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The goal of global illumination is to generate photo-raalismages by taking into account
all the light interactions in the scene. It does so by sinmgalight transport behaviors based on
physical principles. The main challenge of global illuntioa is that simulating the complex light
interreflections is very expensive. In this dissertationpeel statistical framework for physically
based rendering in computer graphics is presented basestjarrgtial Monte Carlo (SMC) meth-
ods. This framework can substantially improve the efficjeat physically based rendering by
adapting and reusing the light path samples without inttodubias. Applications of the frame-
work to a variety of problems in global illumination are demstrated.

For the task of photo-realistic rendering, only light pattest reach the image plane are impor-
tant because only those paths contribute to the final imagesueal importance-driven algorithm
is proposed to generate visually important paths. The pisoadong those paths are also cached
in photon maps for further reuse. To handle difficult paththim path space, a technique is pre-
sented for including user-selected paths in the samplinggss. Then, a more general statistical
method for light path sample adaptation and reuse is studidite context of sequential Monte
Carlo. Based on the population Monte Carlo method, an unbiadaptige sampling method is
presented that works on a population of samples. The samm@esampled and resampled through
distributions that are modified over time. Information fduat one iteration can be used to guide
subsequent iterations without introducing bias in the frealult. After obtaining samples from
multiple distributions, an optimal control variate algbm is developed that allows samples from

multiple distribution functions to be combined optimally.

Stephen J. Chenney Charles R. Dyer
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ABSTRACT

The goal of global illumination is to generate photo-rdaisnages by taking into account all the
light interactions in the scene. It does so by simulatingtligansport behaviors based on physical
principles. The main challenge of global illumination istlsimulating the complex light inter-
reflections is very expensive. In this dissertation, a nstadistical framework for physically based
rendering in computer graphics is presented based on sggjudionte Carlo (SMC) methods.
This framework can substantially improve the efficiency loygically based rendering by adapting
and reusing the light path samples without introducing.brsplications of the framework to a
variety of problems in global illumination are demonstcate

For the task of photo-realistic rendering, only light pattet reach the image plane are impor-
tant because only those paths contribute to the final imagasueal importance-driven algorithm
is proposed to generate visually important paths. The pisoadong those paths are also cached
in photon maps for further reuse. This approach samplestiighsport paths that connect a light
to the eye, which accounts for the viewer in the sampling ggecand provides information to
improve photon storage. Paths are sampled with a Metroplaigings algorithm that exploits
coherence among important light paths. To handle difficalbhg in the path space, a technique is
presented for including user-selected paths in the sampliocess. This allows a user to provide
hints about important paths to reduce variance in specifis pdthe image.

A more general statistical method for light path sample tatag and reuse is studied in the
context of sequential Monte Carlo. Based on the populationtM@arlo method, an unbiased
adaptive sampling method is presented that works on a piquulaf samples. The samples are

sampled and resampled through distributions that are neddifver time. Information found at
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one iteration can be used to guide subsequent iteratiohswtitntroducing bias in the final result.
This is the first application of the population Monte Carlo huet to computer graphics.

After getting samples from multiple distributions, how th&imator is constructed for Monte
Carlo integration has a big impact on the variance in the neatlenages. Combining the idea
of importance sampling and control variate, an optimal @ntariate algorithm is developed
that allows samples from multiple distribution functiondae combined optimally. Its optimizing
nature addresses a major limitation with control variatevesors for rendering: users supply a
generic correlated function that is optimized for eachneste rather than a single highly-tuned
one that must work well everywhere.

The population Monte Carlo rendering framework and optithizebiased estimator result in
more efficient and robust algorithms for global illuminaticSignificant improvements in results
are demonstrated for various commonly existing envirortsiench as scenes with non-uniform

variance on the image planes and scenes with difficult bubrtapt paths.



Chapter 1

Introduction

Applications from special effects to product design demaadistic, physically based render-
ings of complex scenes. Images from physically based rerglalgorithms not only look plausible
but also can accurately predict the appearance of the red woa virtual environment. Because
of their realism and predictiveness, those images can lktosenswer questions such as “what
would this theater look like if we arrange lights at certadodtions?” without actually installing
those lights or even building the theater. As a result, pallsi based rendered images find ap-
plications in many fields such as light design, movies, aechiral design, pilot training, and fine
art. Even for less rigorous applications such as computeegand virtual reality walk-throughs,
physically based rendering greatly enhances the visuaapp

To see the differences between a non-physically basedmexhdeage and a physically based
rendered image, Figure 1.1 shows that while the image witix dimect lighting and ambient
lighting on the left looks realistic, it misses some impattigghting effects such as color bleeding,
soft shadows, and caustic that show up in the physicallydesedered image on the right.

The goal of this thesis is to develop efficient algorithmsdtirline physically based render-
ing. While there are many interesting applications for nbggically based rendering (e.g., non-
photorealistic rendering [61] and interactive renderi®@j], they sacrifice realism for either artistic
expression or interactive speed. Using principles of pisy® simulate light transport, physically
based rendering aids our understanding of the fundamemmaigles of image rendering, makes it

possible to evaluate rendered images, and provides thefoasion-physically based applications.



Figure 1.1: Image with direct lighting only vs. image with global illuration.

The reminder of this chapter presents the statement ofgmuyla brief summary of contribu-

tions, and an overview of the methods that will be developeslibsequent chapters.

1.1 The Global lllumination Problem

The input to a physically based rendering system is a fultgigtson of the 3D scene including
the light sources, scene geometry, surface materials andreanformation. In order to generate
physically accurate images, we need to simulate all irgBections between the lights and objects
in the scene model; this is called the global illuminatioalgem [4, 92].

The physical foundation for image synthesis in global ilioation is the rendering equa-
tion [47, 43] to which both finite element and Monte Carlo methdave been applied. Finite
element methods, or radiosity algorithms [33], are mosatiife in purely diffuse scenes. Gener-
alizations for non-diffuse surfaces and complex geomettien out to be very difficult practically
and theoretically. On the other hand, Monte Carlo methodphgsically based rendering handle
general reflectance functions and geometric represensatifajiya [47] proposed the first unbi-
ased Monte Carlpath tracingalgorithm and introduced a range of sampling strategiespwove

the method.



While demonstrated to be the most general and robust meti®dhdin disadvantage of Monte
Carlo for global illumination is that it is very expensive tmopute if applied naively; if not enough
samples are taken, noise appears in the resulting imagesas®l is reduced only slowly with
increasing samples. This has limited the use of global ithation in production environments.
Industry reports [93, 11] that the average computation foneendering a single complex scene is
still multiple hours using modern computers. Over the ygasearchers have continued to develop
new Monte Carlo algorithms with various trade-offs in speszturacy and generality [47, 107,
54,102, 44, 103, 27, 13].

The efficiency of rendering can be improved significantly dnesamples can be concentrated
in the part of the sample space which matters the most ane ifiidh-contribution samples can
be reused. In computer rendered images, not all areas haganhe impact on human perception.
Some regions are more complex and detailed than others; sagians have high contrast; and
some regions capture more human attention. Figure 1.2 showshoises vary across the image
plane in a global illumination image. It can be seen on theitefge that the noise level on the
shadowed ground regions is perceptually much higher thaheoan-shadowed ground. The noise
level difference can be several orders of magnitude. Ingk@&nple, most of the noise is due to
variation in incoming illumination: around the shadow bdary, those occluded light samples
have zero contribution while the others have high contiitbutThis causes high sample variance
on the rendered image. The variance can be reduced by eiittergpmore image rays on those
shadow boundary regions (i.e., adapt image plane) or byngastore shadow rays towards the
visible light than the occluded light (i.e., adapt hemigphdirection).

The goal of this thesis is to develop robust and efficient unbsed Monte Carlo methods
for the global illumination problem, which allows adaptively generating samples and reusing
important samples. For these demands, we present a novel statistical framelas&d on se-
guential Monte Carlo (SMC) methods [21, 59] for physicallydxhsendering. It is demonstrated
that sequential Monte Carlo methods can be used to efficigatigrate and reuse path samples for

physically based rendering.



Figure 1.2: A global illumination image and its noise distribution. Wéritregions on the right
image indicate higher noise on the left image.

Mathematically, the problem can be stated as follows: Gaearget probability distribution
7(z) defined on a common measurable spacand a measurement functiof(;z), wherez € (2,
introduce a sequence of intermediate proposal distribstig (z),t = 1,---, N, which are cali-
brated to converge to(z) along/ iterations so that the Monte Carlo estimator fotf (z)m(z)dx
based on all the samples from those distributions will cap@euickly with low variance and be
unbiased.

Figure 1.3 shows how sequential Monte Carlo methods can helpléng a target distribution.
In the target distributions(x), there are two modes that we assume are a combination of two
underlying distributionsy, () andp, (), but the weight functionsy, (z) andw, (), are unknown
(Sequence 0). Note that the weighting functions could bdimear and their values depend on
Since noa priori information about the weighting functions is available e tinitial step, we
set them uniformly and generate samples fi@Ap, (z) + 0.5p2(z) (Sequence 1). Based on the
samples from the previous iteration, the importance famctian be adjusted to get closer to the
target distributions (=) (Sequence 2). Repeating this process results in a sequeinterofediate

distributions that converges towardgr).



To address this problem in the context of global illuminatiewe subdivide it into the following

three sub-problems.

e How to design and evolve the sequence of distributions so th#he later distributions

can be improved based on the performance of previous distrilstions?

In Monte Carlo algorithms for the global illumination probieit is essential to use good
sampling techniques so that noise in the rendered imagévileduced quickly. However,
the optimal sample technique is often difficult to chooseobatiand because it depends on
parameters whose values are only known during the samphoceps; for example, the

material and geometry of the surface point that the samplgdhtersects.

In the Checker scene (Figure 1.4), there are two area lightiffefent sizes, and three
surface materials — diffuse, specular and glossy. If wesptea fixed sampling strategy such
as BRDF sampling or light sampling, it would be good for oneaagbut very bad for other
regions. For example, light sampling works very well forfulse surfaces but does a poor

job for the specular regions in front of the big area light.

The problem is how to detect lighting conditions and crat llest importance function
without introducing bias. In order to efficiently estimaktestdirect lighting for all surface

points, a sensible sampling strategy should take into adaiia combination of factors that
affect the sampling, and adjust the sampling technique erilyrbased on the performance
of the samples. This thesis shows that population Monte @aglihod can be used to solve
this problem. In the scene above, we would like to detectatthte light sampling technique
for the specular regions in front of the big area light geteefagh variance samples, and

then use BRDF sampling instead.
e How to generate samples and reuse the high-contribution budifficult samples for one
single target distribution?

Due to the geometric setting and material properties, saghé path samples may be more

difficult to detect in the sample space. For example, thetcapsth in the Cornell Box scene



and light paths starting from the back room and passing tirdke ajar door in the Room
scene (Figure 1.5). After those samples are generated,stimyld be reused to locally
explore nearby important paths. We present an algorithredoB4etropolis sampling and

photon caching for samples reuse. Population Monte Carl®earsed for it too.

e How to optimally combine the samples from a sequence of digtsutions to minimize

the estimation variance without introducing bias?

For example, in computing the direct lighting for the Checkeene (Figure 1.4), the es-
timator that combines the samples from BRDF sampling and Bghtpling makes a big
difference on the image variance. A naive linear combimatibthe samples from different
sampling techniques does not work well because if any ofetlsasnpling techniques has
high variance, then the estimator produced by the lineabawation will have high variance

as well. A OCV estimator is proposed to address that problem.

Sequential Monte Carlo methods provide a mechanism for ngeétiese requirements. The
key idea is that samples from the previous distribution éngbquence can provide information to
improve the proposal distributions and be reused to disaatver high-contribution samples.

SMC techniques offer four major advantages over existinthoos: (1) they reduce estimation
variance by choosing samples correlated across the distniis without introducing bias; (2) they
make it easier to find important, rare light paths by sharrigrmation among the distributions;
(3) they provide a natural way to discard low contributiompées and retain high contribution
samples based on the sample weight; and (4) this framewditksimany existing rendering algo-
rithms such as path tracing, metropolis light transporérgy redistribution path tracing, multiple

importance sampling, and adaptive importance sampling.

1.2 Summary of Contributions

We introduce novel applications of the sequential Monte €aréthod to computer graphics
that lead to new adaptive sampling algorithms for physydadised rendering. Our main contribu-

tions are the following:



e Metropolis Photon Sampling (MPS): As a way of generating and reusing important path
samples, we propose a visual importance-driven algoritimpdpulating photon maps. Our
approach samples light transport paths that join a lighhéodye, which accounts for the
viewer in the sampling process and provides informationrtprove photon storage. Paths
are sampled with a Metropolis-Hastings algorithm that eiplcoherence among important
light paths. We also present a technique for including uskscsed paths in the sampling
process without introducing bias. This allows a user to pi®hints about important paths

or reduce variance in specific parts of the image.

e Population Monte Carlo Rendering (PMCR): Based on population Monte Carlo, we de-
velop an unbiased adaptive sampling method that works ompalgtion of samples. The
sample population is iterated through distributions tmatraodified over time. Information
found in one iteration can be used to guide subsequentigesatwithout introducing bias

in the final result.

e Optimizing Control Variate (OCV): Combining the idea of importance sampling and con-
trol variate, OCV allows samples from multiple distributifumctions to be combined in one
algorithm. Its optimizing nature addresses a major linatawvith control variate estima-
tors for rendering: users supply a generic correlated fanathich is optimized for each

estimate rather than a single highly-tuned one that must wetl everywhere.

1.3 Thesis Outline

Chapter 2 of the thesis gives an overview of Monte Carlo methddter a brief history of
Monte Carlo methods, the principle of Monte Carlo integratiamich uses Monte Carlo sim-
ulation to estimate an integration, is described. Next, es@ariance reduction techniques such
as importance sampling and control variates are introduéésl further introduce the concept of
MCMC — metropolis sampling. For sequential Monte Carlo meshddo approaches most ap-
plicable to computer graphics are discussed: Sampling fttapoe Resampling and population

Monte Carlo.



Chapter 3 introduces the basic concepts related to globahilation and physically based
rendering. After providing the definition of the four mostnemonly used terms in radiometry,
surface BRDF and the rendering equation are presented. A synuhaxisting representative
rendering algorithms involving Monte Carlo methods to sdhe global illumination problem is
given.

Chapter 4 presentdetropolis Photon SamplinMPS), a visual importance-driven algorithm
for populating photon maps. A technique for including usellected paths in the sampling process
without introducing bias is presented.

Chapter 5 presents a novel statistical framework for imagdeeng calledPopulation Monte
Carlo RenderindPMCR). PMCR works on a population of samples that is iteratemlityjh distri-
butions that are modified over time. We show its applicatema humber of problems in realistic
rendering.

Chapter 6 discusses tlptimizing Control Variateestimator, a new estimator for Monte Carlo
rendering that combines the samples from different distidms in a provably good way.

Chapter 7 concludes with a summary and the original contabstin the thesis, and identifies

some future research directions.
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Figure 1.3: SMC distributions. Sequence 0 shows the target distributic:) and the two un-
derlying basis distributiop; () andp,(z). Sequence 1 usew;(z) + 1p,(x) as an importance
distribution to generate samples. Based on the samples ueseg 1, the weighting functions
wy (x) andwy(x) are adjusted so that the importance distribution is clasert). New samples
are generated from the updated densityz)p; (z) + w2(z)p2(z). Repeating the process hope-
fully leads to an importance distribution that is very clés¢he target distribution () so that the
sample variance is low.
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Figure 1.4: Checker scene (top) consists of two area lights of differezstss and three different
surface materials. Light sampling (bottom-left) does veoprly in the specular region in front of
the big area light, while the BRDF image (bottom-right) appeary noisy on the diffuse surface.

Both do poorly in glossy regions.
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Figure 1.5: Difficult paths. In the Cornell Box scene, the light paths shawihe top-right image
are very difficult to sample because they have to bounce fhenmiirror to a certain region on the
glass ball to form caustic. The light paths marked for the Rgoene (bottom-right) are difficult
because they have to pass through a narrow door way aftecimguinom a wall or the door.
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Chapter 2

Monte Carlo Methods

This chapter introduces some basic statistical conceptdtmmte Carlo methods. After a brief
overview of Monte Carlo methods, the principle of Monte Carltegration is introduced. Then,
a number of variance reduction techniques such as impartsarmpling, control variate, and de-
terministic mixture sampling are described. We also prelsktropolis-Hastings sampling, which
is a Monte Carlo method using dependent samples and is the tnaikling block for Markov
chain Monte Carlo (MCMC). Sequential Monte Carlo (SMC) methodsrexthe idea of generat-
ing samples from one single distribution to a sequence tfilbigions. Good references on basic
Monte Carlo methods include Kalos and Whitlock [48], and Hamsteg and Handscomb [38].
Spanier and Gelbard’s book [86] is an authoritative souocceMonte Carlo applications to nu-
clear transport problems. More advanced topics on MonteoGadthods can be found in [80].
Gilks et al. [31] is an excellent starting point for MCMC. Moretdils on sequential Monte Carlo
methods are available in [21, 59, 80]. A useful webkitp://www-sigproc.eng.cam.ac.uk/snie/

maintained at Cambridge University for SMC related research

2.1 Monte Carlo Methods: A Brief History

The generic term “Monte Carlo method” refers to all numeridhods involving statistical
sampling processes for approximate solutions to quangtptoblems. It can be used not only for
probabilistic problems, but also for non-probabilistiolplems such as optimization and numerical

integration. Application domains range from economicsuol@ar physics to computer sciences.
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The earliest documented example of Monte Carlo computagian experiment done by Comte
de Buffon in 1777. He performed an experiment by throwing alteeef length/ at random onto
a board marked with parallel lines a distantapart to infer the probability that the needle will
intersect one of those lines.

Later, Laplace pointed out that the experiment by Comte DedButfan be used to estimate
the value ofr. Suppose the needle is thramtimes andM/ is a random variable for the number of

times the needle intersects a line. Then
p=E(M)/n [2.1]

whereE (M) is the expectation af/. It is not difficult to analytically obtain the probabilityas

21
= 2.2
p= [2.2]
Connecting the above two equations and rearranging, we geindeMCarlo estimator for:
n 2l
T=—— 2.3
=17 [2.3]

In 1864, Captain O. C. Fox did three such experiments to esimatnterestingly, Fox im-
proved his second experiment by rotating the ruled boamnddst drops to eliminate the bias due
to the position of dropping the needle. In his third expenmbe adjusted the values bbdndd so
that the needle could cross multiple lines in a single tasshik way, he reduced the sample vari-
ance in the estimation and improved his estimatiom éfom 3.178 in his first attempt to 3.1416
in the third experiment with similar numbers of drops,

In 1873, A. Hall [36] published a paper on the experiment&deination ofr. Other isolated
examples of using Monte Carlo methods include that Lord Kelised random sampling to esti-
mate time integrals of kinetic energy in 1901, and, Studént§. Gosset) used random sampling
to help him discover the-distribution in 1908.

The modern history of Monte Carlo methods starts in the ed@0% when scientists at Los
Alamos systematically used them as a research tool in thak @an developing nuclear weapons.

One of the key figures was Stanislaw Ulam [62], a Polish maéteman who worked for John von
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Neumann during World War II. Ulam did not invent the statiatisampling method, which had
been used to solve quantitative problems long before. Hewevith the development of the first
electronic computer, ENIAC, Ulam was the first one to realimepotential of using computers to
automate the statistical sampling process. Together whih yon Neuman and Nicolas Metropo-
lis, he developed algorithms and explored the means to comve-random problems into random
forms so that statistical sampling can be used for theirt®wiu One of the first published papers
on this topic was by Metropolis and Ulam [63] in 1949. The ndiMente Carlo” was suggested

by Metropolis after the famous Monaco casino.

2.2 Estimators and their Properties

A function F' of random variables is called astimatorfor an unknown population quantityif
its meanF (F') is a usable approximation 6f A particular numerical value df, after instantiating
the random variables with the known sample data, is callezstimate

For any given quantity, there exist many possible estinsat@generally, we would like to
use Monte Carlo estimators that provide good estimates iasoreble amount of computational
time. In order to choose one estimator over another, sonerierare needed. Those criteria are
usually based on the following properties of an estimatoeamsquared error, bias, consistency
and efficiency. However, it is worth pointing out that in margses there may not exist a clear
choice among estimators, even though in some cases sommgst can be clearly better than

others.

e Mean Squared Error

The quality of an estimator is generally judged by its mearased error. The mean squared
error (MSE) of an estimataF’ of a quantityd is defined as the expected value of the square

of the difference betweef and?:

MSE(F) = E[(F — 0)?] [2.4]

e Bias
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Fis called an unbiased estimator ®ff its expected value is exactly the same as the true

value ofé. If not, the difference between them is the bias:

3=FE[F|—0 [2.5]

One advantage of using an unbiased estimator is that it iImgtesed to get the correct value
of ¢ if enough samples are used. Also, the expected value of aasethestimator will be
the correct value after any number of samples, which makesith easier to analyze the

error of the estimator. Rewriting Equation 2.4, we have

MSE(F) = E|[(F —0)
= E[(F = E[F]) + (E(F) - 0))°]
= E[(F - E[F))*)+2B[F - BE[F]|(E(F) - 0) + (E[F] - 0)°
= Var[F] +2(E[F] — E[F))(E(F) — 6) + 3
= Varl[F] + 3 [2.6]

If the estimatorF’ is unbiased, ther is 0. This means that the MSE for the estimator is
the same as its variance. So, in order to estimate the emranfanbiased estimator, we just

need to compute the sample variance of the estimator.

