power paths. The technical conditions onpropose(Xt−1) ensure that there is

some non-zero probability way to move between any two non-zero probability paths (see Gilks et

al. [31]). The acceptance probability,α(X ′
t|Xt−1), is specifically designed to takeany proposal

strategy that meets the conditions, properly encoded in thetransition functionsT (Xt−1|X ′
t) and

T (X ′
t|Xt−1), and create an unbiased sampler.

We introduce two novel mutation strategies.User Path (UP)proposals make use of user hints

about which paths are likely to be important to the final result (Section 4.4). The variance of any

estimate is reduced around the given paths.Photon Map (PM) proposals explore paths that will

contribute to the global photon map (Section 4.4.3). They change the sample path while retaining

theDS∗E sub-path to the eye.

In addition, four other proposal types previously described for MLT are suitable for use here [103].

Bidirectional (BD) proposals modify sub-paths of the current path, with the aimof rapidly explor-

ing the sampling space.Caustic Perturbation (CP) andLens Perturbation (LP) proposals also

modify sub-paths, but this time with the aim of exploiting coherence in high-power, localized fea-

tures. Finally,Lens Sub-path (LS)proposals stratify samples across the image, which ensuresthat

enough samples are captured in darker regions of the scene. We implement each of these strategies

in the same manner as MLT.

Each time thepropose(Xt−1) procedure is called we choose one of the above strategies at ran-

dom according to a fixed distribution. That is,proposetype(Xt−1) is selected with probabilityPtype

wheretype is one of the above options and
∑

type Ptype = 1. In computing the transition function,

T (X ′
t|Xt−1), all possible proposals that might generateX ′

t from Xt−1 should be considered:

T (X ′

t|Xt−1) =
∑

type

PtypeTtype(X
′

t|Xt−1) [4.4]

However, it is also acceptable to consider only the functionderived from the proposal strategy

chosen to generateX ′
t [97, 2]:

T (X ′

t|Xt−1) = Tchosen(X ′

t|Xt−1) [4.5]

We use a combination of both strategies: Equation 4.5 avoidsthe computation of unnecessary

transition functions, but Equation 4.4 is required for userpath proposals (Section 4.4.2).
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4.4 User Path Proposals

The user path proposal strategy increases the proportion ofcandidate paths around those sup-

plied by the user. This results in variance reduction for anyestimate based on the paths, such as

photon map evaluation. There are several applications:

Difficult Paths: Transport paths that are particularly hard to find randomly lead to large variance

because they may be found and give a high contribution, or arenot found and give no contri-

bution. Among our images, the caustic caused by light bouncing off the mirror and through

the glass ball in the Box scene of Figure 4.6 best fits this description. Light shining through

a keyhole is perhaps the most commonly thought of example, ifnot the most common in

practice. A user can supply paths that meet the geometric constraints and thus ensure the

feature is adequately sampled.

User Control of Variance: Some regions of an image may be more important than others, such

as those toward the center or in some other perceptually important region. A user can supply

paths leading to the region of interest and it will be sampledwith lower variance than other

regions (Figure 4.3, page 67).

Resampling: Rather than a user defining paths, they could be taken from someprevious sam-

pling operation. Our earliest experiments used paths takenfrom the initial path tracing pass

to estimateBeye. Alternatively, a user could identify paths from a coarse run of the algo-

rithm and re-use them in a final render. Resampling should alsoenable adaptive, unbiased

Monte Carlo rendering and provide a handle on low-variance, physically-accurate animation

rendering, but we leave these topics for future work.

Figure 4.3 compares images rendered with the Metropolis Light Transport algorithm: one with

user paths and one without. Each image used 3 million iterations, producing a variance measure-

ment ofV AR(E) = 1.04 (Section 6.5) for the image with user input. It requires 4.8 million

samples, or about 60% more time, to achieve similar results without user input.
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Reducing variance in one area of the image may lead to increased variance elsewhere, but it

is not a zero-sum game. User paths can lead to a global reduction in variance if they increase the

average acceptance probability, and hence the number of different paths sampled. This was the

case in Figure 4.3, where the acceptance rate rose from 58% to65% with the introduction of user

paths. In any event, users can choose to make a trade-off based on their own situation.

The user path proposal is not essential to achieving good results with Metropolis-Hastings

sampling. It is a way to enhance control of the algorithm. Theimage in Figure 4.5 did not use the

proposal, and the result in Figure 4.1 is almost as good without user paths.

4.4.1 Candidates from User Paths

Each path provided by the user must start at a light and end at adiffuse surface. To obtain paths,

we built a simple interface for the Box scene which allowed a user to interactively vary the origins

and directions of rays from the light which were then traced through the scene and extracted as user

paths. Tools like this could readily be included in modelingpackages. For Figure 4.3 we specified

paths by hand based on knowledge of the geometry.

Each path is input to the system as a sequence of surface points at which scattering occurs.

These are stored as a set,{u1, . . . ,uNUP
}, containingNUP paths. The first step of a proposal is to

choose, uniformly at random, one of the input paths,u = 〈x0, . . . ,xm〉. This path forms a skeleton

that we perturb to form the candidate path. The perturbationexplores the space around the user

path while avoiding the accumulation of large power at a single photon.

The candidate path,〈x′
0, . . . ,x

′
m〉, is built starting at the light:x′

0 = x0. We randomly generate

a direction within a cone about axisx0 → x1 by samplingθ, the angle between the axis and the

direction, uniform in[0, β) andφ, the azimuthal angle, uniform in[0, 2π). The surface point struck

in this direction,x′
1, is the next point on the candidate path. We repeat the processm times, using

the directionx′
i−1 → xi as the axis of the sample cone. To form a complete path to the eye, the

sub-path of sampleXt−1 joining the eye to the first diffuse point hit is appended to the candidate.

The candidate is rejected if there is no such diffuse point. When settingβ, lower values are good

for exploring tightly constrained paths while higher values give more variation around the user
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path and hence reduce variance over a larger area. The user can also specify a differentβ for each

path segment.

The candidate path may pass through an opaque surface, in which case a visibility term infeye

is zero and the path will be rejected. If the user path contains specular interactions, a specular

surface must be found at the same index on the perturbed path.If it is, we follow the specular

bounce rather than sampling a perturbed direction. If the user path specularity is not matched in

the perturbed path, or the perturbed path intersects an unmatched specular surface, the candidate is

rejected. These restrictions ensure that specular bounces“cancel out” in computing the acceptance

probability (see Veach [100,§10.3.5]).

4.4.2 User Path Transition Functions

The transition probability must consider all the possible ways a UP proposal may have gener-

ated the candidate:

TUP (X ′

t|Xt−1) =
1

NUP

NUP
∑

i=1

C(ui)
m−1
∏

j=0

pj

G(x′
j ↔ xj+1)

cos θ′j
[4.6]

C(ui) is 1 if the candidate could have been generated from pathui, otherwise 0. The product of

terms accounts for the probability of each perturbed bounce. If the bounce atxj was non-specular,

thenpj = 1/2πβj. For a specular bounce,pj = 1 because there is no random choice. The geometry

terms are still required to convert from the solid angle measure to the surface area measure. The

geometry and cosine term convert the direction sampled according to the solid angle measure into

one sampled using the surface area measure.θ′j is the angle between the normal atx′
j and the

directionx′
j → xj+1.

To computeC(ui), we perform the procedure for building a candidate fromui, but rather than

creating the new candidate we check that the pointx0 is common toX ′
t andui and that each ray

direction inX ′
t lies within the sample cone ofui. Finally, the resulting number of path segments

must correspond. The reverse transition probability,TUP (Xt−1|X ′
t), is similarly computed.

The UP proposal generates a path,X ′
t, close to a user given path regardless of the previous

path,Xt−1. However, in most cases the pathXt−1 could not have been generated fromX ′
t in the
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same manner; most paths are not close to a user defined path. Hence,TUP (Xt−1|X ′
t) will be zero

in almost all cases. This leads to a zero acceptance probability, which is a problem because the

proposed path will never be used. It is, however, possible togenerate a UP proposal candidate

using a BD proposal because the latter gives any path a non-zero transition probability. Hence,

we combine the UP and BD proposal strategies when computing transition functions: ifchosen is

eitherUP or BD, then

T (X ′

t|Xt−1)=
PUP TUP (X ′

t|Xt−1)+PBDTBD(X ′
t|Xt−1)

PUP + PBD

[4.7]

Thus we have a two tiered proposal selection process. First,we decide if the proposal will be a

UP-BD hybrid (with probabilityPUP + PBD) or one of the others. We apply Equation 4.5 for this

selection. If the hybrid is chosen, we decide between UP and BD, and apply Equation 4.7.

The combination of UP and BD proposals in computing the transition functions is the key idea

for enabling user input samples, and is possible because theacceptance probability mechanism of a

Metropolis-Hastings sampler allows different sampling processes (proposal strategies) to be com-

bined. Furthermore, the acceptance criteria ensures that the final distribution is unbiased provided

the transition functions and target PDF values are correctly computed. Intuitively, the algorithm

rejects just the right proportion of UP candidates to ensurethat the final result is not biased toward

them.

The values forPUP andPBD will influence performance of the algorithm. Assume that the

reverse transition function,TUP (X ′
t−1|Xt), is very small or zero and considerPUP /PBD, the ratio

of UP to BD proposals. AsPUP /PBD increases, the acceptance probability (Equation 4.3) will

decrease, resulting in the chain repeating the same path more often. This results in fewer photons

stored away from the user path (fewer candidates for these paths are proposed), but increases the

power of those photons, resulting in a noisier image away from the user path. This effect is counter-

balanced by the ratio of thefeye,Y terms, which favors transitions to important paths, including user

paths, regardless of how they were proposed.

When using user paths to overcome hard-to-find paths, the ratio PUP /PBD should be higher to

provide many user candidates which will be accepted due to their high feye,Y . In the context of
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user-guided variance reduction, the ratio should be smaller to avoid frequent rejection of user path

candidates and the higher variance that would result in regions away from the user paths. Varying

the ratio gives the user control over how much influence theirpaths have on the distribution of

variance over image.

Rather than users providing paths, the user-path proposal could be extended to include hints

about important surface patches or reflectance directions.To use important surface patches, for

instance, the candidate path can be constructed by randomlychoosing points on the patches and

joining them up. The terms inside the product in Equation 4.6must be modified to account for the

new probabilities of choosing the points. Otherwise the algorithm is unchanged.

4.4.3 Photon Map Proposal

The Photon Mapping proposal generates complete paths with eye sub-paths that are similar to

those used in the final gather phase. Photons derived from complete paths will thus be at locations

useful for gathering. Tracing back toward the light from thelast diffuse surface point,xd, (that

is closest to the eye) we find a sub-path〈xd−k, . . . ,xd〉 of the form (L|D)DS∗D. That is, the

sub-path back through any number of specular bounces (possibly 0) followed by a diffuse bounce

and ending at the next diffuse surface, or the light. The candidate path keepsxd and modifies

the direction back toxd−1, similar to the way a final gather operation distributes raysto estimate

indirect illumination.

Modify the centralDS∗ portion of the sequence by perturbing the direction of the ray xd →
xd−1 by an angleθ uniform in [0, γ) andφ uniform in [0, 2π) (as in the UP proposal). For all

examples in this chapter we setγ = 30◦, and the precise value seems not to impact the results. This

ray is traced back through zero or more specular bounces until the next diffuse hit, forming a new

DS∗ sequence which is inserted in place of the original, resulting in
〈

xd−k,x
′
d−k′−1, . . . ,x

′
d−1,xd

〉

.

The diffuse (or light) points at the end of the modified segment allow for non-zero probability that

the candidate path will carry some power.
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Scene Resolution tB (s) tmap (s) tFG (s) Totalt (s) # Photons RMS Error

MPS PM MPS PM MPS PM MPS PM MPS PM

Rooms 720×405 21 40 9 419 469 480 478 81004 300000 0.036 0.4239

Lantern 684×513 11 10 4 185 198 206 202 8675 37160 0.0728 1.165

Box 640×480 9 26 12 208 230 243 242 47798 250000 0.0214 0.0227

Table 4.1: Statistics for images of Rooms, Lantern and Cornell Box scenes.Timing is given for
MPS and Photon Mapping:tB is the time to estimateBeye, tmap is the photon sampling time and
tFG is the final gather time. While MPS spends more time sampling, the fewer, well-distributed
photons reduced the time required for the final gather. We also give the number of photons stored.
Memory usage for the maps is linear in the number of photons, with 49 bytes per photon in the
PBRT implementation that we use [73]. Finally, we give RMS errors for the images compared
against path tracing solutions that ran for several days (Figure 4.7).

