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Introduction.

The present paper is the reference [8] in the monograph [15], which was planned but not yet written
when [15] appeared. The paper is divided into four parts called A, B, C, and D. We aim here at three or four
different results. The unifying link between them is that they all involve the sign structure of what one might
call a “Green’s spline”, i.e., a function which consists of two null–splines pieced together at a certain point
to satisfy at that point several homogeneous conditions and just one inhomogeneous condition, much as (any
section of) a (univariate) Green’s function consists of two solutions to a homogeneous ordinary differential
equation which are pieced together at a point in just that way. The different results are further linked by
the fact that we use an extension of the Budan–Fourier theorem to splines in an essential way. In each of
our applications of this theorem, the circumstances are such that the inequality furnished by the theorem
becomes taut, i.e., must be an equality, and this provides an unexpected amount of precise information.

In Part A, we state and prove the Budan–Fourier theorem for splines with simple knots in the form in
which we need it. We also apply it right away to the “Green’s function” for odd–degree spline interpolation
at arbitrarily spaced knots in a finite interval, i.e., to the Peano kernel for the error in that interpolation
process.

In Part B, we develop the information about the sign structure of cardinal nullsplines required for later
applications, using the Gantmacher–Krein Theory of oscillation matrices in an essential way.

Part C: The study of the remainder of cardinal spline interpolation for odd degree n = 2m− 1, as given
in [17], depended on the behavior of the remainder K(x, t) of the interpolation of the function (x − t)2m−1

+

where t is a parameter, 0 < t < 1. The assertion (Theorem 3 of [17]) was that sgn K(x, t) = (−)m sgn sin πx
for all real x, and this was stated in [17] without proof. A proof is given in Part C, where we also discuss the
remainder of even degree cardinal spline interpolation as well as the fundamental function of this interpolation
process.

Part D: The elementary cases of the Landau–Kolmogorov problem were discussed in [16] by means of
appropriate formulae of approximate differentiation with integral remainders. However, [16] was restricted
to the orders n = 2 and n = 3, when only finitely many of the ordinates of the function appear in the
differentiation formula. In [16], and also in [15, Lecture 9. §1], the first non–elementary case n = 4 was briefly
mentioned. In Part D, we study the general case. Cavaretta gave in [4] an elegant proof of Kolmogorov’s
theorem that uses only Rolle’s theorem. Our approach is much more elaborate, but provides information on
the extremizing functions.

Part A. The Budan–Fourier theorem for splines and spline interpolation on a finite interval.

1. The Budan–Fourier theorem for splines with simple knots. We begin with the introduction
of some standard notation.

For v = (vi)
n
1 ∈ R

n, S−v and S+v denote the minimal, respectively maximal, number of sign changes in
the sequence v achievable by appropriate assignment of signs to the zero entries (if any) in v. Hence, always
S−v ≤ S+v. Further,

S−v ≤ lim inf
u→v

S−u ≤ lim sup
u→v

S+u ≤ S+v.

Should S−v = S+v, then it is customary to denote their common value by Sv. The identity

(1) S−(vi)
n
1 + S+((−)ivi)

n
1 = n − 1

will be used repeatedly.
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If v is, more generally, a real valued function on some domain G ⊆ R, then, with ∗ standing for − or +,

S∗v := sup{S∗(v(ti)) : (ti)
n
1 in G, n ∈ IN, t1 < · · · < tn} .

If E ⊆ G, then we will write S∗
Ev for S∗(v E).

Induction establishes the following useful lemma which is essentially Lemma 1.2 of Karlin and Micchelli
[7].

Lemma 1. If f ∈ C(n)[0, δ] and f (n)(0) 6= 0, then, for some positive ε, f (j) does not vanish on (0, ε],
j = 0, . . . , n, and

S−(f(0), . . . , f (n)(0)) = lim
t↓0

S+(f(t), . . . , f (n)(t)).

Therefore, with (1),

S+(f(0), . . . , f (n)(0)) = lim
t↑0

S−(f(t), . . . , f (n)(t))

in case f (n)(0) 6= 0 and f ∈ C(n)[−δ, 0].

Next, we define the multiplicity of a zero of a spline function f of degree n on [a, b] with simple knots, i.e.,

f is composed of polynomial pieces of degree ≤ n in such a way that f ∈ C(n−1)[a, b]. Then f ∈ IL
(n)
∞ [a, b].

If n = 0, i.e., if f is piecewise constant, then we say that the (possibly degenerate) interval [σ, τ ] in (a, b) is a
zero of f of multiplicity

{
0
1

}
iff f vanishes on (σ, τ) and f(σ−)f(τ+)

{
>
<

}
0. With this definition, the number

of zeros counting multiplicity of a piecewise constant function in (a, b) equals the number of its strong sign
changes on (a, b). If n > 0, then we say that the (possibly degenerate) interval [σ, τ ] in (a, b) is a zero of f
of multiplicity r iff either r = 0 and σ = τ and f(σ) 6= 0 or else r > 0 and f vanishes on [σ, τ ] and [σ, τ ] is a
zero of f (1) of multiplicity r − 1. We denote the total number of zeros, counting multiplicities, of f in (a, b)
by

Zf (a, b).

To give an example, Zf (0, 12) = 6 for the linear spline f drawn in Figure 1, with a double zero at [3, 4],

f

x0
5

10

Figure 1

a simple zero at [6, 6], a double zero at [8, 8] and a simple zero at [10, 11], and no other zeros of positive
multiplicity in (0, 12). In particular, the interval [0, 1] is not counted as a zero in (0, 12) for this f . Its first
derivative has simple zeros at [2, 2], [3, 4], [5, 5], [7, 7], [8, 8], [9, 9] and no other zeros of positive multiplicity
in (0, 12), so Zf(1)(0, 12) = 6. In particular, [10, 11] is a zero of 0 multiplicity for f (1), and, again, [0, 1] is

not zero in (0, 12) for f (1). For this particular f , we would have equality in (2) below.

The number Zf (a, b) is necessarily finite if f has only finitely many knots in (a, b). Also, if f(a)f(b) 6= 0,
then f(a)f(b) < 0 iff Zf(a, b) is odd. Further, Zf(a, b) + Zf (b, c) ≤ Zf (a, c) for a < b < c, and, as we said
earlier, Zf(n)(a, b) = S−

(a,b)f
(n).

2



Theorem 1 (Budan-Fourier for Splines)†. If f is a polynomial spline function of exact degree n on
(a, b) (i.e., of degree n with f (n)(t) 6= 0 for some t ∈ (a, b)) with finitely many (active) knots in (a, b), all
simple, then

(2) Zf (a, b) ≤ Zf(n)(a, b) + S−(f(a), . . . , f (n−1)(a), f (n)(σ+)) − S+(f(b), . . . , f (n−1)(b), f (n)(τ−)),

with
{σ

τ

}
:=

{
inf
sup

}
{t ∈ (a, b) : f (n)(t) 6= 0}.

Proof: There is nothing to prove for n = 0, hence suppose that n > 0. Further, suppose first that
f(a)f(b)f (1)(a+)f (1)(b−) 6= 0. We claim that then

(3) Zf(a, b) ≤ Zf(1)(a, b) + S(f(a), f (1)(a+)) − S(f(b), f (1)(b−)).

Indeed, if Zf (a, b) = 0, there is nothing to prove unless also Zf(1)(a, b) = 0, but then S(f(a), f (1)(a+)) =

S(f(b), f (1)(b−)) and (3) holds trivially. On the other hand, if Zf (a, b) > 0, then we can find α and β so
that (α, β) ⊃ {t ∈ [a, b] : f(t) = 0} while f(α)f(β) 6= 0, and f(a)/f(α) and f(b)/f(β) are both greater than
1. But then

Zf(1)(a, α) ≥ 1 − S(f(a), f (1)(a+)), Zf(1)(β, b) ≥ S(f(b), f (1)(b−))

while, by Rolle’s theorem and our definition of multiplicity of zeros,

Zf(a, b) − 1 ≤ Zf(1)(α, β).

Hence, (3) holds in this case, too.
If now f (j)(a+)f (j)(b−) 6= 0 for j = 0, . . . , n, then

S(f(x), . . . , f (n)(x)) =

n∑

j=1

S(f (j−1)(x), f (j)(x))

for x = a+, b−, while by (3),

Zf(j−1)(a, b) ≤ Zf(j)(a, b) + S(f (j−1)(a), f (j)(a+))−S(f (j−1)(b), f (j)(b−)),

j = 1, . . . , n,

which proves (2) for this case. From this, a limit process establishes (2) with the aid of Lemma 1 in case
merely f (n)(a+)f (n)(b−) 6= 0.

