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Abstract. In this paper, the conditions derived in [10] for the existence of minimizers to the nonlinear problem of
best \interpolation" by curves are extended to the problem of best \near-interpolation" by curves that meet arbitrary sets,
such as closed balls (as in [6]). The minimizers are spline curves with breakpoints at the data sites at which the curves meet
the sets, and the nonlinearities arise as these data sites vary from curve to curve. The results here apply to Hermite-type
interpolation conditions, with the possibility of repeated data sites. Following the proof of existence, we show that certain
sequences of spline curves related to the minimization problem converge in norm, even when some of their breakpoints (hence,
knots) coalesce.
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1. Introduction. In this paper, necessary and suÆcient conditions are derived for the existence
of solutions to the problem

minimize
f; t

� Z 1

0

jf (m)(s)j2 ds : f (j�1)(ti) 2 Kij ; i=1:n; j=1:m
	
;

over \smooth" parametrized curves f : [0: :1] �! IRd that meet arbitrary sets Kij in IRd at some
data sites ti in [0: :1]. We are motivated by the special case that Kij = B�

"ij
(zij) is a closed ball of

radius "ij and center zij in IRd, as in [6]. Hence, we are extending the de�nition of near-interpolation
in that paper to include the arbitrary sets here. In the last section of this paper, we show that certain
sequences ((f l; tl)) related to the minimization problem converge, even when some of the data sites
coalesce (i.e., when jtli � tli+1j �! 0 as l �!1 for some i).

The setup is as follows. The curves are in the Sobolev space X := L
(m)
2 ([0: :1]�! IRd) of vector-

valued functions f : [0: :1] �! IRd for which f (m) is in the Lebesgue space Y := L2([0: :1]�! IRd),
m � 1. Since X embeds into Cm�1([0: :1] �! IRd), then the data map

(1:1) �t : X �! Z := (IRm�n)d : f 7�! (�ijf := f (j�1)(ti) : i=1:n; j=1:m)

is continuous on X for �xed data sites

t 2 ��
n := ft 2 IRn : 0=t1�t2� � � ��tn=1g;

and the map

(1:2) � : X ���
n �! Z : (f; t) 7�! �tf

is continuous on X ���
n . Note that the monotonicity of the data sites forces the curves to meet the

sets Kij in a particular order. With

(1:3) K := �
ij
Kij � Z;
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we say that (f; t) is \feasible" if (f; t) 2 ��1K, and that f is feasible for �xed t if f 2 ��1t K. In
particular, the feasibility of a particular curve f depends on the corresponding data sites t. With

J : X �! IR : f 7�!

Z 1

0

jf (m)(s)j2 ds;

we say that f is a best near-interpolant for �xed data sites t if it solves the minimization problem

(A) minimize
f2X

fJ(f) : �tf 2 Kg;

and for free data sites if (f; t) solves

(B) minimize
f2X; t2��

n

fJ(f) : �tf 2 Kg:

In [6], optimality conditions are derived for the solutions to problems (A) and (B) when the sets
are closed balls, and existence of solutions to problem (A) was veri�ed as well. In particular, the
solutions are polynomial splines, which is true even when the sets are not balls. The goal here is to
derive conditions for the existence of solutions to problem (B).

Problem (B) is an extension of the problem of best \interpolation" by curves, for which existence
and uniqueness are veri�ed in [7] when m = 2 and d = 1, and existence are veri�ed in [10] when
m � 1 and d � 1. The proof of existence in [10] is similar to that given here for problem (B),
with their condition of \asymptotically polynomial" data replaced by \near m-order" here. In [10],
the data maps are of the form f 7�! f(ti), while we allow Hermite/Birkho�-type interpolation
f 7�! f (j�1)(ti). As a special case of the setup here, our results apply to the problem of best
interpolation in [10] when Kij = IRd for j > 1 and Ki1 consists of a single point in IRd.

In problem (B), it is possible to have repeated data sites for some i (i.e., ti=ti+1) when Kij \
Ki+1;j 6= ; for j=1:m. This is also possible in best interpolation when zij=zi+1;j for some i, a case
that was excluded in [10]. When repeated data sites are allowed, the limits of sequences of curves
in X may not be of the desired kind as data sites coalesce. In particular, spline curves tend to
lose di�erentiability as data sites (and hence knots) coalesce, and moreover, the functional J may
not be bounded on such sequences, as is shown in Section 5. To verify existence, we get around
this diÆculty by requiring only weak convergence and compactness, etc., of certain \minimizing
sequences" in the in�nite-dimensional Sobolev space X. However, in Section 5, we are able to show
that certain sequences of spline curves do converge in norm, even as their data sites coalesce.