The transition probability is similar to that of the UP proposal, except that there is only one

perturbed choice followed by a number of specular bounces:

TPM(X ′

t|Xt−1) =
G(xd,xd−1)

2πγ cos θd

d−k′−2
∏

j=d−1

G(x′
j,x

′
j+1)

cos θ′j

4.5 Results and Discussion

Our rendering system uses libraries and code from the PBRT toolkit [73] wherever possible,

including for the final gather operation. There are a varietyof parameters to the algorithm. Those

for the MLT-style proposals were taken from Veach [100]. Forthe Photon Mapping final gather

parameters, the formula for computing the maximum search distance for photons,dmax, was taken

from Suykens [88, Pg. 159] (α = 0.1) while the maximum number of photons in an estimate,n,

was set at 60. We introduced new parameters for the probability of choosing a proposal strategy,

Ptype, which are given below on a per-image basis. We also introduced parameters for controlling

the perturbation of a user path,β, which we varied per image, and the perturbation of a photon

map sub-path,γ = 30◦.

Timing results and other statistics for the images in this chapter are provided in Table 4.1.

All images for comparison between methods were generated with nearly equal total computation
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time. All were reconstructed with a Gaussian kernel of width2 pixels andσ = 1. Irradiance

caching [106] was used to speed up photon map estimation [45]. For tone reproduction we followed

Reinhard et al. [77], with the parameterymax = 100.

We implemented one further optimization borrowed from MLT.Rather than storing nothing for

rejected paths, we store a photon with power reduced according to the acceptance probability, and

reduced the power of the repeated path to compensate [100]. This increases the number of photons

stored and extracts some benefit from rejected paths, but at the cost of increased variance in photon

power. We found the benefits of increased usable photons outweighed the increase in variance.

We also computed error measurements with respect to a long running path tracing estimate of

each image. For each pixel, we computed the relative error (before tone mapping):

E(x, y) =
I(x, y)− Iref (x, y)

Iref (x, y)

whereIref is the pixel luminance value from the path tracing referenceimage. In Table 4.1, we

report the RMS value of these errors over the entire image, forMPS sampling and standard photon

map sampling. MPS out-performs Photon Mapping in all cases (although by a negligible amount in

the Box example). Note that we cannot expect zero error here – even the reference image contains

noise.

The Room scene of Figure 4.1 contains about 42,000 primitives. Both the Photon Mapping and

MPS images used 4 samples per pixel and 40 final gather rays persample for estimating indirect

illumination. The scene contained user paths specified by hand but no caustics, and we setβ = 5◦

in the user path mutation. The proposal probabilities were:PUP =0.1,PBD=0.3,PPM=0.2,PCP =0,

PLP =0.2 andPLS=0.2. These, like all our proposal probabilities, were chosen to give roughly

equal proportion to each strategy that was useful for the scene. While MPS spent significantly

more time than Photon Mapping in sampling photons, it was regained in the faster final gather

phase; MPS’s smaller number of well-distributed photons improved the performance of nearest

neighbor searching in the photon map. We also rendered this scene with Photon Mapping using

6 million photons, which took almost an hour and reduced the noise in the result, but failed to

remove the energy bleeding problems and used two orders of magnitude more memory than MPS.
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Apart from managing difficult transport paths, a significantadvantage of MPS is its ability to

store photons only where relevant. Figure 4.5 demonstratesa scene in which Photon Mapping

stores almost all photons inside the lantern, where they remain unused when gathering for the

wall pixels. In contrast, MPS places almost all samples on the walls of the room. This results

in reduced energy bleeding on the table around the box and farless noise in the image overall.

These images used 30 samples for each indirect illuminationestimate, and 4 samples per pixel.

This scene contained no user paths (the important transportpaths are not too hard to sample) nor

caustics, hence the proposal probabilities were:PUP =0,PBD=0.4,PPM=0.2,PCP =0,PLP =0.2 and

PLS=0.2.

Figure 4.6 shows a variant on the Cornell Box scene with complexcaustic paths (the right wall

and rear ball are mirrors, and the front ball is glass). We used ten user paths in this scene, five for

each caustic under the ball. These were perturbed usingβ = 1◦ for segments between the light

and mirror wall, andβ = 5◦ for segments from the light direct to the glass ball. We setPUP =0.1,

PBD=0.3,PPM=0.2,PCP =0.12,PLP =0.08 andPLS=0.2. Photon Mapping requires many photons

to resolve the small caustic due to light bouncing off the mirror through the glass ball. Furthermore,

the mirror wall subtends a large area at the light, so it is difficult to concentrate photon sampling

toward the caustic producing region, and caustic photons sparsely stored on the rear wall cause

excess noise due to their high power. Even with more photons,the caustic is not as good as that

from MPS.

4.5.1 Limitations and Extensions

MPS is slower per photon than standard Photon Mapping, but a greater proportion of the stored

photons are typically useful. The increase in per-photon cost is because more terms must be eval-

uated to determine the acceptance probability for each candidate. A path tracing phase is also

required and its cost should be amortized over the stored photons. However, the significant im-

provement in photon distribution achieved with MPS allows for fewer photons overall and typi-

cally reduces the cost of the final gather, giving better images for a given computational effort. We

have also lost the view invariance of standard photon map construction, as would any method using
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visual importance. If the viewer’s path were known, the eye location could be a variable included

in the sampling process, just as locations on an area light source can vary.

Samples from a Metropolis-Hastings algorithm are correlated due to the Markov process, so

the chain needs some time to explore the space adequately, whereas independent particles traced

from the light will show no spatial correlation, and can be stratified across the light surface and

outgoing direction. This may be important in scenes with very few photons. Parallel Markov

chains could be used to generate samples, which would improve the distribution of samples over

very short runs. We found this made no difference to the results for the photon counts required in

our scenes.

Alternate methods could be used to sample paths, such as bidirectional path tracing or path

tracing from the eye. These would be simpler to implement andless computationally expensive, but

lack the ability of MPS to exploit correlation in power between neighboring paths. A production

system should support multiple algorithms for populating photon maps and share the final gather

code and many other modules, including those for ray-tracing and BRDF sampling. Our system is

built this way.

We store photons only at a single point along a sampled path — the point most relevant to a

final gather operation. However, other points along the pathmay also be useful, as is the case in

the Box scene where any diffuse surface point may be called upon to compute a radiance estimate.

We chose not to store additional points because of the memoryoverhead and the energy bleeding

problem. An alternative is to use an importon map to measure the visual importance of surface

points, and store photons at any sufficiently important point along the path [50]. This would

probably reduce the number of iterations required for MPS onsimple scenes, at the cost of an

importon map construction phase.

The target PDF we use,feye, considers all paths that carry power from the lights to the image

as important. We could support other forms of importance, such as perceptual metrics or shading

discontinuities, simply by modifying theWeye(x) component offeye. The only potential downside

would be an increase in the variability of power stored at thephotons,Φ(j), which can increase

noise in the final image.
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The user path proposal can be used, unmodified, for Metropolis Light Transport (Figure 4.3).

Its impact is even greater because the variance in MLT is not disguised by the final gather operation.

Conversely, MLT offers a variance reduction technique that we did not implement: the brightness

of image pixels is estimated in a first pass and used to modify the path probabilities to make all

pixels equally probable. This could be implemented in MPS through importon maps that modify

the probability of paths, but it may result in large variancein photon power. Finally, our work could

be extended to atmospheric scattering by combining Photon Mapping for participating media [46]

with Pauly et al.’s [71] MCMC sampler.

The photon mapping algorithm is one of the most important global illumination approaches and

is widely used in industry. One disadvantage of the current photon mapping method is that there

are many scenes for which an enormous number of photons must be traced in order to have enough

of them in the right places to get good results during final rendering. MPS solves that problem by

using Metropolis sampling to create photons that are guaranteed to contribute to the final gathering.

Since MPS and traditional photon mapping share the same photon data structure and final gathering

phase, it is relatively easy to incorporate the MPS method into an existing photon mapping system:

we only need to replace the part for generating photons. Figure 4.8 shows how MPS can fit in the

traditional rendering pipeline by modifying the photon generating phase in photon mapping.

4.6 Conclusion

Metropolis Photon Sampling succeeds in generating photon map samples that meet the needs

of the final gather phase, without wasting storage or computation time on unnecessary photons. It

achieves this by sampling only over light transport paths that reach the image, and storing photons

only at appropriate points along the path. The photon distribution that results has more photons that

contribute to visually important locations, and fewer in irrelevant places. This not only improves

estimates from the map due to higher photon density, but alsoreduces the chance that inappropriate

photons will be used and hence reduces energy bleeding artifacts. At the same time, MPS allows
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users to supply information to the sampler in the form of important paths, something not achievable

in most Monte Carlo algorithms.

The new sampler is best suited to scenes in which only a small portion of the lights’ power

arrives in visually important areas. Our method does not require any modification to the final gather

phase of photon mapping, so it can be used in conjunction witha standard particle tracing sampler.

Depending on the scene, one or other sampler could be used, but there is nothing preventing the use

of both methods to fill the same map in scenes with multiple light sources that contribute differently

to the image. Furthermore, any improvements to the final gather phase of Photon Mapping apply

equally well to Metropolis Photon Sampling.
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Figure 4.3: An example of variance control due to the user path proposal strategy. Top is the
image rendered with no user paths, while center is the resultwhen the user specified ten paths
passing through the doorway. Bottom are zooms of the wall intersection and table regions, with no
user paths on the left and user paths on the right. These are MLT images that directly visualize the
sampled light paths. The improvements after a final gather, while present, are less apparent.
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Box interior

Room walls

Figure 4.4: The photon distributions for the Jack-o-Lantern scene. Left column is Photon Map-
ping, while right column is MPS. The top row shows the interior of the box containing the light,
while the lower row is the interior of the room. For effectivegathering, most samples should be in
the room, as is the case for MPS.

Figure 4.5: A Jack-o-Lantern scene demonstrating MPS’s efficient placement of samples. The
Photon Mapping scene (right) stores excess photons inside the box and an insufficient number on
the walls of the room, resulting, respectively, in significant energy bleeding around the base of the
box on the table and noise throughout the image.
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Figure 4.6: The Box scene has a mirror ball at the rear and a mirror right wall, while the front ball
is glass. The left image included ten paths specified by the user: five contribute to the large caustic
under the glass ball, while the others bounce off the mirror and through the ball to contribute to
the smaller caustic. The center scene had no user paths, and consequently the caustics show high
variance. Right is a Photon Mapping image of the Box scene computed in equivalent time. The
large number of photons cast to resolve the small caustic result in slightly greater noise in the
right-rear of the box.
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Figure 4.7: Reference images for the scenes in the paper, generated usingpath tracing.
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Figure 4.8: MPS’s place in the physically based rendering pipeline. We only need to replace the
sampling phase in traditional photon mapping with the sampling phase in MPS.
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Chapter 5

Population Monte Carlo Rendering

Monte Carlo integration methods offer the most general solution to physically accurate light-

ing simulation. For production applications, algorithm efficiency is of primary concern: image

noise (variance) must be low at practical computation times. We present sampling techniques

that significantly improve rendering efficiency; for image-plane sampling, hemispheric integrals,

and global illumination. Each is derived using the population Monte Carlo sampling framework,

which is a technique that adapts sampling distributions over time and enables sample re-use, all

with theoretical guarantees on error and little computational overhead.

PMC algorithms iterate on a population of samples. In our simplest sampler, for image-plane

sampling (PMC-IP), the population is a set of image-plane locations (i.e., pixels). The population

is initialized in some way, say using stratified sampling; and PMC-IP generates an image. Any

information available at this stage can then be used to adapta kernel functionthat produces a

new population. In image-plane sampling, the perceptually-weighted variance in the intermediate

images is used to construct the kernel function, resulting in more image plane samples in regions of

high variance. The procedure is then iterated: sample, adapt, sample, . . . . The result is an unbiased

algorithm.