On the other hand, a biased estimator may still not give secbestimate fof) even with
an infinite number of samples. The error for a biased estimstgenerally more difficult
to estimate than an unbiased estimator. However, in sonescasbiased estimator may
have some desirable properties, such as smaller variameeany unbiased estimator. For
that and other reasons, it is sometimes preferable not tobdimeself to unbiased estimators.
Generally, we seek the estimator minimizing the MSE thatdsrabination of both bias and

variance.

e Consistency
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An estimatorF’ is called consistent for the quantigyif and only if ' converges t@ with

probability 1 as the number of samples goes to infinity. That is,

prob{]\}im F(Xy,---,Fy)=0}=1

Note that the condition for consistency is stronger tharpgmequiring the bias(s, go to0

as the number of samples approaches infinity. One sufficarditon for an estimator to
be consistent is that both its variance and bias gbds N increases. There exist situations
where an unbiased estimator is not consistent, for examipégws variance is infinite. For
a biased estimator with finite variance, the estimator issdant if its bias diminishes o

asN increases.

e Efficiency

For any estimator, increasing computation time almost ydveecreases the variance, so the
tradeoff is whether a decreaselifi'] will more than compensate for the increase in time,
T[F]. The efficiency of a Monte Carlo estimator is defined as therga/ef the product of

the variance and the running time to reach that variance [38]

2.3 Monte Carlo Integration

One important class of applications where Monte Carlo metivat help greatly is to evaluate
the integration of functions or, equivalently, the expéotss of functions. It is usually not difficult
to formulate a quantity as an expectation and to proposeva iMonte Carlo estimator. Actually,
atleast in a trivial sense, every application of the Montd@aethod can be somehow represented
as a definite integral.

Suppose we want to evaluate the integral

I:/Qf(x)dx [2.7]
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where domairf2 is a region in multiple-dimensional space af(d:) is the integrand. The idea of
Monte Carlo integration is to estimate the integral with apested value using random samples.
I can be interpreted as the expected value of random varféidl¢, whereX is a random variable
uniformly distributed in). If we draw a set of samplesy, - --, Xy, uniformly in 2, then an

approximation ta’ can be obtained by its arithmetic mean:
1
Iy =5 Y (X)) [2.8]

Based on théaw of large numbers/y is an unbiased estimator fér We call Iy in Equa-
tion 2.8 the crude Monte Carlo estimator. The variance of thdeMonte Carlo estimator is

Var(Iy) = Var %éf = %Var(f(X)) [2.9]

So the standard error df; is o /v/N, wheres® = Var(f(X)).

Two conclusions can be drawn from the variance in Equatién(d) the standard error of the
crude Monte Carlo estimator decreases with the square rtot ghmple siz&/, and (2) it does not
suffer from the curse of dimensionality, i.e., the compotatoes not increase exponentially with
the dimensionality of the integral (methods such as the Nex@otes rules or Simpson’s method
suffer from the curse of dimensionality). The statistiaabeis independent of the dimensionality
of the integral.

While the statistical error of the crude Monte Carlo estimatemains constant in
high-dimensional problems, there are two potential diffies: (1) it may not be possible to uni-
formly sample an arbitrary spa€e and (2) for a high-dimensional space, the function of edér
f(z), may be0 in most regions while having high values in some very smajiaes. Uniformly
sampling(2 may cause the varianeeto be extremely large.

With a trivial manipulation, we can rewrite Equation 2.7 as

I = /Qf(x)dx

; {)Egp(x)dx [2.10]
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where p(x) is a PDF in2. Instead of uniformly sampling2, we can generatéV samples
Xi, -+, Xy from p(z) and compute the following estimator
1 X f(X)
P N ; p(Xi)

[2.11]

It is easy to see thd, is an unbiased estimation éfand the variance af, is o7/N, where

2 _ f(x) — D2p(2)de

Up - /(p(zz) [> p( )d
F@) e p2 [2.12]
p(x

/()

The crude Monte Carlo estimator is a special case of the estimgif p(z) is chosen to be a

uniform distribution function if2. The estimatofp has the same two properties as the crude Monte
Carlo estimator: the statistical error decreases wifti and it is not affected by the dimension of
the sample spacde.

One major advantage of Monte Carlo methods for integratidhasit is easy to understand
and simple to use. The only thing needed is a density fungti@n, from which we can generate
samples, and the ability to evaluate the sample Wei%,i =1,---, N. Another advantage of
Monte Carlo methods is flexibility — they can be applied to aeviange of problems. In situations
like high-dimensional integration, Monte Carlo methods rbaythe only feasible solution. For
example, the problem of global illumination in computergrcs must evaluate the integral over
the space of all light paths. Consequently, its domain hasitaefdimension, but Monte Carlo

methods provide a natural way of handling it.

2.4 Variance Reduction Technigques

The major disadvantage of Monte Carlo methods for integnaiots RMS error converges at
a relatively slow rate of) (N ~'/2), which means that we need to quadruple the number of samples
in order to reduce the standard deviation by half.

In order to speed up Monte Carlo simulation, users need toagbmigues for variance reduc-
tion. Even in early applications of Monte Carlo at Los Alamesn Neumann and Ulam refined

their simulations with some variance reduction technicgieh as Russian Roulette and splitting.
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The variance reduction methods commonly used include itapoe sampling, control vari-
ates, and stratified sampling. These and other more advamacieshce reduction techniques are

discussed in the next sections.

2.4.1 Importance Sampling

Obviously, the variance\/ar(fp), of the Monte Carlo estimatdf,) in Equation 2.12 depends
on the choice of the density functigiiz) from which we draw the samples. Intelligently choosing
p(z) to reduce the variance of the Monte Carlo estimator is caffggzbrtance samplingp(z) is
called theimportance density For each sampl&®) from p(z), f(X®))/p(X®) is called the
importance weightThe only two constraints for using importance sampling étgit is possible
to generate samples fropiz), and (2) we must be able to evaluate the importance weights.

Equation 2.12 suggests that more samples should be put ifintipertant” regions in the
sample space, whergx) has relatively high values. This is very important espéciar high-
dimensional problems since the target functig(y), could have nonzero values in only a very
small portion of the whole sample space. Uniformly sampthgywhole sample space is doomed
to fail in these simulations.

The optimal density functiop*(x) that minimizes the asymptotic variancecig(z)|, where
the ¢ is the constant term = 1/ [ f(z)dz. p*(z) leads to zero variance. Unfortunately, using
an optimal density function is not practical because it nreguknowledge of the normalization
constant¢, which involves the value of the desired integrfalHowever, it suggests a good impor-
tance sampling density should have a shape similaf(te)|. Typically, a functiong(z) may be
obtained by using some factors ffz) or approximatingf (z) with the major components in its

Taylor expansion. Ify(z) obtained that way is possible to generate samples fromwieeran set

p(z) o< g(x).

2.4.2 Control Variates

Another important technique for variance reductionostrol variates[48]. The basic idea of

control variates is to replace the evaluation of an unknoxpeetation with the evaluation of the
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Figure 2.1: Control variates.

difference between the unknown quantity and another eapentwhose value can be integrated
analytically.
Assuming we are interested in the integral in Equation 2rid vee can find a functiog(z)

that can be integrated analytically and has the followirapprty:

Var(f(z) — g(x)) < Var(f(z)) [2.13]

then an estimator of the form

F= / g(x)dz + %; / (X;j(;(ig)(Xi)

[2.14]

will have a lower variance thaf), in Equation 2.11.

Generally, a good choice of control variate for a functifty), is the sum of the first several
terms of its Taylor series. For example, Kalos and Whitlodk [dg. 108] showed that by using
the first two terms of the Taylor series e@fp(x), 1 + x, as the control variate, the Monte Carlo
variance was reduced frofn242 to 0.043 with the same uniform samples in (0,1).

If we have a functiory(x) which is an approximation of (z), g(xz) may be good as either
a control variate or importance sampling density. In gdnéfraf(x) — g(x) is approximately
a constant (absolutely uniform), usigz) as a control variate in correlated sampling is more
efficient than using importance sampling. On the other h#nd(x)/g(x) is nearly a constant

(relatively uniform), it would be more appropriate to uge) as importance density in importance
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sampling [37]. Furthermorey(x) should be integrable analytically to be used as a contrahtegr

while g(z) has to be easy to sample to be used as an importance sampisityde

2.4.3 Defensive Importance Sampling

A common pitfall of importance sampling is that importaneenpling can fail if the target
function, f(x), has a heavier tail than the importance sampling densitstiom, p(x), even though
p(z) might have roughly the same shapefds). In that situation, when a sample is generated
from the far tails ofp(x), the importance weight for that sample may be orders of ntadailarger
than the typical values for the samples at modes. This wilkearery high variance in the estimate.
In the extreme case thafr) decreases towardsfaster thanf?(x) asz moves towards its tails,
the variance will bex.

Defensive importance sampling (DIS) [41, 42] is a technitipa fixes the above problem with

importance sampling. Assume we want to compute the integral

[:/Qf(a:)q(a:)dm [2.15]

whereq(z) is a target density function 0. Let p(x) to be a probability density function that is
close to the optimal importance sampling densityz)|q(x)/I. Instead of using(z) alone as the
importance density function, defensive importance samgplises aefensive mixture distribution

that has the form
pa(z) = aq(z) + (1 — a)p() [2.16]

where0 < « < 1.0.

Using a defensive mixture distribution makes the samplghtei(x)/p.(x) bounded byl /«.
It also guarantees the variance of defensive importancelsagms less than or equal i/ « times
the variance of the simple Monte Carlo estimate using a umifdistribution.

If we can not use the target distributiof(;x), in a defensive mixture because either it is un-
known or it is difficult to sample from, then a mixture distition with more than two components
can be used so that all the important regions in the samptespid be represented. For example,

if ¢(z) can be decomposed into a product of several density furgtiefx), - - -, ¢,(z), and each
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PDF is easy to sample from, then we can use a mixture distribof the general form

2 =3 awanle) + aop(e) [2.17]
k=1

where>~)_, o, = 1.0 anday, > 0.

2.4.4 Mixture Sampling

Mixture sampling as defined by Owen and Zhou [69] combinesomamce sampling with
control variates in a way that uses a mixture density for irtgprce sampling while employing the
mixture components as control variates.

Suppose we have different PDFsp; (), - - -, p(x), @and we can construct a mixture density,
Pal() =30, a;pi(x), wherea; > 0 and)_, o; = 1. As described by Owen and Zhou, the mix-
ture componentg;(z) can also be used as control variates. If we generamples X, - -, X,

from p,(z), the estimator that results for the integfat [ f(x)dx using mixture sampling is

- - z 1 ﬁlpz
g pa(Xj) ) 4 Zﬁz [2.18]

where thej; are a set of real-valued variables. This estimator is ueldigasnd its variance is

aﬂ_/< lﬁzpz( )_I+§:lﬁz> pa(q;)dq; [2.19]

If 3*, the optimal set of3; which minimizesfyiﬂ, is used, then Owen and Zhou showed that

02 5~ <min’; o; ‘o2 . In other words, using samples from the mixture with the control variate

estimate is no worse than drawing; samples from theestcomponent of the mixture.

We do not know3*, but we can obtain an estimat#, by multiple regression of (X;)/pa(X;)
on predictorsy; (X;)/p.(X;). With this method,3; = 8 + O, (n"'/?) fori = 1,---,m, and
fa”@ =l + O, (n7h).

In practice, deterministic mixture sampling (DMS) is pmegel over ordinary mixture sampling
because DMS has provably smaller variance. In DMS, the nuoifigamples from each compo-
nent,p;(z), is allocated deterministically as = n«;, wheren is the total number of samples.

Fromp;(x), we generate;; independent sampleX(;;,i = 1,---,mandj = 1,---,n;. Then the
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estimator is

i=1

_1 b — 2t Bipi(Xi) ) -
= - (52 JZI (X ) +) 6 [2.20]

2.4.5 Multiple Importance Sampling

For a target distribution with multiple modes, sampling@&ding to a single importance den-
sity may not be able to capture all the important regions efititegrand. Instead, several PDF’s
may be constructed and each of them can generate samplesrferspecific, important regions.

For the estimation of the integral in Equation 2.7, suppose haven different PDFs,
pi(z),- -, pa(x), and generate; samples{ X, ,,---, X;,} from p;,(xz). The question is how to
combine those samples in a manner that minimizes the egiimadriance without introducing
bias. Simply averaging those samples generally will notlpce an optimal result.

Veach and Guibas [102] introduced multiple importance denrggMIS) in the context of
global illumination and studied the above problem. To uddh® samples{X,;}, 1 < ¢ <
n,1 < j < n,, to estimate the desired integralmaltiple-sample estimatas defined as

1 & f(Xz',j)
F = ;m;wl irj px(Xi,j) [2.21]

where the weighting functionsy, - - - , w,,, give the weighty;(x), for each sample drawn from
p;- In order for the multiple-sample estimator to be unbiagkd, weighting functions should
satisfy> ", w;(z) = 1 andw;(z) > 0.

One obvious choice for the weighting functions is to use

b)) = ¢ pi(z)
w;(x) o) [2.22]
where
q(z) = aipr(z) + -+ + crpr() [2.23]

¢ > 0andy", ¢; = 1. Itis “obvious” in the sense that if we sample according ®thixture PDF
in Equation 2.23, a classical importance sampling estimaiib give the same estimation as the

multiple importance sampling estimator with the above Wity functions.
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If ¢; is set in proportional to the number of samples from each RDE,n;/ >, n;, it leads to
. np;()
Wi\T) = =/~ 2.24
(=) > NPk () 12.24]
This weighting strategy is called the balance heuristic.aBe¢ heuristic weighting is nearly
optimal, which means no other combination is much betteAppendix A, we show that MIS with

balance heuristic weighting can be treated as a speciabtasfensive importance sampling.

2.4.6 Stratified Sampling

The basic idea of stratified sampling is to divide the fulegmation space into mutually exclu-
sive subspaces (strata), and then perform Monte Carlo atiegrin each subspace. Suppose we
are interested in estimating= |, f(z)dz, and we haven disjoint subspaceQ,, - - -, (,,, whose
union is€). If we generatey; samplesX; ., - - -, X;,,, from subspac€;, wherei = 1,---,m, then

the estimator from stratified sampling
“ m 1 ng
=33 f(Xy) [2.25]
i=1 "M j=1
is an unbiased estimator férwith variance

~ mo'i

var(l) = -
i=1 T

whereg; is the variance of (z) in subspacé);.

It can be shown that stratified sampling will never have higlagiance than plain unstratified
sampling [100]. Stratified sampling techniques are veryfulsghen the population is hetero-
geneous but certain homogeneous sub-populations can beasspinto subgroups. However,
stratified sampling does not scale well to high-dimensiamalgration because there are too many

dimensions to refine.

2.4.7 Adaptive Sampling

Adaptive sampling strategies allow for adjusting samplagtern depending upon observa-

tions made during the sampling process [96]. Similar to irgrece sampling, adaptive sampling
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puts more samples in the more important regions for the iate¢lowever, one major difference
between adaptive sampling and importance sampling istiealistribution for adaptive sampling
is modified “on the fly” to learn from the performance of prayscssamples, while the distribution
for importance sampling is satpriori before sampling starts.

There are number of applications of adaptive sampling inmdsr graphics for photo-realistic
rendering [65, 70, 75, 95, 6, 29]. The goal of those algorghsnto concentrate samples where
they will affect the quality of the rendered image most. Enare three central issues for adaptive
sampling algorithms: refinement criteria, how to avoid péagl how to generate samples from the
refinement distribution so that they reach the areas mostegd.fMuch of the work in the rendering
literature has been done on developing different refinercretia.

The main disadvantage of adaptive sampling is that it catdoice bias if not used with
care [51]. Bias can be avoided using two-stage sampling. #eibsoblution is to put adaptive
sampling into an importance sampling framework [8, 80]. Mot this thesis work is to develop
unbiased adaptive rendering algorithms that reuse thelsartgpaccount for spatial and temporal

coherence in the rendering.

2.5 MCMC and Metropolis-Hastings Sampling

Markov chain Monte Carlo (MCMC) methods use Markov chain sirtioileto sample a spec-

ified target distribution [31]. Given the state sp&tand a target distribution(z), wherez € €,

the MCMC algorithm generates a random walg, X1, X5, - - -, from a distributionX (X, 1| X;)
which depends on the current state of the chain, The conditional probability densiti(-|-) is
called thetransition kernebf the chain. If the chain has(z) as a stationary distribution, then after

a large number of iterationd®rn-in phase), the chain will be a sequence of dependent samples
approximately fromr(z). From a Monte Carlo point of views(z) can be represented by those
samples after burn-in, which means that any computatioré&tations (or integrals) usingcan

be estimated to an acceptable degree of accuracy by usisg tlependent samples in the Markov

chain.
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Now the problem is how to construct a Markov chain such tisatétionary distribution is ex-
actly the target distributiong(x). This turns out to be surprisingly easy. The Metropolis-itas
algorithm [64, 39] provides a way of generating such a Marko®in. This is done by first propos-
ing a candidatestate, X, ,, using information fromX,. The algorithm then either accepts the

candidate X7, ,, or rejects it and retain¥,. In pseudo-code:

Initialize X,; sett = 0.
fort=1t0 N
X{yy — T(1X)
generate a random numbek [0, 1]

if( r < a(X]1]X¢)) then

Xt+1 = Xé+1
else
Xip1 = X

Figure 2.2: The Metropolis sampling algorithm.

The functiona (X7, ;| X¢) computes thacceptance probabilitior X, ; given the current sam-

ple X;. Itis computed as

W(Xt/ﬂ)T(Xt ’Xt/+1> }
W(Xt)T(XtI+1|Xt)

(X, 4| X)) = min{1, [2.26]

whereT'(X/,,|X,) is the proposal distribution(or tentative transitional function), denoting the
probability density of going to stat¥;, ; given that the current statel§. Remarkably7'(X; ,|X;)
can have almost any form and the chain generated by the Mésdpastings algorithm will still
have stationary distribution(x). This can be seen from the following argument. The transitio

kernel for the Metropolis-Hastings algorithm is

K(Xi|Xy) = T( X Xp)a(Xy| X))

66X = X)) (1 - /T(Y|Xt)a(Xt|Y)dY) [2.27]
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whered(-) is the indicator function, s& (X,,|X;) and K (X;|X,.1) will have the same second
part no matter whetheX, . ; = X; or not. Based on how we compute the acceptance probability,
we have

T(Xe) T (X1 | Xe)a(Xe | Xiy1) = m( X)) T(Xe| X1 )a(Xipa | Xe) [2.28]

From Egs. [2.27] and [2.28], we obtain
(X)) K (Xpa| Xe) = (X)) K (X Xp1) [2.29]

which is called theletailed balancequation. Detailed balance is a sufficient condition forrgua
anteeing that (-) is the stationary distribution o&’(-|-).

Metropolis-Hastings sampling is very general. It can bedusesample an arbitrary, complex
probability distribution functions(z), known up to a normalizing constant, as longrds) can
be evaluated. The proposal distributiah(X;.,|X;), can have almost any form and the chain
will still eventually converge tor(x). However, the relationship betwe&i{X;,,|X;) andnr(x)
has a significant impact on the convergence rate of the chashhence the number of samples
required to get a good result for integral estimation. Thetkedesigning a good MCMC sampler

is designing good proposal distributions.

2.6 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a set of samplingigabs that generate samples
from a sequence of probability distribution functions [28MC methods are very flexible, easy to
implement, parallelizable, and applicable in generalragst

There are a variety of ways to do SMC sampling, with two apginea being most applicable
to graphics [66, 59, 60]: in an importance sampling contthe, sample can be re-used and re-
weighted, resulting in sampling importance resamplindgRjSor the procedure can be framed in
both an importance sampling and a Markov chain Monte Carloesdywhich leads a population

Monte Carlo framework [8].
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2.6.1 Sampling Importance Resampling (SIR)

Assume we want to estimate the integral

w(f) = [ fa)m(a)ds [2.30]

The sampling importance resampling method [81, 58] extendsrtance sampling to achieve
simulation from the target distribution by resampling. $iliRceeds in two stages. The first stage
draws some independent samples from a proposal distiihutio). For each sample, the impor-
tance weight is computed. The second stage generates sdmgpksampling those samples in the

first stage based on their importance weights. The algorshoatlined below:

1 GenerateV independent samplds,, - - -, 5, } from a proposal distributiop(x)
2 Compute importance weights = 7(x;)/p(z;),i =1,---, M
3 Generaté/ samplegzy,---,xy} by resampling z, - - -, Z,, } with replacement according

to probability proportional to their weights

Figure 2.3: SIR algorithm.

The SIR estimator of (f) is constructed as
1 N
7AT(f) = N Z f(fl%) [2.31]
=1
which converges ta( f) since eachy; is approximately distributed from(z). As with importance
sampling, the efficiency of SIR strongly depends on the @ofdhe proposal distributiom ).
The resampling scheme used above is multinomial resam[8#lg Other resampling algo-
rithms are also available such as stratified resamplingstwisi optimal in terms of variance [52],

and minimum entropy resampling [15].

2.6.2 Population Monte Carlo (PMC)

The population Monte Carlo algorithm [8] is an iterated impoce sampling scheme. In

this scheme, a sample population approximately distribatording to a target distribution is



29

generated at each iteration. Then the samples from alleéhatibns can be used to form unbiased
estimates of integrals under that distribution. It is anpdigta algorithm that calibrates the proposal
distribution to the target distribution at each iterationlbarning from the performance of the
previous proposal distributions.

Assume we are interested in estimating the integfdl) = [, f(z)7(z)dz. We wish to sam-
ple according to the target distribution(z). The generic PMC sampling algorithm is given in

Figure 2.4.

generate the initial populatioh= 0
fort=1,---,T
adaptk @ (z®|zt-1)
fori=1,---,n
generateX ! ~ KO (z|x* )

w! = (X KON

(2

~N oo o~ WDN P

resample according te\” for the new populatiork”

Figure 2.4: The generic population Monte Carlo algorithm.

Line 1 creates the initial population to jump-start the ailpon. Any method can be used
to generate these samples provided that any sample witlzeranprobability underf can be
generated, and the probability of doing so is known.

The outer loop is over iterations. In each iteration of thgoathm, akernel function
K®(x®|2¢-1), is determined (line 3) using information from the previdesations. The kernel
function is responsible for generating the new populatgiven the current one. It takes an exist-
ing sample,Xft’l), as input and produces a candidate new sam’bj@, as output (line 5). The
distinguishing feature of PMC is that the kernel functions mnodified after each step based on
information gathered from prior iterations. The kernelagido approximate the ideal importance
function based on the samples seen so far. While this depesdeipling may appear to intro-

duce bias, it can be proven that the result is either unbiasednsistent, depending on whether
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certain normalizing constants ferand the kernels are known. In our applications to the renderi
problem,r is alwaysl and kernels are always PDFs.