If, finally, f (n)(a+) = 0, then, as f is of exact degree n on (a, b), there exists σ ∈ (a, b) so that f (n)

vanishes on (a, σ), but f (n)(σ+) 6= 0. Note that [a, σ] is not counted as a zero of f (n) in (a, b) by our
definition. By Lemma 1, we can find σ̂ > σ so that f (j) does not vanish on (σ, σ̂] for j = 0, . . . , n and so that

(4) S−(f(σ), . . . , f (n)(σ+)) = S(f(σ̂), . . . , f (n)(σ̂)).

Then

(5) Zf(a, b) = Zf (a, σ̂) + Zf (σ̂, b), Zf(n)(a, b) = Zf(n)(σ̂, b).

We claim that

(6) Zf (a, σ̂) ≤ S−(f(a), . . . , f (n−1)(a), f (n)(σ+)) − S(f(σ̂), . . . , f (n)(σ̂)).

† The theorem as published was stated as if [σ, τ ] = [a, b]. In all applications of this theorem in the present
paper, this is, in fact, the case. However, the added reference, [19], points out that the theorem as published
is in general wrong when [σ, τ ] 6= [a, b] and proposes the present version. The present proof reflects this
change, mainly in (7).
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For this, let

j :=

{
0 if f vanishes identically on [a, σ],
max{i ∈ [0, n − 1] : f (i)(a) 6= 0} otherwise.

Then

(7) S−(f (j)(a), . . . , f (n)(a+)) = 0, S−(f (j)(σ), . . . , f (n)(σ+)) = S−(f (j)(a), f (n)(σ+)),

the latter since f (n) is constant on [a, σ]. Now, (4) implies (6) in case f vanishes identically on [a, σ] since
then [a, σ] is not counted as a zero of f in (a, σ̂), therefore Zf (a, σ̂) = 0. Otherwise, f (j) is a nonzero constant
on [a, σ], therefore

Zf (a, σ̂) ≤ S−(f(a), . . . , f (j)(a)) − S+(f(σ), . . . , f (j)(σ)) + mult. of σ as a zero of f

≤ S−(f(a), . . . , f (j)(a)) − S−(f(σ), . . . , f (j)(σ))

= S−(f(a), . . . , f (n−1)(a), f (n)(σ+)) − S−(f(σ), . . . , f (n)(σ+)),

the last equality by (7), and (4) now gives again (6).
These considerations also imply, by going from t to −t, that, for some τ̂ ∈ (σ̂, τ), f (j)(τ̂ ) 6= 0 for

j = 0, . . . , n, and

Zf(σ̂, b) = Zf(σ̂, τ̂ ) + Zf (τ̂ , b), Zf(n)(σ̂, b) = Zf(n)(σ̂, τ̂ ),

Zf(τ̂ , b) ≤ S(f(τ̂), . . . , f (n)(τ̂−)) − S+(f(b), . . . , f (n−1)(b), f (n)(τ−)),

and combining these facts with (5) and (7) and with (2) as already proved establishes (2) in the general
case.

It is possible to derive from this theorem appropriate statements concerning splines with multiple knots,
e.g., monosplines, by an appropriate limit process. But we will not pursue this further here, as the theorem
is sufficient for the purposes of this paper.

If f has its support in (a, b), then we obtain that

Zf (a, b) ≤ S−
(a,b)f

(n) − n.

Since Zf (a, b) ≥ 0, we recover in this way well known facts about B-splines, such as their sign structure or
the fact that B-splines have minimal support. Further, we obtain Zf (a, b) ≤ S−

(a,b)f
(n+1) − (n + 1), which is

the polynomial case of a more general result for Chebyshev splines due to H. Burchard [3].
We note that the particular choice of an f without any active knots in (a, b) and the replacement of S+

by (the weaker) S− leads to the classical Budan–Fourier Theorem [14]. The further specialization a = 0 and
b = ∞ produces Descartes’ familiar Rule of Signs.

2. A simple application to complete spline interpolation. If n is odd and greater than 1,

n = 2m − 1 > 1,

and (xi)
N
0 is a sequence in [a, b] with

a = x0 < · · · < xN = b,

then there exists for given f ∈ C(k−1)[a, b] exactly one spline Sf of degree n with simple knots x1, . . . , xN−1

in (a, b) which agrees with f in the sense that

(1) Sf(xi) = f(xi), i = 1, . . . , N − 1

(2) (Sf)(j)(xi) = f (j)(xi), j = 0, . . . , m − 1 and i = 0, N.
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This spline has been called the complete spline interpolant (of degree 2m− 1 with knots x1, . . . , xN−1)
to f .

An imitation of the error analysis carried out for cubic spline interpolation in [1] leads directly to the

statement that, for f ∈ IL
(n+1)
1 [a, b],

(3) f(x) − Sf(x) =

∫ b

a

K(x, t)f (n+1)(t) dt/n!

with the Peano kernel K also equal to the interpolation error when applying complete spline interpolation
to (x − t)n

+ for fixed x as a function of t, i.e.,

(4) K(x, t) = (x − t)n
+ − S(x − ·)n

+(t).

Hence, if, for fixed x,
g(t) := K(x, t) for t ∈ [a, b],

then g vanishes at least once at x1, . . . , xN−1 and vanishes m–fold at a and at b. Because of this latter fact,

(5) S−(g(a), . . . , g(n)(a+)) = S−(g(m)(a), . . . , g(n)(a+)) ≤ n − m = m − 1

and

(6) S+(g(b), . . . , g(n)(b−)) ≥ S+(g(b), . . . , g(m)(b)) = m.

If x = xi for some i ∈ [1, N − 1], then g = 0 since then (x − t)n
+ is its own spline interpolant. Otherwise,

g is a spline of exact degree n (since g(n) has a nonzero jump at x) with simple knots at x1, . . . , xN−1 and

at x and nowhere else in (a, b), and vanishes (at least) at all but one of these. Now let [â, b̂] be an interval
in [a, b] which is maximal with respect to the property that it contains only isolated zeros of g. Then either

â = a or else S−(g(â), . . . , g(n)(â+)) = 0, and either b̂ = b or else S+(g(̂b), . . . , g(n)(̂b−)) = n. Therefore, by
the Budan–Fourier theorem for splines and by (5) and (6),

Zg(â, b̂) ≤ Zg(n)(â, b̂) + S−(g(â), . . . , g(n)(â+)) − S+(g(̂b), . . . , g(n)(̂b−))

≤ Zg(n)(â, b̂) + S−(g(a), . . . , g(n)(a+)) − S+(g(b), . . . , g(n)(b−))

≤ Zg(n)(â, b̂) + m − 1 − m

≤ number of knots of g in (â, b̂) − 1

≤ Zg(â, b̂),

the last inequality since g fails to vanish at only one knot and since the preceding inequality already shows
that (â, b̂) contains at least one knot. It follows that all inequalities used to establish this string of inequalities
must have been equalities.

In particular, S−(g(â), . . . , g(n)(â+)) = m− 1, hence, as m > 1 by our assumption that n > 1, we must

have â = a, and, similarly, S+(g(̂b), . . . , g(n)(̂b−)) = m and so b̂ = b. Further, these equalities produce a
wealth of information about the x–section g(t) = K(x, t) of the Peano kernel in case xi < x < xi+1†:

(i) Since Zg(n)(a, b) = N , g(n) changes sign strongly across each of its simple knots. Since jump xg(n) =
−(−)nn! < 0††, this implies that

− (−)i−jg(n) > 0 on (xj , xj+1) for j = 0, . . . , i − 1

− (−)j−ig(n) < 0 on (xj , xj+1) for j = i + 1, . . . , N − 1.

† published version has xi = x < xi+1

†† published version has = (−)n
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(ii) S−(g(a), . . . , g(n)(a+)) = S−(g(m)(a), . . . , g(n)(a+)) = n−m, therefore g(j)(a+) 6= 0 for j = m, . . . , n,
and, with (i),

(−)i+n−jg(j)(a+) > 0 for j = m, . . . , n.

Since also g(j)(a) = 0 for j = 0, . . . , m − 1, it follows that

−(−)i+1−mg(a + ε) > 0 for positive ε near 0.