The organization of this paper is as follows. In Section 2, additional notation is given; in Section
3, the sets Kij are briey discussed; in Section 4, the existence theory is developed, leading to the
main result in Theorem 4.11; and, in Section 5, certain sequences of solutions to problem (A) are
shown to converge as their corresponding data sites converge, as stated in Corollary 5.4.

2. Additional notation. The following notation will be used in the remainder of this paper.
The derivative operator on functions in X is denoted D, and in particular, Dm is m-fold di�erenti-
ation; hence Dmf = f (m) and DmX = Y . The kernel of Dm, denoted kerDm, is the linear space
of those functions in X whose restriction to [0: :1] is a polynomial (curve) of order m, i.e., of degree
< m.
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The inner products on X, kerDm and Y are

hf; gi
X
:=

mX
j=1

f (j�1)(0) � g(j�1)(0)

| {z }
hf; gi

kerDm

+

Z 1

0

f (m)(s) � g(m)(s) ds

| {z }
h f (m); g(m)i

Y

;

respectively, with u � v denoting the standard dot product on IRd, and

(2:1) h(f; t); (g; �)i
X�IRn

:= hf; gi
X
+ ht; �i

IRn

is an inner product on X � IRn with

ht; �i
IRn

:=
nX
i=1

ti�i:

The inner product on Z is

h�; �i
Z
:=

nX
i=1

mX
j=1

�ij � �ij :

These inner products induce norms in the usual way:

kfk := hf; fi1=2:

In particular, under their respective norms, X and X � IRn are complete inner product spaces (i.e.,
Hilbert spaces). Note that

J(f) = kf (m)k2
Y
:

Hence, J is the square of a seminorm on X.

Some of the results depend on certain \weights" w 2 IRm�n. These act on sequences � = (�ij)
in Z by

w� := (wij�ij : i=1:n; j=1:m);

with �ij 2 IRd for each i and j, and they act on the maps �t by

w�t : X �! Z : f 7�! w (�tf):

Let
dist(A;B) := inffka� bk : (a; b) 2 A�Bg;

the distance between sets A and B in a normed linear space. In particular, dist(A;B) = 0 when
A \B 6= ;, and, for a 2 A,

dist(fag; B) = inffka� bk : b 2 Bg:

Finally, let
diam(A) := supfja� bj : a; b 2 Ag

denote the diameter of A.

3



BEST NEAR-INTERPOLATION: EXISTENCE AND CONVERGENCE

3. The sets Kij. The primary motivation for this paper was to verify the existence of solutions

to (B) when the sets Kij are closed balls in IRd, as in [6], however the results in this paper apply

to arbitrary subsets of IRd. Indeed, the only relevant issues in verifying existence are whether or
not the sets Kij are closed and bounded; the \shape" of the sets is not an issue. Hence, in this

paper, the sets Kij are arbitrary subsets of IR
d, which are bounded i� "ij := diam(Kij) <1. In [6],

the \tolerances" "ij were radii of the closed balls, rather than diameters, as here. Note that, if Kij

consists of a single point, then "ij = 0, and the corresponding constraint forces interpolation. Note

also that the set K as de�ned in (1.3) is closed in Z i� all of the sets Kij are closed in IRd.

It is expected that the sets Kij of particular interest are closed and convex, such as balls or
cones, or perhaps portions of lower dimensional manifolds. For example, to constrain the direction
but not length of a tangent vector, we may require that

f 0(ti) = zi2 +
oX

k=1

ci2k vi2k

with ci2k � 0 for k=1:o. In this case, the corresponding set Kij is a polyhedral cone with vertex zi2,

constrained by the directions vi2k 2 IRd. If o = 1, then Kij would be a half-line. Or, to approximate
a smooth function g, the constraints may be of the form �ijf = �ijg.