The weight computed for each sampzléf), is essentially its importance weight. The resam-
pling stepin line 7 is designed to cull candidate samplels loiv weights and promote high-weight
samples. It takes the candidate populati{)ﬁi(t), o ,X,(f)}, and produces a new population ready
for the next iteration. Resampling is not always necessattjiqularly if the kernel is not re-
ally a conditional distribution. Even when used, resangphnd kernel adaptation (lines 3 and 7)
need not be done on every iteration. Our examples demoasinah cases. Figure 2.5 shows the
sampling and resampling steps in SMC algorithm for the exanfipstrated in Figure 1.3.

At any given iteration{, a PMC estimator given by
. 1 &
()= > w (X)) [2.32]
=1

is unbiased forr(f). To see that, we have

Bl (X = [ [ fe) Koo 0)ig

Kit(x
= [ [ f@m(@)dr g(Q)d¢
— [ f@)r(@)de = 7(f) [2.33]

where( is the vector of past random variates which contributéstp and ¢(¢) is an arbitrary
distribution. It concludes that( f) is an unbiased estimator of f).
However, in most settings;(z) may be known only up to a constant scale factor. Then, an

estimator with a self-normalized term has to be used:
#(f) = (X w) Y wl p(x”) [2.34]

In this case, the unbiasedness property of the estimatostisiutz () is consistent.
In practice, we can average over all iterations to improwedhktimate. A cumulative self-
normalized PMC estimator over dlliterations can be defined as

T n n
wolf) =3B ((Z )y w?)f(Xf”)) [2.35]

i=1
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wheres;,t = 0,---,T, are the weights to combine the estimates from differematiiens. The

optimal choices of3;, which minimize the variance af;(f), are given by [20]:

T
=020 0y
t=0

whereo, is the variance of the estimatof f) at iterationt.

In our work, we introduce the population Monte Carlo methoddmputer graphics and apply

it to adapting and reusing samples in the global illumimatontext.
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Figure 2.5: PMC sampling and resampling steps. The top diagram showsnitied samples
from the proposal distributiogp; (z) + 5p2(z). The bottom-left shows the weights for the initial
samples. The bottom-right shows the samples after resagipdised on the weights.
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Chapter 3

Global lllumination

This chapter provides a background for global illuminatido render photo-realistic images,
we must simulate the transport of light, starting from liglources, interacting with surfaces in
the scene, and finally reaching the camera. In this chapeepltlgsical quantities and equations
used for light transport and global illumination computatiare described. The rendering equa-
tion provides the mathematical foundation for the glodahiination problem. The path integral
formation for the rendering equation makes it convenientafaplying Monte Carlo methods to
solve this equation and generate photo-realistic imagemeSepresentative Monte Carlo based
algorithms for global illumination in the literature arensmarized. The strengths and weaknesses

of those algorithms are discussed.

3.1 Radiometry

Flux ®: The total energy passing through a surface per second.i$-&lgo known as power,
and is measured in Watts (joules/second). A light sourckyigjefinition, something that emits
power in the visible spectrum. So, for example, we can sagtd bulb is 60 Watts.

Irradiance E: Flux per unit surface area. Its unit(8//m?).

dd

E=—
dA

[3.1]
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For an un-occluded point light source, the irradiance atréase point,p, that is distance
away from the point light, isb/(47r?). This fact explains why surfaces far from a point light
source are darker: the irradiance falls off with the squalisthnce from the light.

Intensity I: Flux per solid angle. Its unit i6iV/sr).

dd

1 =— 3.2

7 [3.2]

RadianceL: The flux per unit projected area per unit solid angle. It hasaf (W/m?/sterd).
dd

T dATdw 13:3]

Radiance does not attenuate with distance due to its “persohid angle” definition. For
example, we have the same impression of the brightness ofl aregardless of whether we are
near or far from it.

Radiance is the most important quantity to be measured iomagtry. In particular, it is the
quantity required for quantitatively analyzing direct@meffects such as bidirectional reflectance.
Radiance is also the most frequently used term in computphgra There are two major reasons
for this. First, all the other terms can be derived from rad& Integrating radiance over solid
angle gives irradiance; integrating radiance over areasgivensity; and integrating radiance over
both solid angle and area gives flux. Second, radiance rencaimstant along a ray in free space,

S0 it is very convenient to use in rendering algorithms swctag tracing.

3.2 BRDF Function

In photo-realistic rendering, how light interacts withfaaes in the scene is essential for simu-
lating light transport. The Bidirectional Reflectance Distition Function (BRDF) describes how
much light is reflected when it hits a material.

The BRDF is defined as the ratio of the outgoing radiance in treetionw, to the incoming
differential irradiance from the directian; [67]. It is a function of incoming direction, outgoing
direction and surface poimpt

— dLo(ﬁ Wo) dLO(ﬁ uJO)
r\, Wo, W5 ) = — = — 3.4
Jo(B o ) dE;(p,wi)  Li(p,w;) cos Oidw; 1341
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Q N .

N4
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Figure 3.1: Bidirectional Reflectance Distribution Function.

Note that even though the BRDF is defined as a ratio, it is notagsit The units of the BRDF
are inverse solid-angle-—!. To understand why the BRDF is defined this way, let us look atwha
the BRDF is used for: to compute the radiance leaving from asarpointy along the outgoing
directionw,, L(p, w,), which is the sum of reflected radiance of the incoming racirom all the
directions in the hemisphere. Denote the BRDF termaa®(p, w,, w;) for a moment. Then,

Lo(p,wo) = Z Li(p, wi) * ratio(p, wo,, wi) Aw; [3.5]

Hemishpere

. . . . N . . Lo (Bwo)
One obvious choice is to definetio(p,w,,w;) as a ratio of radlanc%, however, then
L;(p,w;) * ratio(p, w,,w;) is a radiance, which leads the right side of Equation 3.5 tarbieradi-

ance due to the sum while the left side is a radiance. So, iBRi2F definition, we have to cancel

ALO(ﬁ7w0)

out theAw; term by usingzz— =¥ —.

There are two major properties of the BRDF. Models that haveetipeoperties are considered

to be physically plausible.

¢ Helmholtz Reciprocity Rule

For any incoming and outgoing direction pair, andw,, the BRDF is symmetric to the

directions:
fr(ﬁ; wOawi) - fr(ﬁ wi7w0> [36]

e Energy Conservation Law
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The energy conservation law says that the quantity of lighected must be less than or

equal to the quantity of incident light. For any directiof

/M [r(Pywo, w') cos@'dw’ < 1 [3.7]

3.3 The Rendering Equation

The goal of a global illumination algorithm is to generat®fhrealistic images by taking into
account all the light interactions in the scene. It does sailhulating light transport behaviors
based on physical principles. Mathematically, the sotutma global illumination problem is the
same as a solution to the rendering equation [47].

To understand the rendering equation, rewrite the defindgfdhe BRDF given in Equation 3.4
as

dLo(P,wo) = fr(P) we, w;i) Li(7, w;) cos 0;dw; [3.8]

If we integrate the incoming radiance over the hemispheraaafming directions centered at

p, the outgoing reflected radiance is given by thiection equation

Lo(itoo) = [ o0 00) LilF.105) cos Oido [3.9]

From the law of energy conservation, the exitant radianeesatrface point along an outgoing
direction must be equal to the sum of the emitted and reflaetéihnces. This gives thenergy
balance equation

Lo(P,wo) = Le(Pywo) + Ly (P, wo) [3.10]

Plugging the reflection equation into the energy balancatouresults in
Lo( ) = Le(Brw) + [ (B0, 00) Lilf ) cos Ordsy [3.11]
Q;

In free space, radiance along a ray is constant. If we defiag-aasting function’ = ¢(p, w),
whereZ” is the first surface point visible fromialong the directiorw, then the incident radiance

and outgoing radiance can be connected by

Lz(ﬁ7 wl) = L0<t(]3; wi), —wz) [312]
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Rewriting Equation 3.11 and dropping the subscrigbr brevity, we obtain theendering
equation
L(p, wo) = Le(p, wo) +/ fr (D, wo, wi) L(t(P, w;i), —w;) cos B;dw; [3.13]
Q;

3.4 Monte Carlo Methods for the Rendering Equation

The rendering equation is a form of the Fredholm equatiorhefdecond kind in which we
need to solve the unknown quantityappearing on the both sides of the equation. The use of
Monte Carlo methods to solve this kind of problem can be trdmetk decades in the statistical
literature [86, 82].

3.4.1 Path Integral Formulation for the Rendering Equation

To apply Monte Carlo to solve the rendering equation for gldhanination, it is more con-
venient to convert the integral over the hemisphere intogegral over surfaces. As a result, the
rendering equation can be expressed as an integral in patlke spwhich each path is a sequence
of surface vertices of any possible length. We follow thehpategral framework introduced by

Veach [100]. The rendering equation in path integral form is

1= [ f@)adn(a) [3.14]

The integral is ovef?, the set of light transport paths that begin at a light soarzkend at the eye,

wherey(X) is the surface area measure for the patand f(X) is defined as

f(i) — W(i)Le<X0,X1)G<XO7X1)
' 1:[ fr(Xim1, X, Xi41) G (X, Xi41) [3.15]

in which the functionlV (X) takes the value 1 if the path passes through the image plade, a
0 otherwise.x; is a point on the patkx, L.(xo,x;) is the radiance emitted by a light poirg

towardx;, f.(x;_1,%;,%;11) iS the BRDF for surface point;, andG(x;,x;,1) is the geometry
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term between pointg; andx;, ;:
| cos(6;) cos(6;)|

1% — X412

G(X,‘, Xi+1) == V(Xi7 Xi-‘,—l) [316]

0; and’ are the angles betwean— x;; and the surface normals=atandx;, respectively. The
visibility term V' (x;, x;.1) has value 1 ik; can seex;; and 0 otherwise.

In the context of computing the rendering equation integsithg a Monte Carlo method, we
want to draw samples that are random light transport pafhsk = 1,...,n, according to some

chosen density functiop, and then compute the estimate:

j:_ n

f(Xy)
p(Xk) 13.17]

3.4.2 Monte Carlo Algorithms for Global Illumination

Kajiya [47] introduced the first unbiased Monte Carlo basddtem calledpath tracingfor
solving the rendering equation. Over the years, many otlgerithms have been developed for
solving the rendering equation. Here, we briefly summararaesimportant algorithms and pro-

vide an historical timeline.

3.4.2.1 Path Tracing

Introduced by James Kajiya in the paper in which he first dieedrthe rendering equation [47],
path tracing was the first general light transport algoritoncompute a complete global illumi-
nation solution. Path tracing builds random ray trees iatethe eye and considers each valid
transport path as a sample.

Path tracing generates a path by starting a ray from the @amecursively tracing the ray
in the scene, and ending at light sources. At each bouncegetion is sampled according to a
distribution, for example a BRDF function or a cosine functi®he contribution of the path to the
image plane is evaluated by the radiance the path carrigghteei by the probability of this path
being generated.

A variation of this algorithm is to trace rays from light soas to the camera. This is called

light tracing (also known as particle tracing, or backwaagt tracing). Light tracing is a dual
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algorithm of path tracing because the physics of light fpansdo not change when a path is
reversed. They both have advantages and disadvantagaberfuore these two algorithms can
be coupled to improve the image results. The algorithm cagpath tracing and light tracing is

called bidirectional path tracing, which is discussed next

3.4.2.2 Bidirectional Path Tracing

Bidirectional path tracing was developed independently bfottune [54] and Veach [101].
They formulated their algorithms based on different stiaas frameworks, however. Veach intro-
duced multiple importance sampling as the basis for higdxtional importance sampling algo-
rithm, while Lafortune formulated his as a recursive evatueof the global reflectance distribution
function (GRDF).

Bidirectional path tracing is a generalization of the stadgath tracing algorithm. The main
observation in bidirectional path tracing is that some patits are more efficiently sampled start-
ing from the light “backward” while others are more efficignéampled starting from eye “for-
ward.” The backward sub-paths can provide important infdrom for forward sub-paths, and vice
verse. Each pair of “backward” and “forward” sub-paths cancbnnected at different vertices
to form multiple full paths. Those full paths are then congairwith appropriate weights to form
the estimator. The choice of weights has great impact on dneance of the estimator. Multi-
ple importance sampling [102] provides a theoretical basta near-optimal way for setting the
weights.

As with path tracing, bidirectional path tracing is unbidhsed can handle arbitrary geometry
and lighting. It combines the advantages of path tracing layid tracing. Bidirectional path
tracing can dramatically reduce the variance for indirgghting estimation compared to path
tracing. However, an image created using bidirectiona praicing is still noisy and needs many
samples to converge. Because subpaths have to be connefdad talid full paths, bidirectional
path tracing is not suitable for scenes where most “forwanld “backward” subpaths are not

visible to each other.
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This has the advantage of combining both visual importamckthe lights’ power, but the

disadvantage that each path is independent; while a diffiatih may be located by random chance,

3.4.2.3 Irradiance Caching

Irradiance caching is a technique that exploits the fact ithdirect lighting often changes
slowly over diffuse surfaces [107]. So, if the indirect ligty is computed accurately at a sparse
set of scene locations and cached into a data structure)dhredt lighting at new locations can be
approximated with an interpolation of those cached valltesorks this way: when extant radi-
ance at a diffuse point is being computed, the irradiancheca&clooked up to see whether one or
more acceptable nearby samples exist. If so, an intergblataliance value from those samples
is used to compute the new radiance; otherwise, the acduradgance at that point is estimated
and stored in the irradiance cache.

To make the method work, there are three questions to be aedw@) When is it acceptable to
use nearby cached values to approximate the irradiance aeth location? (2) How are estimates
interpolated? and (3) What data structure should be usedn® ste computed irradiance values
so that the look up is fast?

The gradients of the irradiance [106] are used to determimenvthe irradiance at a new loca-
tion can be approximated with reasonable accuracy as apaied value of the nearby cached
values. This approach takes account of not only the distatacthe nearest surfaces, but also the
irradiance gradient due to a change in position as well antation. This approach does not re-
quire any further samples, but simply uses a sophisticatalysis of the samples in the irradiance
estimate.

Since only the irradiance is cached, the information on fhectional distribution of the in-

coming radiance is lost, and so this technique can only be faseliffuse surfaces.

3.4.2.4 Metropolis Light Transport

Metropolis Light Transport (MLT) is a robust global illumation algorithm that applies Metropo-

lis sampling to photo-realistic rendering [103]. Metrogatampling is a Markov chain Monte
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Carlo (MCMC) technique that can generate a sequence of depesaiaples from a non-negative
function f, with f as the stationary distribution of that chain. It only regsithatf is known up
to a constant scale and can be evaluated at each point inth&loln other words, no analytical
form for f is necessary.

Veach and Guibas showed that Metroplis sampling can beeapmiinfinite dimensional path
space for global illumination. The algorithm starts by gatiag a set of path samples using bidi-
rectional path tracing. These paths are modified usingrdiftemutation strategies to obtain tenta-
tive new paths. A tentative path is accepted as a new pathidingdo the acceptance probability
computed as in the Metropolis sampling algorithm.

The mutation strategies in MLT correspond to ghieposal distributionwhich greatly affects
the convergence of the Markov chain. To make MLT efficienttatian strategies have to be de-
signed so that the path space is efficiently explored thrahgipath random walk. The mutation
strategies proposed in the MLT paper included bidirecliomgation, perturbations, and lens sub-
path mutation. Bidirectional mutations are used to make banges to the path and guarantee the
whole path space can be visited (to ensure ergodicity of taek® chain).

The key advantage of MLT is that various coherent structurdbe path space are explored
and, as a result, once a difficult sample path is found, this wédl be reused and exploited. MLT
is very efficient in handling traditionally difficult scensach as light going through an ajar door.
Another advantage of MLT is that the Metropolis samplingrfeavork ensures its unbiasedness.

MLT is also competitive with previous unbiased algorithrasrielatively simple scenes.

3.4.2.5 Photon Mapping

Photon mapping [44] is a two-pass global illumination aitjon. The first pass uses standard
light tracing to shoot photons from light sources. Whenevphaton intersects a non-specular
surface (diffuse or glossy), the intersection point, incagrdirection, and flux of the photon are
stored in a cache called tiplnoton map The second pass renders the image by taking advantage

of the photon maps built in the first pass which significangigexds up the rendering process.
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The photon mapping algorithm divides the integrand intar foamponents: direct lighting,
specular reflection, caustic, and indirect lighting (nmpl#idiffuse reflection). Direct lighting and
specular reflection are accurately evaluated using stdridante Carlo ray tracing. The caustics
are evaluated via a caustic map. Indirect lighting is comguhrough dinal gathering which
uses the global photon map to estimate the incoming radsariCiee radiance estimate from the
photon map is based on nearest neighbor density estimatioah is a well-studied discipline in
statistics. Note that the radiance estimate using a phoagmintroduces bias.

Photon mapping can handle all illumination phenomenautiolg caustics, color bleeding
and specular reflection, in a reasonably efficient mannethfer advantage is that the photon
map does not depend on the underlying scene geometry, wteensrit scales well with scene
complexity.

To make the final gathering step efficient, irradiance caghan be used to compute the indi-
rect lighting for diffuse surfaces. When a final gather rag hitliffuse surface, the irradiance cache
is searched for a single nearby good sample. If found, iésliance can be used to estimate the
outgoing radiance by multiplying the BRDF value. Otherwigemnputing the irradiance is done by
using photon density estimation and adding it to the irnackacache. Using the irradiance cache

avoids repeating some density estimation.

3.4.2.6 Sampling Importance Resampling for Direct Lightirg

Recently, two algorithms for direct lighting were proposeddd on sampling importance re-
sampling method (SIR): Bidirectional importance samplingSHI7] and Resampling importance
sampling (RIS) [94]. In these algorithms, for the outgoingediion w, along which the radi-
ance is to be estimated, firdf incoming direction sampleéfl), e ,a§M) are generated from an

importance distribution(z), which is usually either BRDF sampling or light sampling, ahd t

()

importance weights for those samples are computed. T%eamplemz(l), <--,w, ’ are gener-

ated by resampling th&/ initial samples based on their importance weights. Thenegtr for the
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direct lighting alongv, is

m) - ~(m) (m) N
E(ﬁ, wo) _ (M Z fr(p,u}o; )(Lz((m;()ﬂ )COS 61 ) <% z;v(wfn))) [318]

m=1 blw

WhereV( ) is the light visibility test for surface pointalong the dlrectlom) ). The estimator
can be interpreted as computing reflected radiance fidrdirection samples without visibility
testing and scaling it by the average resulf\oYisibility tests of those samples having big contri-
butions to the radiance.

M is usually one to two orders of magnitude larger tddnThe key observation used in the
algorithms is that generally it is much cheaper to generageiion samples than to do visibility
testing. The algorithm gains by postponing visibility tegtuntil the resampling step so that only
N tests are needed and visibility tests are only performedifgr-contribution directions. Talbot
et al. [94] further showed how to choogé and V to achieve near optimal variance reduction.

These algorithms are good for generating samples from a RBtrcan be decomposed into
two factors: one is cheap to compute and incorporates masieofariance, and another that is
expensive to compute and has low variance. However, for ppécation in direct lighting, due
to not considering the visibility test in the initial sammdi, the algorithm does not work well for
partially occluded regions. Actually, the algorithm widlifin the following scenario: a ball on a
floor is lighted by two lights. One light is much brighter thiéae other. For the shadow region that
is occluded from the bright light but visible to the dim ligktte direct light computation using the
BIS or RIS algorithms will be very poor because almost all of \heesampled samples will be
from the bright light and turn out to be useless in the esionadue to the occlusion.

Additionally, the choice of(z) makes a big difference of the efficiency in the algorithm as
well. If p(z) is far away from the target distribution, most samples wiltlaip with very low
importance weights, which means low contribution to thatligstimation. Designing a goodx)

for this algorithm is not a trivial task, however.
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3.4.2.7 Energy Redistribution Path Tracing

Cline et al. [13] introduced an energy redistribution (ER) pang method for estimate inte-
grals that are correlated. As an application of ER samplinthé global illumination problem,
Energy Redistribution Path Tracing (ERPT) is a hybrid glollamination algorithm that com-
bines the ideas of metropolis light transport and pathtigaci

In some sense, ERPT algorithm can be understood as a parallekivd algorithm starts a set
of initial paths using path tracing, and then uses eaclalrptith as a seed for a Markov chain. As
in MLT, the current path is mutated to get a tentative paththedentative path is accepted with
a probability to maintain theetailed balancdor the chain. Several path mutation strategies are
designed to redistribute the energy of the samples oventhge plane to reduce variance. Instead
of using bidirectional mutation in MLT to guarantee the ehgdy in the Markov chain, ERPT just
re-generates a totally new path using path tracing with azssa probability. Two other mutation
strategies include lens perturbation and caustic pettiorba

This algorithm uses post-processing noise filters to reduege noise; however, this intro-

duces bias.
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Year Algorithm Pros Cons
1986 Path Tracing | Unbiased; First general solution | Very slow to converge
[47] to the rendering equation for indirect lighting
1992 Irradiance Fast for diffuse scenes Biased,; Fails for caustics and

Caching[107, 106]

shadow boundaries; Only works

for diffuse surfaces

n

1994 | Bidirectional Path| Unbiased; Much more efficient Not efficient to compute slowly
Tracing[101, 54] | in indirect lighting than path tracing varying diffuse components
1996 | Photon Mapping | Works well in practice; Biased; Wrong density estimatig
[44, 45] Industry standard. can lead to light leaking;
Inefficient if most lights
can not reach the image plane
1997 MLT Unbiased; Reuses path samples; | Difficult to implement
[103] Handles difficult paths well
2005| SIR for Direct | Unbiased; Good for scenes without Only works for direct lighting;
Lighting [7, 94] | much occlusion Bad for partially occluded region
2005 ERPT Easier to understand and implemenBiased after using filter
[13] than MLT; keeps most MLT features

Table 3.1: Monte Carlo algorithms for global illumination.
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Chapter 4

Metropolis Photon Sampling

Photon Mapping [45] is the current choice of industry fomsegwith general surface primitives
and reflectance functions [23]. It uses an initial pass taifaip photon maps with samples of the
power arriving at points in the scene. fihal gatherpass then uses the maps to estimate the
contribution of indirect illumination to visible pixelst is essential that the initial pass populate
the maps with photons useful to the final gather, but the stahdchnique fails to do so in some
common scenes. This chapter introdudéstropolis Photon SamplingMPS), a Monte Carlo
sampling algorithm for constructing photon maps that poeguhigh-quality results in situations
where standard photon map construction fails. MPS als@gisers a technique to control variance
over the image.