(iii) g has a simple zero at x1, . . . , xN−1 and vanishes nowhere else in (a, b), hence changes sign across
each xj and nowhere else. Therefore, with (ii),

−(−)i+1−m+jg(t) > 0 for xj < t < xj+1, j = 0, . . . , N − 1.

(iv) S+(g(b), . . . , g(n)(b−)) = S+(g(b), . . . , g(m)(b)) = m, therefore, with (i) or (iii),

−(−)i+Ng(j)(b−) > 0 for j = m, . . . , n.

It follows, in particular, that, in the usual pointwise estimate

(8) |f(x) − Sf(x)| ≤

∫ b

a

|K(x, t)| dt‖f (n+1)‖∞/n!

obtained from (3), we have equality iff |f (n+1)| = ‖f (n+1)‖∞ and f (n+1) changes sign across each of the
interpolation points x1, . . . , xN−1, i.e., f is a perfect spline of degree n+1 with simple knots at x1, . . . , xN−1

and nowhere else. If such a spline has a positive (n + 1)st derivative in (a, x1), then

(−)i+1−m(f(x) − Sf(x)) > 0.

The sign structure of the fundamental functions for complete spline interpolation can be completely
analysed in the same way. More interestingly, such an analysis of the sign structure of Peano kernel and
fundamental functions can be carried out just as easily for spline interpolation with a variety of other side
conditions, such a matching of value and odd derivatives at the boundary, matching of value and even
derivatives at the boundary, matching of value and the m–th through (n− 1)st derivatives at the boundary
etc. The essential feature shared by these side conditions is that they are of the form

λiSf = λif, i = 1, . . . , 2m

with (λi)
2m
1 a sequence of linear functionals linearly independent over IP2m = ker D2m := polynomials of

degree < 2m, and (λi)
m
1 a “good” m–sequence at a and (λi)

2m
m+1 a “good” m–sequence at b.

Here, we call an m–sequence (µi)
m
1 of linear functionals a “good” m–sequence at α, provided (µi)

m
1

has the following properties:
(i) µif =

∑2m−1
j=0 aijf

(j)(α) for appropriate aij ’s, i = 1, . . . , m.
Further, with

ker(µi) := {g ∈ C(2m−1) near α : µig = 0, nocomma? for i = 1, . . . , m},

(ii) g ∈ ker(µi) implies that S+(g(α), . . . , g(2m−1)(α)) ≥ m,

(iii) g ∈ ker(µi) implies that g∗ ∈ ker(µi), with g∗(α + x) = g(α − x), all x;

(iv) f , g ∈ ker(µi) implies that

2m−1∑

j=0

(−)jf (j)(α)g(2m−1−j)(α) = 0.

We note that (ii) and (iii) together give

(ii)’ g ∈ ker(µi) implies that S−(g(α), . . . , g(2m−1)(α)) ≤ m − 1 because of (1.1).

A particularly simple way of choosing a “good” m–sequence (µi)
m
1 at α is to choose a strictly increasing

subsequence r = (ri)
m
1 of (0, . . . , 2m − 1) so that, for every j = 0, . . . , 2m − 1, either j or 2m − 1 − j occurs

in r and then to take µif = f (ri)(α), i = 1, . . . , m. All of the examples mentioned earlier are of this simple
form. For more complicated examples, we note that property (ii) is insured by having all m–minors of the
m × 2m matrix (aij) of (i) of one sign with at least one of them nonzero.
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Theorem 2. Let m > 1, n := 2m − 1, let a = x0 < · · · < xN = b, and let (λi)
2m
1 be a sequence of linear

functionals, linearly independent over IP2m = ker D2m and so that (λi)
m
1 is a “good” m–sequence at a and

(λi)
2m
m+1 is a “good” m–sequence at b. Then

(i) For every f ∈ C(n)[a, b] there exists exactly one spline Sf of degree n with simple knots x1, . . . , xN−1

in (a, b) which agrees with f in the sense that

(9) (Sf)(xi) = f(xi), i = 1, . . . , N − 1,

(10) λiSf = λif, i = 1, . . . , 2m.

(ii) If Lj is the unique spline of degree n with simple knots x1, . . . , xN−1 in (a, b) for which

Lj(xi) = δji, i = 1, . . . , N − 1,

λiLj = 0, i = 1, . . . , 2m,

with j ∈ [1, N − 1], (i.e., if Lj is a fundamental function for the interpolation process), then Lj has simple
zeros at xi for i 6= j and vanishes nowhere else in (a, b), and its n–th derivative changes sign strongly across
each knot.

(iii) For f ∈ IL
(2m)
1 [a, b] and for x ∈ (a, b),

(11) f(x) − Sf(x) =

∫ b

a

K(x, t)f (2m)(t) dt/n!

where g := K(x, ·) is the error in interpolating (x − ·)n
+, i.e.,

(12) K(x, t) = (x − t)n
+ − S(t)(x − t)n

+.

This x–section g = K(x, ·) of the kernel K is a spline of degree n with simple knots x1, . . . , xN−1 and x.
If x /∈ {x1, . . . , xN−1}, then g has simple zeros at x1, . . . , xN−1 and vanishes nowhere else in (a, b), and its
n–th derivative changes sign strongly across each knot in (a, b); otherwise g vanishes identically. Hence, for

f ∈ IL
(2m)
∞ [a, b],

(13) |f(x) − Sf(x)| ≤ ‖f (2m)‖∞

∫ b

a

|K(x, t)| dt/n!

with equality if and only if f is a perfect spline of degree 2m with simple active knots at x1, . . . , xN−1

in (a, b) and no other active knots in (a, b), i.e., f (2m) is absolutely constant and changes sign strongly at
x1, . . . , xN−1 and nowhere else in (a, b).

Proof: The proof parallels closely the earlier arguments for the special case

λif =

{
f (i−1)(a), i = 1, . . . , m,
f (i−m−1)(b), i = m + 1, . . . , 2m.

Property (iv) of a “good” m–sequence insures the selfadjointness of the problem

D2mf = y, λif = 0, i = 1, . . . , 2m,

which then gives (11) and (12), and the sign structure of Lj and of K(x, ·) follows from the Budan–Fourier
theorem for splines and properties (ii) and (ii)’ of a “good” m–sequence. We omit the details.

Remark. For the particular side conditions of matching even derivatives at a and b, (iii) of the theorem
was stated by C. Hall and W. W. Meyer in [6], with the proof of the sign structure of K(x, ·) deferred to an
as yet unpublished paper (see Lemma 3 of [6]).

We add here that we learned only recently of a paper by Avraham A. Melkman entitled “The Budan–
Fourier theorem for splines” which will appear eventually in the Israel Journal of Mathematics. In it, the
author establishes such a theorem even for splines with multiple knots.
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Part B. The sign structure of cardinal null splines

1. Introduction. A cardinal spline function of order k is a piecewise polynomial function of
degree < k in C(k−2)(R) with knots α + m, for all m ∈ ZZ and some α. We denote their collection by

$k,α+ZZ.

A cardinal null spline is a cardinal spline which vanishes at all points of the form τ + m for m ∈ ZZ
and some τ . Cardinal null splines have been analysed by Schoenberg [15] who showed them to be linear
combinations of finitely many eigensplines. Here, an eigenspline is a nontrivial solution in $k,α+ZZ of the
functional equation

f(x + 1) = zf(x),

shown by Schoenberg to exist for certain exceptional values of z called eigenvalues.
We wish to note in passing the work of Nilson [12] and earlier work by Ahlberg, Nilson and Walsh

referred to therein where this eigenvalue problem is considered from another point of view.
Schoenberg used methods from the theory of difference equations for his analysis. We will proceed here

somewhat differently and without reference to Schoenberg’s earlier work. We start from the observation that
a cardinal nullspline is completely determined by any one of its polynomial pieces, and study the linear trans-
formation which carries such a polynomial piece into its neighboring polynomial piece. A convenient matrix
representation for this linear transformation can be shown to be an oscillation matrix, and Gantmacher
and Krein’s [5] theory of such matrices then provides the detailed information about the sign structure of
nullsplines needed in the later parts of this paper.

We wish to bring to the reader’s attention the beautiful recent work by C. Micchelli [11] in which he,
too, uses oscillation matrices in the analysis of cardinal nullsplines and eigensplines, but covers much more
general splines and much more general interpolation conditions. We became aware of his work after we had
completed the following sections and decided then to retain our arguments as that seemed more convenient
for the reader than being told how to specialize Micchelli’s more general results.