In the case of direct lighting, or hemispheric integrals in general, importance sampling [73] is

the primary variance reduction tool. However, a poor choiceof importance function canincrease

variance, and, moreover, the best importance function can vary throughout a rendering depending

on such things as surface properties, lighting configurations and the presence of shadows. For
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example, the ideal importance function for a semi-gloss surface depends on whether the primary

lobe points toward a light source, or the surface is in shadow, or neither. These configurations

vary over a surface and they are difficult to discover before sampling begins, yet the choice of

importance functions is typically made once and remains fixed. PMC for hemispheric integrals

(PMC-HI) improves sampling efficiency by dynamically choosing importance functions based on

information gathered during rendering.

Sample re-use is another way to reduce variance. Most rendering algorithms produce indepen-

dent samples, so if a sample locates a small but important region of the domain, the information

is lost to other samples. Markov chain Monte Carlo algorithmsfor global illumination, such as

Metropolis Light Transport [103] and Energy RedistributionPath Tracing [13], enable sample re-

use by mutating existing samples into new ones, but the choice of good mutation strategies is

non-trivial and has a major impact on image quality. PMC pathtracing (PMC-PL) exploits infor-

mation from important samples through re-use, with a mutation process that is adapted on-the-fly.

The resulting algorithm is self-tuning to a large extent.

Population Monte Carlo is a general purpose framework with many variants. The challenge in

applying it to rendering lies in the small sample counts, hard-to-evaluate distributions, and visual

sensitivity to noise. Our contribution is three specific tools for rendering that use the framework:

• An Image-Plane Sampler, PMC-IP, that adapts to guide samples to perceptually high vari-

ance image regions, is cheap to compute, maintains stratification, and is unbiased.

• An Hemispheric Integral Sampler, PMC-HI, that adjusts the sampling directions used to

evaluate hemispheric integrals at a point and supports a variety of importance functions

acting together. We can, for instance, avoid over-samplinga light source from a surface

point within its shadow, or a BRDF specular lobe that makes no contribution. Furthermore,

we can guide samples toward important illumination directions found by previous samples,

without adding bias.

• PMC Path Tracing, PMC-PT, that adapts the amount of energy redistribution at different

pixels and the area over which energy is redistributed. For example, pixels near a sharp
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shadow boundary will not attempt to widely distribute energy, while those in a smooth dif-

fuse image region will distribute over a wide area.

We include results comparing each algorithm to existing approaches, and discuss other rendering

problems that are likely to benefit from the approach. We find that PMC-based algorithms improve

efficiency by a factor of 2 to 5 over existing methods.

5.1 Related Work

Here we focus on three specific areas of related work: adaptive image-plane sampling, sam-

pling for irradiance integrals, and methods that re-use samples. For an overview of Monte Carlo

rendering in general, see Pharr and Humphreys [73].

Typically, adaptive image-plane algorithms perform a firstpass with a small number of samples

per pixel and use the resulting values to label pixels as adequately sampled or in need of further

refinement [32]. The algorithm then iterates on the pixels requiring more samples. However,

the labeling of pixels based on an initial sample introducesbias [51], a problem when physically

accurate renderings are required. We develop an unbiased, easy to implement method.

Many metrics have been proposed for the test to trigger additional sampling. Lee et al. [57]

used a sample variance based metric. Dippé and Wold [17] estimated the change in error as sample

counts increase. Painter and Sloan [70] and Purgathofer [75] used a confidence interval test, which

Tamstorf and Jensen [95] extended to account for the tone operator. Mitchell [65] proposed a

contrast based criterion because humans are more sensitiveto contrast than to absolute brightness,

and Schlick [83] included stratification into an algorithm that used contrast as its metric. Bolin and

Meyer [6], Ramasubramanian et al. [76], and Farrugia and Péroche [29] used models of human

visual perception, of which we use a variant. Most recently,Rigau et al. [78, 79] introduced

entropy-based metrics.

Our algorithm views the image plane as a single sample space for the purposes of sampling.

Dayal et al. [16] took a similar view in the context of frameless rendering. They used a variance-

based metric to control a kD-tree subdivision where samplesare drawn uniformly within each



76

adaptively sized cell of the subdivision. Stokes et al. [87]also used a global approach with their

perceptual metric.

There is a large body of work on computing irradiance integrals (direct lighting), mostly

concerned with importance sampling functions. Veach’s thesis [100] provided a good descrip-

tion of the basic methods and analysis of variance. Importance functions have most commonly

been based on surface BRDFs (see Pharr and Humphreys [73] for anoverview of these), or light

sources [85, 1]. Recent advances include wavelet-based importance functions for environmental

lighting [12], and resampling algorithms [7, 94] that avoidvisibility queries for samples that are

likely to be unimportant. However, the former is applicableonly to environment maps, while the

latter throws away samples and still requires a-priori choice of importance functions. No existing

importance sampling approach for irradiance integrals offers adaptable importance functions.

Work on adaptive PDFs for importance sampling has focused onpath tracing or irradiance

caching applications. Dutré and Willems [24] used piecewise linear functions to determine shoot-

ing directions out of light sources in a particle tracing application. Dutŕe and Willems [25] used

piecewise constant functions, and Pietrek and Peter [74] used wavelets to build adaptive PDFs for

sampling gather directions in path tracing. A diffuse surface and piecewise constant PDF assump-

tion is required to reduce the number of coefficients to a manageable level, and even then very high

sample counts are required. It is important to note that a badapproximation canincreasevariance.

Lafortune and Willems [56] used a 5D tree to build an approximation to radiance in the scene,

and then used it for importance sampling in a path tracing framework. The same problems with

sample counts and approximation errors arise in their work.Our algorithm works with arbitrary

BRDFs and uses a low-parameter adaptive model to minimize the sample count required to control

adaptation.

Adaptive algorithms have also been suggested for shadow computations. Ward [104] proposed

an algorithm for scenes with many lights, where shadow testsfor insignificant lights are replaced

by probabilistic estimates. Ward’s approach works best with many light sources (tens or hundreds)

while our technique works best with few sources. Ohbuchi andAono [68] adaptively sample an
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area light source (which introduces bias). They achieve good stratification by employing quasi-

Monte Carlo (QMC) techniques to place the samples, a techniquewe also use.

Sample re-use via Markov chain Monte Carlo (MCMC) algorithms isa powerful means of ex-

ploiting hard-to-find light transport paths in global illumination. Metropolis Light Transport [103]

was the first algorithm to use this approach, but very large numbers of samples are required, and

stratification is difficult. Energy redistribution path tracing (ERPT) attempts to address this prob-

lem by starting with a well-stratified set of initial samplesand locally redistributing energy using

MCMC. The noise-reduction techniques they propose introducebias. Our PMC path tracing algo-

rithm automatically adapts parameters in an ERPT-like algorithm and is unbiased.

5.2 Population Monte Carlo (PMC)

The population Monte Carlo algorithm [8] is an iterated importance sampling method with dy-

namically adaptive importance functions which approach the target distribution with the iterations.

We outlined a general PMC algorithm in Section 2.6.2.

Several steps are required to apply PMC to rendering problems:

• Decide on the sampling domain and population size. Computational concerns and stratifi-

cation typically drive the choice of domain. In the image-plane case, working on a discrete

pixel domain rather than a continuous one makes stratification simpler to implement and

sampling more efficient. We discuss the choice of populationsize in the context of each

algorithm, and later in the discussion.

• Define kernel functions and their adaptation criteria. Thisis the most important task, and we

give examples for our applications and suggest some generalprinciples in the discussion. For

rendering applications, two key concerns are the degree to which the kernel supports strat-

ification and whether it works with a small population size (as low as 4 in our hemispheric

integrals sampler).
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• Choose the techniques for sampling from the kernel functionsand the resampling step. The

deterministic sampling we use significantly reduces variance, much like stratification.

The following sections describe each of our samplers in detail, before we conclude with results

and a general discussion on PMC for rendering problems.

5.3 PMC-IP: Image-Plane Sampling

Physically based rendering algorithms compute the intensity, I(i, j), of each pixel(i, j), by

estimating the integrals:

Ii,j =
∫

I

Wi,j(u)L(x, ω)du [5.1]

whereI is the image plane,Wi,j(u) is the measurement function for pixel(i, j) – non-zero ifu

is within the support of the reconstruction filter at(i, j) – andL(x, ω) is the radiance leaving the

point,x, seen throughu in the direction−ω, determined by the projection function of the camera.

We are ignoring depth of field effects, which would necessitate integration over directions out of

the pixel, and motion blur, which would require integrationover time.

An image-plane sampler selects the image-plane locations,x, in Equation 5.1. For simplicity,

assume we are working with a ray-tracing style algorithm that shoots from the eye out into the

scene. Adaptive sampling aims to send more rays through image locations that have high noise,

while avoiding bias in the final result.

Taking an importance sampling view, given a set of samples,{X1, . . . ,Xn} from an importance

functionp(x), each pixel is estimated using

Îi,j =
1

n

n
∑

k=1

Wi,j(Xk)L(Xk, ω)

p(Xk)
[5.2]

The source of bias in most existing adaptive image-plane samplers is revealed here. To be

unbiased, an importance sampling function must always be non-zero when the target function is

non-zero, which is not the case if a pixel is explicitly cut off from sampling (p(x) = 0 within the

pixel). Adaptive sampling without bias must avoid decisions to terminate sampling at an individual

pixel, and instead look at the entire image plane to decide where a certain number of new samples
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will be cast. Every pixel with non-zero brightness must havenon-zero probability of being chosen

for a sample, regardless of its estimated error.

We also note that Equation 5.2 can be broken into many integrals, one for the support of each

pixel. Providedp(x) is known in each sub-domain, the global nature ofp(x) is not important.

5.3.1 The PMC-IP Kernel Function

The kernel function is the starting point in creating a PMC algorithm for adaptive image-plane

sampling. We need a function that has adaptable parameters,is cheap to sample from, and supports

stratification. This can be achieved with amixture modelof component distributions,hIP,k(x), one

for each pixel:

K
(t)
IP (x) =

m
∑

k=1

α
(t)
k hIP,k(x),

m
∑

k=1

α
(t)
k = 1.

wherem is the number of components in the mixture model. Each component is uniform over the

domain of a single pixel integral. The parameters to the distribution are all theα(t)
k values, and

these change at each iteration,t. We achieve an unbiased result if everyα
(t)
k ≥ ǫ, whereǫ is a small

positive constant (we use 0.01). We enforce this through theadaptive process, and the use ofǫ,

rather than 0, provides some assurance that we will not overlook important contributions (referred

to asdefensive sampling[42]).

The use of a mixture as the kernel results in aD-kernel PMC [19] algorithm. Sampling from

such a distribution is achieved by choosing a component,k, according to theα(t)
k , and then sam-

pling from hIP,k(x). The latter can be done with a low-discrepancy sampler within each pixel,

giving sub-pixel stratification. Stratification across theentire image plane can be achieved through

deterministic mixture sampling, which we describe shortly.

It is important to correctly determine the importance function p(x) in Equation 5.2 for a given

pixel. All the samples attributed to a particular pixel comefrom a single component; all other

components have zero probability of producing that pixel, and theα
(t)
k sum to one. Hence,p(x) =

hIP,k(x).

Notice that this kernel function is not conditional:KIP (x(t)|x(t−1)) = KIP (x(t)). Hence,

for image-plane sampling we do not include a resampling stepin the PMC algorithm because no
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samples are re-used. The knowledge gained from prior samples is used instead to adapt the kernel

function.

5.3.2 Adapting the PMC-IP Kernel

The adaptation method is responsible for determining the value of eachα(t)
k given the popula-

tions from previous iterations and any information available from them, such as the image com-

puted so far. Pixels that require more samples should have highα
(t)
k for the component that covers

the pixel, and we need to define someα
(t)
k for every pixel.

An appropriate criterion assignsα(t)
k proportional to an estimate of the perceptually-weighted

variance at each pixel. The algorithm tracks the sample variance in power seen among samples

that contribute to each pixel. To account for perception, the result is divided by the threshold-

versus-intensity functiontvi(L) introduced by Ferweda et al. [30]. Normalization also accounts

for ǫ.

α′

k =
σ2

k

tvi(Lk)

α
(t)
k =

ǫ

m
+

(1− ǫ)α′
k

∑m
i=1 α′

i

The first iteration of the algorithm samples uniformly over the image plane, so this criteria can

always be computed. The left images in Figure 5.2 show an example of anα
(0)
k map for a given

initial image. The perceptual term in the error image prevents very high errors in both bright

regions (a problem with unweighted variance) and dark areas(a problem with luminance-weighted

variance).