Standard Photon Mapping traces patrticles from the lighggiduted according to the lights’
power distribution, and deposits photons when the pasticieeract with surfaces. It performs
poorly when little of the lights’ total power arrives at Idns important to the final gather. This
situation is not uncommon in practice: indoor environmenéy have many lights that contribute
unevenly to the image (Figure 4.1); in some scenes mostpithis are occluded (Figure 4.5); and
local views of outdoor scenes may see little of the sun’s pde., under a forest canopy or in
downtown city streets). Poor sampling results in excessenaithe indirect illumination estimates
derived from the map. Furthermore, low photon density léadarger search radii in accessing

photons, which causes inappropriate samples to be incladddchence severe energy bleeding.
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Both effects are evidenced in the left image of Figure 4.1eam the photon distribution on the

left in Figure 4.2.

Figure 4.1: Leftmost is the plan of a scene in which only a small portiotheflights’ total power
contributes to the image. The left image was produced ugemgdard Photon Mapping, which
under-samples some regions and over-samples othergjgsalimage noise and severe energy
bleeding from the adjacent room (the cause of the incorliechination around the edges of the
rear wall). To the right is our result. Paths joining the eyatlight were sampled and photons
were stored only in important locations. The insets on theifdt show zoomed sections taken
from the center-left of the images, and demonstrate how athod (lower) both reduces noise
and avoids energy bleeding.

One underlying cause of a poor sample distribution is th& te#fcvisual importance infor-
mation; sampling from the light does not consider the canwration. Our first contribution is
a techniqueMetropolis Photon SamplingVIPS), that builds photon maps using complete light
paths that join a light to the eye. By linking to the eye we aotdar visual importance and can
identify photon storage locations that will be useful to timal gather (Figure 4.2). This reduces
image noise and energy bleeding artifacts in scenes whesepaths traced only from the lights
are irrelevant to the image (Figure 4.1). MPS uses a Metmjptdstings algorithm [64, 39, 31] to
sample over paths, but the general framework supports sémepling methods.

Regardless of the sampling strategy used, light paths teadiffrcult to find randomly lead
to image artifacts in Monte Carlo rendered images. In Photappdhg this tends to manifest
itself as smooth but incorrect results, while in a pure MddDé&lo framework the result is noise.
Frequently the difficult paths are obvious to a user: lighymave to pass through a small opening
or be focused by a particular scene element. Our secondimatitn enables a user to provide a

small set of important light transport paths that the sangpfirocess uses to reduce variance. No
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Figure 4.2: Photon distributions for Figure 4.1. While standard Phot@apping generates many
photons in a short period of time (left), they are almostadhited in places not relevant to the final
image. Right is our result for identical computation timethaall the samples in locations useful
to a final gather operation.

bias is introduced to the result. User defined paths help whempling from difficult geometric

arrangements, and also give a user local control over \@iam the image. For instance, in
Figure 4.1 the user suggested 10 paths that carry light ghrthee doorway from the neighboring
room. This is the first technique in the rendering literatimeincluding specific user-defined

sample paths in a Monte Carlo framework.

4.1 Related Work

The rendering equation [47, 73] is the physical foundatmmirhage synthesis. Many Monte
Carlo based algorithms have been proposed to solve the equstiich as path tracing and bidirec-
tional path tracing (see chapter 3 for a summary). Kollig Keter [53] addressed this problem
with quasi-Monte Carlo methods, which can exploit coheranceandom number space under
the assumption that paths generated with similar randonteb@re similar paths, which is not
necessarily the case in even mildly complex scenes.

Veach [103] presentetetropolis Light Transpor{MLT), which is a Markov chain Monte
Carlo (MCMC) algorithm designed to exploit coherence in paticep MCMC views sampling as



49

a Markov process, and hence a good sample found in one stempeove subsequent samples.
MCMC also allows multiple sampling strategies to be combiw&tiout introducing bias, which
enables us to incorporate user-guided sampling. Veddikiple Importance Samplin¢l02]
also combined different strategies, and it could also stpmer input of the form we propose.
An alternate MCMC approach to rendering was proposed by Keteet al. [49]. Rather than
sampling in path space, they sampled on a high-dimensiantalkcube. MLT was extended to
support participating media by Pauly et al. [71].

A single sample may be representative of illumination ovéarge region if radiance varies
slowly, as is often the case in scenes with significant irdidéfuse illumination. Particle trac-
ing algorithms, of which Photon Mapping is one, exploit this &use light paths. Arvo [3],
Heckbert [40] and Collins [14] proposed algorithms that illsenination-mapgo store irradiance
arriving along sampled paths. Like Photon Mapping, pasi@re traced from the lights, but they
require parameterized geometry for the maps. The methodhide$ et al. [84] traces particles
and builds a polygonal mesh representation that can be neshde real time for varying view-
points. Chen et al. [9] also worked with 2D maps but, in additaffered a progressive refinement
solution. Our sampling method could be used with any of tredgsting techniques, with some
modification to particle storage. Ward®ADIANCEsystem [107, 105] traced rays from the eye
and cached diffuse contributions for use in subsequennatts. Therradiance cachingtech-
nique [106] was used to determine if the cached samplesge@n adequate estimate.

Many rendering algorithms have been developed to explitalimportance; see Christensen [10]
for a survey. Specific to particle tracingaportontechniques trace particles from the eye to con-
struct anmporton maghat is used to estimate visual importance. Peter and Ript2$ used the
importon map to construct importance sampling distritgifor each scattering event of the par-
ticle tracing phase. The algorithm is expensive due to tis¢ @ocomputing distributions at every
particle bounce, its local decisions may not produce a dipbaportant path, and the importance
sampling produces photons with highly variable power. &edind Wald [50] used importon maps

to avoid photon storage in areas that contribute little #ofthal image. Their technique reduces
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memory usage and maintains roughly uniform photon powergives no control over the gener-
ation of the samples in the first place. Suykens and Wille@@] algorithm considers the current
sample density in the photon map when storing a new samplesdistributes its power if it would
result in excess density (without modifying photon geriergt Unlike existing methods, our al-
gorithm samples from complete paths joining the light to éiye and thus efficiently accounts
for visual importance without using importons. Completehgatlso provide information about
important photon storage locations and hence reduce redtipiotons.

Variance is typically controlled by using more samples, esigning new algorithms (not a
natural tool for most end-users). Ward [105] allows userspecify surfaces as important sec-
ondary light sources, and the system builds their outgairagliance functions for use in indirect
illumination. The technique is targeted at large secondawyces, such as windows, but fails if the
secondary source itself is not easy to reach from the ligiiooone surface is significant enough
to warrant the attention. Our approach allows a user to 8ppaths through multiple reflections,
and places no restrictions on the surfaces or pieces ofceuaffected. A related idea to user input
is sampling based on pilot paths that are found in a randotmalipiass (or in the previous frame
of an animation). Dmitriev et al. [18] discuss this approactthe animation context, but it relies
on similarity in random number space to compute path peatighs. With user input, there are no

random variables associated with the paths, so this appizamot be applied.

4.2 Light Paths to Photons

We incorporate visual importance into photon map constindby extracting photons from
completelight paths that join a point on a light source to the eye vimsamumber of scattering
(reflection or transmission) events. Complete paths alswalk to identify the point on the path
at which a photon should be stored. Assume for the momentitaatan produce sample light

paths. In the next section we address the way photons agetedrfrom the paths.
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4.2.1 Photon Locations

Given a light path, we wish to identify the point or pointsradat that will be accessed during
a photon map lookup. This clearly depends on how the finalegathperformed. We use a
standard Photon Mapping final gather as described by JeASgnd whom we refer the reader
for motivation and details. Estimation of radiance from tiiebal photon map takes place at
points that lie at the second diffuse bounce on paths tracedthe eye (possibly with intervening
specular bounces). Hence, we store a photon at the secduasgedgoint for each path that our
sampler produces. Estimation from caustic photons ocduttsedfirst diffuse bounce, so along
caustic paths we store a photon in both the global and causgicat the first diffuse point. In any
case, we refer to the photon storage location on a path atdrege point

The nearest neighbors around a point of interpstaire used when estimating radiance from
the maps. The neighbors are assumed to be representative imicbming radiance ai, which
requires that radiance vary slowly in the region from whiclyt come. This assumption is more
likely to be true, and hence the estimate better, as thetglerigghotons aroung increases and the
neighbors fall within a smaller region. Our algorithm eresuthat most stored photons lie around
points where final gather estimates are formed, and henaewepthe quality of the estimate for
a given map-building effort and memory footprint.

The use of &d-tree for photon storage removes the need for a surface pteamation (allow-
ing for a wider range of surfaces and fast neighbor lookup}tig also decouples photons from
surface properties. Severe light bleeding can occur dukedteakdown of the slowly varying
radiance assumption, which is hard to detect without sarifi@rmation. This is a major problem
in scenes where a light is on the back side of a thin dividen &gure 4.1.

A common practical solution is to store a normal vector wilcle photon and require that it
be similar to the normal at the point where the estimate isgotaken. This reduces bleeding in
concave corners, but fails in our scenes. For instance,dbeii oriented the same on both sides
of the wall in Figure 4.1. Importon based methods (Secti@pfail to address the energy bleeding
through walls problem because importance can leak just eaggmoes, allowing photons to be

stored in unimportant regions. However, points on the bad& of a wall are almost never the
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second diffuse bounce on a path from the eye, so our methodhatitally avoids storing them

and hence significantly reduces energy bleeding in from paintant areas of the scene.

4.2.2 Photon Storage

As with standard Photon Mapping, for each phojowe store the locatiorx?), incoming ray
direction, 8", and radiant flux (power)p®). In this section we describe ho®t’) is computed
for a sampled path. Our discussion is based on the partatengy framework introduced by
Veach [100,54.A] and applied to Photon Mapping by Pharr and Humphrey [EXpressed in

terms of sampling from path space, we require that each phdtave power such that

29| = [ famfu0 4.1

where the sum is over the set of photons within a region of anelssolid angleR. The integral is

E

over(lz, the set of light transport paths that begin on a light andweititin the regionu(X) is the

surface area measure for the paftandf,,.,(X) is defined as

fmap(i) = Le(XOaxl)G<XOaX1)
m—1
: H fs(Xi—l,Xz‘7Xi+1)G(Xz‘,X¢+1)
=1

in which x; is a point on the path, L.(xo, x;) is the radiance emitted by a light poir§ toward
x1, fs(Xi_1,X;,X;41) IS the bidirectional scattering distribution function furface point;, and
G(x;,x;41) IS the geometry term between poistsandx;, i:

| cos(6:) cos(6))

||Xz‘ —Xz'+1||2

G(Xm Xi+1) = V(Xi, Xi+1)

whered,; andd; are the angles betwean—x;,, and the surface normalsatandx;,, respectively.
The visibility termV' (x;, x;,1) has value 1 ik; can seex;; and 0 otherwise.

If we consider the region of interesk, to be all the points accessed during the final gather,
Equation 4.1 takes the form of a Monte Carlo estimate of amgmte The sum on the left is over
all the photons in the map, and the integral on the right extekito the total power arriving in the
map, B,,..,- If we sample paths according to the distribution,, = fnap(X)/Bmap, €ach one of

the V photons should have the same powkr= B,,,,/N.
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We only store photons at points relevant to the final gatleths above discussion assumes
we are sampling over paths terminating at such points. Hewéwve designation of storage points
relies on having the complete path to the eye, in order to tcthennumber of diffuse bounces on
the sub-path from the eye. To obtain this information, MR8das from the space of all paths that
join the light to the eye and stores photons only for the éessub-paths. We sample according to
the probability distribution function (PDF) given by, (X) = f.ye(X)/Beye, Where

feye(X) = W(X)Le(x%0,x1)G (X0, X%1)

m—1
: H fs(Xim1, X6, Xi1) G (X, Xig1) [4.2]
i=1

The functionl¥ (X) takes the value 1 if the path passes through the image plad#) atherwise.
B.,. is the normalizing constant, in this case the total poweviag at the image, and should

satisfy
Buye= [ W o ®)dp()

ye

where(2,,. is the space of all paths that join a light to the eye. Follgimreach [100], path
tracing is used to estimate this integral. Not many pathrigasamples are required because we
are averaging over all pixels.

When we use.,. as the target distribution the resulting samples will naembe distributed
according t,,., as required for correct photon map estimation (Equation ZHis is accounted
for using standard importance sampling re-weighting:

dlU) — ifmap(i%?lp) — Beye fmap<i%21p)
N Peye(xD) N foe(x9)

wherex,,,, is the sub-patt(D|S)*D from a sampled path of the forda(D|S)*DS*DS*E for
which a photon is stored in the global map, or the sub-gathD of an LS*DS*FE path for
caustic photon storage. Note that we no longer reqgBirg,. Furthermore, when sampling ac-
cording top.,.(X) we may generate paths that do not result in photon storagen(it of the form
L(D|S)*DS*DS*E or LS*DS*E). In this casef,,,, = 0 and no photon is stored.

The Metropolis-Hastings sampler we use may provide maryspaith the same storage point,

x), and incoming ray directior§’). This is due either to rejection of candidate paths, in which
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case the entire path is repeated, or a path mutation thatsete storage point while changing
some other part of the path (see Section 4.3). Instead ofggmga new photon in such cases, we
accumulate the power in a single photon and hence reducerpbtuirage cost and look-up time.
In practice, few paths contribute to any one photon and tkeltiag per-photon power variation
does not create artifacts.

The scattering functiory,(x;_1,x;,x;11) IS wavelength dependent. We evalugtefor the
standard RGB channels, and use them to comfpiigr, feye r, €tC. For the sampling process we
must attach a single probability to each path. We use thenlantie channelf,. y, computed by
the RGB to XYZ color conversion. With this path probabilityetred power for the stored photon
(green and blue are similar) is

Beye,Y fmaP»R<i%ZLp)
N feye,Y (K(j))
The framework developed to this point does not depend on #tkad for finding sample paths,

oY) =

or even on their PDR.,.. Any sampling technique capable of generating paths fraigt to
the eye, such as bidirectional path tracing, could be usedch'se a Metropolis-Hastings sampler

because it can both exploit coherence in path space andrswseo input.

4.3 Sampling Paths

Metropolis-Hastings algorithms use a Markov process aesigo obtain a sequence of sam-
ples whose distribution converges to a target PDF. Follgwieach [100], to estimate radiometric
guantities we want each sample pathto come from the space of all transport paths joining the
light to the eyef2.,.. The target PDF ig.,.(X). Each patix with m segments is parameterized
by the surface intersection points at which a scatteringtevecursx;, i € [1,...,m — 1], along
with the final pointx,,,, and the point on the light source from which the particlensteed, x,.

The Markov process generates each sample in the sequ€nds;, proposing a candidate]/,
based on the previous sampg_;, and either accepting this candidate)gsor rejecting it and

repeatingX;_;. In pseudo-code:

Xo « initialSample()
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fort=1t0 N
X[ < propose(X;_1)
r «— uniformRandom]0, 1)

if (r < a(X!|X,_1)) then

Xt - Xé
else
X=X

The procedurenitialSample chooses one of the paths generated by the path tracing com-

putation for B.,., according to the distributiop.,.. The initial sample chosen in this way is
unbiased, so there will be no start-up bias in the Markovrcliai, 100]. The proposal func-
tion, propose(X,_1), produces a new light path by applying a random modificatotiné current
sample. While the correctness conditions placed on the matdins are not difficult to satisfy,
the strategies employed are the primary factor in detengithe efficiency of the algorithm (the
number of samples required for a good estimate). We desgubmutation strategies below.

The functionn(X/| X;_1) computes thacceptance probabilitior X given the current sample.

feye,Y(XL{)T(Xt_l |Xt/) }
" feper (Xeo ) T(X{|Xi1)

The functionf.,. y (X}) is proportional to the target PD#z,.(X) (and the normalization constant

a(X[|X;_1) = min {1 [4.3]

cancels out).
T(X/[|X;-1) is the transition function (or proposal distribution) whigives the probability of
choosing, by any meang/ given X, ;. Note that the reverse transition functidn,.X;_;|X)), is

also required, and in a Metropolis-Hastings sampler it megecquall’ (X;| X, ;).

4.3.1 Proposal Strategies

The techniques used in theopose(X;_) procedure of the MCMC algorithm are the key to its
efficient and correct operation. There are two conflictinglgan designing a good proposal. The
candidate pathX/, should be as different as possible from the current p&th,, to rapidly move

around the sample state space. At the same time it shouldfimesly similar to X;_; to exploit
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coherence in high-power paths. The technical conditiongropose(X;_1) ensure that there is
some non-zero probability way to move between any two noo-gmbability paths (see Gilks et
al. [31]). The acceptance probability( X/|X; 1), is specifically designed to taleny proposal
strategy that meets the conditions, properly encoded irréimsition functions/’(X,_,|X;) and
T(X/[|X:_1), and create an unbiased sampler.

We introduce two novel mutation strategiésser Path (UP)proposals make use of user hints
about which paths are likely to be important to the final re€déction 4.4). The variance of any
estimate is reduced around the given patPisoton Map (PM) proposals explore paths that will
contribute to the global photon map (Section 4.4.3). Thengee the sample path while retaining
the DS* E sub-path to the eye.

In addition, four other proposal types previously desatitoe MLT are suitable for use here [103].
Bidirectional (BD) proposals modify sub-paths of the current path, with theairapidly explor-
ing the sampling spac&austic Perturbation (CP) andLens Perturbation (LP) proposals also
modify sub-paths, but this time with the aim of exploitindheoence in high-power, localized fea-
tures. FinallyLens Sub-path (LS)proposals stratify samples across the image, which enghates
enough samples are captured in darker regions of the scanenmément each of these strategies
in the same manner as MLT.

Each time theropose(X,_1) procedure is called we choose one of the above strategias-at r
dom according to a fixed distribution. That is.opose,,,.(X:_1) is selected with probability,,,.

wheretype is one of the above options and,, . P, = 1. In computing the transition function,

ype

T (X[ X:-1), all possible proposals that might generatefrom X, _, should be considered:

T(X£|Xt—1) = Z PtypeTtype(XﬂXt—l) [4-4]

type

However, it is also acceptable to consider only the functlenived from the proposal strategy

chosen to generatk, [97, 2]
T(X£|Xt—1) = Tchosen<Xt,|Xt—1) [45]

We use a combination of both strategies: Equation 4.5 avbielscomputation of unnecessary

transition functions, but Equation 4.4 is required for ysah proposals (Section 4.4.2).
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4.4 User Path Proposals

The user path proposal strategy increases the proporticanafidate paths around those sup-
plied by the user. This results in variance reduction for estymate based on the paths, such as

photon map evaluation. There are several applications:

Difficult Paths: Transport paths that are particularly hard to find randomdgdlto large variance
because they may be found and give a high contribution, an@rsound and give no contri-
bution. Among our images, the caustic caused by light bawgnoif the mirror and through
the glass ball in the Box scene of Figure 4.6 best fits this gagmn. Light shining through
a keyhole is perhaps the most commonly thought of examplagtithe most common in
practice. A user can supply paths that meet the geometristreonts and thus ensure the

feature is adequately sampled.

User Control of Variance: Some regions of an image may be more important than othesl, su
as those toward the center or in some other perceptuallyriaptaegion. A user can supply
paths leading to the region of interest and it will be samplé@d lower variance than other

regions (Figure 4.3, page 67).

Resampling: Rather than a user defining paths, they could be taken from goev®us sam-
pling operation. Our earliest experiments used paths thkemthe initial path tracing pass
to estimateB,,.. Alternatively, a user could identify paths from a coarse afi the algo-
rithm and re-use them in a final render. Resampling shouldealable adaptive, unbiased
Monte Carlo rendering and provide a handle on low-variankgsigally-accurate animation

rendering, but we leave these topics for future work.

Figure 4.3 compares images rendered with the Metropolistligansport algorithm: one with
user paths and one without. Each image used 3 million irgtiproducing a variance measure-
ment of VAR(E) = 1.04 (Section 6.5) for the image with user input. It requires 4.8iom

samples, or about 60% more time, to achieve similar resuttow user input.
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Reducing variance in one area of the image may lead to inateas&nce elsewhere, but it
is not a zero-sum game. User paths can lead to a global reduntvariance if they increase the
average acceptance probability, and hence the numberfefeafit paths sampled. This was the
case in Figure 4.3, where the acceptance rate rose from 58%%tawith the introduction of user
paths. In any event, users can choose to make a trade-otf bagbeir own situation.

The user path proposal is not essential to achieving goadtsewith Metropolis-Hastings
sampling. It is a way to enhance control of the algorithm. ithage in Figure 4.5 did not use the

proposal, and the result in Figure 4.1 is almost as good withser paths.

4.4.1 Candidates from User Paths

Each path provided by the user must start at a light and endititiae surface. To obtain paths,
we built a simple interface for the Box scene which allowedexr i interactively vary the origins
and directions of rays from the light which were then tradedugh the scene and extracted as user
paths. Tools like this could readily be included in modelpagkages. For Figure 4.3 we specified
paths by hand based on knowledge of the geometry.

Each path is input to the system as a sequence of surfaces @imthich scattering occurs.
These are stored as a sfiiy, . . ., Uy, , }, containingNy p paths. The first step of a proposal is to
choose, uniformly at random, one of the input paths; (xq, ..., x,,). This path forms a skeleton
that we perturb to form the candidate path. The perturbatigriores the space around the user
path while avoiding the accumulation of large power at alsipoton.

The candidate pathxy, . .., x/,), is built starting at the lightx{, = x,. We randomly generate
a direction within a cone about axisy — x; by samplingd, the angle between the axis and the
direction, uniform in[0, 3) and¢, the azimuthal angle, uniform {f, 27). The surface point struck
in this direction x/, is the next point on the candidate path. We repeat the gocdsnes, using
the directionx]_, — x; as the axis of the sample cone. To form a complete path to thetley
sub-path of sampl&;_; joining the eye to the first diffuse point hit is appended ® tlandidate.
The candidate is rejected if there is no such diffuse pointek\ettings, lower values are good

for exploring tightly constrained paths while higher vaugive more variation around the user
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path and hence reduce variance over a larger area. The usaisosspecify a different for each
path segment.