In the case that the sets Kij are closed balls, it was shown in [6] that the curves � that solve
problems (A) and (B) are polynomial splines, when they exist. The same is true for arbitrary sets
Kij . Indeed, a solution (�; t) to (B) necessarily solves the problem of best interpolation to the data
z := �t�, the solution of which is a polynomial spline in the space $2m;t, as de�ned in [6] and in
Section 5 of this paper.

4. Existence of the solutions to problem (B). A useful property of reexive Banach spaces
(such as Hilbert spaces) is that, while bounded sequences do not necessarily have (norm-)convergent
subsequences, they do have weakly-convergent subsequences. Hence, a reasonable strategy towards
verifying the existence of solutions to variational problems set in Hilbert spaces is to show that
sequences in the feasible set on which the objective functional converges to its in�mum are norm-
bounded, and that the in�mum is attained at the weak limits of such sequences. Here, we are
interested in sequences ((f l; tl)) in ��1K on which J(f l) converges to inf J(��1K), with K as
de�ned in (1.3).

The convergence that we will establish is weak, sequential convergence. A sequence (f l) in X
converges weakly to f 2 X i� �f l �! �f for all � 2 X�, written

f l w��! f:

Since X is a Hilbert space, if follows by the Riesz Representation Theorem that f l w��! f in X i�
hf l; gi

X
�! hf; gi

X
for all g 2 X. The result stated next concerns weak sequential convergence in

the Hilbert space X � IRn under the inner product (2.1).

Lemma 4.1. Suppose that (f l; tl) w��! (f; t) in X � IRn with (tl) in ��
n . Then �tlf

l �! �tf in Z.

Proof: First, note that (f l; tl) w��! (f; t) inX�IRn i� f l w��!f inX and tl�!t. In particular,
tl �! t 2 ��

n since ��
n is compact.
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Assume that d = 1. By the Sobolev embedding theorem, X compactly embeds into the space
C(m�1)([0: :1]�! IR). Therefore, the sequences (Dj�1f l) converge uniformly to Dj�1f on [0: :1] for
j=1:m, implying by [9: Theorem 7.24] that these sequences are equicontinuous. Hence, �lijf

l �!

�ijf for i=1:n and j=1:m, and so �tlf
l �! �tf in Z.

When d>1, it follows as above that �tlf
l
r �! �tfr in Z for r=1:d, with f l1; : : : ; f

l
d the compo-

nents of the functions f 2 X. Hence, again �tlf
l �! �tf 2 Z.

In the next lemma it is shown that the feasible set ��1K is weakly sequentially closed in
X � IRn, meaning that if ((f l; tl)) is a sequence in ��1K such that (f l; tl) w��! (f; t) for some
(f; t) 2 X � IRn, then (f; t) 2 ��1K.

Lemma 4.2. The set ��1K is weakly sequentially closed in X � IRn when K is closed in Z.

Proof: In the insigni�cant case that ��1K = ;, the result follows trivially. Hence, assume
that ��1K 6= ;. Let ((f l; tl)) be a sequence in ��1K that converges weakly to some (f; t) in
X � IRn. In particular, tl �! t 2 ��

n since ��
n is compact. Moreover, �tlf

l is in K for each l, and
�tlf

l �! �tf by Lemma 4.1, and so

dist(f�tfg; K) � k�tf � �tlf
lk
Z
�! 0

as l �!1. Therefore, �tf is in K since K is closed, and so (f; t) 2 ��1K.

Our next goal is determine conditions for which sequences ((f l; tl)) in ��1K are bounded. Since
(tl) is in the compact set ��

n , it is trivially bounded in IRn, hence it remains to have (f l) bounded
in X. For this, it is convenient to represent elements f of X as

(4:3) f = Pf +Rf :=
mX
j=1

f (j�1)(0)�j�1 +

Z 1

0

�m�1(� � s) f (m)(s) ds

in the orthogonal sum decomposition (kerDm)� (kerDm)? of X, with

(4:4) �j := [ � )j+=j! := max(0; �)j=j!;

the normalized truncated power function. Note that �0 is left continuous since �0(0) = [ 0 )0+ = 1,

and that Dk�j = �j�k when j � k. Moreover DmRf = f (m), and so

kfk2
X

= kPfk2
kerDm + kDmRfk2

Y
= kPfk2

kerDm + kDmfk2
Y
:

Then, since J(f l) = kDmf lk2
Y
, it follows that (f l) is bounded when (Pf l) and (J(f l)) are bounded.