5.3.3 Deterministic Mixture Sampling

Randomly sampling from the discrete distribution defined by theα
(t)
k produces excess noise —

some pixels get far more or fewer samples than they should. This problem can be avoided through

the use ofdeterministic mixture sampling, DMS, which is designed to give each component (pixel)

a number of samples roughly proportional to itsα
(t)
k . Deterministic mixture sampling always gives

lower variance when compared to random mixture sampling, asproved by Hesterberg [42].
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The number of samples per iteration,N , (the population size) is fixed at a small multiple of the

number of pixels. We typically use 4, which balances betweenspending too much effort on any

one iteration and the overhead of computing a new set of kernel parameters. For each pixel, the

deterministic sampler computesn′
k = Nαk, the target number of samples for that pixel. It takes

⌊n′
k⌋ samples from each pixelk’s component. The remaining un-allocated samples are sampled

from theresidual distributionwith probabilityn′
k − ⌊n′

k⌋ at each pixel (suitably normalized).

Figure 5.1 summarizes the PMC-IP algorithm:

1 Generate the initial image

2 for t = 1, · · · , T
3 Compute the perceptually-weighted variance image

4 Computeα(t)
k for each pixelk

5 Use DMS to allocate samples according toα
(t)
k

6 Generate samples fromK(t)
IP (x) and accumulate in the image

Figure 5.1: The PMC-IP algorithm.

5.3.4 PMC-IP Results

Adaptive image-plane sampling can be used in many situations where pixel samples are re-

quired and an iterative algorithm can be employed. We have implemented it in the context of

direct lighting using a Multiple Importance Sampler (MIS) and for global illumination with path

tracing. Other potential applications include bidirectional path tracing and photon-mapping. Algo-

rithms that are not concerned with physical correctness would be better served by a simpler, biased

criterion.

Figure 5.2 shows the Buddha direct lighting example. The surface is diffuse with an area light

source. Each pixel sample used 8 illumination samples, and the images were rendered at 256×512,

with statistics presented in Table 5.1. We introduce the perceptually-based mean squared efficiency



82

Figure 5.2: A comparison between adaptive and uniform image-plane sampling on a direct light-
ing example. Leftmost is the initial image for PMC-IP sampling, and theα(0)

k image. The initial
image used 2 samples per pixel. The next image is the result ofPMC-IP sampling with two iter-
ations at 4spp on average. Center is a 10spp image uniformly distributed. The zooms show the
shadow near the Buddha’s base (PMC-IP top, uniform bottom). Tothe right are the correspond-
ing variance images. Note that the variance image for the PMC-IP sampler has few high variance
regions, and is lower contrast in general, representing a more even distribution of error.

(P-Eff) metric for comparing algorithms, computed as:

Err =

∑

pixels e2

tvi(L)
, P-Eff = 1/(T × Err)

wheree is the difference in intensity between a pixel and the groundtruth value, andT is the

running time of the algorithm on that image. P-Eff is a measure of how much longer (or shorter)

you would need to run one algorithm to reach the perceptual quality of another [73].

The final adaptive image shown is the unweighted average of three sub-images (initial and two

iterations). While weighting each sub-image may be helpful,in this context it is not clear that the

samples from one iteration are any better than those from another because they all used the same

per-sample parameters. We obtained more samples in places that needed it, but not better samples.

The path tracing algorithm differs from a standard version only in how pixel locations are

chosen. The improvement due to PMC-IP sampling is more pronounced in this situation because

some areas of the image (the caustic, for instance) have muchhigher error than others due to the

difficulty of sampling such paths. In this example (Figure 5.3), we see that PMC-IP sampling with

a total of 16spp produces lower error than uniform sampling at 24spp, in 25% less time.

We ran our examples for fixed number of iterations (bounded computation time). If working

toward a error bound, then we would continuing iterating thePMC-IP sampler until total error
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Figure 5.3: A Cornell Box image computed using path tracing with 16spp adaptively sampled on
the left and 32spp uniformly distributed on the right. Even with about half less computation time
than the uniform image with 32spp, the adaptive image has superior quality around the caustic
which is the hardest region to sample.

dropped below a bound. Note that because the PMC-IP sampler evenly spreads variance over the

image, an overall image error bound is very unlikely to leaveany high-error pixels.

5.4 PMC-HI: Adaptive Hemispheric Integrals Sampling

Hemispheric samplers generate incoming directions,ω′, at a surface point,x. One application

is in direct lighting, which assumes that the light leaving asurface point,L(x, ω), can be evaluated

by the following integral, composed of terms for light emitted from and reflected atx:

L(x, ω) = Le(x, ω) +
∫

Ω
f(x, ω, ω′)dω′ [5.3]

whereLe(x, ω) is light emitted atx, Ω is the hemisphere of directionsout of x andf(x, ω, ω′) is

the light reflected atx from direction−ω′ into directionω:

f(x, ω, ω′) = Lin(x,−ω′)fr(x, ω, ω′)| cos(θ′)| [5.4]

whereL(x,−ω′) is the light arriving atx from directionω′, fr(x, ω, ω′) is the BRDF, andθ′ is the

angle betweenω′ and the normal atx.
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Image Method # SPP T(s) Err P-Eff

Buddha Uniform 10 58.1 0.625 0.027

PMC-IP 2+4+4 62.4 0.116 0.138

Box Uniform 16 163 0.545 0.011

Uniform 32 328 0.255 0.012

PMC-IP 4+6+6 184 0.182 0.030

Table 5.1: Measurements comparing PMC-IP and uniform image-plane sampling, for equal total
sample counts. The Buddha image computed direct lighting with the MIS method, with a total of
8 lighting samples for each pixel sample. PMC-IP sampling improves the perceptual-based RMS
error by a factor 5.4 over uniform sampling with only 7.5% more computation time. It corresponds
to an improvement in efficiency of 5.01. The Cornell Box images use path tracing to compute
global illumination including caustics. Comparing with images of 16ssp, PMC-IP improves the
efficiency by a factor of 2.65.

A standard importance sampling algorithm forL(x, ω) samples directions,{ω′
1, . . . , ω

′
n}, out

of x according to an importance function,p, and computes the estimate:

L̂(x, ω) =
1

n

n
∑

i=1

f(x, ω, ω′
i)

p(ω′
i)

[5.5]

The variance of this estimator improves asp more closely approximatesf , and is zero whenp is

proportional tof .

In the local direct lighting situation, one common choice for p is proportional to

Lin(x,−ω′)fr(x, ω, ω′)| cos(θ′)| or a normalized approximation to it. An alternative is to break

the integral into a sum over individual light sources and sample points on the lights to generate

directions [73,§16.1]. In an environment map lighting situation, the wavelet product approach of

Clarberg et al. [12] currently provides the best way to choosep. However, none of these individual

importance functions behaves well in all cases.

Figure 5.4 demonstrates the various difficult cases for importance sampling. The floor consists

of a checker based pattern with diffuse and glossy squares (with two types of gloss settings). There

are two lights, one large and one small. In pixels that image diffuse squares, an importance function

based on the lights is best. In highly glossy pixels that reflect the large light, BRDF sampling is



85

best. For glossy pixels that do not reflect a light, sampling from the light is best, and rough glossy

pixels benefit from both BRDF and light sampling. But we have no way of knowing this a-priori,

and most practitioners would use BRDF sampling. In rough glossy regions that reflect only one

light, sampling from the other light is wasteful, but again most algorithms would sample equally

or according to total emitted power.

Multiple Importance Sampling (MIS) addresses many of theseproblems by trying several im-

portance functions and combining their results. While this does very well at reducing variance, it

is wasteful in cases where one of the importance functions ismuch better than the others and could

be used alone. Other techniques assume knowledge of which strategy will dominate where.

PMC-HI is a sampler that generates directions out of a point byadapting a kernel function to

match the integrand of interest —Lin(x,−ω′)fr(x, ω, ω′)| cos(θ′)| in the direct lighting case. For

example, the leftmost images in Figure 5.6 indicate the relative usefulness of different importance

functions at each pixel. Furthermore, the PMC framework enables important samples from one

iteration to guide sampling in subsequent iterations.

Figure 5.4: A scene constructed to demonstrate how the optimal samplingstrategy varies over an
image. The checkerboard contains diffuse and glossy squares, with near-pure specular reflection
toward the back and rougher toward the front. There are two light sources.
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5.4.1 The PMC-HI Kernel Function

Each direct lighting estimate takes place at a single surface point and is only one small step in

a larger computation. The same surface point, and hence the same target function,fr, essentially

never re-appears. We choose to adapt on a per-estimate basis, which avoids the need to store

information about the adaptation state at surface points and interpolate to find information at new

points. Hence, the number of samples on which to base adaptation is low, certainly less than 100

and less than 10 in some of our examples.

A mixture distribution of a few candidate importance functions is a good starting point. At

least one such component is likely to be a good approximationto fr, and we expect to adapt to

use that function most often. To catch cases where good sampling directions are hard to find, we

include a component,hcone, that samples based on important sample directions from theprevious

iteration. For one light, the mixture is

K
(t)
IR(ω(t)|d(t), β(t)) = α

(t)
BRDF hBRDF (ω(t)) [5.6]

+ α
(t)
lighthlight(ω

(t))

+ α(t)
conehcone(ω

(t)|d(t), β(t))

There is one term for the BRDF-based importance function, one for a light (or one per light for

multiple lights) and the cone perturbation function. The cone function samples a direction uni-

formly within a cone of directions with axisd(t) and half-angleβ(t), which is set based on the

population in the previous iteration. It is particularly useful for situations like partial shadowing

where previous samples that found visible portions of the light generate more samples that also

reach the light. Figure 5.5 shows the mixture PDF and their component PDFs.

The population in PMC-HI is a set of sample directions out of the surface point we are estimat-

ing. The population size must be large enough to obtain reasonable estimates for theα(t)
k values

at each iteration, but not so large as to increase computation times significantly. We typically use

n = 2m, wheren is the population size andm is the number of mixture components. This is a

sufficient size to see the benefits of adaptation, as the result in Figure 5.6 demonstrates.
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5.4.2 Adapting for PMC-HI

An initial population ofn0 samples,
{

Ω
(0)
1 , . . . , Ω(0)

n0

}

, is generated usingα(0)
cone = 0 and the

otherα(0)
k equal and summing to one. Deterministic mixture sampling isused to select the number

of samples from each component. Each sample is tagged with the mixture component that was

used to generate it, and their importance weights are computed:

w
(0)
i =

f(x, ω, ω′)

K
(0)
IR (ω(0))

[5.7]

There is no resampling step for direct lighting. The sample size is so small that resampling

tends to unduly favor high-weight directions at the expenseof others, thus reducing the degree to

which sampling explores the domain. Instead, the cone mixture component is used to incorporate

the information from previous samples.

The new component weights,α
(1)
k , can now be determined, along with thed(1) andβ(1) param-

eters forhcone(ω
(1)|d(1), β(1)). The cone directiond(1) is found by taking a weighted average of

thet = 0 population samples, with weightsw(0)
i . The cone size is set to the standard deviation of

those samples. The component weights are set based on the sample importance weights:

α
(t)
k =

∑

i∈Sk
w

(t−1)
i

∑n
j=1 w

(t−1)
j

[5.8]

whereSk is the set of samples that were generated using componentk. In the first iteration there

is no sample from the cone perturbation, so we setα(1)
cone = 0.2 and adjust the otherα’s by a factor

of 0.8 to make them all sum to one.

We now begin the next iteration. A new set of samples is generated using deterministic mixture

sampling from the kernelK(t)
IR(ω(t)|d(t), β(t)), weights are computed, and the kernel function is

updated based on the weights. To form the estimate, use Equation 2.32 with each sample,Ω(t)
i ,

weighted byw(t)
i from Equation 5.7.

