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A closed subspace V of L2 := L2(IR
d) is called PSI (principal shift-invariant) if it is

the smallest space that contains all the shifts (i.e., integer translates) of some function
φ ∈ L2. Ideally, each function f in such PSI V can be written uniquely as a convergent
series

f =
∑

α∈ZZd

c(α)φ(· − α)

with ‖c‖`2 ∼ ‖f‖L2
. In this case one says that the shifts of φ form a Riesz basis or that

they are L2-stable; this is, in particular, the case when these shifts form an orthonormal
set.

We are interested here in PSI spaces which are refinable in the sense that, for some
integer N > 1, the space

V−1 := V (·/N) := {f(·/N) : f ∈ V }

is a subspace of V . The role of refinable PSI spaces in the construction of wavelets from
multiresolution analysis, as well as in the study of subdivision algorithms is well-known,
well-understood and well-documented (cf. e.g., [6] and [4]). The two properties of a
refinable PSI space that we compare here are:
(s) the smoothness of the “smoothest” non-zero function g ∈ V .

(ao) the approximation orders provided by V .
This latter notion refers to the decay of the error when approximating smooth functions
from dilations of V ; roughly speaking, V provides approximation order k if

dist(f, Vj) = O(N−jk)

for every sufficiently smooth function f . Here, Vj := V (N j ·).
One of the early discoveries in this area was the non-trivial observation that for a

refinable PSI space V , (s) and (ao) are connected. For example, a result in [7] shows that
if φ decays rapidly and its shifts are L2-stable, then V provides approximation order k as
soon as φ lies in the Sobolev space W k−1

2 . A closely related result appears in [4]. More
recently, the following is proved in [8]:

Result 1. Let V be an N -refinable PSI space. Then the following conditions are equiva-
lent:
(a) V provides approximation order k.
(b) There exists g ∈ Vr, r > 0, such that |ĝ| ≥ const > 0 on some neighborhood of the

origin, and such that

ess sup
ξ∈C


 ∑

α∈ZZd\{0}

|ĝ(ξ + 2πN jα)|2


 = O(N−2jk),

with C the cube [−π, π]d.
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The second (and more essential) requirement in property (b) of the above result is
satisfied by functions g that are sufficiently smooth. It is then correct to say that, with
the exclusion of truly pathological examples, refinable PSI spaces that contain smooth
functions must provide good approximation orders. But what about the converse?

[8] considers the converse for PSI spaces that are totally refinable. For univariate
spaces, this simply means that V is N -refinable for every integer N . For such spaces, the
following is valid:

Result 2. Assume in Result 1 that V is totally refinable. If V provides approximation
order k, then there exists non-zero g ∈ V such that

|ĝ(ω)| = O(|ω|−k), as |ω| → ∞.

Thus, for totally refinable spaces, smoothness and approximation orders go hand-in-
hand. Indeed, the best known cases of such spaces are the univariate splines and the
multivariate box splines (cf. [2]), and for these spline spaces the rigid connection between
the smoothness of the spline and the underlying approximation order of the spline space
is classically known.

However, most refinable spaces are not totally refinable. For example, the spaces
generated by the compactly supported scaling functions in [5] are not. This leads naturally
to the following question: “Must refinable spaces contain sufficiently smooth functions the
moment they provide “good” approximation order”? One may observe that condition (b)
of Result 1 (which characterizes the approximation orders of V ) falls short of implying any
smoothness for general L2-functions g. However, the functions that comprise a refinable
space are anything but “general”!

We therefore decided to look into the question of finding the smoothest function in a
refinable space, and to see whether its smoothness matches the approximation order.

Our conclusion in this note is that the implication (ao)=⇒(s) does not hold for general
refinable spaces. In fact, the proposition we prove below implies that, if V is a space
generated by any of the scaling functions φ considered in [5], then the decay rate of φ̂ is

no slower than the decay rate of f̂ for any other f ∈ V \{0}, even though this decay rate
may be significantly smaller than the approximation order of V .

The refinable functions considered in the previous paragraph are compactly supported,
and their shifts are orthonormal. Our discussion, though, can be carried out under much
weaker conditions on the refinable φ. In what follows, we assume that φ is univariate,
that its mask m0 (defined by φ̂ = m0(·/2)φ̂(·/2)) is continuous, that m0(0) = 1, and that
m0 vanishes only on a set of measure zero. While we do not assume the shifts of φ to be
L2-stable, we may still invoke Theorem 2.14 of [1] to conclude that any non-zero f ∈ V

can be written as f̂ = αφ̂, for some 2π-periodic measurable α. Since f 6= 0, we can then
find a subset E ⊂ [−π, π] of positive measure so that |α| ≥ δ > 0 on E. This implies that

|f̂ | ≥ δ|φ̂| on E + 2πZZ, hence reducing the problem to studying the decay of σE φ̂, with
σE =

∑
k∈ZZ χE+2kπ the support function of E + 2πZZ. The hope for a rigid connection

between (s) and (ao) was based on the idea that there might exist a set E such that the

decay of σEφ̂ is faster than of φ̂. Here, we define the decay rate of φ̂ as the largest λ that
satisfies |φ̂(ξ)| ≤ C(1 + |ξ|)−λ.
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Lower bounds on the above parameter λ can be obtained by inspecting the values
of m0 at non-trivial invariant cycles {ξ, τξ, . . . , τn−1ξ} (n integer > 1) of the “doubling
operator”

(1) τ : ξ 7→ 2ξ mod2π,

as shown in [3] [9]; see also §7.1.2 of [6]. More precisely, if τnξ = ξ for some ξ ∈ IR, and if
we define γ by

n−1∏

j=0

|m0(τ
jξ)| =: 2−nγ > 0,

then |φ̂(2kn+1ξ)| ≥ C ′(2kn+1|ξ|+1)−γ , for some C ′ > 0. For the family of scaling functions
constructed in [5], one can moreover show that the parameter γ associated with the cycle
{2π/3, 4π/3} not only provides a lower bound on λ, but actually equals λ.