Lemma 4.5. Suppose that ��1K 6= ;. Let ((f l; tl)) be a sequence in ��1K on which J is bounded.
Suppose that tl �! t 2 ��

n and that kerDm \ ker w�t=f0g with wij := 1 if "ij := diam(Kij) <1
and wij := 0 otherwise. Then, (Pf l) is bounded.

Proof: We �rst show that the sequence (w�tlPf
l) is bounded, whether or not kerDm \

ker w�t=f0g. For this, we have by (4.3) that since Pf l = f l �Rf l, and since �lijf
l 2 Kij for each i

and j, it follows that

j�lijPf
lj = j�lijf

l � �lijRf
lj � dist(f0g; Kij) + "ij + j�lijRf

lj:
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By Holder's inequality, and since j�m�j j � 1 on [0: :1], it follows that

j�lijRf
lj2 = j

Z 1

0

�m�j(t
l
i � s)Dmf l(s) dsj2

�

Z 1

0

j�m�j(t
l
i � s)j2 ds

Z 1

0

jDmf l(s)j2 ds

�

Z 1

0

jDmf l(s)j2 ds = J(f l):

Therefore,
j�lijPf

lj � dist(f0g; Kij) + "ij + J(f l)1=2;

and so (�lijPf
l) is bounded when (J(f l)) is bounded and "ij < 1, i.e., when wij 6= 0. Hence,

(w�tlPf
l) is bounded in this case.

Since kerDm\ ker w�t=f0g, then kw�t �kZ is a norm on kerDm. Further, since w�tl converges

to w�t as t
l �! t, then it does so in norm on the �nite-dimensional linear space kerDm. Hence,

there is some neighborhood O of t 2 ��
n on which suptl2O kw�tl � w�tk < :5 (with the norm the

map-norm on kerDm). Since tl converges to t, it follows that, for suÆciently large l,

kw�tPf
lk
Z
� k(w�t � w�tl)Pf

lk
Z
+ kw�tlPf

lk
Z
� :5kw�tPf

lk
Z
+ kw�tlPf

lk
Z
;

hence
kw�tPf

lk
Z
� 2kw�tlPf

lk
Z

for all large l. Therefore (w�tPf
l) is bounded in Z, and so (Pf l) is bounded in kerDm.

The conditions for the boundedness of (Pf l) in Lemma 4.5 depend on certain limiting data sites
t. Since such data sites are generally not known until a solution to problem (B) has been determined,
we would like a condition that does not involve t, similar to what was done in [10] for the problem
of best interpolation.

De�nition 4.6. We say that K is mmmmm-order for �xed t 2 ��
n if

dist(�t kerD
m; K) = 0;

and near mmmmm-order if
inf
t2��

n

dist(�t kerD
m; K) = 0:

The property of near m-order reduces to what is termed \asymptotically polynomial of order m"
in [10] when " = 0 and �t : f 7�! (f(ti)). To handle the derivative maps in near-interpolation, we pay
attention only to those constraints ij for which "ik := diam(Kik) <1 for k=1:j, a \Hermite"-subset
of the constraints. For this, let

(4:7) "Hij :=

�
"ij ; if "i1; : : : ; "ij <1;
1; otherwise.

Then, with KH
ij := Kij if "

H
ij <1 and IRd otherwise, let KH := �ij K

H
ij :
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Lemma 4.8. Suppose that ��1K 6= ;. Let ((f l; tl)) be a sequence in ��1K on which J is bounded.
If KH is not near m-order, then (Pf l) is bounded.

Proof: Since (tl) is bounded in IRn, it suÆces to establish the result on an arbitrary sub-
sequence of ((f l; tl)) on which (tl) converges. Hence, assume from here on that tl �! t 2 ��

n . Let
wij := 1 whenever "ij < 1 and 0 otherwise, and let wH

ij := 1 whenever "Hij < 1 and 0 otherwise.

Since wH
ij 6= 0 implies wij 6= 0, then kerDm \ ker wH�t=f0g implies kerDm \ ker w�t=f0g. Hence,

by Lemma 4.5, (Pf l) is bounded when kerDm \ ker wH�t=f0g, and so our goal is to show that
kerDm \ ker wH�t=f0g when KH is not near m-order.