2. Cardinal splines which vanish at all knots. With the usual convention that
(
j
i

)
= 0 for j < i,

we have, for a polynomial p of degree < k,

p(i)(x + h)/i! =
k−1∑

j=0

(
j

i

)
hj−ip(j)(x)/j!, i = 0, . . . , k − 1.

Hence, if such a polynomial vanishes at x and at x + h, then, for i = 0,

0 =

k−1∑

j=1

(
j

0

)
hjp(j)(x)/j!

and, on subtracting
(
k−1

i

)
/hi times this equation from the i–th equation, we obtain

p(i)(x + h)/i! =

k−2∑

j=1

(

(
j

i

)
−

(
k − 1

i

)
)hj−1p(j)(x)/j!, i = 1, . . . , k − 2.

This we write as

(1) p(x + h) = −H−1
h AkHhp(x)

with p(x) the vector

(2) p(x) := (p(1)(x), p(2)(x)/2, . . . , p(k−2)(x)/(k − 2)!),
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Hh the diagonal matrix

(3) Hh := diag⌈1, h, . . . , hk−3⌋ = H−1
1/h,

and Ak the matrix

(4) Ak := (
(

k−1
i

)
−

(
j
i

)
)k−2
i,j=1.

If p is a polynomial of degree < k vanishing at x and at x + 1, then it vanishes also at x + 1 and at
(x + 1) + (−1), therefore (1) implies

1 = −H−1
−1AkH−1(−H−1

1 AkH1)

or, with H1 = 1,

(5) A−1
k = H−1

−1AkH−1,

showing Ak to be invertible and similar to its own inverse. Therefore,

(6) spectrum(Ak) = 1/spectrum(Ak) = {1/λ : λ ∈ spectrum(Ak)}.

Suppose that u is a (nonzero) eigenvector of Ak belonging to some nonzero eigenvalue λ. Let p be the
polynomial of degree < k which vanishes at 0 and at 1 and for which p(0) = u. Then p(1) = −Aku = −λp(0),
hence,

p(j)(1) = −λp(j)(0), j = 0, . . . , k − 2.

The rule
S(x + n) := (−λ)np(x), n ∈ ZZ, x ∈ [0, 1)

therefore defines a spline of degree < k with simple knots at ZZ, and this spline is evidently an eigenspline
belonging to the eigenvalue −λ. This explains our interest in the eigenvalue–eigenvector structure of the
matrix Ak.

In [2], the matrix Ak was claimed to be totally positive. Actually, Ak is an oscillation matrix , i.e., Ak

is totally positive and some power of Ak is strictly totally positive. To see this, observe that

Ak = −B′
k

(
1, . . . , k − 2

1, . . . , k − 2

)

with B′
k the matrix obtained from

Bk := (
(
j
i

)
)k−1
i,j=0

by subtracting the last column of Bk from all other columns. This implies that

det Bk

(
0, i1, . . . , ir

j1, . . . , jr, k − 1

)
= det B′

k

(
0, i1, . . . , ir

j1, . . . , jr, k − 1

)

and that the first row of B′
k vanishes except for a 1 in column k − 1. Hence, further,

det B′
k

(
0, i1, . . . , ir

j1, . . . , jr, k − 1

)
= (−)r det B′

k

(
i1, . . . , ir
j1, . . . , jr

)

= det Ak

(
i1, . . . , ir
j1, . . . , jr

)

provided 0 < i1, . . . , ir, j1, . . . , jr < k − 1. This shows Ak to be totally positive since Bk is known to be
totally positive (cf., e.g., [14]). Since Ak is also invertible, Ak is proven to be an oscillation matrix once we
show that none of its entries on the first subdiagonal and the first superdiagonal vanishes (Gantmacher and
Krein [5, Theorem 10 in Chap. 2, par. 7]). The numbers in question are

(
k−1

i

)
−

(
i+1

i

)
, i = 1, . . . , k − 3, and

(
k−1

i

)
, i = 2, . . . , k − 2,

and clearly all are positive.
The fact that Ak is an oscillation matrix allows the following conclusions (cf. [5, Theorem 6 in Chap. 2,

par. 5]):
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Theorem 1. (i) The spectrum of Ak consists of k − 2 (different) positive numbers which we will think of
as ordered:

0 < λk−2 < · · · < λ1.

Further, by (6),

(7) λiλj = 1 for i + j = k − 1.

(ii) If (u(i))k−2
1 is a corresponding (necessarily complete) sequence of (nonzero) eigenvectors for Ak and

cp, . . . , cq are numbers not all zero, then

p − 1 ≤ S−(

q∑

i=p

ciu
(i)) ≤ S+(

q∑

i=p

ciu
(i)) ≤ q − 1.

As a particular consequence of (ii), we have

(8) S−(u(i)) = S+(u(i)) = i − 1, i = 1, . . . , k − 2,

therefore

(9) u
(i)
1 6= 0 and u

(i)
k−2 6= 0

(since otherwise S−(u(i)) < S+(u(i)). ) Further, let p be the polynomial of degree < k which vanishes at 0
and at 1 and for which

p(0) = u(i).

Then
p(1) = −Aku

(i) = −λip(0)

hence
p(k−1) = p(k−2)(1) − p(k−2)(0) = −(λi + 1)u

(i)
k−2

therefore, with (9),

p(k−2)(0)p(k−1)(0) < 0 < p(k−2)(1)p(k−1)(1)

and so, again with (9),

S−(p(0), . . . , p(k−1)(0)) = i = S+(p(1), . . . , p(k−1)(1)).

Finally, these statements about the sign structure of p persist if we perturb p slightly because of (8) as long
as we keep p(0) = p(1) = 0.

Corollary. If u(i) is a nonzero eigenvector belonging to the i–th eigenvalue of Ak (ordered as in the theorem),
then, for any polynomial p of degree < k vanishing at 0 and at 1 and with p(0) close to u(i),

S−(p(0), . . . , p(k−1)(0)) = i = S+(p(1), . . . p(k−1)(1)).

In particular, such a p has no zeros in (0, 1), by the Budan–Fourier Theorem.

If now f is a cardinal spline function of order k with knots ZZ which vanishes at its knots, then

f(m) = −Akf(m − 1) for all m ∈ ZZ

hence

f(m) = (−Ak)mf(0) for all m ∈ ZZ.

10



Further, expanding f(0) in terms of a complete eigenvector sequence (u(i))k−2
1 for Ak, we have

f(m) =

k−2∑

i=1

(−λi)
mciu

(i) =

k−2∑

i=1

ciUi(m)

with Ui the unique cardinal spline of order k which vanishes at its knots ZZ and satisfies Ui(0) = u(i), hence
satisfies

Ui(m) = (−λi)
mUi(0), all m ∈ ZZ,

i.e., Ui is the eigenspline belonging to the eigenvalue −λi. Therefore

f =

k−2∑

i=1

ciUi.

3. Cardinal nullsplines which vanish between knots. The analysis is slightly more complicated
when the nullspline vanishes at τ + ZZ with τ not a knot.

Let τ ∈ (0, 1) and let p be any spline of order k vanishing at τ and at τ + 1 and with simple knot at 1.
Then

k−1∑

j=1

(p(j)(τ)/j!)

(
j

i

)
(1 − τ)j−i = p(i)(1)/i!, i = 0, . . . , k − 2,

and
k−2∑

j=0

(p(j)(1)/j!)[

(
j

i

)
−

(
k − 1

i

)
]τ j−i = p(i)(τ + 1)/i!, i = 1, . . . , k − 1.

Hence, with
Bk := (

(
j
i

)
)k−1
i,j=0

and B′
k the matrix derived from Bk by subtracting the last column from all other columns as before, we

conclude that
−Ak,τp(τ) = p(τ + 1)

where

(1)

Ak,τ : = −(H−1
τ B′

kHτ )

(
1, . . . , k − 1

0, . . . , k − 2

)
(H−1

1−τBkH1−τ )

(
0, . . . , k − 2

1, . . . , k − 1

)

= −
1 − τ

τ
H−1

τ B′
k

(
1, . . . , k − 1

0, . . . , k − 2

)
HτH−1

1−τBk

(
0, . . . , k − 2

1, . . . , k − 1

)
H1−τ

and now
p(x) := (p(1)(x)/1!, . . . , p(k−1)(x)/(k − 1)!).

By considering the spline q given by

q(1 + x) = p(1 − x), all x,

which then vanishes at 1 − τ and at 1 + (1 − τ) and has a simple knot at 1, we find that

−H−1
−1Ak,1−τH−1(−Ak,τ ) = 1,

hence Ak,τ is invertible and
A−1

k,τ = H−1
−1Ak,1−τH−1.