The candidate path may pass through an opaque surface,ch wése a visibility term irf,,.
is zero and the path will be rejected. If the user path costapecular interactions, a specular
surface must be found at the same index on the perturbed ffaths, we follow the specular
bounce rather than sampling a perturbed direction. If tlee path specularity is not matched in
the perturbed path, or the perturbed path intersects antahethspecular surface, the candidate is
rejected. These restrictions ensure that specular boticaesel out” in computing the acceptance
probability (see Veach [10@10.3.5]).

4.4.2 User Path Transition Functions

The transition probability must consider all the possibleysia UP proposal may have gener-

ated the candidate:

. 1 Nup _ m—1 G(X/- o X )
TUP(Xt|Xt—1) = m Z C(uz) H pj]COT’-H—l [46]
i=1 =0 j

C(w;) is 1 if the candidate could have been generated from fatbtherwise 0. The product of
terms accounts for the probability of each perturbed boulfitkee bounce ak; was non-specular,
thenp, = 1/2x ;. For a specular bouncg; = 1 because there is no random choice. The geometry
terms are still required to convert from the solid angle measo the surface area measure. The
geometry and cosine term convert the direction sampledrditgpto the solid angle measure into
one sampled using the surface area meastlyés the angle between the normalsgt and the
directionx; — x;;.

To computeC'(1;), we perform the procedure for building a candidate fi@gbut rather than
creating the new candidate we check that the prins common toX; andw; and that each ray
direction in X] lies within the sample cone af;. Finally, the resulting number of path segments
must correspond. The reverse transition probability; (X, 1| X}), is similarly computed.

The UP proposal generates a palf], close to a user given path regardless of the previous

path, X;_,. However, in most cases the path_; could not have been generated frofin the
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same manner; most paths are not close to a user defined patbe Hep(X:_1|X;) will be zero

in almost all cases. This leads to a zero acceptance prdipawihich is a problem because the
proposed path will never be used. It is, however, possiblgetterate a UP proposal candidate
using a BD proposal because the latter gives any path a nontzersition probability. Hence,
we combine the UP and BD proposal strategies when compuangition functions: ithosen is

eitherUP or BD, then

PypTyp(X)| Xi—1)+PepTep(X[| X—
L D R .7

Thus we have a two tiered proposal selection process. westlecide if the proposal will be a
UP-BD hybrid (with probabilityP;; » + Pgp) or one of the others. We apply Equation 4.5 for this
selection. If the hybrid is chosen, we decide between UP andaBD apply Equation 4.7.

The combination of UP and BD proposals in computing the ttenxmsfunctions is the key idea
for enabling user input samples, and is possible becauseteptance probability mechanism of a
Metropolis-Hastings sampler allows different samplinggasses (proposal strategies) to be com-
bined. Furthermore, the acceptance criteria ensureshédintal distribution is unbiased provided
the transition functions and target PDF values are cogrecimputed. Intuitively, the algorithm
rejects just the right proportion of UP candidates to enthaethe final result is not biased toward
them.

The values forP;p» and Pgp will influence performance of the algorithm. Assume that the
reverse transition functioy »(X;_,|X;), is very small or zero and consid& »/ Psp, the ratio
of UP to BD proposals. A, p/Pgp increases, the acceptance probability (Equation 4.3) will
decrease, resulting in the chain repeating the same path often. This results in fewer photons
stored away from the user path (fewer candidates for thethes pae proposed), but increases the
power of those photons, resulting in a noisier image away fiee user path. This effect is counter-
balanced by the ratio of thg,. y terms, which favors transitions to important paths, inslgdiser
paths, regardless of how they were proposed.

When using user paths to overcome hard-to-find paths, theeffati/ Psp should be higher to

provide many user candidates which will be accepted dueeto kigh f.,.y. In the context of
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user-guided variance reduction, the ratio should be smallavoid frequent rejection of user path
candidates and the higher variance that would result imnsgaway from the user paths. Varying
the ratio gives the user control over how much influence tpaths have on the distribution of
variance over image.

Rather than users providing paths, the user-path proposéd be extended to include hints
about important surface patches or reflectance directidosuse important surface patches, for
instance, the candidate path can be constructed by randdmbsing points on the patches and
joining them up. The terms inside the product in Equationdust be modified to account for the

new probabilities of choosing the points. Otherwise the@allgm is unchanged.

4.4.3 Photon Map Proposal

The Photon Mapping proposal generates complete paths yateub-paths that are similar to
those used in the final gather phase. Photons derived fromletarpaths will thus be at locations
useful for gathering. Tracing back toward the light from thst diffuse surface poink,, (that
is closest to the eye) we find a sub-pa#ty_,...,x,) of the form(L|D)DS*D. That is, the
sub-path back through any number of specular bounces fiy$83ifollowed by a diffuse bounce
and ending at the next diffuse surface, or the light. The ickte path keeps, and modifies
the direction back te,_;, similar to the way a final gather operation distributes raysstimate
indirect illumination.

Modify the centralDS* portion of the sequence by perturbing the direction of thexa —
x4-1 by an angled uniform in [0,~) and ¢ uniform in [0,27) (as in the UP proposal). For all
examples in this chapter we set= 30°, and the precise value seems not to impact the results. This
ray is traced back through zero or more specular bounceshmtext diffuse hit, forming a new
DS* sequence which is inserted in place of the original, resgiiti (xy_, X 1, ..., X1, Xa).
The diffuse (or light) points at the end of the modified segnadiow for non-zero probability that

the candidate path will carry some power.
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Scene  Resolution ¢z (S) tmap (S) tra (S) Totalt (s) # Photons RMS Error
MPS PM MPS PM MPS PM MPS PM MPS PM
Rooms  72&405 21 40 9 419 469 480 478 81004 300000 0.036 0.4239
Lantern 684513 11 10 4 185 198 206 202 8675 37160 0.0728 1.165
Box 640x480 9 26 12 208 230 243 242 47798 250000 0.0214 0.0227

Table 4.1: Statistics for images of Rooms, Lantern and Cornell Box scefiesing is given for
MPS and Photon Mappings is the time to estimat#,,., t,,,, is the photon sampling time and
trq i1s the final gather time. While MPS spends more time samplimg féwer, well-distributed
photons reduced the time required for the final gather. Weegilge the number of photons stored.
Memory usage for the maps is linear in the number of photoiits, 49 bytes per photon in the
PBRT implementation that we use [73]. Finally, we give RMS exrior the images compared
against path tracing solutions that ran for several daygu€i4.7).

The transition probability is similar to that of the UP pragjd except that there is only one

perturbed choice followed by a number of specular bounces:

G(xa,%q-1) "7 2 G, %))
Tru (X)) Xiy) = 2522 —
Par (X1 i) 21y cos Oy jzl;ll cos 0]

4.5 Results and Discussion

Our rendering system uses libraries and code from the PBRKitt$03] wherever possible,
including for the final gather operation. There are a vartdgtgarameters to the algorithm. Those
for the MLT-style proposals were taken from Veach [100]. #a Photon Mapping final gather
parameters, the formula for computing the maximum seastce for photong,,,..., was taken
from Suykens [88, Pg. 159h(= 0.1) while the maximum number of photons in an estimate,
was set at 60. We introduced new parameters for the protyabilchoosing a proposal strategy,
P,,.e, which are given below on a per-image basis. We also intredparameters for controlling
the perturbation of a user pathi, which we varied per image, and the perturbation of a photon
map sub-pathy = 30°.

Timing results and other statistics for the images in thigptér are provided in Table 4.1.

All images for comparison between methods were generatddnearly equal total computation
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time. All were reconstructed with a Gaussian kernel of widthixels ando = 1. Irradiance
caching [106] was used to speed up photon map estimationfébtone reproduction we followed
Reinhard et al. [77], with the parametgf,. = 100.

We implemented one further optimization borrowed from MR&ther than storing nothing for
rejected paths, we store a photon with power reduced acgptdithe acceptance probability, and
reduced the power of the repeated path to compensate [1068]inCreases the number of photons
stored and extracts some benefit from rejected paths, but abst of increased variance in photon
power. We found the benefits of increased usable photonseayited the increase in variance.

We also computed error measurements with respect to a lomjngi path tracing estimate of
each image. For each pixel, we computed the relative eregofe tone mapping):

I(Z’, y) - [ref(ma y)
[Tef(x?y)

E(r,y) =

wherel,.; is the pixel luminance value from the path tracing refereint@ge. In Table 4.1, we
report the RMS value of these errors over the entire imagéMR® sampling and standard photon
map sampling. MPS out-performs Photon Mapping in all casiésqugh by a negligible amountin
the Box example). Note that we cannot expect zero error heven-tbe reference image contains
noise.

The Room scene of Figure 4.1 contains about 42,000 primitBeth the Photon Mapping and
MPS images used 4 samples per pixel and 40 final gather raysapwggsle for estimating indirect
illumination. The scene contained user paths specified hg bat no caustics, and we set= 5°
in the user path mutation. The proposal probabilities wé¥gi=0.1, Pz p=0.3, Pp,;=0.2, Pop=0,
P;p=0.2 andP.5=0.2. These, like all our proposal probabilities, were @mt give roughly
equal proportion to each strategy that was useful for thaesc&Vhile MPS spent significantly
more time than Photon Mapping in sampling photons, it wasiregl in the faster final gather
phase; MPS’s smaller number of well-distributed photonprowed the performance of nearest
neighbor searching in the photon map. We also rendereddhigeswith Photon Mapping using
6 million photons, which took almost an hour and reduced thisenin the result, but failed to

remove the energy bleeding problems and used two ordersgifitnde more memory than MPS.
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Apart from managing difficult transport paths, a significadvantage of MPS is its ability to
store photons only where relevant. Figure 4.5 demonsteataene in which Photon Mapping
stores almost all photons inside the lantern, where theyairemnused when gathering for the
wall pixels. In contrast, MPS places almost all samples envihlls of the room. This results
in reduced energy bleeding on the table around the box anlédamoise in the image overall.
These images used 30 samples for each indirect illuminastimate, and 4 samples per pixel.
This scene contained no user paths (the important trangptits are not too hard to sample) nor
caustics, hence the proposal probabilities wéte:=0, Pz p=0.4, Pp,,=0.2, P p=0, P;,p=0.2 and
Prs=0.2.

Figure 4.6 shows a variant on the Cornell Box scene with comgdestic paths (the right wall
and rear ball are mirrors, and the front ball is glass). Weluse user paths in this scene, five for
each caustic under the ball. These were perturbed usiagl° for segments between the light
and mirror wall, ands = 5° for segments from the light direct to the glass ball. We/Zgt=0.1,
Ppp=0.3, Ppy=0.2, P p=0.12, P;, p=0.08 andP;s=0.2. Photon Mapping requires many photons
to resolve the small caustic due to light bouncing off theranithrough the glass ball. Furthermore,
the mirror wall subtends a large area at the light, so it iadit to concentrate photon sampling
toward the caustic producing region, and caustic photoasssfy stored on the rear wall cause
excess noise due to their high power. Even with more photbesgaustic is not as good as that
from MPS.

45.1 Limitations and Extensions

MPS is slower per photon than standard Photon Mapping, bigaey proportion of the stored
photons are typically useful. The increase in per-phota@t isobecause more terms must be eval-
uated to determine the acceptance probability for eachidared A path tracing phase is also
required and its cost should be amortized over the storetbpbo However, the significant im-
provement in photon distribution achieved with MPS allows fewer photons overall and typi-
cally reduces the cost of the final gather, giving better iesafigr a given computational effort. We

have also lost the view invariance of standard photon magtoaction, as would any method using
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visual importance. If the viewer’s path were known, the eeation could be a variable included
in the sampling process, just as locations on an area ligiiteaan vary.

Samples from a Metropolis-Hastings algorithm are coreelatue to the Markov process, so
the chain needs some time to explore the space adequataeagindependent particles traced
from the light will show no spatial correlation, and can bestied across the light surface and
outgoing direction. This may be important in scenes withyviewv photons. Parallel Markov
chains could be used to generate samples, which would iraghevdistribution of samples over
very short runs. We found this made no difference to the te$oit the photon counts required in
our scenes.

Alternate methods could be used to sample paths, such asdtidnal path tracing or path
tracing from the eye. These would be simpler to implementias&lcomputationally expensive, but
lack the ability of MPS to exploit correlation in power bewveneighboring paths. A production
system should support multiple algorithms for populatihgten maps and share the final gather
code and many other modules, including those for ray-tgpaimd BRDF sampling. Our system is
built this way.

We store photons only at a single point along a sampled pathe-point most relevant to a
final gather operation. However, other points along the paly also be useful, as is the case in
the Box scene where any diffuse surface point may be called tgpcompute a radiance estimate.
We chose not to store additional points because of the meowemnhead and the energy bleeding
problem. An alternative is to use an importon map to measeevisual importance of surface
points, and store photons at any sufficiently important palong the path [50]. This would
probably reduce the number of iterations required for MPSiample scenes, at the cost of an
importon map construction phase.

The target PDF we us¢,,., considers all paths that carry power from the lights to thage
as important. We could support other forms of importancehss perceptual metrics or shading
discontinuities, simply by modifying th#’. . (X) component off.,... The only potential downside
would be an increase in the variability of power stored atghetons,®), which can increase

noise in the final image.



66

The user path proposal can be used, unmodified, for Met®pajht Transport (Figure 4.3).
Its impact is even greater because the variance in MLT isisgtiised by the final gather operation.
Conversely, MLT offers a variance reduction technique thathd not implement: the brightness
of image pixels is estimated in a first pass and used to moléypath probabilities to make all
pixels equally probable. This could be implemented in MR8ugh importon maps that modify
the probability of paths, but it may result in large variaimcphoton power. Finally, our work could
be extended to atmospheric scattering by combining Photmppihg for participating media [46]
with Pauly et al.’s [71] MCMC sampler.

The photon mapping algorithm is one of the most importartvgldlumination approaches and
is widely used in industry. One disadvantage of the curréotgn mapping method is that there
are many scenes for which an enormous number of photons mtrstded in order to have enough
of them in the right places to get good results during finatlegimg. MPS solves that problem by
using Metropolis sampling to create photons that are gieedrto contribute to the final gathering.
Since MPS and traditional photon mapping share the samepkata structure and final gathering
phase, itis relatively easy to incorporate the MPS methtadan existing photon mapping system:
we only need to replace the part for generating photons.ré&igu8 shows how MPS can fit in the

traditional rendering pipeline by modifying the photon geating phase in photon mapping.

4.6 Conclusion

Metropolis Photon Sampling succeeds in generating photgm samples that meet the needs
of the final gather phase, without wasting storage or contiputéime on unnecessary photons. It
achieves this by sampling only over light transport patlas teach the image, and storing photons
only at appropriate points along the path. The photon digtion that results has more photons that
contribute to visually important locations, and fewer irelevant places. This not only improves
estimates from the map due to higher photon density, burathaces the chance that inappropriate

photons will be used and hence reduces energy bleedingastifAt the same time, MPS allows
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users to supply information to the sampler in the form of imgat paths, something not achievable
in most Monte Carlo algorithms.

The new sampler is best suited to scenes in which only a srodlbp of the lights’ power
arrives in visually important areas. Our method does natireg@ny modification to the final gather
phase of photon mapping, so it can be used in conjunctionanstandard particle tracing sampler.
Depending on the scene, one or other sampler could be ugdbebeiis nothing preventing the use
of both methods to fill the same map in scenes with multipletlggpurces that contribute differently
to the image. Furthermore, any improvements to the finaleggithase of Photon Mapping apply

equally well to Metropolis Photon Sampling.
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Figure 4.3: An example of variance control due to the user path propdsategy. Top is the
image rendered with no user paths, while center is the reghén the user specified ten paths
passing through the doorway. Bottom are zooms of the wallsetgion and table regions, with no
user paths on the left and user paths on the right. These afariwiges that directly visualize the
sampled light paths. The improvements after a final gathieifevpresent, are less apparent.
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Figure 4.4: The photon distributions for the Jack-o-Lantern scenet ¢@fumn is Photon Map-
ping, while right column is MPS. The top row shows the intenbthe box containing the light,
while the lower row is the interior of the room. For effectyathering, most samples should be in
the room, as is the case for MPS.

Figure 4.5: A Jack-o-Lantern scene demonstrating MPS’s efficient pleece of samples. The
Photon Mapping scene (right) stores excess photons ins&dedx and an insufficient number on
the walls of the room, resulting, respectively, in signifitanergy bleeding around the base of the
box on the table and noise throughout the image.
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Figure 4.6: The Box scene has a mirror ball at the rear and a mirror right waile the front ball

is glass. The left image included ten paths specified by tbe @ise contribute to the large caustic
under the glass ball, while the others bounce off the mirmat #rough the ball to contribute to

the smaller caustic. The center scene had no user pathspasédaquiently the caustics show high
variance. Right is a Photon Mapping image of the Box scene ctadpno equivalent time. The

large number of photons cast to resolve the small caustidtresslightly greater noise in the
right-rear of the box.



Figure 4.7: Reference images for the scenes in the paper, generatedoasintyacing.
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sampling phase in traditional photon mapping with the samghase in MPS.
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Chapter 5

Population Monte Carlo Rendering

Monte Carlo integration methods offer the most general swiub physically accurate light-
ing simulation. For production applications, algorithnficéncy is of primary concern: image
noise (variance) must be low at practical computation timég& present sampling techniques
that significantly improve rendering efficiency; for imagkne sampling, hemispheric integrals,
and global illumination. Each is derived using the popolatMonte Carlo sampling framework,
which is a technique that adapts sampling distributions twege and enables sample re-use, all
with theoretical guarantees on error and little computstioverhead.

PMC algorithms iterate on a population of samples. In oupsst sampler, for image-plane
sampling (PMC-IP), the population is a set of image-planatioos (i.e., pixels). The population
is initialized in some way, say using stratified samplingd &MC-IP generates an image. Any
information available at this stage can then be used to aal&ptnel functionthat produces a
new population. In image-plane sampling, the perceptuaélighted variance in the intermediate
images is used to construct the kernel function, resultingaere image plane samples in regions of
high variance. The procedure is then iterated: sampletaspple, .... The resultis an unbiased
algorithm.

In the case of direct lighting, or hemispheric integrals émgral, importance sampling [73] is
the primary variance reduction tool. However, a poor choicenportance function caimcrease
variance, and, moreover, the best importance function aantiiroughout a rendering depending

on such things as surface properties, lighting configunatiand the presence of shadows. For
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example, the ideal importance function for a semi-glostaserdepends on whether the primary
lobe points toward a light source, or the surface is in shadoweither. These configurations
vary over a surface and they are difficult to discover befama@ing begins, yet the choice of
importance functions is typically made once and remainsifix@MC for hemispheric integrals
(PMC-HI) improves sampling efficiency by dynamically chawsimportance functions based on
information gathered during rendering.

Sample re-use is another way to reduce variance. Most rnegdsigorithms produce indepen-
dent samples, so if a sample locates a small but importardrred the domain, the information
is lost to other samples. Markov chain Monte Carlo algoritdiorsgglobal illumination, such as
Metropolis Light Transport [103] and Energy Redistributi®ath Tracing [13], enable sample re-
use by mutating existing samples into new ones, but the ehoiggood mutation strategies is
non-trivial and has a major impact on image quality. PMC pegbing (PMC-PL) exploits infor-
mation from important samples through re-use, with a moigbrocess that is adapted on-the-fly.
The resulting algorithm is self-tuning to a large extent.

Population Monte Carlo is a general purpose framework withymariants. The challenge in
applying it to rendering lies in the small sample countsdkarevaluate distributions, and visual

sensitivity to noise. Our contribution is three specificlsdor rendering that use the framework:

¢ An Image-Plane Sampley PMC-IP, that adapts to guide samples to perceptually high va

ance image regions, is cheap to compute, maintains staaiin; and is unbiased.

e An Hemispheric Integral Sampler, PMC-HI, that adjusts the sampling directions used to
evaluate hemispheric integrals at a point and supports iatyasf importance functions
acting together. We can, for instance, avoid over-sammidight source from a surface
point within its shadow, or a BRDF specular lobe that makes mdritition. Furthermore,
we can guide samples toward important illumination diatdifound by previous samples,

without adding bias.

e PMC Path Tracing, PMC-PT, that adapts the amount of energy redistributiorifégrent

pixels and the area over which energy is redistributed. kamgple, pixels near a sharp
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shadow boundary will not attempt to widely distribute eryerghile those in a smooth dif-

fuse image region will distribute over a wide area.

We include results comparing each algorithm to existing@g@ghes, and discuss other rendering
problems that are likely to benefit from the approach. We firad PMC-based algorithms improve

efficiency by a factor of 2 to 5 over existing methods.

5.1 Related Work

Here we focus on three specific areas of related work: adaptiage-plane sampling, sam-
pling for irradiance integrals, and methods that re-usepé@sn For an overview of Monte Carlo
rendering in general, see Pharr and Humphreys [73].

Typically, adaptive image-plane algorithms perform a faets with a small number of samples
per pixel and use the resulting values to label pixels aswtety sampled or in need of further
refinement [32]. The algorithm then iterates on the pixetputng more samples. However,
the labeling of pixels based on an initial sample introdumas [51], a problem when physically
accurate renderings are required. We develop an unbiaaggi@implement method.

Many metrics have been proposed for the test to trigger iaddit sampling. Lee et al. [57]
used a sample variance based metric. Bigpd Wold [17] estimated the change in error as sample
counts increase. Painter and Sloan [70] and Purgathofeuf#sl a confidence interval test, which
Tamstorf and Jensen [95] extended to account for the toneatgpe Mitchell [65] proposed a
contrast based criterion because humans are more semsitigatrast than to absolute brightness,
and Schlick [83] included stratification into an algorithimat used contrast as its metric. Bolin and
Meyer [6], Ramasubramanian et al. [76], and Farrugia améhe [29] used models of human
visual perception, of which we use a variant. Most receri@igau et al. [78, 79] introduced
entropy-based metrics.

Our algorithm views the image plane as a single sample spadbd purposes of sampling.
Dayal et al. [16] took a similar view in the context of fram&daendering. They used a variance-

based metric to control a kD-tree subdivision where samatesdrawn uniformly within each
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adaptively sized cell of the subdivision. Stokes et al. [8/8p used a global approach with their
perceptual metric.