By way of contradiction, we will show that KH is near m-order when kerDm \ ker wH�t 6=f0g.
To do so, we proceed like in [10] for the problem of best interpolation, and construct a sequence (pl)
in kerDm such that dist((�tlp

l); KH) �! 0. Recalling by (4.3) that f l = Pf l+Rf l, we expect that
a sequence (pl) with pl := Pf l + p for some p 2 kerDm such that kwH �tl(Rf

l � p)k
Z
�! 0 will do

the job, while passing to a subsequence if necessary.

To �nd such a p, we will �rst obtain a convergent subsequence and corresponding limit point
of (wH �tlRf

l). For this, note that since J(f l) = kDmf lk2
Y

is bounded and since Y is a reexive

Banach space, we may assume on passing to a subsequence that (Dmf l) converges weakly to some
point y in Y (see [11: Theorem 10.6]), i.e., hDmf l; �i

Y
�! hy; �i

Y
. Let

g :=

Z 1

0

�m�1(� � s) y(s) ds:

Since Rf l and g are in (kerDm)?, and since DmRf l = Dmf l and Dmg = y, then

hRf l; �i
X
= hDmf l; Dm�i

Y
�! hy;Dm�i

Y
= hDmg;Dm�i

Y
= hg; �i

X

on X. Hence,
Rf l w��! g

in X, which by Lemma 4.1 implies that

�tlRf
l �! �tg:

Next, we will �rst show that ranwH�t = wH�t kerD
m, which will then allow us to select

p 2 kerDm such that wH�tp = wH�tg. To account for possible repetitions of the data sites, let

(4:9) t0 := (ti : ti 6= ti�1)

the maximal strictly increasing subsequence of t, and with n0 := #t0, let

w0Hij :=
X
tk=t0i

wH
kj

for i=1:n0. Then, w0Hij = 0 i� wH
kj = 0 for all k such that tk = t0i, and so kerDm \ ker wH�t 6=f0g

implies kerDm\ ker w0H�t0 6=f0g. Moreover, since kerDk \ ker w0H�t0 = f0g with k := #(w0Hij > 0)
(a \Hermite system" in [3]), it follows that k < m. Consequently, for this k,

k � dim(ranw0H �t0) � dim(w0H �t0 kerD
m) � dim(w0H �t0 kerD

k) = k;

7



BEST NEAR-INTERPOLATION: EXISTENCE AND CONVERGENCE

and, since kerDm � X, it follows that ran w0H �t0 = w0H �t0 kerD
m. Moreover, since (�ij) is

the sequence (�0ij) except for possible repetitions, it follows that ran wH �t = wH �t kerD
m. In

particular, there exists p 2 kerDm such that wH�tp = wH�tg.

So far, we have a subsequence of ((f l; tl)) on which tl �! t in ��
n and �tlRf

l �! �tg in Y ,
and we have p 2 kerDm such that wH�tp = wH�tg. Then, for p

l := Pf l + p = f l � Rf l + p,

dist(f�tlp
lg; KH) = dist(fwH�tlp

lg; KH)

= dist(fwH�tl(f
l � Rf l + p)g; KH)

� dist(fwH�tlf
lg; KH) + kwH�tl(Rf

l � p)k
Z

� dist(fwH�tlf
lg; KH) + kwH(�tlRf

l � �tg)kZ + kwH(�tg � �tlp)kZ ;

which goes to 0 as l �! 1 since �tlf
l is in K � KH for each l and since �tlRf

l �! �tg and
wH�tlp �! wH�tp = wH�tg as l �!1. Therefore, KH is near m-order.

To conclude, we have shown that ��1K is near m-order when kerDm \ ker wH�t 6=f0g. Con-
versely, if ��1K is not near m-order, then kerDm\ ker wH�t=f0g, from which it follows by Lemma
4.5 that (Pf l) is bounded.

We are now in the position to show that sequences in ��1K on which J is bounded have
subsequences that converge weakly in ��1K. Before establishing existence, we need to show that
the value of the objective functional is \reduced" at these weak limits. For this, we need that J is
\weakly lower semi-continuous", as veri�ed in the next lemma.