5.4.3 Adaptive Direct Lighting Results

We present results on two examples of PMC-HI for direct lighting: the Checker scene (Fig-

ure 5.7) and a plant rendering with complex shadows and glossy BRDFs (Figure 5.8). Timing and



88

Image Method # SPP T(s) Err P-Eff

Checks MIS 12 46 0.379 0.057

MIS 48 183 0.153 0.035

PMC-HI 12 54 0.146 0.127

Plant MIS 27 53 0.403 0.047

PMC-HI 27 64 0.128 0.122

Table 5.2: Measurements comparing PMC-HI sampling with MIS, for equal total sample counts.
In all cases we used a single direct lighting estimate for each pixel. For Checks scene, PMC-HI
improves the efficiency by a factor 2.21, which takes four times more samples for uniform MIS to
reach the approximately same perceptual based variance (Err). The efficiency gain for the Plant
scene is 2.60.

error comparisons with MIS (the best of several existing algorithms we tried on these scenes) ap-

pear in Table 5.2. The checkerboard image resolution is 500×500 and the plant image is 720×405.

The Checker scene clearly demonstrates that adaptation is a stable process that finds a good

kernel function, or evenly weights the components if none dominates (Figure 5.6). The cone

component is not particularly helpful in this case because visibility is simple. Timing results show

that PMC-HI halves the variance for a given sample count compared to MIS, with only 20% more

computation time. The Plant scene demonstrates the usefulness of the cone function in partially

shadowed regions. It shows major improvement in the soft shadow boundaries on the table.

5.5 PMC Path Tracing

PMC Path Tracing (PMC-PT) is an algorithm motivated by energyredistribution path tracing

(ERPT) [13] that adaptively selects pixels for redistribution, and can also adapt algorithm parame-

ters. ERPT as originally proposed traces a path into the scenefrom each pixel, using path tracing

to form complete light transport paths from the eye to a light. For each pixel, the path is used as the

initial state for a Markov chain Monte Carlo (MCMC) sample chainthat redistributes the path’s

energy to nearby pixels and finds additional light paths. Theintuition is that different pixels will
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find different initial paths, and the information can then beconveyed to neighboring pixels through

the Markov chain. Due to space limitations, we cannot discuss ERPT in detail; readers are referred

to the original paper.

ERPT uses a constant length chain for every pixel, regardlessof how much energy the initial

path carries or how much it differs from its neighbors. This is sub-optimal — some pixels have

high energy initial paths that take longer to redistribute,while others are in a neighborhood where

most light transport paths are similar and redistribution achieves nothing. To address the former

problem, Cline et al. [13] designed filters that introduce bias into the calculation, making the image

darker than it should be.

Our PMC-PT algorithm uses the same basic premise as ERPT: high-energy paths should be

mutated to distribute the information they carry to neighboring pixels. The sample population is

a set of light transport paths through the scene. The kernel function mutates these paths to create

new paths. The resampling step removes low energy paths in regions of low image variance and

duplicates high-energy paths in regions of high variance. As a result, work is focused on the

important transport paths.

5.5.1 PMC-PT Kernel Function

The kernel function for PMC-PT is a conditional kernel,K(t)(x̃(t)|X̃(t−1)
i ), that generates sam-

ple i in iterationt, X̃(t)
i , given samplei in iterationt− 1, X̃(t−1)

i (see Figure 2.4). Again we use a

mixture distribution:

K(t)(x̃(t)|x̃(t−1)) = α
(t)
5 hlens(x̃

(t)|x̃(t−1) : 5) [5.9]

+ α
(t)
10 hlens(x̃

(t)|x̃(t−1) : 10)

+ α
(t)
50 hlens(x̃

(t)|x̃(t−1) : 50)

Each componenthlens(x̃
(t)|x̃(t−1) : s) performs alens perturbationfrom ERPT, described in detail

by Cline et al. [13]. The perturbation takes the existing pathand moves the image point through

which it passes. In our case, the new lens location is uniformly sampled within a square of half-

side-lengths, a parameter to the kernel. The remainder of the path is reconstructed to pass through
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the new image point while retaining as much as possible of theexisting path. In the original ERPT

work, the size of the perturbation was a parameter to be fixed at startup. We use three different sized

perturbations in the mixture. The large perturbation is effective for redistributing information over

a wide area, while the smallest is best for image regions where illumination is changing quickly.

We could also include a component for thecaustic perturbationfrom ERPT and Metropolis

Light Transport, which would improve performance in sceneswith significant caustic transport. In

practice, we found this to be unnecessary because the smallest lens perturbation achieved a similar

effect.

5.5.2 Resampling and Adapting

A startup phase of PMC-PT creates an initial image using path tracing at about 3spp. Not all

the generated paths are valid – they are terminated by RussianRoulette before a point ever sees the

light. Of those that are valid, we take everykth one for the initial population, wherek is chosen to

give us the desired population size.

In PMC-PT we resample and adapt the mixture component weightsat a lower frequency than

we iterate the kernel:

TR is the number of kernel iterations per resample step. We resample less often because it

is moderately expensive and there is no advantage to adapting at every iteration. After exploring

several values forTR, we found a wide range of values to be effective. The optimal value depends

on the population size and the relative cost of kernel perturbations compared to resampling.

The resampling step achieves three purposes: samples that need more energy redistribution

are carried forward to the next round, the information aboutwhich samples are chosen during

resampling guides the adaptation, and it provides an opportunity to add some completely new

paths into the population. The proportion of samples that survive the resampling from any given

component, thesurvival rate, indicates the usefulness of that component for sampling, and hence

are used to set theα(s)
k .

Resampling is a standard technique that forms a discrete distribution over the existing sample

set and then samples with replacement from the old population to generate the new one. We use
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deterministic sampling (the residual method described above) to sample the new population. The

resampling probabilities are the importance weights,w
(TR)
i .

Each sample was tagged with the kernel mixture component that generated it. After resampling,

we set theα(s)
k mixture weights to the proportion of surviving samples thatwere generated with

componentk.

To add completely new paths, we resample fewer paths from thepopulation and create the

remaining paths using the original path tracing algorithm,as we did to create paths for the initial

sample. The aim of adding new paths is to limit the potential for the resampling to produce many

repeats of a few very high weight paths. We could include a component in the mixture to create

new paths from scratch, but that limits the extent to which any given path’s energy is redistributed

because the probability that it would survive more than a fewinner loop iterations is low. Adding

new paths in this way does not add bias because neither the resampled population nor the new

samples are biased, so their union is not biased. In practice, we resample for 70% of the population

and generate the remaining 30% from scratch.

After every step in the inner loop of Figure 5.9, we accumulate the weights,w(t)
i , to the appro-

priate pixels to form the image. Computing these weights requires the kernel function probabilities,

also called transition probabilities. Cline et al. [13] provide an excellent detailed discussion of the

computation of these functions, and PMC-PT uses exactly the same techniques (K(s)(x|y) in our

terminology isT (x→ y) in theirs).

5.5.3 PMC-PT Results

We compared PMC-PT with the energy redistribution path tracing (ERPT) algorithm on the

Cornell Box scene and a basic Room scene. In both cases we used a population size of 10,000.

The Box scene began with 9spp path tracing. ERPT performed 400 iterations on each initial path,

while PMC-PT did 10 resampling iterations each with 40 mutation iterations. The scene was

rendered at 640×480 resolution. PMC-PT achieves a 45% reduction in RMS error over ERPT,

with only 8% more computation time (see Table 5.3). The images (Figure 5.10) demonstrate that

PMC-PT expends more effort on the difficult regions – the ceiling, glass ball and caustic – and
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Image Method Total time (s) Err P-Eff

Box ERPT 203.6 2.013 2.44e-3

PMC-PT 212.8 1.554 3.02e-3

Room ERPT 1021 1.434 6.83e-4

PMC-PT 1132 0.326 27.1e-4

Table 5.3: Measurements comparing energy redistribution path tracing (ERPT) with PMC-PT, for
a roughly equal number of mutations. The efficiency gains of PMC-PT are 1.24 and 3.97 for the
Box scene and Room scene, respectively.

hence has lower variance in those regions, at the expense of slightly higher variance in other parts

of the image. This is a recurring property of both the PMC image plane sampler and PMC-PT:

PMC produces a more even distribution of noise, with lower noise levels overall but higher in

some parts of the image that are over-sampled with non-adaptive techniques.

The Room scene (Figure 5.11) was rendered at 720×405 and used 16spp to obtain the initial

paths. ERPT performed 600 iterations on each initial path, while PMC-PT did 5 resampling itera-

tions each with 120 mutation iterations. Note that for both PMC-PT and ERPT implementations,

we did not use the filter in the original ERPT paper to smooth thefinal image.

5.6 Discussion

The most important parameter in a PMC algorithm is the population size. A small population

reduces the number of samples per iteration, which gives more flexibility in the total sample count

in an algorithm, but relatively more time is then spent adapting mixture parameters. Furthermore,

the quality of the adapted functions is lower because they are derived from less information. Hence,

we use small populations only for the hemispheric integralscase, where we aim to keep the total

number of samples per estimate low and the kernel function has a very small number of parameters.

Larger populations result in more robust adaptation and less overhead, and in general are to be

favored. However, if the population is too large the benefitsof adaptation are lost as relatively

more samples are drawn using a mal-adapted importance function.
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In Equation 5.7 we use the full mixture distribution as the importance function,K(ω′
i). This is

a form of Rao-Blackwellization, which reduces variance but atthe expense of additional computa-

tion. The algorithm remains correct if we use only the mixture component from which the sample

came,hk(ω
′(i)), and we need not compute the other mixture functions. In somecases the resulting

reduction in computation may exceed the increase in noise, but in rendering the greatest cost is

usually in obtaining a sample, rather than evaluating its probabilities.

5.6.1 Relationships with Existing Algorithms

The PMC algorithms we have presented can be viewed as generalizations of some existing

algorithms:

• MIS is a special case of deterministic mixture sampling. It corresponds to fixing theαk

weights ahead of time, which fixes the number of samples from each function. The MIS bal-

ance heuristic results in the same estimator that we use. We improve upon MIS by adapting

the weights over time, which avoids wasting samples on unimportant component functions.

• PMC-PT may be viewed as a form of Metropolis light transport with multiple parallel chains

(the population), that are allowed to die and split (resampling). The PMC framework places

this in a sound statistical setting.

5.6.2 Designing Adaptable Kernel Functions

Many PMC kernels in the literature are mixture models. Mixtures are typically formed by

combining several components that are each expected to be useful in some cases but not others.

The adaptation step then determines which are useful for a given input. Mixtures allow otherwise

unrelated functions to be combined, such as the light area importance function and the BRDF

importance function in Equation 5.7. If an environment map was present we could even include

the wavelet importance functions of Clarberg et al. [12] in the mixture. Typically, the common

rule of choosing importance functions applies here also: whenf is a product of several unrelated

functions, then a good choice of mixture components is something proportional to each factor.
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Other adaptable functions can be used as kernel functions, such as Gaussian distributions pa-

rameterized by their standard deviation. Such a choice would be appropriate if a single Gaussian

of unknown size was thought to be sufficient even when acting alone, but the ability to simultane-

ously sample from several functions is lost. The most commonreason to use non-mixture kernels

is when the aim of PMC is finding the adapted parameters themselves, not the samples, and hence

the kernel function is chosen to represent the expected formof the underlying statistical model.

5.6.3 PMC in the rendering pipeline and its limitations

PMC can be easily incorporated into the physically based rendering system pipeline, as seen

in the Figure 5.12. The image-plane sampler and direct lighting integrator are common compo-

nents in many rendering algorithms. PMC-IP sampling can be used as a plugin component for

essentially any algorithm that forms light paths through the eye, including the gather phase of

photon-mapping, bidirectional path tracing, and irradiance caching. The PMC-HI sampler can

be used in any situation where estimates of an integral over the hemisphere are required. Irradi-

ance caching would benefit greatly from a PMC sampler in the computation of each cached value.

Photon-mapping could also use a PMC sampler in the final gather, but we expect the improvement

to be less apparent.

The most notable limitation of PMC is the high sample counts required when the kernel has

many adaptable parameters. This precludes, for instance, using one component per light when

there are many lights. Such a strategy would be appealing forefficient sampling in complex shadow

situations (some components would see the lights, others wouldn’t), but the sample count required

to adequately determine the mixture component weights would be too large. Instead we use a

single mixture component for all the lights and rely on the cone perturbation component to favor

visible lights, but this does not work well if illumination sources are widely spaced.