There is a large body of work on computing irradiance intlsg(direct lighting), mostly
concerned with importance sampling functions. Veach'sithgl00] provided a good descrip-
tion of the basic methods and analysis of variance. Impoéduanctions have most commonly
been based on surface BRDFs (see Pharr and Humphreys [73] émeanew of these), or light
sources [85, 1]. Recent advances include wavelet-basedtamge functions for environmental
lighting [12], and resampling algorithms [7, 94] that aveidibility queries for samples that are
likely to be unimportant. However, the former is applicabidy to environment maps, while the
latter throws away samples and still requires a-priori caaf importance functions. No existing
importance sampling approach for irradiance integraksrefadaptable importance functions.

Work on adaptive PDFs for importance sampling has focusegath tracing or irradiance
caching applications. Dwtrand Willems [24] used piecewise linear functions to deteemshoot-
ing directions out of light sources in a patrticle tracing laggiion. Duté and Willems [25] used
piecewise constant functions, and Pietrek and Peter [£Y usvelets to build adaptive PDFs for
sampling gather directions in path tracing. A diffuse scefand piecewise constant PDF assump-
tion is required to reduce the number of coefficients to a meakle level, and even then very high
sample counts are required. It is important to note that aapgdoximation camcreasevariance.
Lafortune and Willems [56] used a 5D tree to build an appration to radiance in the scene,
and then used it for importance sampling in a path tracingpnéssork. The same problems with
sample counts and approximation errors arise in their wanr algorithm works with arbitrary
BRDFs and uses a low-parameter adaptive model to minimizeathple count required to control
adaptation.

Adaptive algorithms have also been suggested for shadowuwtations. Ward [104] proposed
an algorithm for scenes with many lights, where shadow festsisignificant lights are replaced
by probabilistic estimates. Ward’s approach works begt miany light sources (tens or hundreds)

while our technique works best with few sources. OhbuchiAado [68] adaptively sample an
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area light source (which introduces bias). They achievedgiatification by employing quasi-
Monte Carlo (QMC) techniques to place the samples, a techrnveueso use.

Sample re-use via Markov chain Monte Carlo (MCMC) algorithme werful means of ex-
ploiting hard-to-find light transport paths in global illumation. Metropolis Light Transport [103]
was the first algorithm to use this approach, but very largabars of samples are required, and
stratification is difficult. Energy redistribution path ¢rag (ERPT) attempts to address this prob-
lem by starting with a well-stratified set of initial sampkesd locally redistributing energy using
MCMC. The noise-reduction techniques they propose introthiae Our PMC path tracing algo-

rithm automatically adapts parameters in an ERPT-like @lyorand is unbiased.

5.2 Population Monte Carlo (PMC)

The population Monte Carlo algorithm [8] is an iterated intpace sampling method with dy-
namically adaptive importance functions which approaettdinget distribution with the iterations.
We outlined a general PMC algorithm in Section 2.6.2.

Several steps are required to apply PMC to rendering prablem

e Decide on the sampling domain and population size. Computaticoncerns and stratifi-
cation typically drive the choice of domain. In the images® case, working on a discrete
pixel domain rather than a continuous one makes stratibicagimpler to implement and
sampling more efficient. We discuss the choice of populasiae in the context of each

algorithm, and later in the discussion.

o Define kernel functions and their adaptation criteria. Thike most important task, and we
give examples for our applications and suggest some gepramaiples in the discussion. For
rendering applications, two key concerns are the degredhichvthe kernel supports strat-
ification and whether it works with a small population size [@v as 4 in our hemispheric

integrals sampler).
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e Choose the techniques for sampling from the kernel functéonsthe resampling step. The

deterministic sampling we use significantly reduces vagamuch like stratification.

The following sections describe each of our samplers inilde&fore we conclude with results

and a general discussion on PMC for rendering problems.

5.3 PMC-IP: Image-Plane Sampling

Physically based rendering algorithms compute the intgn&ji, j), of each pixel(i, 7), by
estimating the integrals:
L ; :/IW}J(u)L(x,w)du [5.1]

whereZ is the image plandy; ;(u) is the measurement function for pixgl j) — non-zero ifu

is within the support of the reconstruction filter(at;j) — andL(x, w) is the radiance leaving the
point, x, seen throughu in the direction—w, determined by the projection function of the camera.
We are ignoring depth of field effects, which would necessiimategration over directions out of
the pixel, and motion blur, which would require integratmrer time.

An image-plane sampler selects the image-plane locatigns,Equation 5.1. For simplicity,
assume we are working with a ray-tracing style algorithnt #teots from the eye out into the
scene. Adaptive sampling aims to send more rays througheanwgtions that have high noise,
while avoiding bias in the final result.

Taking an importance sampling view, given a set of samgl¥s, . .., X, } from an importance

functionp(x), each pixel is estimated using

_ l n WZJ(Xk)L(Xk,w)

D

n k=1 p(Xk)

The source of bias in most existing adaptive image-planegpkamis revealed here. To be

L ;

[5.2]

unbiased, an importance sampling function must always bezeoo when the target function is
non-zero, which is not the case if a pixel is explicitly cut fwdbm sampling (x) = 0 within the
pixel). Adaptive sampling without bias must avoid decisitmterminate sampling at an individual

pixel, and instead look at the entire image plane to decidergvh certain number of new samples



79

will be cast. Every pixel with non-zero brightness must hawe-zero probability of being chosen
for a sample, regardless of its estimated error.
We also note that Equation 5.2 can be broken into many inegrae for the support of each

pixel. Providedy(x) is known in each sub-domain, the global nature(©f) is not important.

5.3.1 The PMC-IP Kernel Function

The kernel function is the starting point in creating a PM@goaithm for adaptive image-plane
sampling. We need a function that has adaptable paramistergap to sample from, and supports
stratification. This can be achieved witlmaxture modebf component distributiong,;p ;. (x), one
for each pixel:

K}g(x) = i oz,(f)hlgk(x), i oz,(:) = 1.
k=1 k=1

wherem is the number of components in the mixture model. Each compas uniform over the
domain of a single pixel integral. The parameters to theibigion are all thea,(f) values, and
these change at each iterationyWe achieve an unbiased result if evea‘,j) > €, wheree is a small
positive constant (we use 0.01). We enforce this throughattegptive process, and the useepf
rather than O, provides some assurance that we will not@asermportant contributions (referred
to asdefensive samplingt2]).

The use of a mixture as the kernel results ib&ernel PMC [19] algorithm. Sampling from
such a distribution is achieved by choosing a compongmccording to thex,(f), and then sam-
pling from h;pk(x). The latter can be done with a low-discrepancy sampler widisich pixel,
giving sub-pixel stratification. Stratification across #rgire image plane can be achieved through
deterministic mixture sampling, which we describe shortly

It is important to correctly determine the importance fumep(x) in Equation 5.2 for a given
pixel. All the samples attributed to a particular pixel cofmem a single component; all other
components have zero probability of producing that pixed mea,(f) sum to one. Hencey(x) =
hipk(x).

Notice that this kernel function is not conditionak;p(x"|x~Y) = K;p(x®). Hence,

for image-plane sampling we do not include a resampling istéjpe PMC algorithm because no
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samples are re-used. The knowledge gained from prior sanglesed instead to adapt the kernel

function.

5.3.2 Adapting the PMC-IP Kernel

The adaptation method is responsible for determining theevaf eachx,(f) given the popula-
tions from previous iterations and any information avdeafbom them, such as the image com-
puted so far. Pixels that require more samples should hgm}}ﬁti) for the component that covers
the pixel, and we need to define somﬁé? for every pixel.

An appropriate criterion assigméf) proportional to an estimate of the perceptually-weighted
variance at each pixel. The algorithm tracks the sampleamae in power seen among samples
that contribute to each pixel. To account for perceptioe, risult is divided by the threshold-

versus-intensity functionwi(L) introduced by Ferweda et al. [30]. Normalization also actsu

for e.
)
/ o Oy
YT (L)
€ 1 —€)o,
off = S
m Doiny O

The first iteration of the algorithm samples uniformly oviee image plane, so this criteria can
always be computed. The left images in Figure 5.2 show an pbeact ana,(f) map for a given
initial image. The perceptual term in the error image prévemry high errors in both bright
regions (a problem with unweighted variance) and dark gigepsoblem with luminance-weighted

variance).

5.3.3 Deterministic Mixture Sampling

Randomly sampling from the discrete distribution definedlte;pxl(f) produces excess noise —
some pixels get far more or fewer samples than they shouid.prbblem can be avoided through
the use ofleterministic mixture samplin@MS, which is designed to give each component (pixel)
a number of samples roughly proportional todﬁg. Deterministic mixture sampling always gives

lower variance when compared to random mixture samplingraged by Hesterberg [42].
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The number of samples per iteratidv, (the population size) is fixed at a small multiple of the
number of pixels. We typically use 4, which balances betwamnding too much effort on any
one iteration and the overhead of computing a new set of kparameters. For each pixel, the
deterministic sampler computes = Ny, the target number of samples for that pixel. It takes
|n}.| samples from each pixéf's component. The remaining un-allocated samples are sampl
from theresidual distributionwith probabilityn). — |[n} | at each pixel (suitably normalized).

Figure 5.1 summarizes the PMC-IP algorithm:

Generate the initial image
fort=1,---.T

Compute the perceptually-weighted variance image

1

2

3

4 Computen.” for each pixelk

5 Use DMS to allocate samples accordingxfﬁ
6

Generate samples frofﬁ}ﬁl(x) and accumulate in the image

Figure 5.1: The PMC-IP algorithm.

5.3.4 PMC-IP Results

Adaptive image-plane sampling can be used in many situatidrere pixel samples are re-
quired and an iterative algorithm can be employed. We haygemented it in the context of
direct lighting using a Multiple Importance Sampler (MIS)dafor global illumination with path
tracing. Other potential applications include bidirentibpath tracing and photon-mapping. Algo-
rithms that are not concerned with physical correctnesddumeibetter served by a simpler, biased
criterion.

Figure 5.2 shows the Buddha direct lighting example. Theaserfs diffuse with an area light
source. Each pixel sample used 8 illumination samples,fenitages were rendered at 238512,

with statistics presented in Table 5.1. We introduce thegually-based mean squared efficiency



82

Figure 5.2: A comparison between adaptive and uniform image-plane kagngn a direct light-
ing example. Leftmost is the initial image for PMC-IP samgliand thea,(f) image. The initial
image used 2 samples per pixel. The next image is the resBMa-IP sampling with two iter-
ations at 4spp on average. Center is a 10spp image uniforstiyldited. The zooms show the
shadow near the Buddha’s base (PMC-IP top, uniform bottom}h&aight are the correspond-
ing variance images. Note that the variance image for the PRISampler has few high variance
regions, and is lower contrast in general, representingra een distribution of error.

(P-Eff) metric for comparing algorithms, computed as:

Zpixels 62
tvi(L)

wheree is the difference in intensity between a pixel and the grotrath value, andl’ is the

Err = P-Eff=1/(T x Err)

running time of the algorithm on that image. P-Eff is a measafrhow much longer (or shorter)
you would need to run one algorithm to reach the perceptualtgwf another [73].

The final adaptive image shown is the unweighted averageeé tub-images (initial and two
iterations). While weighting each sub-image may be helphuthis context it is not clear that the
samples from one iteration are any better than those frothanbecause they all used the same
per-sample parameters. We obtained more samples in plaataseeded it, but not better samples.

The path tracing algorithm differs from a standard versiafy an how pixel locations are
chosen. The improvement due to PMC-IP sampling is more progexin this situation because
some areas of the image (the caustic, for instance) have highbr error than others due to the
difficulty of sampling such paths. In this example (Figurg)5we see that PMC-IP sampling with
a total of 16spp produces lower error than uniform samplir2gapp, in 25% less time.

We ran our examples for fixed number of iterations (boundedprgation time). If working

toward a error bound, then we would continuing iterating BMC-IP sampler until total error
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Figure 5.3: A Cornell Box image computed using path tracing with 16spp tidely sampled on
the left and 32spp uniformly distributed on the right. Eveithvabout half less computation time
than the uniform image with 32spp, the adaptive image hasrgurpquality around the caustic
which is the hardest region to sample.

dropped below a bound. Note that because the PMC-IP samm@elyespreads variance over the

image, an overall image error bound is very unlikely to leamrg high-error pixels.

5.4 PMC-HI: Adaptive Hemispheric Integrals Sampling

Hemispheric samplers generate incoming directiaf\sat a surface poin. One application
is in direct lighting, which assumes that the light leavirguaface point/.(x, w), can be evaluated

by the following integral, composed of terms for light emdtfrom and reflected at
Lixw) = L(x,w) + [ fxw,o)dof [5.3]

whereL.(x,w) is light emitted atx, (2 is the hemisphere of directiomait of x and f(x,w,w’) is

the light reflected ak from direction—w’ into directionw:
f(x,w,w'") = Lip(x, ') fr(x,w,w")| cos(8)| [5.4]

whereL(x, —w') is the light arriving atk from direction.’, f,(x,w,w’) is the BRDF, and’ is the

angle between’ and the normal at.
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Image | Method | # SPP| T(s) | Err | P-Eff
Buddha| Uniform 10 | 58.1| 0.625| 0.027
PMC-IP | 2+4+4| 62.4| 0.116| 0.138
Box | Uniform 16 163 | 0.545| 0.011
Uniform | 32 328 | 0.255| 0.012
PMC-IP | 4+6+6| 184 | 0.182| 0.030

Table 5.1: Measurements comparing PMC-IP and uniform image-plane lgagnfor equal total
sample counts. The Buddha image computed direct lightingy the¢ MIS method, with a total of
8 lighting samples for each pixel sample. PMC-IP samplingroves the perceptual-based RMS
error by a factor 5.4 over uniform sampling with only 7.5% moomputation time. It corresponds
to an improvement in efficiency of 5.01. The Cornell Box images path tracing to compute
global illumination including caustics. Comparing with iges of 16ssp, PMC-IP improves the
efficiency by a factor of 2.65.

A standard importance sampling algorithm fofx, w) samples directiongwy, ..., v/}, out

of x according to an importance functign,and computes the estimate:

2 = f(xw, W)

L(x,w) = E; ) [5.5]
The variance of this estimator improves;asore closely approximate§ and is zero whep is
proportional tof.

In the local direct lighting situation, one common choicer fp is proportional to
Lin(x, =) fr(x,w,w")| cos(6")| or a normalized approximation to it. An alternative is todke
the integral into a sum over individual light sources and glanpoints on the lights to generate
directions [73516.1]. In an environment map lighting situation, the watgl®duct approach of
Clarberg et al. [12] currently provides the best way to chgoséowever, none of these individual
importance functions behaves well in all cases.

Figure 5.4 demonstrates the various difficult cases for mapoe sampling. The floor consists
of a checker based pattern with diffuse and glossy squai#stmo types of gloss settings). There
are two lights, one large and one small. In pixels that imaffies squares, an importance function

based on the lights is best. In highly glossy pixels that cetiee large light, BRDF sampling is
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best. For glossy pixels that do not reflect a light, sampliogifthe light is best, and rough glossy
pixels benefit from both BRDF and light sampling. But we have ng wfaknowing this a-priori,
and most practitioners would use BRDF sampling. In rough glosgions that reflect only one
light, sampling from the other light is wasteful, but againsnalgorithms would sample equally
or according to total emitted power.

Multiple Importance Sampling (MIS) addresses many of theblems by trying several im-
portance functions and combining their results. While tluegivery well at reducing variance, it
is wasteful in cases where one of the importance functiomash better than the others and could
be used alone. Other techniques assume knowledge of whathgst will dominate where.

PMC-HI is a sampler that generates directions out of a poirddapting a kernel function to
match the integrand of interest %, (x, —w’) f,(x,w,w’)| cos(#’)| in the direct lighting case. For
example, the leftmost images in Figure 5.6 indicate theivelaisefulness of different importance
functions at each pixel. Furthermore, the PMC frameworkbsimportant samples from one

iteration to guide sampling in subsequent iterations.

Figure 5.4: A scene constructed to demonstrate how the optimal samgliiategy varies over an
image. The checkerboard contains diffuse and glossy ssjuaith near-pure specular reflection
toward the back and rougher toward the front. There are ¥ Bources.
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54.1 The PMC-HI Kernel Function

Each direct lighting estimate takes place at a single sanf@int and is only one small step in
a larger computation. The same surface point, and hencethe tgrget functionf,, essentially
never re-appears. We choose to adapt on a per-estimate Wwasid avoids the need to store
information about the adaptation state at surface poirddrgerpolate to find information at new
points. Hence, the number of samples on which to base adapiatiow, certainly less than 100
and less than 10 in some of our examples.

A mixture distribution of a few candidate importance funas is a good starting point. At
least one such component is likely to be a good approximatiofy, and we expect to adapt to
use that function most often. To catch cases where good saygitections are hard to find, we
include a component,.,.., that samples based on important sample directions frompréngous

iteration. For one light, the mixture is

K{pw®)d®,69) = afpphpror(w®) [5.6]
+ al(:;hthlight(w(t))
00 B (w®]d® 30)

cone'“cone

There is one term for the BRDF-based importance function, ona fight (or one per light for
multiple lights) and the cone perturbation function. Thaedunction samples a direction uni-
formly within a cone of directions with axid® and half-angle3®, which is set based on the
population in the previous iteration. It is particularlyefisl for situations like partial shadowing
where previous samples that found visible portions of tghtlgenerate more samples that also
reach the light. Figure 5.5 shows the mixture PDF and thempmnent PDFs.

The population in PMC-HI is a set of sample directions out efghrface point we are estimat-
ing. The population size must be large enough to obtain redde estimates for the,(f) values
at each iteration, but not so large as to increase compaotatines significantly. We typically use
n = 2m, wheren is the population size anah is the number of mixture components. This is a

sufficient size to see the benefits of adaptation, as thetiadtigure 5.6 demonstrates.
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5.4.2 Adapting for PMC-HI

An initial population ofng samples,{ng), . Q;%)} is generated using?) = 0 and the
othera,(f) equal and summing to one. Deterministic mixture samplingsex to select the number
of samples from each component. Each sample is tagged vatmikture component that was
used to generate it, and their importance weights are cadput
0 _ J(xw ) [5.7]

L ERWO)

There is no resampling step for direct lighting. The same & so small that resampling
tends to unduly favor high-weight directions at the expesfsathers, thus reducing the degree to
which sampling explores the domain. Instead, the cone m&@xtamponent is used to incorporate
the information from previous samples.

The new component weights.", can now be determined, along with &) and3") param-
eters forhey,.(w™d®, sW). The cone directiorl” is found by taking a weighted average of
thet = 0 population samples, with weight@m). The cone size is set to the standard deviation of

those samples. The component weights are set based on thke sarportance weights:
[5.8]

wheres;, is the set of samples that were generated using compénéntthe first iteration there
is no sample from the cone perturbation, so wenégt. = 0.2 and adjust the other’s by a factor
of 0.8 to make them all sum to one.

We now begin the next iteration. A new set of samples is géeenzsing deterministic mixture
sampling from the kernek )} (w®|d®, 3®)), weights are computed, and the kernel function is
updated based on the weights. To form the estimate, use iEqua82 with each sampl&)\”,

weighted bywz@ from Equation 5.7.

5.4.3 Adaptive Direct Lighting Results

We present results on two examples of PMC-HI for direct ligiptithe Checker scene (Fig-

ure 5.7) and a plant rendering with complex shadows andgBRPOFs (Figure 5.8). Timing and
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Image | Method | # SPP| T(s) | Err | P-Eff
Checks| MIS 12 | 46 | 0.379| 0.057
MIS 48 | 183 | 0.153]| 0.035
PMC-HI 12 54 | 0.146| 0.127
Plant MIS 27 53 | 0.403| 0.047
PMC-HI | 27 64 | 0.128| 0.122

Table 5.2: Measurements comparing PMC-HI sampling with MIS, for eqatdltsample counts.
In all cases we used a single direct lighting estimate fohgaxel. For Checks scene, PMC-HI
improves the efficiency by a factor 2.21, which takes fouesrmore samples for uniform MIS to
reach the approximately same perceptual based variange {Hre efficiency gain for the Plant
scene is 2.60.

error comparisons with MIS (the best of several existingpatms we tried on these scenes) ap-
pear in Table 5.2. The checkerboard image resolution ix500 and the plantimage is 7@05.
The Checker scene clearly demonstrates that adaptationtable process that finds a good
kernel function, or evenly weights the components if nonenidates (Figure 5.6). The cone
component is not particularly helpful in this case becatusibnity is simple. Timing results show
that PMC-HI halves the variance for a given sample count coeapm MIS, with only 20% more
computation time. The Plant scene demonstrates the usstibif the cone function in partially

shadowed regions. It shows major improvement in the sofl@hidoundaries on the table.

5.5 PMC Path Tracing

PMC Path Tracing (PMC-PT) is an algorithm motivated by eneeglstribution path tracing
(ERPT) [13] that adaptively selects pixels for redistribatiand can also adapt algorithm parame-
ters. ERPT as originally proposed traces a path into the dcemeeach pixel, using path tracing
to form complete light transport paths from the eye to a lifior each pixel, the path is used as the
initial state for a Markov chain Monte Carlo (MCMC) sample chthat redistributes the path’s

energy to nearby pixels and finds additional light paths. ifhdtion is that different pixels will
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find different initial paths, and the information can thercbaveyed to neighboring pixels through
the Markov chain. Due to space limitations, we cannot dis&RPT in detail; readers are referred
to the original paper.

ERPT uses a constant length chain for every pixel, regardiielssw much energy the initial
path carries or how much it differs from its neighbors. Thlisub-optimal — some pixels have
high energy initial paths that take longer to redistribmibile others are in a neighborhood where
most light transport paths are similar and redistributiohiaves nothing. To address the former
problem, Cline et al. [13] designed filters that introduceso the calculation, making the image
darker than it should be.

Our PMC-PT algorithm uses the same basic premise as ERPTehigigy paths should be
mutated to distribute the information they carry to neigig pixels. The sample population is
a set of light transport paths through the scene. The keanetibn mutates these paths to create
new paths. The resampling step removes low energy pathgioneof low image variance and
duplicates high-energy paths in regions of high variance. aAesult, work is focused on the

important transport paths.