Lemma 4.10. Suppose that f l w��! f in X. Then, J(f) � limJ(f l). That is, J is weakly sequen-
tially lower semi-continuous on X.

Proof: Let y 2 Y and g :=
R 1
0
�m�1(��s) y(s) ds. Then, g 2 (kerDm)? � X and Dmg = y,

and so

hDmf l; yi
Y
= hDmf l; Dmgi

Y
= hf l; gi

X
�! hf; gi

X
= hDmf;Dmgi

Y
= hDmf; yi

Y
:

Since y was arbitrary, it follows that Dmf l w��! Dmf in Y .

By [4: Theorem 4.10.7], k � k
Y

is weakly sequentially lower semicontinuous on Y when d = 1,
which generalizes by linearity to the case d > 1. Therefore,

J(f) = kDmfk2
Y
� lim kDmf lk2

Y
= limJ(f l):

The main existence result is stated next. For this, we say that ((f l; tl)) is a \minimizing se-
quence" for problem (B) if (f l; tl) 2 ��1K for each l and J(f l) �! inf J(��1K).

Theorem 4.11. Suppose that K is closed in Z and ��1K 6= ;.
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(i) Let "H as in (4.7). There exists a solution to problem (B) if K is m-order or if KH is not
near m-order, and only if K is m-order or not near m-order.

(ii) Suppose that ((f l; tl)) is a minimizing sequence for (B) such that tl�! t 2 ��
n , and suppose

that kerDm \ ker w�t=f0g with w 2 IRm�n such that wij := 1 when "ij < 1 and 0
otherwise. Then, solutions to problem (B) exist.

Proof: We �rst establish part (i). Suppose that K is m-order. Then, J(f) = 0 for some
(f; t) 2 ��1K, and so minimizers trivially exist.

Suppose that KH is not near m-order. Let ((f l; tl)) be a minimizing sequence for (B). In
particular, J(f l) = kDmf lk2

Y
is bounded, and by Lemma 4.8, (Pf l) is also bounded. Then, (f l) is

bounded in X since

kf lk2
X
= kPf lk2

kerDm + kDmf lk2
Y
;

and (tl) is bounded in IRn since tl 2 ��
n for each l, and so ((f l; tl)) is bounded in X � IRn. Since

X � IRn is a reexive Banach space, we may assume on passing to a convergent subsequence that
(f l; tl) w��! (�; t) in X � IRn (see [11: Theorem 10.6]), and by Lemma 4.2, (�; t) 2 ��1K. Since
f l w��! �, it follows by Lemma 4.10 that J(�) � limJ(f l), and since (f l; tl) is a minimizing sequence
for (B) then J(f l) �! inf J(��1K). Therefore, (�; t) solves problem (B).

For necessity, inf J(��1K) = 0 when K is near m-order, in which case minimizers are in
kerDm = kerJ when they exist. Hence, K is either m-order or not near m-order when minimizers
exist.

For part (ii), boundedness follows from Lemma 4.5, and the rest of the proof proceeds as in (i).

As a special case, Theorem 4.11 applies to the problem of best interpolation by curves studied
in [10] when Ki1 = fzi1g for some points zi1 2 IRd, and Kij = IRd for j>1, i=1:n. Moreover, this
theorem allows for the possibility of repeated data sites (where ti 6= ti+1 for some i), a situation that
was excluded in [10] by the assumption zi1 \ zi+1;1 = ; for i=1:n�1. In the next result, a similar
condition is stated that excludes the possibility of repeated data sites in near-interpolation.

Corollary 4.12. Suppose that (f; t) 2 ��1K 6= ;. Assume that, for some i and j, Kij \Ki+1;j = ;.
Then, ti < ti+1 for this i.

Proof: Let i and j as in the hypothesis. Since Kij and Ki+1;j are closed and disjoint,
then dist(Kij ; Ki+1;j) > � for some � > 0. Since �ijf 2 Kij and �i+1;jf 2 Ki+1;j, it follows that
j�ijf � �i+1;jf j > �, and so ti 6= ti+1.