It follows that

(2) spectrum(Ak,τ ) = 1/spectrum(Ak,1−τ ).

Both Bk

(
0,...,k−2
1,...,k−1

)
and −B′

k

(
1,...,k−1
0,...,k−2

)
are easily seen to be oscillation matrices with the aid of arguments

used earlier to establish that −B′
k

(
1,...,k−2
1,...,k−2

)
is an oscillation matrix. Ak,τ is therefore also an oscillation

matrix.
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Theorem 2. (i) The spectrum of Ak,τ consists of k − 1 (different) positive numbers which we will think of
as ordered:

0 < λk−1(τ) < · · · < λ1(τ).

Further, by (2),

(3) λi(τ)λj(1 − τ) = 1 for i + j = k.

(ii) If (u(i,τ))k−1
i=1 is a corresponding (necessarily complete) sequence of eigenvectors for Ak,τ , then

S−(u(i,τ)) = S+(u(i,τ)) = i − 1, i = 1, . . . , k − 1.

(iii) If p is a spline of degree < k which vanishes at τ and at τ + 1, has a simple knot at 1, and for which
p(τ) is close to u(i,τ), then

S−(p(τ), . . . , p(k−1)(τ)) + 1 = i = S+(p(τ + 1), . . . , p(k−1)(τ + 1)).

In particular, such a p does not vanish on (τ, τ + 1), by the Budan–Fourier theorem for splines.

Proof: In view of the preceding discussion, only assertion (iii) needs argument. For this, we note
that p(τ) = p(τ + 1) = 0 while, by (ii), S(p(1)(τ), . . . , p(k−1)(τ)) = i − 1.

Since Ak,τ is an analytic function of τ ∈ (0, 1), so is each λi(τ). Further,

k−1∏

i=1

λi(τ) = (−)k−1 det Ak,τ = (1 − τ)/τ

so that
lim
τ→0

λ1(τ) = +∞, lim
τ→1

λk−1(τ) = 0.

Also
lim
τ→1

H−1
1−τBkH1−τ = 1, lim

τ→1
H−1

τ B′
kHτ = B′

k,

therefore

lim
τ→1

Ak,τ = Ak−1 := B′
k

(
1, . . . , k − 1

0, . . . , k − 2

)
1

(
0, . . . , k − 2

1, . . . , k − 1

)
=

(
Ak 0

−1 · · · − 1 0

)
, asyouadvised, Ididnotworryaboutit

with Ak the oscillation matrix discussed earlier. Hence

lim
τ→1

λi(τ) = λi(1) :=

{
λi, i = 1, . . . , k − 2
0, i = k − 1

where λk−2 < · · · < λ1 are the eigenvalues of Ak. Consequently, from (3) and since λiλj = 1 for i+ j = k−1
by (2.7) above,

lim
τ→0

λi(τ) = 1/ lim
τ→1

λk−i(τ) = 1/λk−i = λi−1 = lim
τ→1

λi−1(τ)

for i = 2, . . . , k − 1.

Theorem 3. The function Λk defined on (0,∞) by

Λk(τ) :=

{
λi(τ − i − 1), i − 1 ≤ τ ≤ i, i = 1, . . . , k − 1

0 , k − 1 ≤ τ

is continuous (in fact in C(k−2)(0,∞)) and maps (0, k − 1) to (0,∞). Also, Λk is strictly monotonely
decreasing on (0, k − 1), and Λk(τ) = Λk(k − 1 − τ).

Proof: We only have to establish the strict monotonicity of Λk on (0, k−1). For this, it is sufficient
to show:
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if τ1, τ2 ∈ (0, 1) are such that λi1 (τ1) = λi2(τ2) = λ, say, then τ1 = τ2 and i1 = i2.

For this, let qr be a spline of order k vanishing at τr and at 1 + τr, with a simple knot at 1 and such
that qr(τr) is a nontrivial eigenvector for Ak,τr corresponding to λ = λir (τr). Then

q(j)
r (1) = −λq(j)

r (0), isthe = afterthecommacorrect? j = 0, . . . , k − 2.

If now qr(0) = 0, then (q
(1)
r (0), . . . , q

(k−2)
r (0)/(k − 2)!) would be a nontrivial eigenvector of Ak, hence qr

would have to be nonzero on (0, 1) by the Corollary to Theorem 1, a contradiction. Hence, qr(0) 6= 0, and
(iii) of Theorem 2 implies that

(4) qr(τ)/qr(0)
>

<
0 for τ

<

>
τr.

With this, the spline
q := q1/q1(0) − q2/q2(0)

is of degree < k, vanishes at 0 and at 1 and satisfies

q(j)(1) = −λq(j)(0), j = 0, . . . , k − 2,

while
q(τ1)q(τ2) = −

(
q1(τ2)/q1(0)

)(
q2(τ1)/q2(0)

)
≤ 0

by (4). Hence q vanishes in (0, 1), and therefore must vanish identically since otherwise (q(1)(0), . . . , q(k−2)(0)/
(k−2)!) would be a nontrivial eigenvector for Ak, hence q couldn’t vanish in (0, 1). It follows that q1/q1(0) =
q2/q2(0), therefore τ1 = τ2 by (4), and i1 = i2 follows from (i) of Theorem 2.

A different proof of the theorem can be found in Schoenberg [18]. The theorem itself is due to C.
Micchelli who proved it in [10] for the much more general case of cardinal L–splines.

If we combine the earlier statement

(3) λi(τ)λj(1 − τ) = 1 for i + j = k

with the strict decrease, just proven, of each λi(τ) as τ goes from 0 to 1, then we obtain the following
corollary which will be helpful in the discussion of even degree cardinal spline interpolation in Part C.

Corollary. Let p = p(τ, k) be the smallest integer so that λp(τ) ≤ 1, and let q be the largest integer so that
λq(τ) ≥ 1 and let τ ∈ (0, 1]. Then, with m := ⌊k/2⌋,

(p, q) =






(m + 1, m) for k odd and τ ∈ (0, 1)

(m, m) for k odd and τ = 1

(m + 1, m) for k even and τ ∈ (0, 1
2 )

(m, m) for k even and τ = 1
2

(m, m − 1) for k even and τ ∈ (1
2 , 1)

In particular, λi(τ) 6= 1 unless i = m and

τ =

{
1
2 , k even
1, k odd.

It is now a simple matter to describe a cardinal spline of order k with knots ZZ which vanishes at τ + ZZ
for some τ ∈ (0, 1). If f is such a spline, then

f =

k−1∑

i=1

ciUi,τ

with Ui,τ the eigenspline belonging to the eigenvalue −λi(τ) and satisfying

Ui,τ (τ) = u(i,τ),

and the ci’s so chosen that f(τ) =
∑k−1

1 ciu
(i,τ).
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Part C. The sign structure of the fundamental function and the Peano kernel
for cardinal spline interpolation

1. A theorem on cardinal Green’s functions. The application of the Budan–Fourier theorem for
splines to cardinal spline interpolation takes the form of the following theorem.

Theorem 1. Let K be a real valued function on R having the following properties:
(i) K is a polynomial spline of order k > 2 not identically zero and has simple knots at all integers n

with |n| ≥ N for some N . K has no more than r additional knots, all of which lie in (−N, N) and are simple.
(ii) For some τ ∈ (0, 1] with

(1) τ 6= k/2 − ⌊k/2⌋ + 1/2

and for all n ≥ N , K vanishes at τ + n and at τ − n − 1. In addition, there are at least r distinct points
in (−n, N) at which K vanishes and no more than one of these occurs in any interval (α, β] formed by
neighboring knots of K.

(iii) K is of power growth at ±∞.
Then, K vanishes exactly r times in (−N, N ] and has simple zeros at the points τ + n and τ − n − 1 for
n = N , N + 1, . . . , and vanishes nowhere else, and its (k − 1)st derivative changes sign strongly across each
knot. Also, with (λi(τ)) the strictly decreasing sequence of eigenvalues of

(2) A :=

{
Ak,τ , τ < 1
Ak , τ = 1

as described in Part B, we have

(3)

0 < lim sup
x→∞

|K(x)|/|λp(τ)|x < ∞

0 < lim sup
x→−∞

|K(x)|/|λq(τ)|x < ∞

with

(4) (p, q) =






(m + 1, m) if k odd

(m + 1, m) if k even and τ ∈ (0, 1
2 )

(m, m − 1) if k even and τ ∈ (1
2 , 1]

and
m := ⌊k/2⌋.