55.1 PMC-PT Kernel Function

The kernel function for PMC-PT is a conditional kern&l() (x®|X "V, that generates sam-
plei in iterationt, X", given sample in iterationt — 1, X\~ (see Figure 2.4). Again we use a

mixture distribution:

KOOxE-D) = aét)hlens(i(t)‘i(tfl) :5) [5.9]
+ g Biens (XD |2V - 10)

+ g Biens (XD |2V - 50)

Each componerit,,,,(x®[x*~1 : 5) performs dens perturbatiorfrom ERPT, described in detail
by Cline et al. [13]. The perturbation takes the existing atd moves the image point through
which it passes. In our case, the new lens location is unifosampled within a square of half-

side-lengths, a parameter to the kernel. The remainder of the path is stéaated to pass through
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the new image point while retaining as much as possible oétisting path. In the original ERPT
work, the size of the perturbation was a parameter to be fixstdeup. We use three different sized
perturbations in the mixture. The large perturbation is@ffe for redistributing information over
a wide area, while the smallest is best for image regionsevittemination is changing quickly.
We could also include a component for tbaustic perturbatiorfrom ERPT and Metropolis
Light Transport, which would improve performance in scen#h significant caustic transport. In
practice, we found this to be unnecessary because the siriatie perturbation achieved a similar

effect.

5.5.2 Resampling and Adapting

A startup phase of PMC-PT creates an initial image using patting at about 3spp. Not all
the generated paths are valid — they are terminated by RURsiartte before a point ever sees the
light. Of those that are valid, we take evéith one for the initial population, whereis chosen to
give us the desired population size.

In PMC-PT we resample and adapt the mixture component weigtadower frequency than
we iterate the kernel:

Tr is the number of kernel iterations per resample step. Wemplgaless often because it
is moderately expensive and there is no advantage to adagdtievery iteration. After exploring
several values faf'i, we found a wide range of values to be effective. The optirmhlerdepends
on the population size and the relative cost of kernel pleations compared to resampling.

The resampling step achieves three purposes: samplesethdtrmore energy redistribution
are carried forward to the next round, the information abehich samples are chosen during
resampling guides the adaptation, and it provides an oppitytto add some completely new
paths into the population. The proportion of samples thatigel the resampling from any given
component, theurvival rate indicates the usefulness of that component for sampling hence
are used to set the\”.

Resampling is a standard technique that forms a discret#disbn over the existing sample

set and then samples with replacement from the old populédi@enerate the new one. We use
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deterministic sampling (the residual method described&pbim sample the new population. The
resampling probabilities are the importance Weigt/vg?).

Each sample was tagged with the kernel mixture componetgémerated it. After resampling,
we set thea,(j) mixture weights to the proportion of surviving samples tvate generated with
component.

To add completely new paths, we resample fewer paths fronpadipelation and create the
remaining paths using the original path tracing algoritasiwe did to create paths for the initial
sample. The aim of adding new paths is to limit the potentiattie resampling to produce many
repeats of a few very high weight paths. We could include apmrant in the mixture to create
new paths from scratch, but that limits the extent to which@isen path’s energy is redistributed
because the probability that it would survive more than aifever loop iterations is low. Adding
new paths in this way does not add bias because neither tampésd population nor the new
samples are biased, so their union is not biased. In pragteeesample for 70% of the population
and generate the remaining 30% from scratch.

After every step in the inner loop of Figure 5.9, we accunauthe weightswf), to the appro-
priate pixels to form the image. Computing these weightsiregthe kernel function probabilities,
also called transition probabilities. Cline et al. [13] piiezan excellent detailed discussion of the
computation of these functions, and PMC-PT uses exactlyahegechniquesi{*)(x|y) in our

terminology isT'(z — y) in theirs).

5.5.3 PMC-PT Results

We compared PMC-PT with the energy redistribution path n@¢ERPT) algorithm on the
Cornell Box scene and a basic Room scene. In both cases we usedlatjom size of 10,000.
The Box scene began with 9spp path tracing. ERPT performedd@Q@ions on each initial path,
while PMC-PT did 10 resampling iterations each with 40 motatiterations. The scene was
rendered at 640480 resolution. PMC-PT achieves a 45% reduction in RMS errer &RPT,
with only 8% more computation time (see Table 5.3). The isg@egure 5.10) demonstrate that

PMC-PT expends more effort on the difficult regions — the ngiliglass ball and caustic — and
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Image| Method | Total time (s)| Err P-Eff

Box ERPT 203.6 2.013| 2.44e-3
PMC-PT 212.8 1.554| 3.02e-3
Room| ERPT 1021 1.434| 6.83e-4

PMC-PT 1132 0.326| 27.1e-4

Table 5.3: Measurements comparing energy redistribution path tgg@RPT) with PMC-PT, for
a roughly equal number of mutations. The efficiency gainsMCPPT are 1.24 and 3.97 for the
Box scene and Room scene, respectively.

hence has lower variance in those regions, at the expens$iglafyshigher variance in other parts
of the image. This is a recurring property of both the PMC imatpne sampler and PMC-PT:
PMC produces a more even distribution of noise, with lowas@devels overall but higher in
some parts of the image that are over-sampled with non-@dapthniques.

The Room scene (Figure 5.11) was rendered atxAZ® and used 16spp to obtain the initial
paths. ERPT performed 600 iterations on each initial pathiegviBMC-PT did 5 resampling itera-
tions each with 120 mutation iterations. Note that for bo#h@PT and ERPT implementations,

we did not use the filter in the original ERPT paper to smootffitied image.

5.6 Discussion

The most important parameter in a PMC algorithm is the pdfmraize. A small population
reduces the number of samples per iteration, which giveg riexibility in the total sample count
in an algorithm, but relatively more time is then spent aitegpinixture parameters. Furthermore,
the quality of the adapted functions is lower because thegarived from less information. Hence,
we use small populations only for the hemispheric integrake, where we aim to keep the total
number of samples per estimate low and the kernel functismiary small number of parameters.
Larger populations result in more robust adaptation ansl deerhead, and in general are to be
favored. However, if the population is too large the benefftadaptation are lost as relatively

more samples are drawn using a mal-adapted importancedonct
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In Equation 5.7 we use the full mixture distribution as th@artance functioni'(w;). This is
a form of Rao-Blackwellization, which reduces variance buhatexpense of additional computa-
tion. The algorithm remains correct if we use only the migtaomponent from which the sample
came i, ('), and we need not compute the other mixture functions. In stases the resulting
reduction in computation may exceed the increase in noiseinkrendering the greatest cost is

usually in obtaining a sample, rather than evaluating ibabilities.

5.6.1 Relationships with Existing Algorithms

The PMC algorithms we have presented can be viewed as geaditals of some existing

algorithms:

e MIS is a special case of deterministic mixture sampling. dtresponds to fixing they,
weights ahead of time, which fixes the number of samples frach éunction. The MIS bal-
ance heuristic results in the same estimator that we usem®ve upon MIS by adapting

the weights over time, which avoids wasting samples on uaitapt component functions.

e PMC-PT may be viewed as a form of Metropolis light transpothwiultiple parallel chains
(the population), that are allowed to die and split (resamgpl The PMC framework places

this in a sound statistical setting.

5.6.2 Designing Adaptable Kernel Functions

Many PMC kernels in the literature are mixture models. Migtiare typically formed by
combining several components that are each expected toelf@ irs some cases but not others.
The adaptation step then determines which are useful foremgnput. Mixtures allow otherwise
unrelated functions to be combined, such as the light ar@@rt@nce function and the BRDF
importance function in Equation 5.7. If an environment mags\present we could even include
the wavelet importance functions of Clarberg et al. [12] ia thixture. Typically, the common
rule of choosing importance functions applies here alscerwhis a product of several unrelated

functions, then a good choice of mixture components is seimgiproportional to each factor.
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Other adaptable functions can be used as kernel functianh,as Gaussian distributions pa-
rameterized by their standard deviation. Such a choice dvoelappropriate if a single Gaussian
of unknown size was thought to be sufficient even when actimgea but the ability to simultane-
ously sample from several functions is lost. The most commeason to use non-mixture kernels
is when the aim of PMC is finding the adapted parameters tHeesseot the samples, and hence

the kernel function is chosen to represent the expected dbthe underlying statistical model.

5.6.3 PMC in the rendering pipeline and its limitations

PMC can be easily incorporated into the physically basedeeng system pipeline, as seen
in the Figure 5.12. The image-plane sampler and directiighttegrator are common compo-
nents in many rendering algorithms. PMC-IP sampling can leel @s a plugin component for
essentially any algorithm that forms light paths througé #ye, including the gather phase of
photon-mapping, bidirectional path tracing, and irrade&caching. The PMC-HI sampler can
be used in any situation where estimates of an integral d&=hémisphere are required. Irradi-
ance caching would benefit greatly from a PMC sampler in timeprdation of each cached value.
Photon-mapping could also use a PMC sampler in the final gdibiewe expect the improvement
to be less apparent.

The most notable limitation of PMC is the high sample couetsuired when the kernel has
many adaptable parameters. This precludes, for instasogg one component per light when
there are many lights. Such a strategy would be appealirgffioirent sampling in complex shadow
situations (some components would see the lights, otheutdw), but the sample count required
to adequately determine the mixture component weights avbaltoo large. Instead we use a
single mixture component for all the lights and rely on theeperturbation component to favor
visible lights, but this does not work well if illuminatioroarces are widely spaced.

An alternate approach for integrating functions definedwfases is to store the mixture com-
ponent weights in a surface map and interpolate. This apssrthe cost of adapting over many

surface points. We did not explore this possibility, buffiecs potential for the multi-light problem
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or cases where many light transport paths must be conddrtiuteugh a scene, such as bidirec-
tional path tracing or photon mapping.

We rely on deterministic mixture sampling to achieve sficdtion in the image-plane sampler
and to a lesser extent in the other samplers. This is noegnsatisfactory. For example, in PMC-
PT the mutation kernels are responsible for moving sampi@asna the image plane, and these
are not stratified. This could be addressed using technisjugkar to those in Metropolis Light

Transport, but at some greater complexity.

5.7 Conclusion

The have shown how algorithms for adaptive image-plane Bagyemispheric integral com-
putations, and energy redistribution path tracing can leetkwithin a PMC framework. In each
case the algorithm learns an effective sampler based oresoéts from earlier iterations. This al-
leviates one of the greatest problems in Monte Carlo rengetive choice of importance functions
and other parameters.

PMC is just one approach from the family of iterated impocsampling algorithms [80]. The
Kalman filter is another well-known example. Common to thesiniques is the idea of sample
re-use through resampling and the adaptation of samplirenpeters over iterations. Computer

graphics certainly offers further opportunities to exptbese properties.
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Figure 5.5: Mixture PDF. The top is the BRDF sampling, light sampling, ante sampling
respectively. The bottom is a linear combination of the tupé¢ sampling strategies.

Figure 5.6: These maps show how the mixture component weights for PMCaldt aver the
image, after two iterations. Bright means high weight. Freifh o right: afl), the left light's
weight; a(LQQ), the right light's Weight'ag}wF; anda'?) , which in this image is of limited use. The
large light dominates in regions where no light is seen inaag)f reflection, while the right light
is favored in nearby diffuse squares. The BRDF component @réalvonly when the large light
is specularly reflected at a pixel. The images are quite Foegefor such small sample counts
(16 total samples per estimate), indicating that the atiaptenechanism converges to a consistent

result.
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Figure 5.7: Checker images generated from different algorithms withslmee number of sam-
ples. The PMC-HI image (top-left) is better overall than theESNmage(top-right), especially in
the glossy region in front of the big area light where nei@mpling from light nor sampling from
BRDF works well. Light sampling (bottom-left) does poorly retspecular region in front of the
big area light, while the BRDF image (bottom-right) appeary vmisy at the diffuse surface.
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Figure 5.8: An image involving complex soft shadows and glossy surfagep-left is PMC-HI
sampling, and top-right is MIS with equal total sample coudbte the significant improvement
in the soft shadows achieved with PMC-HI, shown in the zoomeates at the bottom (PMC-HI
left, MIS right).
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Figure 5.9: The PMC-PT iteration loop.
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Figure 5.10: A Cornell Box image computed using PMC-PT on the left and ERPT emight.
The improvement with PMC-PT is most evident in the caustie,glass ball, and the ceiling. We
did not use the biased filters of Cline et al. [13], hence theareimg very bright spots.

Figure 5.11: A Room scene computed using PMT-PT at top and ERPT below. PMCaBT h
fewer artifacts overall. PMC-PT improves over ERPT by shanmgge information among paths
and better re-using the high contribution paths.



Parse scene
Initialize render state

Accumulate
sample contributions

Tone mapping
display image

Rendering pipeline

Figure 5.12: Population Monte Carlo rendering in physically based reindgpipeline.

Generate samples | | ]

Population Monte Carlo
(PMC)

Adaptive image

Adaptive | | Adaptive
direct path
lighting tracing

PMC plugin

100



101

Chapter 6

Optimizing Control Variate Estimators for
Rendering

Monte Carlo integration methods offer the most general goiub physically accurate lighting
simulation: they handle near-arbitrary geometry, malt@raperties, participatory media, etc. All
Monte Carlo methods require @stimatorthat takes the information found in the samples and
determines a single final value. A good estimator is unbiaseldhas low variance. In rendering,
the unbiased property guarantees the image has, on avédrageyrect pixel values, while variance
determines the noise levels in the image, or how much neigidppixels tend to differ in value.

There are many possible estimators, each of which combneesamples in a different way to
get the final answer. If we focus on unbiased estimators,dlggod strategy is to choose one that
minimizes variance while remaining relatively fast to cartgg The most common estimator in
rendering is the sample mean or an importance weighted nideamnatives exist, however, such
as the Multiple Importance Sampling (MIS) estimator [102¢ontrol variate estimators [90] (also
referred to as correlated sampling).

In this chapter we apply an Optimizing Control Variate (OCV)ireator to the problem of
estimating irradiance integrals for direct lighting. Tlaerse basic problem is also a sub-component
of many rendering algorithms, such as irradiance cachidgpanton-map gathering, for which we
also demonstrate some results. The OCV estimator solves|aaptimization problem to find a
good control variate distribution given a set of sampleslikgnexisting control variate methods

which require a single control variate distribution for@ditimates, OCV allows the distribution to
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vary over the scene depending on surface properties artthgtonditions. Furthermore, users are
not burdened with finding an optimal correlated functiomytban provide a generic parameterized
function that the estimator optimizes.

OCV works with thedeterministic mixture samplingpMS) framework for constructing impor-
tance functions, sampling from them, and computing esgémfitbm the samples [69]. In addition
to providing better estimators, DMS allows for multiple iargance sampling functions to be com-
bined in a general way. The optimizing nature of the estimatsures that the combination of
samplers performs at least as well as the best among therislway, OCV can be viewed as a

generalization of multiple importance sampling.

6.1 Estimating Irradiance Integrals

This chapter concentrates on the problem of computing iate@ver hemispheric domains.
The most common such integral in rendering computes thamadiL(x,w), leaving a poink in
the directionw:

L(x,w) = L.(x,w) + /Q f(x,w,w)dw’ [6.1]

whereL.(x,w) is light emitted atx, 2 is the hemisphere of directiomsit of x and f (x, w, w') is

the light reflected ak from direction—w’ into directionw:
f(x,w, ') = Lip(x, =) fr(x,w,w")| cos(8)|

L(x,—w') is light arriving atx from direction.’, f.(x,w,«’) is the BRDF, and)’ is the angle
betweenv’ and the normal ak. Monte Carlo renderers use statistical sampling to estirttege
integral for the reflected component bfx, w).

A standard importance sampling algorithm foix, w) samples directionsy;, . . ., w), out of

x according to an importance distributign,and computes the estimate:

Fxw) = -y L0eee)

i=1 p(wz)
The variance of this estimator improves jasore closely approximateg, and is zero whemp

6.2]

differs from f by a constant scale.
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In local direct lighting situations, a common choice fpris a normalized version of
fr(X',w,w)| cos(6')| or an approximation to it. We refer to this as BRDF-based ingraré sam-
pling. An alternative is light-based sampling where thegnal is broken into a sum over individual
light sources and points are sampled on the lights to geménagctions [73316.1]. In environment
map lighting situations, the wavelet product approach ofté&glay et al. [12] currently provides the
best way to choosg.

Control variate approaches (see Section 2.4.2) introduoeralated functiong, which should

have the property that — g is close to a constant, and then use the estimator:

Lx,w) = / Vdw' + Z X”p“(’w)i) 9(wr)) [6.3]

The difficulty of applying this approach in rendering prabkeis in finding a functiory that is
sufficiently close tof in all places. We solve this problem by defining a paramegédrizinction,
g(W' : B, ..., Bm), and optimizing the vector of parametefs;, . . ., 5,,), in order to best approx-
imate f.

The MIS estimator [102] uses multiple importance functigns. .., p,,, and draws a fixed
number of samples from each,, ..., n,,. It then computes one of several possible estimators, of
which the simplest is thbalance heuristic

Yo f(x w, W)

iz 2 N [6.4]

-1 >ohen Ckpk(

wherec;, = n;/N, the proportion of samples drawn from. The major advantage of MIS is that
it enables importance functions to be combined in an untliasnner. Using a slightly different
estimator, thgpower heuristicthe weight of samples coming from poor importance funcioan

be implicitly reduced in the final estimate.

6.2 Related Work

The simplest effective use of control variates is in casesre/the incoming illumination can be
approximated by a constant ambient term — Lafortune andeWgl[55] described this technique —

but it offers less improvement with more complex illumimetti Szirmay-Kalos et al. [91] improve
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upon this using radiosity to obtain an estimate of the défukimination which serves as the
correlated function in a Monte Carlo step that accounts fbeoillumination. It works well for
diffuse environments but not for specular surfaces.

Szcsi et al. [90] combined control variate and importanceing estimators (Equations 6.2
and 6.3) in a linear combination with weights optimized tduee variance, but the approach is
very limited in the BRDFs that can be handled. Note that thig@ggh combines estimates, not
sampling strategies, so a single importance sampling ifumechust still be chosen. An alternate
estimator, weighted importance sampling, has been usqghfticle tracing algorithms by Baks
et al. [5], but a scene discretization is required and im@naent is only seen under specific BRDF
and lighting configurations.

The work of Lafortune and Willems [56] on adaptive BRDF samplimcludes a control variate
component. They built a 5D-tree approximation to radiamcéhe scene, and used it for both
importance sampling and control variate estimation. Inesaense this is optimizing the control
variate estimator. However, large sample counts are redjuo adequately adapt the necessary
functions, and failure to adapt correctly actually incesasariance. Our algorithm uses a low-
parameter function for the control variate distributionm few samples are required to optimize.

OCV with deterministic mixture sampling offers a way to com#isamples from multiple
importance functions. As discussed above, Veach’s [1023 Ml an existing approach to this
problem. DMS includes the balance heuristic (Equation &4 special case. We improve upon

MIS with a simple optimization process for selecting a bregtimator at each pixel.

6.3 Deterministic Mixture Sampling

The optimizing control variate estimator begins with a detaistic mixture sampling process
to generate the samples. This is practically equivalenti®'d/step of generating a fixed number
of samples from each of multiple importance functions, bativated differently.

A mixture PDF is one composed of a weighted sum of componeR/sPD

plr:a)= i a;pi(x) [6.5]



105

wherem is the number of components ands a vector ofmixture weights{as, . .., a,,), with

> 0and}’L, a; = 1. The simplest way to draw a sample from a mixture density irso
select a componeni, with probabilityp(j) « «;, and then sample from;(z).

For rendering, the mixture can include any importance foncthat is typically used alone.
Hence, we include a component for sampling according to theB&12l one for each light source.
In environment lighting conditions, a component for samglthe environment map should be
included. We could break the BRDF into sub-components (dffggossy, etc.) but we did not
experiment with this. Also note that the environment mapang of Clarberg et al. [12] can be
viewed as a mixture where each wavelet basis function is gpoaent.

Deterministicmixture sampling chooses a fixed number of samples from easipanent:
n; = Na; samples are drawn from componentx) whereN is the total sample size. We can
view this as a form of stratification over the mixture computseand Hesterberg [42] showed that
this reduces variance. Note that this is exactly what MISsdaad Equation 6.4 can be re-written

in terms ofp(w’ : ):
- 1 & f(x,w,w))
L I ) ) 7
(x,w) N ; p(wl: @)
We can also construct a control variate estimate using auneixif functions as the correlated

[6.6]

distribution in addition to the importance distributior9|6

ZﬁjJr Z f(x,w,wi) = plwi : B) 6.7]

p(wi )

where thes; are a vector of real valued variables. This estimator isasdd, as can be seen by

writing

[ fla) = X0 Bipy(e)
/ o p(x

E[[A/awg] = - Oé) Oé)dl’ + Zﬁj
: s

= /f )da — g:ﬂj/pj(fr)dx+§5j
= /f(a:)d:l:

Note thatp,(z) is a PDF so integrates to 1. The variance of the estimator irat@n 6.7 is

O_iﬂ _ / (f(flf) _ng'nl ﬁjpj($) iy iﬂ]) p(z : Oé)d.l? [68]

(x: )
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wherel is the true value of the integral being estimated.

There is no improvement over importance sampling if weset «; for all j; it is the same
estimator as Equation 6.6. However, we are free to choosg;timea variety of ways — they need
not even sum to 1. In particular, we can solve an optimizgbi@blem, which results in an OCV

estimator.

6.4 Optimizing Control Variates

A natural strategy for choosing thie is to minimize the variance in Equation 6.8. We can’t do
this, however, because we don't kndwthe value we are trying to estimate. Instead, we form a
linear problem that minimizes the following objective ftion with respect to the;:

m 2
i\[: <f(Xz) — i ﬂjpj(Xi>)
p(X; @ «)

This is a standard linear least squares problem, but we snbdifthree ways. First, we include

[6.9]

i=1

an intercept termj, [69], which after optimization evaluates to

1 X f(XG) = X0 Bipi(X3)
N = p(X; s a)

Putting 3, into Equation 6.7 and simplifying, we get a simpler form af tACV estimator:

Hx@=%+i@ [6.10]
j=1

The second problem is that the conditi®f{, «; = 1 required to make(z : «) a distribution
function means that the;(z)/p(z : «) terms are linearly dependent. This can be solved by
droppingp,, from the optimization and setting,, = 0. This leaves us minimizingy — Ag||?

with

f(X1)
p(X1:a)

f(Xn)
p(Xn:a)
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1 p1(X1) Pm—1(X1) 60
p(X1:) 7 p(X1:) 51
1 P1(Xn) Pm—1(XnN)
p(Xn:) 77 p(Xn:a) 5
. mil -

A further problem occurs when all of the samples from somepmmmnt are zero. In render-
ing, this is quite likely due to occlusion or some other fadt@at gives zero radiance from some
directions. To deal with this we ugeenalized least squaregith a penalty term pushing the
toward zero. The resulting objective function|is — A3||*> + A||3]|?. The solution to this problem
IS

B=(AA+N) Ay [6.11]

where A is the transpose of A and | is the identity matrix. We founét 1 to be good in practice.