5. Convergence. To verify existence in the previous section, certain sequences ((f l; tl)) in
��1K were shown to be weakly, sequentially convergent. In this section, suÆcient conditions are given
for which such sequences converge in norm (in X), even as data sites coalesce (i.e., jtli+1 � tlij �! 0
for some i). It is expected that the results can be applied or extended to other problems in nonlinear
best approximation.
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As discussed in Section 3, and as in [6], the minimizers to problems (A) and (B) are polynomial
splines. More precisely, if � solves (A) at �xed t or if (�; t) solves (B), then, with

t0 := (ti : ti 6= ti�1) (as in (4:9));

� is in the linear space
$2m;t0 := $2m;t0([0: :1] �! IRd)

of piecewise polynomial curves on [0: :1], into IRd, of order 2m (degree 2m�1), and with m�1
continuous derivatives at the breakpoints t0i in t0. With respect to t and t0, let

(5:1)

n0 := #t0;

Z 0 := IRm�n0 ;

S := f� 2 Z : �ij = �i�1;j if ti = ti�1g;

� : S �! Z 0 : � 7�! (�ij : ti 6= ti�1):

In particular, � is a bijection on S, and so ��1 is well-de�ned. We do a similar construction for each
l. That is, tl

0
, n0l, Z

0
l , Sl, �l and $2m;tl0 are de�ned as above, but with respect to tl.

Lemma 5.2. Suppose that tl �! t in ��
n , and that, whenever #(tk : tk = ti) > 1 for some i, the

intersections \tk=tiKkj have a nonempty interior for j=1:m. Let f 2 $2m;t0 \ ��1t0 K. Then, there
exists a sequence (f l) in X such that (f l; tl) 2 ��1K for each l, J(f l) �! J(f), and f l �! f (in
norm) in X.

Proof: Let Vt0 be the basis-map for $2m;t0 that is dual to �t0 , and let Vtl0 be the basis-map
for $2m;tl0 that is dual to �tl0 . Since f 2 $2m;t0 , we let � 2 S such that f = Vt0�(�), with � as de�ned

in (5.1). Our goal is to choose coeÆcients �l in Sl such that f l = Vtl0�l(�
l) is in ��1K for each l

and converges to f in norm. In particular, the coeÆcients are chosen such that �l �! �.

Consider two cases. In the �rst case, suppose that ti�1 6= ti 6= ti+1 for some i. Then tli�1 6= tli 6=
tli+1 for large enough l since tl�!t, and we set �lij := �ij for j=1:m for large l.

In the second case, suppose that ti�1 6= ti = � � � = ti+k 6= ti+k+1 for some i and k. By hypothesis,
the interior of 
 := Kij\� � �\Ki+k;j is not empty. Then tli�1 6= tli and t

l
i+k 6= tli+k+1 for large enough

l. We may assume, without loss of generality, that tl is ordered such that jtl+1i+k � tl+1i j � jtli+k � tlij.
Let

pl̂li :=
mX
j=1

�l̂ij(� � tli)
j�1 2 kerDm

with �l̂ij chosen in the interior of 
, and such that �l̂ij �! �ij as l̂ �! 1. Let l = l(l̂) be the �rst

index l such that l(l̂) > l(l̂ � 1) when l̂ > 1 and Dj�1pl̂li (s) is in 
 for all s 2 [tli : : t
l
i+k] and j=1:m.

Such an l = l(l̂) exists for each l̂ since jtli+k � tlij �! 0 and since the Taylor polynomial coeÆcients

�l̂ij are in the interior of 
. Moreover, l(l̂) �!1 as l̂ �!1, strictly monotonically. Also, let

l̂(l) := fl̂ : l(l̂) � l < l(l̂+ 1)g:

10



BEST NEAR-INTERPOLATION: EXISTENCE AND CONVERGENCE

Then, l̂(l) �! 1 as l �! 1, not necessarily strictly. Finally, let �loj := Dj�1p
l̂(l);l
i (tlo) for o=i:i+k

and j=1:m. In particular, �loj = �lo+1;j when tlo = tlo+1.

We have constructed the tail of a sequence ((�l; tl)) of coeÆcients and data sites such that
�l 2 Sl\K for large l and �l �! �. On this tail let f l := Vtl0�l(�

l), and on the head of the sequence
(a �nite set) let (�l) be the coeÆcients corresponding to any feasible function f l from $2m;t0l . By

construction, if ti = ti+1, then the restriction of f l to the interval (tli : : t
l
i+1) is in kerDm for large l,

in which case Z tli+1

tl
i

jDmf lj2 = 0:

On the other hand, if ti 6= ti+1, then the restriction of D
mf l to the intervals (tli : :t

l
i+1) are polynomials

curves in kerDm�1 that converge uniformly (component-wise) to Dmf on (ti : : ti+1), and so

Z tli+1

tl
i

jDmf lj2 �!