An alternate approach for integrating functions defined on surfaces is to store the mixture com-

ponent weights in a surface map and interpolate. This amortizes the cost of adapting over many

surface points. We did not explore this possibility, but it offers potential for the multi-light problem
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or cases where many light transport paths must be constructed through a scene, such as bidirec-

tional path tracing or photon mapping.

We rely on deterministic mixture sampling to achieve stratification in the image-plane sampler

and to a lesser extent in the other samplers. This is not entirely satisfactory. For example, in PMC-

PT the mutation kernels are responsible for moving samples around the image plane, and these

are not stratified. This could be addressed using techniquessimilar to those in Metropolis Light

Transport, but at some greater complexity.

5.7 Conclusion

The have shown how algorithms for adaptive image-plane sampling, hemispheric integral com-

putations, and energy redistribution path tracing can be derived within a PMC framework. In each

case the algorithm learns an effective sampler based on the results from earlier iterations. This al-

leviates one of the greatest problems in Monte Carlo rendering: the choice of importance functions

and other parameters.

PMC is just one approach from the family of iterated importance sampling algorithms [80]. The

Kalman filter is another well-known example. Common to these techniques is the idea of sample

re-use through resampling and the adaptation of sampling parameters over iterations. Computer

graphics certainly offers further opportunities to exploit these properties.
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Figure 5.5: Mixture PDF. The top is the BRDF sampling, light sampling, and cone sampling
respectively. The bottom is a linear combination of the top three sampling strategies.

Figure 5.6: These maps show how the mixture component weights for PMC-HI vary over the
image, after two iterations. Bright means high weight. From left to right: α

(2)
L1 , the left light’s

weight;α(2)
L2 , the right light’s weight;α(2)

BRDF ; andα(2)
cone, which in this image is of limited use. The

large light dominates in regions where no light is seen in a glossy reflection, while the right light
is favored in nearby diffuse squares. The BRDF component is favored only when the large light
is specularly reflected at a pixel. The images are quite noise-free for such small sample counts
(16 total samples per estimate), indicating that the adaptation mechanism converges to a consistent
result.
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Figure 5.7: Checker images generated from different algorithms with thesame number of sam-
ples. The PMC-HI image (top-left) is better overall than the MIS image(top-right), especially in
the glossy region in front of the big area light where neithersampling from light nor sampling from
BRDF works well. Light sampling (bottom-left) does poorly in the specular region in front of the
big area light, while the BRDF image (bottom-right) appears very noisy at the diffuse surface.
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Figure 5.8: An image involving complex soft shadows and glossy surfaces. Top-left is PMC-HI
sampling, and top-right is MIS with equal total sample count. Note the significant improvement
in the soft shadows achieved with PMC-HI, shown in the zoomed images at the bottom (PMC-HI
left, MIS right).

1 for s = 1, · · · , T
2 determineK(s+1)(x(t+1)|x(t))

3 for t = 1, · · · , TR

4 for i = 1, · · · , n
5 generateX̂(t)

i ∼ K(s)(x|X(t−1)
i )

6 w
(t)
i = f(X̂

(t)
i )/K(s)(X̂

(t)
i |X(t−1)

i )

7 resample for the new population

Figure 5.9: The PMC-PT iteration loop.
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Figure 5.10: A Cornell Box image computed using PMC-PT on the left and ERPT on the right.
The improvement with PMC-PT is most evident in the caustic, the glass ball, and the ceiling. We
did not use the biased filters of Cline et al. [13], hence the remaining very bright spots.

Figure 5.11: A Room scene computed using PMT-PT at top and ERPT below. PMC-PT has
fewer artifacts overall. PMC-PT improves over ERPT by sharingmore information among paths
and better re-using the high contribution paths.
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Figure 5.12: Population Monte Carlo rendering in physically based rendering pipeline.
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Chapter 6

Optimizing Control Variate Estimators for
Rendering

Monte Carlo integration methods offer the most general solution to physically accurate lighting

simulation: they handle near-arbitrary geometry, material properties, participatory media, etc. All

Monte Carlo methods require anestimatorthat takes the information found in the samples and

determines a single final value. A good estimator is unbiasedand has low variance. In rendering,

the unbiased property guarantees the image has, on average,the correct pixel values, while variance

determines the noise levels in the image, or how much neighboring pixels tend to differ in value.

There are many possible estimators, each of which combines the samples in a different way to

get the final answer. If we focus on unbiased estimators, thena good strategy is to choose one that

minimizes variance while remaining relatively fast to compute. The most common estimator in

rendering is the sample mean or an importance weighted mean.Alternatives exist, however, such

as the Multiple Importance Sampling (MIS) estimator [102] or control variate estimators [90] (also

referred to as correlated sampling).

In this chapter we apply an Optimizing Control Variate (OCV) estimator to the problem of

estimating irradiance integrals for direct lighting. The same basic problem is also a sub-component

of many rendering algorithms, such as irradiance caching and photon-map gathering, for which we

also demonstrate some results. The OCV estimator solves a small optimization problem to find a

good control variate distribution given a set of samples. Unlike existing control variate methods

which require a single control variate distribution for allestimates, OCV allows the distribution to
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vary over the scene depending on surface properties and lighting conditions. Furthermore, users are

not burdened with finding an optimal correlated function; they can provide a generic parameterized

function that the estimator optimizes.

OCV works with thedeterministic mixture sampling(DMS) framework for constructing impor-

tance functions, sampling from them, and computing estimates from the samples [69]. In addition

to providing better estimators, DMS allows for multiple importance sampling functions to be com-

bined in a general way. The optimizing nature of the estimator ensures that the combination of

samplers performs at least as well as the best among them. In this way, OCV can be viewed as a

generalization of multiple importance sampling.

6.1 Estimating Irradiance Integrals

This chapter concentrates on the problem of computing integrals over hemispheric domains.

The most common such integral in rendering computes the radiance,L(x, ω), leaving a pointx in

the directionω:

L(x, ω) = Le(x, ω) +
∫

Ω
f(x, ω, ω′)dω′ [6.1]

whereLe(x, ω) is light emitted atx, Ω is the hemisphere of directionsout of x andf(x, ω, ω′) is

the light reflected atx from direction−ω′ into directionω:

f(x, ω, ω′) = Lin(x,−ω′)fr(x, ω, ω′)| cos(θ′)|

L(x,−ω′) is light arriving atx from directionω′, fr(x, ω, ω′) is the BRDF, andθ′ is the angle

betweenω′ and the normal atx. Monte Carlo renderers use statistical sampling to estimatethe

integral for the reflected component ofL(x, ω).

A standard importance sampling algorithm forL(x, ω) samples directions,ω′
1, . . . , ω

′
N , out of

x according to an importance distribution,p, and computes the estimate:

L̂(x, ω) =
1

N

N
∑

i=1

f(x, ω, ω′
i)

p(ω′
i)

[6.2]

The variance of this estimator improves asp more closely approximatesf , and is zero whenp

differs fromf by a constant scale.
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In local direct lighting situations, a common choice forp is a normalized version of

fr(x
′, ω, ω′)| cos(θ′)| or an approximation to it. We refer to this as BRDF-based importance sam-

pling. An alternative is light-based sampling where the integral is broken into a sum over individual

light sources and points are sampled on the lights to generate directions [73,§16.1]. In environment

map lighting situations, the wavelet product approach of Clarberg et al. [12] currently provides the

best way to choosep.

Control variate approaches (see Section 2.4.2) introduce a correlated function,g, which should

have the property thatf − g is close to a constant, and then use the estimator:

L̂(x, ω) =
∫

Ω
g(ω′)dω′ +

1

N

N
∑

i=1

(f(x, ω, ω′
i)− g(ω′

i))

p(ω′
i)

[6.3]

The difficulty of applying this approach in rendering problems is in finding a functiong that is

sufficiently close tof in all places. We solve this problem by defining a parameterized function,

g(ω′ : β1, . . . , βm), and optimizing the vector of parameters,〈β1, . . . , βm〉, in order to best approx-

imatef .

The MIS estimator [102] uses multiple importance functions, p1, . . . , pm, and draws a fixed

number of samples from each,n1, . . . , nm. It then computes one of several possible estimators, of

which the simplest is thebalance heuristic:

L̂(x, ω) =
1

N

m
∑

j=1

nj
∑

i=1

f(x, ω, ω′
i,j)

∑m
k=1 ckpk(ω′

i,j)
[6.4]

whereck = nj/N , the proportion of samples drawn frompj. The major advantage of MIS is that

it enables importance functions to be combined in an unbiased manner. Using a slightly different

estimator, thepower heuristic, the weight of samples coming from poor importance functions can

be implicitly reduced in the final estimate.

6.2 Related Work

The simplest effective use of control variates is in cases where the incoming illumination can be

approximated by a constant ambient term – Lafortune and Willems [55] described this technique –

but it offers less improvement with more complex illumination. Szirmay-Kalos et al. [91] improve
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upon this using radiosity to obtain an estimate of the diffuse illumination which serves as the

correlated function in a Monte Carlo step that accounts for other illumination. It works well for

diffuse environments but not for specular surfaces.

Sźecsi et al. [90] combined control variate and importance sampling estimators (Equations 6.2

and 6.3) in a linear combination with weights optimized to reduce variance, but the approach is

very limited in the BRDFs that can be handled. Note that this approach combines estimates, not

sampling strategies, so a single importance sampling function must still be chosen. An alternate

estimator, weighted importance sampling, has been used forparticle tracing algorithms by Balázs

et al. [5], but a scene discretization is required and improvement is only seen under specific BRDF

and lighting configurations.

The work of Lafortune and Willems [56] on adaptive BRDF sampling includes a control variate

component. They built a 5D-tree approximation to radiance in the scene, and used it for both

importance sampling and control variate estimation. In some sense this is optimizing the control

variate estimator. However, large sample counts are required to adequately adapt the necessary

functions, and failure to adapt correctly actually increases variance. Our algorithm uses a low-

parameter function for the control variate distribution, so few samples are required to optimize.

OCV with deterministic mixture sampling offers a way to combine samples from multiple

importance functions. As discussed above, Veach’s [102] MIS is an existing approach to this

problem. DMS includes the balance heuristic (Equation 6.4)as a special case. We improve upon

MIS with a simple optimization process for selecting a better estimator at each pixel.

6.3 Deterministic Mixture Sampling

The optimizing control variate estimator begins with a deterministic mixture sampling process

to generate the samples. This is practically equivalent to MIS’s step of generating a fixed number

of samples from each of multiple importance functions, but motivated differently.

A mixture PDF is one composed of a weighted sum of component PDFs:

p(x : α) =
m
∑

j=1

αjpj(x) [6.5]
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wherem is the number of components andα is a vector ofmixture weights, 〈α1, . . . , αm〉, with

αj > 0 and
∑m

j=1 αj = 1. The simplest way to draw a sample from a mixture density is tofirst

select a component,j, with probabilityp(j) ∝ αj, and then sample frompj(x).

For rendering, the mixture can include any importance function that is typically used alone.

Hence, we include a component for sampling according to the BRDF and one for each light source.

In environment lighting conditions, a component for sampling the environment map should be

included. We could break the BRDF into sub-components (diffuse, glossy, etc.) but we did not

experiment with this. Also note that the environment map sampling of Clarberg et al. [12] can be

viewed as a mixture where each wavelet basis function is a component.

Deterministicmixture sampling chooses a fixed number of samples from each component:

nj = Nαj samples are drawn from componentpj(x) whereN is the total sample size. We can

view this as a form of stratification over the mixture components, and Hesterberg [42] showed that

this reduces variance. Note that this is exactly what MIS does, and Equation 6.4 can be re-written

in terms ofp(ω′ : α):

L̂(x, ω) =
1

N

N
∑

i=1

f(x, ω, ω′
i)

p(ω′
i : α)

[6.6]

We can also construct a control variate estimate using a mixture of functions as the correlated

distribution in addition to the importance distribution [69]:

L̂(x, ω) =
m
∑

j=1

βj +
1

N

N
∑

i=1

f(x, ω, ω′
i)− p(ω′

i : β)

p(ω′
i : α)

[6.7]

where theβj are a vector of real valued variables. This estimator is unbiased, as can be seen by

writing

E[L̂α,β] =
∫ f(x)−∑m

j=1 βjpj(x)

p(x : α)
p(x : α)dx +

m
∑

j=1

βj

=
∫

f(x)dx−
m
∑

j=1

βj

∫

pj(x)dx +
m
∑

j=1

βj

=
∫

f(x)dx

Note thatpj(x) is a PDF so integrates to 1. The variance of the estimator in Equation 6.7 is

σ2
α,β =

∫





f(x)−∑m
j=1 βjpj(x)

p(x : α)
− I +

m
∑

j=1

βj





2

p(x : α)dx [6.8]
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whereI is the true value of the integral being estimated.