In particular, K(x) decays exponentially as |x| → ∞.

Proof: We intend to apply the Budan–Fourier theorem to the spline K and therefore begin with
the observation that K is necessarily of exact degree k − 1 since otherwise K would be a polynomial (of
degree < k − 1) which vanishes infinitely often, hence would have to vanish identically.

We recall from Part B the abbreviation

f(x) :=

{
(f(x), . . . , f (k−1)(x)/(k − 1)!), τ < 1,
(f(x), . . . , f (k−2)(x)/(k − 2)!), τ = 1.

Since A (= Ak,τ or Ak) is diagonalizable, we can write K(τ + N) as

K(τ + N) = u(p,τ) +
∑

i>p

ciu
(i,τ)
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with (u(i,τ)) an appropriate complete eigenvector sequence for A corresponding to the eigenvalue sequence
(λi(τ)). Then

K(τ + N + n) = (−A)nK(τ + N)

= (−λp(τ))nu(p,τ) +
∑

i>p

ci(−λi(τ))nu(i,τ)

for n = 1, 2, . . ., hence

(5) K(τ + N + n) = (−λp(τ))nu(p,τ) + o((λp(τ))n) as n → ∞.

Since K is of power growth at ∞, it now follows that

λp(τ) ≤ 1,

hence, by the Corollary to Theorem B3 we must have

(6) p ≥





m + 1, if k is odd
m + 1, if k is even and τ ∈ (0, 1

2 )
m , if k is even and τ ∈ (1

2 , 1]

while, by (iii) of Theorem B2 (if τ < 1) and by the Corollary to Theorem B1 (if τ = 1),

(7) S(K(1)(τ + n), . . . , K(k−1)(τ + n−)) = p − 1,

therefore

(8) S+(K(τ + n), . . . , K(k−1)(τ + n−)) = p

for all large n ∈ IN. One proves analogously that, for a possibly differently normalized eigenvector sequence
for A,

(9) K(τ − N − 1 − n) = (−λq(τ))−nu(q,τ) + o((λq(τ))−n) as n → ∞

with

(10) q ≤





m, if k is odd
m, if k is even and τ ∈ (0, 1

2 )
m − 1, if k is even and τ ∈ (1

2 , 1],

hence

(11) S−(K(τ − n − ε), . . . , K(k−1)(τ − n − ε)) = q

for large n ∈ IN and small ε > 0. Now take n large enough so that (8) and (11) hold and abbreviate

a := τ − n − 1 − ε, b := τ + n.

Let [â, b̂] be an interval in [a, b] which is maximal with respect to the property that it contains only

isolated zeros of K. Then either â = a or else S−(K(â), . . . , K(k−1)(â+)) = 0, and either b̂ = b or else

S+(K (̂b), . . . , K(k−1)(̂b−)) = k − 1. Therefore, we obtain from assumption (ii), from the Budan-Fourier
theorem for splines, from equations (8) and (11) and from inequalities (6) and (10) that

ZK(k−1)(â, b̂) ≤ number of active knots of K in (â, b̂)

≤ number of knots of K in (â, b̂)

≤ ZK(â, b̂) + 1

≤ ZK(k−1)(â, b̂) + 1 + S−(K(â), . . . , K(k−1)(â+)) − S+(K (̂b), . . . , K(k−1)(̂b−))

≤ ZK(k−1)(â, b̂) + 1 + S−(K(a), . . . , K(k−1)(a+)) − S+(K(b), . . . , K(k−1)(b−))

≤ ZK(k−1)(â, b̂) + 1 + q − p

≤ ZK(k−1)(â, b̂),

hence equality must hold in all inequalities used to establish this string of inequalities. In particular, [â, b̂] =
[a, b] since k > 2, and (6) and (10) must be equalities, hence (4) holds and (3) follows from (5) and (9).
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Remark. If (1) is violated, then the assumption (iii) of power growth at ±∞ is not sufficient to
conclude the exponential decay of K(x) as |x| → ∞. For, then λm(τ) = 1 by the Corollary to Theorem B3,
and even boundedness of K would only imply that q ≤ m ≤ p, and would therefore not lead to equality in the
Budan-Fourier inequality. Yet, replacing assumption (iii) by a stronger assumption such as that K ∈  Ls(R)
for some s < ∞ would force q ≤ m − 1 < m + 1 ≤ p, and application of the Budan–Fourier theorem would
lead to a contradiction unless we add additional freedom to K. We exploit this further in Part D.

Corollary. Under the theorem’s assumptions, let (ti) be the knot sequence for K, and let (τi) be the
increasing sequence of its zeros, numbered so that

tn ∈ (τn−1, τn] for all large n,

as can be done by assumption. If also t1 ≤ τ1 < t2, then

sign K(1)(τ1)K(k−1)(τ−
1 ) = (−)p−1.

Proof: Since all zeros of K are simple, and K changes sign strongly across each knot, we have

sign K(1)(τ1)K(1)(τn) = (−)1−n = sign K(k−1)(t−1 )K(k−1)(t−n ),

hence sign K(1)(τ1)K(k−1)(τ−
1 ) = sign K(1)(τn)K(k−1)(τ−

n ) in case t1 ≤ τ1 < t2 and tn ≤ τn < tn+1. On the
other hand, S(K(1)(τn), . . . , K(k−1)(τ−

n )) = p − 1 for all large n, by (7).

2. Cardinal spline interpolation. The k–th order cardinal spline interpolant Skf to a given function
f on R of power growth at ±∞ is, by definition, the unique spline of order k with knots ZZ+k/2 which agrees
with f at all integers and is of power growth at ±∞. A detailed discussion of this interpolation process can
be found in Schoenberg’s monograph [15].

The fundamental function of the process is, by definition, the unique cardinal spline Lk of power
growth at ±∞ with knots ZZ + k/2 which satisfies

(1) Lk(n) = δ0n for all n ∈ ZZ

and so allows one to write the interpolant as

(Skf)(x) =
∑

ν∈Z

f(ν)Lk(x − ν).

Lk is a cardinal Green’s function in that

Lk(x) =

{
L(x), x ≤ −1
R(x), x ≥ 1

with both L and R cardinal nullsplines. For even k, K := Lk satisfies the hypotheses of Theorem 1 with
N = 1, r = 1 and τ = 1. For odd k, K := Lk(· − 1

2 ) satisfies these hypotheses with N = 1, r = 1 and τ = 1
2 .

It is therefore a consequence of Theorem 1 that Lk has a simple zero at every nonzero integer and vanishes
nowhere else. Therefore

(2) sign Lk(x) = sign
sin πx

πx
for all x ∈ R,

a fact apparently known (see, e.g., F. Richards [13]) but not proved anywhere as far as we know. Further,

L
(1)
k (1) must be negative since Lk is positive on (−1, 1), hence, by the Corollary to Theorem 1, (−)pL

(k−1)
k (1−)

must be positive, with p given by (1.4). In particular, L
(k−1)
k (0+) = L

(k−1)
k (1−) and p = k/2 in case k is

even, while p = (k + 1)/2, and L
(k−1)
k (0+) and L

(k−1)
k (1−) have opposite sign in case k is odd. So,

(3) sign L
(k−1)
k (0+) = (−)⌊k/2⌋.
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Theorem 1 also implies the known fact that

(4) 0 < lim
x→∞

|Lk(x)|/γ
|x|
k < ∞

with γk the largest eigenvalue less than one of Ak or of A
k,

1
2

as k is even or odd.

Schoenberg [17] has obtained sharp estimates for the interpolation error f − Skf in terms of ‖f (k)‖∞
for even k. He uses the representation of the error

(5) f(x) − (Skf)(x) =

∫ ∞

−∞

Kk(x, t)f (k)(t) dt/(k − 1)!

with

(6) Kk(x, t) := (x − t)k−1
+ −

∑

ν

(ν − t)k−1
+ Lk(x − ν)

which he shows to be valid for f ∈ IL
(k)
1,loc(R) with f (k) of power growth at ±∞, and for even k. He leaves to

the present paper the proof of the following theorem.

Theorem 3 of [17]. For even k greater than 2 and for t ∈ (0, 1), the function K(x) := Kk(x, t) has simple
zeros at all integer values of x and vanishes nowhere else.