Z ti+1

ti

jDmf j2:

Therefore,

J(f l) =
n�1X
i=1

Z tli+1

tl
i

kDmf lk2 =
X

ti 6=ti+1

Z tli+1

tl
i

kDmf lk2

�!
X

ti 6=ti+1

Z ti+1

ti

kDmfk2 =
n�1X
i=1

Z ti+1

ti

kDmfk2 = J(f);

and so J(f l) �! J(f). Moreover, since �tlf
l = �l �! � = �tf , then Dj�1f l(0) �! Dj�1f(0) for

j=1:m, and so kf l � fk
kerDm �! 0. Hence,

kf l � fk2
X
= kf l � fk2

kerDm + kDmf l �Dmfk2
Y
�! 0:

The next proposition is based mainly on results from Section 4. The sequence (f l) constructed
in Lemma 5.2 will be used in conjunction with this proposition to prove Corollary 5.4.

Proposition 5.3. Suppose that K is closed in Z and not near m-order, ��1K 6= ;, tl �! t in
��
n , �

l solves problem (A) with respect to tl for each l, and � solves (A) with respect to t. Assume,
moreover, that � is the unique solution to (A) for these data sites t. Suppose that there exists a
sequence ((f l; tl)) in ��1K such that J(f l) �! J(�). Then J(�l) �! J(�) and �l �! � (in norm)
in X.

Proof: Since �l solves problem (A) with respect to tl, then J(�l) � J(f l). In particular,
(J(�l)) is bounded, and so, by Lemma 4.8, (P�l) is also bounded. Therefore, (�l) is bounded in X.
Since X is a reexive Banach space, (�l) has a weakly convergent subsequence. After passing to such
a subsequence, we may assume that (�l; tl) w��! (f; t) 2 X for some f 2 X. For this f , (f; t) 2 ��1K
by Lemma 4.2, and by Lemma 4.10 J(f) � limJ(�l). Now, since � solves (A) for the data sites t,
then J(�) � J(f), and similarly, J(�l) � J(f l). Therefore,

J(�) = limJ(f l) � limJ(�l) � J(f) � J(�);

11
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and so J(�l) �! J(�). Moreover, since � uniquely solves (A) for �xed t, then f = � for all such weak
limits, and so the original sequence (�l) converges weakly to �.

Since �l w��! � in X, then Dm�l w��! Dm� in Y , and since J(�l) �! J(�), it follows that

kDm�l �Dm�k2
Y
= hDm�l �Dm�;Dm�l �Dm�i

Y

= hDm�l; Dm�li
Y
� 2 hDm�l; Dm�i

Y
+ hDm�;Dm�i

Y

= J(�l)� 2 hDm�l; Dm�i
Y
+ J(�)

�! J(�)� 2 hDm�;Dm�i
Y
+ J(�)

= 0:

Moreover, by Lemma 4.1 �tl�
l �! �t�, which implies that Dj�1�l(0) �! Dj�1�(0) for j=1:m, and

so k�l � �k
kerDm �! 0. Therefore,

k�l � �k2
X
= k�l � �k2

kerDm + kDm�l �Dm�k2
Y
�! 0:

That is, �l converges (in norm) to � in X.

Next, we state the main convergence result, as a corollary to Lemma 5.2 and Proposition 5.3.

Corollary 5.4. Suppose that tl �! t in ��
n , and that, whenever #(tk : tk = ti) > 1 for some i,

the intersections \tk=tiKkj have a nonempty interior for j=1:m. Suppose that �l solves problem (A)
with respect to tl for each l, and � uniquely solves (A) with respect to t. Then J(�l) �! J(�) and
�l �! � (in norm) in X.

Proof: Since � solves problem (A) for �xed t, then � 2 $2m;t0. By Lemma 5.2, there exists
a sequence (f l) in X such that (f l; tl) 2 ��1K for each l and J(f l) �! J(�). By Proposition 5.3,
J(�l) �! J(�) and �l �! � (in norm) in X.
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