There is no improvement over importance sampling if we setβj = αj for all j; it is the same

estimator as Equation 6.6. However, we are free to choose theβj in a variety of ways – they need

not even sum to 1. In particular, we can solve an optimizationproblem, which results in an OCV

estimator.

6.4 Optimizing Control Variates

A natural strategy for choosing theβj is to minimize the variance in Equation 6.8. We can’t do

this, however, because we don’t knowI, the value we are trying to estimate. Instead, we form a

linear problem that minimizes the following objective function with respect to theβj:

N
∑

i=1

(

f(Xi)−
∑m

j=1 βjpj(Xi)

p(Xi : α)

)2

[6.9]

This is a standard linear least squares problem, but we modify it in three ways. First, we include

an intercept term,β0 [69], which after optimization evaluates to

1

N

N
∑

i=1

f(Xi)−
∑m

j=1 βjpj(Xi)

p(Xi : α)

Puttingβ0 into Equation 6.7 and simplifying, we get a simpler form of the OCV estimator:

L̂(x, ω) = β0 +
m
∑

j=1

βj [6.10]

The second problem is that the condition
∑m

j=1 αj = 1 required to makep(x : α) a distribution

function means that thepj(x)/p(x : α) terms are linearly dependent. This can be solved by

droppingpm from the optimization and settingβm = 0. This leaves us minimizing‖y − Aβ‖2

with

y =















f(X1)
p(X1:α)

...
f(XN )

p(XN :α)














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Aβ =















1 p1(X1)
p(X1:α)

. . . pm−1(X1)
p(X1:α)

...
...

. . .
...

1 p1(XN )
p(XN :α)

. . . pm−1(XN )
p(XN :α)



































β0

β1

...

βm−1





















A further problem occurs when all of the samples from some component are zero. In render-

ing, this is quite likely due to occlusion or some other factor that gives zero radiance from some

directions. To deal with this we usepenalized least squareswith a penalty term pushing theβi

toward zero. The resulting objective function is‖y−Aβ‖2 + λ‖β‖2. The solution to this problem

is

β̂ = (A′A + λI)−1 A′y [6.11]

where A′ is the transpose of A and I is the identity matrix. We foundλ = 1 to be good in practice.

6.4.1 OCV for Rendering

Optimizing control variate estimation is useful in rendering when evaluating integrals over a

single domain, with the same PDF used for each sample, and a choice of importance functions.

While Veach [102] showed a bidirectional path tracing application, in practice the conditions are

met in gather integrals where we integrate incoming irradiance at a pointby sampling over the

hemisphere. Such integrals arise in direct lighting, irradiance caching, photon-mapping, and ra-

diosity. We show examples from the first two applications.

Apart from choosing components for the mixture, we must alsoset their weights,αi. In all our

experiments we used a single BRDF-based component and one component for each light (we did

not use environmental lighting). We made a conservative choice: half of the samples came from

the BRDF,αBRDF = 0.5, while the remainder were divided equally among the lights.If for some

reason a user thought some sampling function was more likelyto succeed, then the weight for that

component could be increased. It is possible to set the weights adaptively [80], and we are aware

of a paper that experiments with this [28], but does not use anOCV estimator.

To summarize, each time we require an estimate of the integral in Equation 6.1, we draw a

fixed number of direction samples,nj, from each importance function in the mixture,pj. We
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trace rays for each sample to determine the incoming radiance, Lin(x,−ω′
i). With each sample

direction evaluated, we form the matrices and vectors and solve Equation 6.11 for theβj. Finally,

Equation 6.10 is evaluated to compute the estimate of outgoing radiance.

In direct lighting, an irradiance integral estimate is obtained for every surface point hit with a

pixel sample. For irradiance caching, another applicationwe have implemented, the incoming irra-

diance must be estimated at diffuse surface points when a nearby cached estimate is not available.

The irradiance integral is broken into two terms:

Ir(x) =
∫

Ω
Lsources(x,−ω′)dω′ +

∫

Ω
Lind(x,−ω′)dω′

whereIr(x) is the irradiance at pointx, Lsources is incoming radiance due to light or environmental

sources, andLind is radiance due to indirect lighting. In our implementation[73], Lind(x,−ω′)

is computed using path tracing, but each point along the pathalso evaluates the direct lighting

integral.

We only use OCV for the irradiance due to sources. All indirectlighting estimates happen at

diffuse surfaces, and samples that directly hit a light contribute nothing because they are already

accounted for. Hence, BRDF-based importance sampling is the only importance function suitable,

and therefore OCV is not useful – there is no way to form a mixture. Note, however, that the

irradiance integral is evaluated as part of the path tracingprocedure, so OCV does still contribute

to indirect lighting.

6.5 Results

We first experimented with a scene (Figure 6.2) that demonstrates the importance of including

multiple sampling functions for direct lighting (following [73]). This example contains two lights,

so half of all the samples come from sampling a BRDF-based component, while one quarter come

from sampling the area of the yellow light and a quarter from the blue light. Table 6.1 presents

timing and error results, where error is a perceptually weighted error metric:

E =





1

n

∑

pixels

(

L− Ltrue

tvi(Ltrue)

)2




1

2

[6.12]
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Image Method SPE SPP Time (s) Err

Checks MIS 64 4 172.8 0.60

OCV 64 4 180.8 0.48

Buddha MIS 64 4 98.3 0.72

OCV 64 4 105.6 0.46

Room MIS 18 2 37.4 0.75

OCV 18 2 43.2 0.68

Box MIS 18 9 196.5 4.9

OCV 18 9 207.2 4.0

Table 6.1: Measurements comparing MIS to OCV for direct lighting computations. SPE is the
sample count per estimate, with SPP estimates per pixel. Erris the error computed using Equa-
tion 6.12.

wheren is number of pixels,L is the luminance of the result,Ltrue is the true luminance, and

tvi(x) is the perceptual threshold-vs-intensity function introduced by Ferwerda et al. [30]. We

use perceptual weighting to avoid giving too much weight to very bright or very dark areas of the

image. The ground truth image is computed using MIS running for several hours.

Figure 6.2 shows comparison between MIS, OCV and the correlated sampling approach of

Sźecsi et al. [90]. These images were rendered at 500×500 resolution. They highlight primarily

the value in using multiple importance functions, which correlated sampling cannot do. OCV

performs better than MIS on this scene with little additional computation time. Improvement in

the form of lower variance is most apparent in the glossy region reflected in the yellow light. In

this scene the OCV estimator results in a 18% improvement in image quality with about 5% more

computation time.

The Buddha images (Figure 6.1) show a more marked improvementwith OCV over MIS. These

images were rendered at 256×512 resolution, and the OCV estimator results in a 37% improve-

ment for 7% more time. This scene has a greater variety of lighting conditions, ranging from tight

specularities to occluded regions. Our final direct lighting test used a Room scene (Figure 6.3),
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for which the OCV estimator produced lower error compared to MIS, but the additional compu-

tation cost resulted in comparable rendering efficiency. The scene requires relatively few samples

to obtain a good estimate because the light sources are smalland there is limited occlusion. Our

method performs best when occlusion is complex and with larger light sources. Still, due to the

optimization in OCV, the results are unlikely to be worse thanalternative methods.

The Cornell Box scene (Figure 6.4) demonstrates OCV estimates in irradiance caching. The

perceptual RMS error (Equation 6.12) for the standard implementation is 4.9, which OCV reduces

to 4.0 with about 5% more computational time.

We compare the algorithms based on the same number of samplesinstead of the same com-

putational time, because presetting number of samples makes the implementation more efficient

by taking advantage of the stratified sampling. Given the efficiency is measured by the percep-

tual RMS error and its computational time [73], their productprovides a fair comparison of the

algorithms running with the same number of samples.

6.5.1 OCV in the rendering pipeline and its limitations

We do not use OCV for the indirect lighting component of the irradiance caching integral

because our techniques for forming a mixture result in a single component. We could form a

mixture by sub-dividing the hemisphere and using one component for each sub-region. This would

allow things such as occluded paths to be accounted for in theestimator.

As stated above, an OCV estimator is only useful in situationswhen all the samples come from

the same mixture distribution. In bidirectional path tracing, this means we can only use it on a

per-path basis with a mixture component for each method of forming the path. Path tracing is

ruled out because each path has a different length and hits a different set of material properties,

and hence has a different PDF. Integrals of the form in Equation 6.1 are very common, however, so

OCV does cover a large set of practical cases. Figure 6.5 showshow OCV can be used to construct

an estimator for accumulating sample contributions in the traditional rendering pipeline.

The primary limitation with the OCV estimator comes from the relationship between the num-

ber of components in the mixture and the number of samples required. A larger mixture requires
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more samples to obtain reliable values for optimizedβ – at least as many samples as components.

Furthermore, more mixture components and samples increases the cost of the optimization, to the

extent that MIS would perform better for the same computation time. Hence, very small sample

counts (less than about 10) cannot be used and situations with many light sources cause prob-

lems, at least as we have constructed the mixture. In a many-light situation, nearby lights could be

grouped into one component or an environmental lighting approach could be used.

6.6 Conclusion

We have presented a new estimator for use in computing irradiance gather integrals. The OCV

estimator maximizes the benefits of control variate sampling by optimizing the correlated function

at each estimate. This also reduces the user’s burden of finding correlated functions. In addition,

OCV allows multiple importance functions to be combined, which is particularly useful when no

one function works well across an entire image.

In importance sampling applications, one use of mixtures isin defensivesampling [42], where

one component of the mixture is certain to have “heavier tails” than the integrand to ensure finite

variance of the estimate. In rendering, situations where a defensive component is useful are rare:

one example is a glossy surface under environmental lighting where the dominant reflectance lobe

is blocked by an occluder, and wavelet product sampling is inuse. A cosine-weighted mixture

component could be used as a defensive choice in such situations.

There are several alternative importance functions that could be used as components. One

particularly interesting possibility is using the low-frequency wavelets from Clarberg et al. [12].

The potential advantage is that wavelets representing occluded directions could have their weight in

the estimate reduced. Even more advantage could come from anapproach that adapts the mixture

weights, and hence avoids any sampling in occluded directions.
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Figure 6.1: Results for MIS and OCV for the Buddha model. MIS, left, has noticeably higher
variance in the soft shadow boundary and the base of the Buddha. The variance images, below,
reveal significant reduction in variance with OCV over the entire image.
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Figure 6.2: Images for the checkers scene. Left is MIS, center is OCV and right is correlated
sampling. Correlated sampling performs poorly because it must choose only one importance func-
tion before rendering begins (typically BRDF-based, as we have here) and the best choice is not
always obvious. Bottom are perceptually-based variance images, which show the variance of the
direct illumination estimates obtained at each pixel. The most significant improvement of OCV
over MIS is apparent within the left glossy reflection of the large light source. Note that variance
is expected to be large at material property boundaries because different pixel samples are hitting
different materials.
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Figure 6.3: Results for MIS (left) and OCV (right) for the Room scene. The images are very
similar, but the variance images below reveal an overall improvement with OCV over MIS.
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Figure 6.4: Results for MIS and OCV for irradiance caching computations ona Box scene. Stan-
dard irradiance caching, which uses MIS for its estimates, is on the left, while a version using OCV
estimators is on the right.
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Figure 6.5: OCV in the physically based rendering pipeline. It can be usedto construct a better
estimator based on the samples from a mixture of multiple distributions.
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Chapter 7

Discussion and Conclusion

The Monte Carlo method is the most general and robust method for solving the global illu-

mination problem. The major challenges in Monte Carlo rendering are to sample the path space

efficiently and to construct good estimators to reduce the variance in the rendered images. One

promising avenue to face those challenges is to adaptively sample the important regions of the inte-

grand and reuse the high-contribution path samples as much as possible. This thesis has introduced

a novel statistical framework for adapting and reusing samples and demonstrated its applications

to the global illumination problem. This chapter presents asummary of the main contributions of

this work and a discussion of future work.