Proof: For fixed t, Kk(x, t) is the error in interpolating (x − t)k−1
+ in x by cardinal splines of order

k, hence Kk(·, t) = 0 in case t ∈ ZZ since then (· − t)k−1
+ is its own cardinal spline interpolant. Further, for

t ∈ (0, 1), Kk(·, t) is of power growth at ±∞, vanishes at ZZ and has simple knots at ZZ and at t, and is of
exact degree k − 1 since its (k − 1)st derivative has a nonzero jump at t. In short, K := Kk(·, t) satisfies the
assumptions of Theorem 1 with N = 1, r = 2, and τ = 1 and must, therefore, satisfy its conclusions.

3. Even degree cardinal spline interpolation. We discuss now in more detail the interpolation
error for odd k, i.e., for even degree cardinal spline interpolation,

k = 2m + 1,

say. Let Kk be as defined in (2.6). Then, as (ν − t)k−1
+ is a spline of order k in t with a simple knot at ν,

and is of power growth, we can write

(ν − t)k−1
+ =

∑

µ

(ν − µ − 1
2 )k−1

+ Lk(t − µ − 1
2 ),

with the series converging uniformly on compact sets, by (2.4). Therefore

∑

ν

(ν − t)k−1
+ Lk(x − ν) =

∑

ν

( ∑

µ

(ν − µ −
1

2
)k−1
+ Lk(t − µ − 1

2 )
)
Lk(x − ν)

=
∑

µ

( ∑

ν

(ν − µ −
1

2
)k−1
+ Lk(x − ν)

)
Lk(t − µ − 1

2 )

=
∑

µ

(x − µ − 1
2 )k−1

+ Lk(t − µ − 1
2 )

with the interchange permitted because of the absolute convergence of the series involved, and the last
equality justified by the fact that (x − µ − 1

2 )k−1
+ is a cardinal spline of order k in x. Since

(x − t)k−1
+ − (t − x)k−1

+ = (x − t)k−1
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for odd k and since cardinal spline interpolation of order k reproduces the right side of this identity, we
conclude that

(1) Kk(x, t) = −Kk(t − 1
2 , x − 1

2 ).

Further, we conclude that, for fixed x ∈ (0, 1),

Kk(x, t + 1
2 ) = (x − 1

2 − t)k−1
+ −

∑

µ

(x −
1

2
− µ)k−1

+ Lk(t − µ),

i.e., Kk(x, t + 1
2 ) is the error in cardinal spline interpolation in t to (x− 1

2 − t)k−1
+ , hence is of power growth,

vanishes at ZZ, and has simple knots at ZZ − 1
2 and at x − 1

2 and nowhere else. The function

K(t) := Kk(x, t)

therefore satisfies the hypotheses of Theorem 1 with τ = 1
2 , N = 1, and r = 2, and must therefore also

satisfy its conclusions. In particular, K(t) has simple zeros at ZZ + 1
2 and vanishes nowhere else, i.e.,

sign Kk(x, t) = εk(x)ω(t − 1
2 )

with
ω(t) := sign sin πt

and εk(x) equal to 1 or −1 or 0. In order to determine εk(x), we observe that εk(n) = 0 for all n ∈ ZZ.
Further, for x ∈ (0, 1),

jump xK(k−1) = (k − 1)!(−)k−1 = (k − 1)!

since k is odd, therefore
sign K(k−1)(x+) = 1.

If now x < 1
2 , then the Corollary to Theorem 1 applies to K with t1 = x and τ1 = 1

2 , i.e.,

sign K(1)(τ1)K(k−1)(τ−
1 ) = (−)p−1

with p = m + 1, hence, as K(k−1)(x+) = K(k−1)(τ−
1 ), we have

sign Kk(x, x) = −sign K(1)(τ1) = −(−)m,

showing that εk(x) = (−)m in this case. If, on the other hand, x ≥ 1
2 , then K satisfies the assumptions

of the Corollary to Theorem 1 with t1 = 1 and τ1 = 3/2, i.e., signK(1)(3/2)K(k−1)(3/2−) = (−)m, while
K(k−1)(x+) and K(k−1)(3/2−) have opposite sign, therefore

sign Kk(x, x) = −sign K(1)(τ1) = (−)m

showing that εk(x) = (−)m also in this case. Since

Kk(x, t) = Kk(x + 1, t + 1)

trivially, this proves that

(2) sign Kk(x, t) = (−)mω(x)ω(t − 1/2) for all x and t.

We also obtain from Theorem 1 that, for each x, there exists a constant a = a(x) so that

(3) |Kk(x, t)| ≤ a(x)|λm(1
2 )||t| for all t.

18



Here, λm(1
2 ) is the largest eigenvalue less than 1 of A

k,
1
2

. It follows that, for j = 1, . . . , k−1, ( d/dt)jKk(x, t)

is (piecewise) continuous in t and decays exponentially as |t| → ∞. Hence, if f has a locally integrable k–th
derivative of power growth, then

E(x) :=

∫ ∞

−∞

Kk(x, t)f (k)(t) dt/(k − 1)!

defines a function E on R which vanishes at ZZ. Further, for x /∈ ZZ, we can evaluate E(x) by repeated
integration by parts, obtaining

E(x) = (−)k−1

∫ ∞

−∞

(d/ dt)k−1Kk(x, t)f (1)(t) dt/(k − 1)!.

But, since

(−)k−1( d/dt)k−1Kk(x, t)/(k − 1)! = (x − t)0+ −
∑

ν

(ν − t)0+Lk(x − ν),

we obtain that

E(x) =

∫ ∞

−∞

[(x − t)0+ −
∑

ν

(ν − t)0+Lk(x − ν)f (1)(t)] dt

= f(x) −
∑

ν

f(ν)Lk(x − ν) = f(x) − (Skf)(x).

Theorem 2. Let k = 2m + 1 be odd. If f has k − 1 locally absolutely continuous derivatives on R and f (k)

is of power growth at ±∞, then

(4) f(x) = (Skf)(x) +

∫ ∞

−∞

Kk(x, t)f (k)(t) dt/(k − 1)!

with Kk given by (2.6). Further

|Kk(x, t)| ≤ a(x) exp(−bk|t|)

for some function a and some positive constant bk, and, for k ≥ 3,

sign Kk(x, t) = (−)mω(x)ω(t − 1
2 )

with ω(r) := sign sin rπ.

Specific choices for f in (4) give much information about Kk, much as in the discussion of K2m in [17].
E.g., f(x) := sin νπx vanishes at ZZ and is bounded, hence Skf = 0 and (4) gives

(5) sin νπx = (−)m(νπ)2m+1

∫ ∞

−∞

K2m+1(x, t) cos νπt dt/(2m)!.

If we choose f(x) := xk/k!, then f (k) = 1 and f − Skf is known to be equal to the k–degree Bernoulli
monospline Bk/k! (see [15, Lecture 4, §6C]), therefore

(6)

∫ ∞

−∞

K2m+1(x, t) dt/(2m)! = B2m+1(x)/(2m + 1)!, all x ∈ R.

Finally, Hölder’s inequality gives at once the following corollary.
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Corollary. If f ∈ IL
(k)
∞ (R) with k = 2m + 1, then, for any particular x,

f(x) − Skf(x) ≤ ‖f (k)‖∞

∫ ∞

−∞

|Kk(x, t)| dt/(k − 1)!

with equality iff either x ∈ ZZ (in which case both sides vanish) or

(7) f (k)(t) = (−)mω(x)‖f (k)‖∞ω(t − 1
2 ).

One function f satisfying (7) is a shifted version of the k–th degree Euler spline (see [15, Lecture 4,
§6B]). To recall, the k–th degree Euler spline Ek is a particular cardinal null spline, an eigenspline belonging
to the eigenvalue −1, and normalized to satisfy

Ek(ν) = (−)ν , all ν ∈ ZZ.

It has its knots at ZZ + (k + 1)/2, i.e., at ZZ since we took k = 2m + 1, and, being an eigenspline with
eigenvalue −1, must satisfy

Ek(x + 1) = −Ek(x), all x ∈ R,

therefore
Ek(ν + 1

2 ) = 0, all ν ∈ ZZ

E
(k)
k (x) = (−)m‖E

(k)
k ‖∞ω(x).

It follows that f(x) := Ek(x − 1
2 ) has 0 for its cardinal spline interpolant and, except for the factor ω(x),

satisfies (7), hence

(8) ω(x)E2m+1(x − 1
2 ) = ‖E

(2m+1)
2m+1 ‖∞

∫ ∞

−∞

|K2m+1(x, t)| dt/(2m)!.

