Segmentation of Elastographic Images using a Coarse-to-Fine Active Contour Model
W. Liu, J. A. Zagzebski, T. Varghese, C. R. Dyer, U. Techavipoo and T. J. Hall,
Ultrasound in Medicine and Biology 32(3), 2006, 397-408.
Delineation of radiofrequency-ablation-induced coagulation (thermal lesion) boundaries is an important clinical problem that is not well addressed by conventional imaging modalities. Elastography, which produces images of the local strain after small, externally applied compressions, can be used for visualization of thermal coagulations. This paper presents an automated segmentation approach for thermal coagulations on 3-D elastographic data to obtain both area and volume information rapidly. The approach consists of a coarse-to-fine method for active contour initialization and a gradient vector flow, active contour model for deformable contour optimization with the help of prior knowledge of the geometry of general thermal coagulations. The performance of the algorithm has been shown to be comparable to manual delineation of coagulations on elastograms by medical physicists (r = 0.99 for volumes of 36 radiofrequency-induced coagulations). Furthermore, the automatic algorithm applied to elastograms yielded results that agreed with manual delineation of coagulations on pathology images (r = 0.96 for the same 36 lesions). This algorithm has also been successfully applied on in vivo elastograms.