7.1 Contributions

The idea of adaptive sampling has been explored for image rendering by many researchers

(e.g., [70, 6]). The major disadvantage of adaptive sampling is that it can introduce bias if not

used with special care, as pointed out by Kirk and Arvo [51]. Most of the adaptive algorithms in

the literature are biased and there is no analysis of how the bias affects the final rendering results.

Two-stage sampling proposed by Kirk and Arvo [51] eliminates the bias, however, it also wastes

samples from the first stage and cannot adjust sampling during the second stage.

Sequential Monte Carlo puts sample adaptation and sample reuse into a new statistical frame-

work that enables repeated updates to importance distributions based on the performance of the

sampling process. As a specific type of SMC method, the population Monte Carlo algorithm
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makes it much easier to construct adaptive sampling schemeswithout introducing bias. Allowing

samples to be dependent on previous samples provides a straightforward way for sample reuse.

Resampling according to the importance weights of the samples not only keeps high-contribution

samples for reuse, but also prunes low-contribution samples from the population. Working in an

importance sampling framework, PMC removes the ergodicityissue of the MCMC framework.

Applications of this framework are demonstrated with a variety of problems in physically based

rendering. For the task of photo-realistic rendering, onlylight paths that reach the image plane are

important because only those paths contribute to the final image. As a way of generating and

reusing important path samples, we proposed a visual importance-driven algorithm,Metropolis

Photon Sampling(MPS), for populating photon maps in the photon mapping context [27]. Our

sampling strategy is independent of photon mapping and can be used either alone to generate visu-

ally important paths, or with photon maps that are used to further exploit sample reuse. Metropolis

Photon Sampling succeeds in generating photon map samples that meet the needs of the final

gather phase without wasting storage or computation time onunnecessary photons. It achieves this

by sampling only over light transport paths that reach the image, and storing photons only at appro-

priate points along the path. The photon distribution that results has more photons that contribute

to visually important locations, and fewer in irrelevant places. This not only improves estimates

from the map due to higher photon density, but also reduces the chance that inappropriate photons

will be used and hence reduces energy bleeding artifacts. Atthe same time, MPS allows users to

supply information to the sampler in the form of important paths or difficult paths, something not

achievable in most Monte Carlo algorithms.

To further demonstrate the utility of the sequential Monte Carlo framework for physically based

rendering problems, the population Monte Carlo rendering algorithm was proposed and applied to

a number of problems in realistic rendering [28]. Those applications are adaptive image-plane

sampling (PMC-IP), hemispheric integral sampling (PMC-HI),and energy-redistribution-based

path tracing (PMC-PT). The adaptive image-plane sampler selects pixels for refinement according

to a perceptually-weighted variance criterion and has no statistical bias. The adaptive hemispheric
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integrals sampler learns an importance sampling function for computing common rendering in-

tegrals. Adaptive energy redistribution path tracing concentrates computation in regions of high

variance or important light transport paths. Each algorithm is derived in the generic population

Monte Carlo statistical framework.

The image-plane sampler and direct lighting integrator arecommon components in many ren-

dering algorithms. PMC-IP sampling could be used as a plugin component for essentially any

algorithm that forms light paths to the eye, including the gather phase of photon mapping, bidi-

rectional path tracing, irradiance caching, and so on. The PMC-HI sampler could be used in any

situation where estimates of an integral over the hemisphere are required. Irradiance caching can

benefit greatly from a PMC sampler in the computation of each cached value. Photon mapping

can also use a PMC sampler in the final gather, but we expect theimprovement to be less apparent

because the final gathering tends to smooth the result.

To address the problem of optimally constructing estimators that combine samples from sev-

eral different PDFs, we presented the Optimizing Control Variate estimator, a new estimator for

rendering that uses both importance sampling and the control variate method [26]. This is an im-

portant issue because in the population Monte Carlo rendering framework, samples are generated

from a sequence of distributions and how the estimator combines them has a big impact on the im-

age variance. Based upon a deterministic sampling framework, OCV allows multiple importance

sampling functions to be combined in a general way, which canbe viewed as a generalization of

the multiple importance sampling method. The optimizing nature of OCV addresses a major prob-

lem with control variate estimators for rendering: users supply a generic, correlated function that is

optimized for each estimate, rather than a single highly-tuned one that must work well everywhere.

The same basic problem is also a sub-component of many rendering algorithms, such as irradiance

caching and photon-map gathering.
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7.2 System and Limitations

The algorithms presented in this dissertation can be easilycombined as a whole or used as sep-

arate components to speed up the rendering process in a commercial rendering system. Figure 7.1

shows how each algorithm can be used in the global illumination rendering pipeline.

The algorithms proposed in this thesis all deal with the problems of how to generate and reuse

samples, and how to build efficient estimators. Each algorithm can be selected independently and

plugged into the pipeline. The adaptive image plane method can be used for almost any Monte

Carlo ray tracing algorithm since all the contributing samples eventually penetrate through the

image plane. It is practical and simple to implement. With a little overhead for generating pixel

samples based on a mixture distribution, the adaptive imageplane strategy promises great effi-

ciency gain for images that have regions with highly varied rendering complexities; for example,

a scene mixed with both high noise regions such as soft shadows and caustics that requires many

samples, and low noise regions such as plain direct lightingon a non-textured plane. Similarly,

the optimal control variate algorithm can be used in the rendering pipeline: an algorithm with

samples generated from multiple sampling distributions can be efficiently combined with the OCV

algorithm. The adaptive hemispherical integral algorithmcan be used in situations when multi-

ple samples are needed for estimating the irradiance in a hemisphere. Those cases include direct

lighting and the final gathering phase in photon mapping. Currently all the sampling distributions

for adaptive sampling and optimal control variate are deterministic mixtures. Usually using a rela-

tively small number of sampling distributions is preferable because otherwise the samples required

to adequately determine the mixture component weights willbe too large.

7.3 Future Research

PMC is just one approach from the family of sequential Monte Carlo methods [80]. Common

to these techniques is the idea of sample re-use through resampling and the adaptation of sampling

parameters over iterations. There are many problems in computer graphics where integrals of a

specific form must be evaluated or a sampling process has to beemployed, so it certainly offers
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many further opportunities to exploit the properties of sequential Monte Carlo methods. Since

solving the rendering equation is essentially approximating an integral, all photo-realistic render-

ing problems may potentially benefit from the sequential Monte Carlo framework. For example,

algorithms for interactive rendering and animation rendering can be improved in efficiency if sam-

ples can be reused and adapted. In the context of rendering, the following questions are still open:

• User guidance for interactive global illumination rendering

Interactive global illumination rendering is very important for applications such as lighting

design and architectural modelling. Speed is critical for interactive rendering, yet computing

a global illumination solution is very expensive. These twoconflicting requirements suggest

algorithms to trade off rendering accuracy with speed (see [98, 35] for reviews). However, in

interactive global illumination rendering, some specific regions or objects are more important

for the viewer than others in the scene. For example, in product design, the photo-realistic

appearance of the objects with modified materials is likely what the user really cares about.

It will speed up the rendering process if user guidance can beincorporated into the sampling

strategy so that more important regions are rendered with higher accuracy. This could also

provide a nice tool for users doing interactive material design, for example.

• Adaptive transitional kernels in path space for PMCR

In current applications in population Monte Carlo rendering, the domain for adaptation is

either the image plane or a hemisphere for one local direction bounce. It would be useful

to adapt the sampling process along the whole path space, i.e., the transitional kernel can

change the path in a less restricted way. One way of doing thatis to construct transitional

kernels such as bidirectional path mutations and lens mutations in MLT, and then adaptively

select mutation strategies based on the path performance. This might also provide a way to

automatically tune MLT or energy redistribution path tracing algorithms.

• Optimal estimator for the samples from a sequence of correlated distributions
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OCV provides a provably good way to combine samples from different distributions. Cur-

rently it is assumed that those samples are generated independently from un-correlated distri-

butions. In the population Monte Carlo rendering work, the distributions in the sequence are

correlated. While weighting those samples based on the sample variances at each iteration

provides a valid way of combining samples, more efficient ways may exist and are worth

further study.

• Sequential Monte Carlo for animation rendering

In animation rendering, the samples from neighboring frames can provide useful hints for

generating good samples for the current frame, i.e., when a sample with high importance

is found, it should be exploited temporally. Reusing the pathsamples to create temporal

coherence in the lighting distribution between subsequentanimation frames will dramati-

cally reduce temporal flickering effects. Applying SMC methods in the global illumination

animation rendering context will offer three major advantages over existing methods: (1) re-

duce temporal noise by choosing samples correlated across frames without introducing bias;

(2) make it easier to find important, rare light paths in one frame by sharing information

obtained in neighboring frames; and (3) provide a natural way to discard low contribution

samples and retain high contribution samples based on the sample weight.
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Figure 7.1: Physically based rendering system diagram. Inside the dotted box is the traditional
rendering system flowchart. The three bold boxes show the potential plugins presented in this
dissertation.
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Appendix A: Statistical Proofs

A.1 Relationships among DDIS, MIS and DMS

Given a set of sampling techniques,p1, · · · , pm, Deterministic Defensive Importance Sampling

(DDIS), Multiple Importance Sampling (MIS) and and Deterministic Mixture Sampling (DMS) all

provide a way for constructing estimators that combine the samples. DDIS uses a linear combina-

tion of samples, MIS uses different weighting methods to combine samples, while DMS incorpo-

rates both correlated sampling and importance sampling. With some derivation, it can be shown

that DDIS is a special case of MIS and MIS with balance heuristic weights is a special case of

DMS.

• DDIS

Let pα(X) =
∑m

j=1 αjpj(X),
∑m

j=1 αj = 1. One takesnj = nαj samples from the density

pj. Let Xji ∼ pj be independent, forj = 1, · · · ,m andi = 1, · · · , nj. The estimator for

DDIS is

ÎDDIS =
1

n

m
∑

j=1

nj
∑

i=1

f(Xji)

pα(Xji)
[A.1]

Pluggingpα(X) =
∑m

k=1 αkpk(X) andαk = nk

n
into Equation A.1, we have

ÎDDIS =
1

n

m
∑

j=1

nj
∑

i=1

f(Xji)
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k=1 αkpk(Xji)

=
1

n
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nj
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i=1
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nk
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pk(Xji)

=
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nj
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i=1

f(Xji)
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k=1 nkpk(Xji)

=
m
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j=1

1

nj
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i=1

njf(Xji)
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k=1 nkpk(Xji)
[A.2]

• MIS using balance heuristic weights
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Let nj to be the number of samples frompj, and
∑m

j=1 = n. Let Xji ∼ pj be independent,

for j = 1, · · · ,m andi = 1, · · · , nj. The estimator for MIS is

ÎMIS =
m
∑

j=1

1

n j

nj
∑

i=1

wj(Xji)
f(Xji)

p(Xji)
[A.3]

where0 ≤ wj(x) ≤ ∑m
j=1 wj(x) = 1.

The balance heuristic weights for MIS are:

wj(x) =
njpj(x)

∑m
k=1 nkpk(x)

[A.4]

So the MIS estimator with balance heuristic is

ÎMISBal =
m
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1

n j

nj
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[A.5]

where0 ≤ wj(x) ≤ ∑m
j=1 wj(x) = 1.

• DMS

Let pα(X) =
∑m

j=1 αjpj(X),
∑m

j=1 αj = 1. One takesnj = nαj samples from the density

pj. Let Xji ∼ pj be independent, forj = 1, · · · ,m andi = 1, · · · , nj. The estimator for

DMS is

ÎDMS =
1

n

m
∑

j=1

nj
∑

i=1

f(Xji)−
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k=1 βkpk(Xji)
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+
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+
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βi [A.6]

If we setβj = 0 and plug inαj = nj

n
, we have

ÎDMS =
1

n
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nj
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nj
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[A.7]
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ÎDDIS in Equation A.2 is the same aŝIMISBal in Equation A.5, so DDIS is same as MIS with

balance heuristic weights. One difference between DDIS with MIS is that the coefficients in DDIS

are used to determine how the samples are generated and combine the samples afterwards, while

the weights in MIS are only used to combine the samples.

ComparingÎMISBal in Equation A.5 and̂IDMS in Equation A.7, it is obvious to see the MIS

using balance heuristic weights is a special case of DMS withnj = nαj andβj = 0. It means

DMS with optimalβ′s is always better than MIS using balance heuristic.