6.4.1 OCV for Rendering

Optimizing control variate estimation is useful in rendgriwhen evaluating integrals over a
single domain, with the same PDF used for each sample, andieecbf importance functions.
While Veach [102] showed a bidirectional path tracing agglan, in practice the conditions are
met in gatherintegrals where we integrate incoming irradiance at a poynsampling over the
hemisphere. Such integrals arise in direct lighting, iaade caching, photon-mapping, and ra-
diosity. We show examples from the first two applications.

Apart from choosing components for the mixture, we must sé&tdheir weightsq;. In all our
experiments we used a single BRDF-based component and on@gentgor each light (we did
not use environmental lighting). We made a conservativecehdalf of the samples came from
the BRDF,agrpr = 0.5, while the remainder were divided equally among the ligtitior some
reason a user thought some sampling function was more ligedycceed, then the weight for that
component could be increased. It is possible to set the weayaptively [80], and we are aware
of a paper that experiments with this [28], but does not uSB@N estimator.

To summarize, each time we require an estimate of the idteggaquation 6.1, we draw a

fixed number of direction samples,;, from each importance function in the mixture, We
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trace rays for each sample to determine the incoming radjang(x, —w;). With each sample
direction evaluated, we form the matrices and vectors atwe gfguation 6.11 for theg;. Finally,
Equation 6.10 is evaluated to compute the estimate of ouggaidiance.

In direct lighting, an irradiance integral estimate is afal for every surface point hit with a
pixel sample. For irradiance caching, another applicatietnave implemented, the incoming irra-
diance must be estimated at diffuse surface points whenr@yeached estimate is not available.

The irradiance integral is broken into two terms:
Ir(x) = / Lsources(X, —w')dw' +/ Lina(x, —w")dw'
Q Q

wherelr(x) is the irradiance at point, L5 IS incoming radiance due to light or environmental
sources, and.;,q is radiance due to indirect lighting. In our implementat[@8], L;,q(x, —w’)

is computed using path tracing, but each point along the alsih evaluates the direct lighting
integral.

We only use OCYV for the irradiance due to sources. All inditggtiting estimates happen at
diffuse surfaces, and samples that directly hit a light cbate nothing because they are already
accounted for. Hence, BRDF-based importance sampling istlgeraportance function suitable,
and therefore OCV is not useful — there is no way to form a mecturote, however, that the
irradiance integral is evaluated as part of the path trapnegedure, so OCV does still contribute

to indirect lighting.

6.5 Results

We first experimented with a scene (Figure 6.2) that dematestthe importance of including
multiple sampling functions for direct lighting (followgn[73]). This example contains two lights,
so half of all the samples come from sampling a BRDF-based coemgpwhile one quarter come
from sampling the area of the yellow light and a quarter frowa blue light. Table 6.1 presents
timing and error results, where error is a perceptually Wwed error metric:

1 L_Ltrue 2 %
n 2 <tvi(Ltme)> ] .42

pizels

B =
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Image | Method | SPE| SPP| Time (s)| Err
Checks| MIS 64 4 172.8 | 0.60
ocv 64 4 180.8 | 0.48
Buddha| MIS 64 4 98.3 |0.72
oCcv 64 4 105.6 | 0.46
Room MIS 18 2 374 | 0.75
ocv 18 2 43.2 | 0.68
Box MIS 18 9 1965 | 4.9
oCcv 18 9 207.2 | 4.0

Table 6.1: Measurements comparing MIS to OCYV for direct lighting conapioins. SPE is the
sample count per estimate, with SPP estimates per pixelisEne error computed using Equa-
tion 6.12.

wheren is number of pixels,L is the luminance of the resulL;,,. is the true luminance, and
tvi(x) is the perceptual threshold-vs-intensity function introeld by Ferwerda et al. [30]. We
use perceptual weighting to avoid giving too much weightdonbright or very dark areas of the
image. The ground truth image is computed using MIS runnimngéveral hours.

Figure 6.2 shows comparison between MIS, OCV and the coectlsampling approach of
Szcsi et al. [90]. These images were rendered at<&00 resolution. They highlight primarily
the value in using multiple importance functions, whichretated sampling cannot do. OCV
performs better than MIS on this scene with little additloc@mputation time. Improvement in
the form of lower variance is most apparent in the glossyoregeflected in the yellow light. In
this scene the OCV estimator results in a 18% improvement agerguality with about 5% more
computation time.

The Buddha images (Figure 6.1) show a more marked improvemgm®CV over MIS. These
images were rendered at 26612 resolution, and the OCV estimator results in a 37% improve
ment for 7% more time. This scene has a greater variety dfitigltonditions, ranging from tight

specularities to occluded regions. Our final direct lighttast used a Room scene (Figure 6.3),
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for which the OCV estimator produced lower error compared t8 Nbut the additional compu-
tation cost resulted in comparable rendering efficiencye 3¢ene requires relatively few samples
to obtain a good estimate because the light sources are anththere is limited occlusion. Our
method performs best when occlusion is complex and witrelalight sources. Still, due to the
optimization in OCV, the results are unlikely to be worse thdarnative methods.

The Cornell Box scene (Figure 6.4) demonstrates OCV estimatesadiance caching. The
perceptual RMS error (Equation 6.12) for the standard implaation is 4.9, which OCV reduces
to 4.0 with about 5% more computational time.

We compare the algorithms based on the same number of saimglead of the same com-
putational time, because presetting number of samples srtakeimplementation more efficient
by taking advantage of the stratified sampling. Given theiefiicy is measured by the percep-
tual RMS error and its computational time [73], their prodpadvides a fair comparison of the

algorithms running with the same number of samples.

6.5.1 OCV in the rendering pipeline and its limitations

We do not use OCV for the indirect lighting component of thadiance caching integral
because our techniques for forming a mixture result in alsiegmponent. We could form a
mixture by sub-dividing the hemisphere and using one corapbior each sub-region. This would
allow things such as occluded paths to be accounted for iagtimator.

As stated above, an OCV estimator is only useful in situatwamsn all the samples come from
the same mixture distribution. In bidirectional path tregithis means we can only use it on a
per-path basis with a mixture component for each method whify the path. Path tracing is
ruled out because each path has a different length and hiffeeedt set of material properties,
and hence has a different PDF. Integrals of the form in Equdiil are very common, however, so
OCV does cover a large set of practical cases. Figure 6.5 dhow€©CV can be used to construct
an estimator for accumulating sample contributions in taditional rendering pipeline.

The primary limitation with the OCV estimator comes from tkeé&tionship between the num-

ber of components in the mixture and the number of samplesresly A larger mixture requires
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more samples to obtain reliable values for optimized at least as many samples as components.
Furthermore, more mixture components and samples in@dlaseost of the optimization, to the
extent that MIS would perform better for the same computatime. Hence, very small sample
counts (less than about 10) cannot be used and situatiohsmahy light sources cause prob-
lems, at least as we have constructed the mixture. In a mghiysituation, nearby lights could be

grouped into one component or an environmental lighting@ggh could be used.

6.6 Conclusion

We have presented a new estimator for use in computing amadigather integrals. The OCV
estimator maximizes the benefits of control variate sargdyoptimizing the correlated function
at each estimate. This also reduces the user’s burden ofidirdirrelated functions. In addition,
OCV allows multiple importance functions to be combined, abhis particularly useful when no
one function works well across an entire image.

In importance sampling applications, one use of mixturas defensivesampling [42], where
one component of the mixture is certain to have “heaviestdlilan the integrand to ensure finite
variance of the estimate. In rendering, situations wherefangive component is useful are rare:
one example is a glossy surface under environmental lightimere the dominant reflectance lobe
is blocked by an occluder, and wavelet product sampling isse. A cosine-weighted mixture
component could be used as a defensive choice in such eitgati

There are several alternative importance functions thatdcbe used as components. One
particularly interesting possibility is using the low-frgency wavelets from Clarberg et al. [12].
The potential advantage is that wavelets representingdedldirections could have their weight in
the estimate reduced. Even more advantage could come fr@appanach that adapts the mixture

weights, and hence avoids any sampling in occluded dinestio
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Figure 6.1: Results for MIS and OCV for the Buddha model. MIS, left, has reztidy higher
variance in the soft shadow boundary and the base of the Budidievariance images, below,
reveal significant reduction in variance with OCV over tharerimage.
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Figure 6.2: Images for the checkers scene. Left is MIS, center is OCV ajit s correlated
sampling. Correlated sampling performs poorly because st ichwose only one importance func-
tion before rendering begins (typically BRDF-based, as wes liere) and the best choice is not
always obvious. Bottom are perceptually-based variancgasiavhich show the variance of the
direct illumination estimates obtained at each pixel. Thesnsignificant improvement of OCV
over MIS is apparent within the left glossy reflection of thegle light source. Note that variance
is expected to be large at material property boundariesuseddifferent pixel samples are hitting
different materials.
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Figure 6.3: Results for MIS (left) and OCV (right) for the Room scene. Thedemare very
similar, but the variance images below reveal an overalfawpment with OCV over MIS.
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Figure 6.4: Results for MIS and OCV for irradiance caching computationa &ox scene. Stan-
dard irradiance caching, which uses MIS for its estimagesnithe left, while a version using OCV
estimators is on the right.
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Figure 6.5: OCV in the physically based rendering pipeline. It can be usembnstruct a better
estimator based on the samples from a mixture of multipheibligions.
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Chapter 7

Discussion and Conclusion

The Monte Carlo method is the most general and robust methosbfeing the global illu-
mination problem. The major challenges in Monte Carlo reingeare to sample the path space
efficiently and to construct good estimators to reduce thi@nee in the rendered images. One
promising avenue to face those challenges is to adaptieeiypke the important regions of the inte-
grand and reuse the high-contribution path samples as nsyabsaible. This thesis has introduced
a novel statistical framework for adapting and reusing dasmand demonstrated its applications
to the global illumination problem. This chapter presenssimmary of the main contributions of

this work and a discussion of future work.

7.1 Contributions

The idea of adaptive sampling has been explored for imageerery by many researchers
(e.q., [70, 6]). The major disadvantage of adaptive sarggbrthat it can introduce bias if not
used with special care, as pointed out by Kirk and Arvo [51pstlof the adaptive algorithms in
the literature are biased and there is no analysis of howitigedffects the final rendering results.
Two-stage sampling proposed by Kirk and Arvo [51] elimirsatiee bias, however, it also wastes
samples from the first stage and cannot adjust samplingglthexsecond stage.

Sequential Monte Carlo puts sample adaptation and sam@e meto a new statistical frame-
work that enables repeated updates to importance distiisubased on the performance of the

sampling process. As a specific type of SMC method, the ptpal#Monte Carlo algorithm
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makes it much easier to construct adaptive sampling schesitiesut introducing bias. Allowing
samples to be dependent on previous samples provides ghsfoaivard way for sample reuse.
Resampling according to the importance weights of the sasneonly keeps high-contribution
samples for reuse, but also prunes low-contribution sasripten the population. Working in an
importance sampling framework, PMC removes the ergodisgiye of the MCMC framework.

Applications of this framework are demonstrated with aetgrof problems in physically based
rendering. For the task of photo-realistic rendering, digliyt paths that reach the image plane are
important because only those paths contribute to the finagjen As a way of generating and
reusing important path samples, we proposed a visual impoetdriven algorithmiMetropolis
Photon SamplindMPS), for populating photon maps in the photon mapping edn7]. Our
sampling strategy is independent of photon mapping and earsé&d either alone to generate visu-
ally important paths, or with photon maps that are used théurexploit sample reuse. Metropolis
Photon Sampling succeeds in generating photon map sanfaeseet the needs of the final
gather phase without wasting storage or computation timenoecessary photons. It achieves this
by sampling only over light transport paths that reach theege) and storing photons only at appro-
priate points along the path. The photon distribution tkeatits has more photons that contribute
to visually important locations, and fewer in irrelevanages. This not only improves estimates
from the map due to higher photon density, but also redu@eshthnce that inappropriate photons
will be used and hence reduces energy bleeding artifacttheAsame time, MPS allows users to
supply information to the sampler in the form of importanthsaor difficult paths, something not
achievable in most Monte Carlo algorithms.

To further demonstrate the utility of the sequential Monted&amework for physically based
rendering problems, the population Monte Carlo renderiggrithm was proposed and applied to
a number of problems in realistic rendering [28]. Those i@ppibns are adaptive image-plane
sampling (PMC-IP), hemispheric integral sampling (PMC-Hihd energy-redistribution-based
path tracing (PMC-PT). The adaptive image-plane samplectepixels for refinement according

to a perceptually-weighted variance criterion and has atissical bias. The adaptive hemispheric
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integrals sampler learns an importance sampling functiorcémputing common rendering in-
tegrals. Adaptive energy redistribution path tracing @mrates computation in regions of high
variance or important light transport paths. Each algorith derived in the generic population
Monte Carlo statistical framework.

The image-plane sampler and direct lighting integratorcaremon components in many ren-
dering algorithms. PMC-IP sampling could be used as a plugmponent for essentially any
algorithm that forms light paths to the eye, including théhga phase of photon mapping, bidi-
rectional path tracing, irradiance caching, and so on. TMEfI sampler could be used in any
situation where estimates of an integral over the hemigpaey required. Irradiance caching can
benefit greatly from a PMC sampler in the computation of eaathed value. Photon mapping
can also use a PMC sampler in the final gather, but we expethfirevement to be less apparent
because the final gathering tends to smooth the result.

To address the problem of optimally constructing estinsatbat combine samples from sev-
eral different PDFs, we presented the Optimizing Controlafarestimator, a new estimator for
rendering that uses both importance sampling and the dosmrate method [26]. This is an im-
portant issue because in the population Monte Carlo renglframework, samples are generated
from a sequence of distributions and how the estimator coestihem has a big impact on the im-
age variance. Based upon a deterministic sampling framevak/ allows multiple importance
sampling functions to be combined in a general way, whichbmriewed as a generalization of
the multiple importance sampling method. The optimizinyreiof OCV addresses a major prob-
lem with control variate estimators for rendering: useggsya generic, correlated function that is
optimized for each estimate, rather than a single highhgetlone that must work well everywhere.
The same basic problem is also a sub-component of many iegadgorithms, such as irradiance

caching and photon-map gathering.
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7.2 System and Limitations

The algorithms presented in this dissertation can be eesihbined as a whole or used as sep-
arate components to speed up the rendering process in a coranendering system. Figure 7.1
shows how each algorithm can be used in the global illunonatendering pipeline.

The algorithms proposed in this thesis all deal with the |gois of how to generate and reuse
samples, and how to build efficient estimators. Each algoritan be selected independently and
plugged into the pipeline. The adaptive image plane metlaodbe used for almost any Monte
Carlo ray tracing algorithm since all the contributing saespéventually penetrate through the
image plane. It is practical and simple to implement. Witlittéeloverhead for generating pixel
samples based on a mixture distribution, the adaptive inpdayee strategy promises great effi-
ciency gain for images that have regions with highly variexddering complexities; for example,
a scene mixed with both high noise regions such as soft stsdod caustics that requires many
samples, and low noise regions such as plain direct lighiim@ non-textured plane. Similarly,
the optimal control variate algorithm can be used in the eend pipeline: an algorithm with
samples generated from multiple sampling distributiomslzefficiently combined with the OCV
algorithm. The adaptive hemispherical integral algorittem be used in situations when multi-
ple samples are needed for estimating the irradiance in aspépre. Those cases include direct
lighting and the final gathering phase in photon mapping. €hily all the sampling distributions
for adaptive sampling and optimal control variate are aeieistic mixtures. Usually using a rela-
tively small number of sampling distributions is prefembkcause otherwise the samples required

to adequately determine the mixture component weightsbeitioo large.

7.3 Future Research

PMC is just one approach from the family of sequential Montddaethods [80]. Common
to these techniques is the idea of sample re-use througimpéisg and the adaptation of sampling
parameters over iterations. There are many problems in gngraphics where integrals of a

specific form must be evaluated or a sampling process has émpéoyed, so it certainly offers
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many further opportunities to exploit the properties ofisagial Monte Carlo methods. Since
solving the rendering equation is essentially approxingaéin integral, all photo-realistic render-
ing problems may potentially benefit from the sequential Mddarlo framework. For example,
algorithms for interactive rendering and animation reimdecan be improved in efficiency if sam-

ples can be reused and adapted. In the context of renddmmépltowing questions are still open:

e User guidance for interactive global illumination rendering

Interactive global illumination rendering is very impartdor applications such as lighting
design and architectural modelling. Speed is critical fiéeriactive rendering, yet computing
a global illumination solution is very expensive. These twaflicting requirements suggest
algorithms to trade off rendering accuracy with speed (88 35] for reviews). However, in
interactive global illumination rendering, some specigions or objects are more important
for the viewer than others in the scene. For example, in mriodesign, the photo-realistic
appearance of the objects with modified materials is likehaithe user really cares about.
It will speed up the rendering process if user guidance candmporated into the sampling
strategy so that more important regions are rendered wgthelniaccuracy. This could also

provide a nice tool for users doing interactive materiaigiesor example.

e Adaptive transitional kernels in path space for PMCR

In current applications in population Monte Carlo rendeyitige domain for adaptation is
either the image plane or a hemisphere for one local diredtaunce. It would be useful
to adapt the sampling process along the whole path spagethieetransitional kernel can
change the path in a less restricted way. One way of doingghatconstruct transitional
kernels such as bidirectional path mutations and lens foatin MLT, and then adaptively
select mutation strategies based on the path performaiig might also provide a way to

automatically tune MLT or energy redistribution path tregalgorithms.

e Optimal estimator for the samples from a sequence of correl@d distributions
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OCYV provides a provably good way to combine samples from mhiffedistributions. Cur-
rently it is assumed that those samples are generated indieptty from un-correlated distri-
butions. In the population Monte Carlo rendering work, tretributions in the sequence are
correlated. While weighting those samples based on the savaplnces at each iteration
provides a valid way of combining samples, more efficient svmay exist and are worth

further study.

Sequential Monte Carlo for animation rendering

In animation rendering, the samples from neighboring fraucen provide useful hints for
generating good samples for the current frame, i.e., wheamgke with high importance
is found, it should be exploited temporally. Reusing the timples to create temporal
coherence in the lighting distribution between subsegaeithation frames will dramati-
cally reduce temporal flickering effects. Applying SMC madk in the global illumination
animation rendering context will offer three major advaetsover existing methods: (1) re-
duce temporal noise by choosing samples correlated aceoas$ without introducing bias;
(2) make it easier to find important, rare light paths in oraamfe by sharing information
obtained in neighboring frames; and (3) provide a natural teadiscard low contribution

samples and retain high contribution samples based on thelsaveight.



123

Parse scene
Initialize render state

Adaptive image

plane
Generate samples I :‘//%“\\)

Population Monte Carlo
(PMC)

Adaptive | | Adaptive
direct path
lighting tracing

|
|
|
|
|
Metropolis photon Yes $ I
sampling (MPS) : PMC plugin
|
|
|

|
| No

MPS plugin |
: Accumulate Optimal control
| sample contributions — variate
I (OCV)
|
I % 7 .

. U

I OCV plugin
|

display image

LA I ) Tone mapping
|
|

Rendering pipeline

Figure 7.1: Physically based rendering system diagram. Inside thedidtbx is the traditional
rendering system flowchart. The three bold boxes show thengiat plugins presented in this
dissertation.
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Appendix A: Statistical Proofs

A.1 Relationships among DDIS, MIS and DMS

Given a set of sampling techniques, - - -

(DDIS), Multiple Importance Sampling (MIS) and and Detenistic Mixture Sampling (DMS) all

provide a way for constructing estimators that combine #mees. DDIS uses a linear combina-

tion of samples, MIS uses different weighting methods to loioe samples, while DMS incorpo-

rates both correlated sampling and importance samplingh ¥dme derivation, it can be shown

that DDIS is a special case of MIS and MIS with balance hdarigeights is a special case of

DMS.

e DDIS

Let po(X) =

DDIS is

]DDIS -

Pluggingp,(X) =

[DDIS

Ty agpi(X), 7
p;. Let X;;, ~ p; be independent, fof = 1,---,

= 1. One takes; = na; samples from the density

m andi = 1,---,n;. The estimator for
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Let n; to be the number of samples frgm, and>~7", = n. Let X;; ~ p; be independent,

forj=1,---,mandi=1,---,n;. The estimator for MIS is
R (X5
Inis = Z ij ( ;) [A.3]
aniis (in)
where0 < w;(z) < 37, wi(r) = 1.
The balance heuristic weights for MIS are:
wi(z) = i) A4l
>t epk(2)
So the MIS estimator with balance heuristic is
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- 1 X
j=1 nj i1 Zk 1 nkpk(X )

where0 < w;(z) < 37, wi(r) = 1.

DMS
Let po(X) = X7, ayp;(X), 7%, a; = 1. One takesy; = na; samples from the density
p;. LetX;;, ~ p; be independent, fof = 1,---,m andi = 1,---,n,;. The estimator for

DMS is

7 I & - f Zk; 1ﬁkpk ]7,
Ipus = =3 % +§j '
DMS n] = pa(Xz) ﬁ]
1 e f Zk 16kpk _]’L
S _|_§ ; A.6
ni4io Sy aipi(Xji) b [A-6]

If we set3; = 0 and plug ina; = *2, we have
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Ippis in Equation A.2 is the same d$;;55. in Equation A.5, so DDIS is same as MIS with
balance heuristic weights. One difference between DDIS WitS is that the coefficients in DDIS
are used to determine how the samples are generated andneothbisamples afterwards, while
the weights in MIS are only used to combine the samples.

ComparinngISBal in Equation A.5 and pyss in Equation A.7, it is obvious to see the MIS
using balance heuristic weights is a special case of DMS witk- no; and3; = 0. It means

DMS with optimal5’s is always better than MIS using balance heuristic.