These same invariant cycles turn out to be crucial for our question here. We have

Proposition 3. Let V be a univariate 2-refinable space generated by a function φ with
mask m0: φ̂ = m0(·/2)φ̂(·/2). Assume that m0 is continuous, and vanishes almost nowhere.
Let τ be the doubling operator from (1), and, for some integer n, let 0 < ξ0 < 2π be
an invariant point of τn: τnξ0 = ξ0, for which m0(τ

jξ0) 6= 0, ∀j. Define γ by 2−nγ =∏n−1
j=0 |m0(τ

jξ0)|. Suppose also that |φ̂| ≥ c > 0 around ξ0. Then, there exists an increasing
sequence of integers (nk)k, so that, for all ε > 0, we can find an integer K, a constant C
and a set S of arbitrarily small measure, such that, for all k > K and all ξ ∈ [−π, π]\S,

(2) |φ̂(ξ + 2πnk)| ≥ Cn
−(γ+ε)
k .

Proof. 1. By the assumption made on ξ0, ξ0 = 2π`
2n−1 , for some integer ` ∈

{1, . . . , 2n − 1}. Define then the sequence of integers n0 = 0, nk = 2nnk−1 + ` = `(2nk−1)
2n−1 .

2. Define M0(ξ) :=
∏n−1

j=0 m0(2
jξ). Then M0 is 2π-periodic, and φ̂ = M0(·/2n)φ̂(·/2n).

In particular,

φ̂(· + 2πnk) = M0

( · + 2π`

2n

)
φ̂
( · + 2π`

2n
+ 2πnk−1

)
.

Iterating this k times, and writing the result in terms of the affine transformation σ : ξ 7→
2−n(ξ + 2π`), we have

φ̂(ξ + 2πnk) =
k∏

j=1

M0(σ
jξ) φ̂(σkξ).

3. We are assuming that 2−nγ = |M0(ξ0)| 6= 0. Now, since σ is a contraction with
fixed point ξ0, and since M0 is continuous at ξ0, we can find, for ε > 0, an integer K, such
that |M0(σ

kξ)| ≥ 2−n(γ+ε), for every k > K, and every ξ ∈ [−π, π]. Fixing ε and K, we
can then invoke that M0 is continuous and vanishes only on a null-set, to find a subset
S ⊂ [−π, π], of arbitrarily small measure, such that

∏K−1
j=1 M0(σ

jξ) ≥ C > 0, for every
ξ ∈ S′ := [−π, π]\S.
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4. Combining the observations from 2 and 3, we conclude that, on S ′ and for some
constant C ′ > 0,

(3) |φ̂(ξ + 2πnk)| ≥ C ′2−n(γ+ε)k|φ̂(σkξ)|, ∀k.

For all sufficiently large k, σkS′ lies in an arbitrarily small neighborhood of ξ0. Since
|φ̂| ≥ c > 0 around ξ0, we may then, for such large k, dispense with the expression |φ̂(σkξ)|
in (3) by changing the constant C ′, if needed. We thus obtain from (3), that, on S ′ and
for all sufficiently large k,

|φ̂(· + 2πnk)| ≥ C ′2−n(γ+ε)k ≥ C ′′n
−(γ+ε)
k .

♠

It then follows from our earlier discussion that no f̂ , f ∈ V \{0}, can decay at a rate
faster than γ, where 2−γ is the geometric average of the values assumed by |m0| on an

invariant cycle of τ . Therefore, if the decay rate of φ̂ is known to equal the parameter
γ associated with some invariant cycle of τ , then this decay rate is not exceeded by the
decay rate of any f̂ , f ∈ V \{0}.

Now, let φ be the function from the family of scaling functions constructed in [5] that

provides approximation order k, k integer. It is known that the decay rate of φ̂ is, indeed,
determined by the parameter γ associated with the invariant cycle (2π/3, 4π/3) (cf. [3]

[9] ; see also §7.1.2 in [6]). Thus, we conclude that the decay rate of any f̂ , f ∈ V \{0},
cannot exceed

γ := −
1

2
log2 |m0(2π/3)m0(4π/3)|.

However, this last value behaves asymptotically like k(1− 1
2 log2 3), and hence, by selecting

k sufficiently large, we obtain that the gap between the highest possible degree of smoothness
in a refinable space and its approximation order can be arbitrarily large.
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[2] C. de Boor, K. Höllig, and S. D. Riemenschneider, Box Splines, Springer-Verlag, 1992.

[3] A. Cohen and J.P. Conze, Régularité des bases d’ondelettes et mesures ergodiques,
Rev. Mat. Iberoamericana 8 (1992), 351-366

[4] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoir
Amer. Math. Soc. #453, Providence 1991.

[5] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure and
Applied Math., 41 (1988), 909–996.

4



[6] I. Daubechies, Ten lectures on wavelets, CBMF conference series in applied mathe-
matics, Vol 61, SIAM, Philadelphia, 1992.
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