Theorem 3. Let k = 2m + 1. If f ∈ IL
(k)
∞ (R), then

|f(x) − Skf(x)| ≤
|Ek(x − 1

2 )|

‖E
(k)
k ‖∞

‖f (k)‖∞

and this inequality is sharp since it becomes equality for f = Ek(· − 1
2 ). Moreover, if, for some x /∈ ZZ and

for some f ∈ IL
(k)
∞ (R) with ‖f (k)‖∞ ≤ 1,

|f(x) − Skf(x)| = |Ek(x − 1
2 )|/‖E

(k)
k ‖∞,

then f must be of the form

f = ±Ek/‖E
(k)
k ‖∞ + p

for some polynomial p of degree < k.
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Part D. A proof of Kolmogorov’s theorem

1. The Euler splines and statement of Kolmogorov’s theorem. We already discussed the
Euler splines in Section 3 of Part C, referring the reader to Schoenberg [15, Lecture 4] for background and
proofs. For k = 0, 1, 2, . . ., the Euler spline Ek is the unique spline function of degree k with simple knots at
ZZ + (k + 1)/2 satisfying

(1) Ek(ν) = (−)ν for all ν ∈ ZZ,

(2) ‖Ek‖∞ ≤ 1.

Except for the name “Euler spline”, these functions are very well known, their polynomial components
being essentially the classical Euler polynomials. Our conditions normalize these functions in a way that is
convenient for our purpose. In Schoenberg [16], the reader will find a direct recursive derivation of the Ek.

The function Ek(x) is a kind if stylized version of cos πx to which it converges as k → ∞. Its sign
structure is described by the inequalities

(3) (−)ν+⌊(j+1)/2⌋E
(j)
k (x) > 0 in

{
ν − 1

2 < x < ν + 1
2 if j is even

ν < x < ν + 1 if j is odd.

In particular, we find that for the supremum norm we have

(4) ‖E
(j)
k ‖∞ = (−)⌊(j+1)/2⌋





E
(j)
k (0) if j is even,

j = 0, . . . , k.

E
(j)
k (1

2 ) if j is odd,

For convenience, we write

(5) ‖E
(j)
k ‖∞ =: γk,j (j = 0, . . . , k).

These are rational numbers expressible in terms of the Euler numbers, and in particular γk,0 = 1 by (1) and
(2).

We also need the class

(6) IL(k)
∞ (R) := {f ∈ C(k−1)(R) : f (k−1) satisfies a Lipschitz cond. on R}.

Evidently, Ek ∈ IL
(k)
∞ (R). By ‖f‖∞ we mean the essential supremum of f on R.

Theorem of Kolmogorov [8]. If f ∈ IL
(k)
∞ (R) is such that

(7) ‖f‖∞ ≤ ‖Ek‖∞ and ‖f (k)‖ ≤ ‖E
(k)
k ‖∞,

then

(8) ‖f (j)‖∞ ≤ ‖E
(j)
k ‖∞ for j = 1, . . . , k − 1.

The right sides of (8) are the best constants for each j because the Euler spline Ek satisfies the conditions
(7) and also the conclusions (8) with the equality signs. Note the Corollary 2 in Section 3 where it is shown
that in a certain sense the Euler splines are the only functions for which we can have equality in (8), even
for a single value of j.

In Section 2, we derive certain approximate differentiation formulae. These are applied in Section 3 to
establish Kolmogorov’s theorem. In Section 4, we establish the needed properties of the formulae of Section
2. Finally, in Section 5, we give a characterization of these differentiation formulae.
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2. Some approximate differentiation formulae. In this section, we consider a cardinal Green’s
function K of order k which fails to be a spline function only because we require

(1) jump αK(k−j−1) = (−)k−j

for

(2) α :=

{
0, j even,
1
2 , j odd.

More explicitly, except for the jump condition (1), K is a spline function of order k with simple knots at ZZ
and vanishes at ZZ + τ where

(3) τ :=

{
1
2 , k even,
0, k odd.

This choice of τ was explicitly excluded in Theorem C1 since it would allow bounded eigensplines, viz the
Euler splines Ek already used in Part C and again in the previous section. This exclusion was the subject
of the remark following Theorem C1. The required “additional freedom” for K mentioned there is provided
here by the condition (1).

Theorem 1. Let k ≥ 2, and let 1 ≤ j ≤ k − 1. There exists a unique function K on R with the following
three properties:

(i) K is a spline function of order k with simple knots at ZZ except that

jump αK(k−j−1) = (−)k−j ,

with α = 0 or 1
2 as j is even or odd.

(ii) K vanishes at ZZ + τ , with τ = 1
2 or 0 as k is even or odd, except that K is not required to vanish

at τ in case j + 1 = k as then K is not continuous at τ , by (i).
(iii) K ∈ IL1(R).

Theorem 1 will be established in Section 4. Observe that the inequalities 1 ≤ j ≤ k − 1 imply that

0 ≤ k − j − 1 ≤ k − 2.

Hence K fails to be in C(k−2)(R) and this is the reason why K is not a cardinal spline.
Let us now assume that Theorem 1 were established and use the function K as a kernel as follows: If

f ∈ IL
(k)
∞ (R) and if we integrate by parts repeatedly the integral

∫ ∞

−∞

K(x)f (k)(x) dx

and use the jump condition (1), we obtain the following corollary.

Corollary 1. For f ∈ IL
(k)
∞ (R),

(4) f (j)(α) =
∑

ν∈ZZ

Aνf(ν) +

∫ ∞

−∞

K(x)f (k)(x) dx

with

(5) Aν := (−)k−1 jump νK(k−1), all ν ∈ ZZ.

The derivation of this differentiation formula by integration by parts requires the following remark: Our
construction of K in Sec. 4 will prove that all derivatives K(ν)(x) (ν = 0, . . . , k − 1) decay exponentially as

x → ±∞. On the other hand, f ∈ IL
(k)
∞ (R) implies that the derivatives f (ν) (ν = 0, . . . , k) can be of power

growth at most at ±∞. This explains the vanishing of all “finite parts” at ±∞ and also the convergence of
the series in (4). Clearly, K and Aν depend also on k and j, but the values of k and j will be obvious from
the context.

In our application of Corollary 1 to a proof of Kolmogorov’s theorem, the following additional information
on the Aν and on K is vital.
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Theorem 2. We assume that k ≥ 4.
(i) For certain positive constants A and B,

(6) |K(r)(x)| < Ae−B|x| for all x ∈ R and for r = 0, . . . , k − 1.

(ii) The coefficients Aν of the formula (4) satisfy

(7) (−)ν+⌊(j+1)/2⌋Aν > 0

for all ν ∈ ZZ.
(iii) The kernel K of Theorem 1 satisfies the inequality

(8) (−)ν+⌊(k+1)/2⌋+⌊(j+1)/2⌋K(x) > 0 for x ∈ (ν − τ, ν + 1 − τ)

for all ν ∈ ZZ.
(iv) The kernel K is symmetric around α. Specifically,

(9) K(α + x) = (−)k−jK(α − x) for all x ∈ R\{0}.

By (7), the coefficients Aν alternate strictly in sign if k ≥ 4. If k = 2 or 3, this is no longer the case,
since then only a finite number of the Aν are 6= 0 (see [16]). By (8), the kernel K vanishes only at the points
ZZ + τ (with the exception mentioned in (ii) of Theorem 1) and alternates strictly in sign as we cross from
one unit interval to the next.

In the next section, we use Corollary 1 and Theorem 2 to establish Kolmogorov’s theorem and to describe
its extremizing functions. In Section 4, we establish Theorem 1 and Theorem 2 jointly by constructing K
and then applying the Budan-Fourier theorem to its two pieces.

3. A proof of Kolmogorov’s theorem. We retain the definitions

α :=

{
0
1
2

}
if j is

{
even

odd

}
, τ :=

{1
2

0

}
if k is

{
even

odd

}

introduced in the preceding section. Our earlier description (1.3) – (1.4) of certain properties of the Euler
spline then give that

(1) (−)ν+⌊(k+1)/2⌋E
(k)
k (x) > 0 on (ν − τ, ν + 1 − τ), for all ν ∈ ZZ

and

(2) (−)⌊(j+1)/2⌋E
(j)
k (α) = ‖E

(j)
k ‖∞ =: γk,j for j = 0, . . . , k.

We apply the differentiation formula (2.4) to the special function

f0 := (−)⌊(j+1)/2⌋Ek.

By (2),

(3) f
(j)
0 (α) = (−)⌊(j+1)/2⌋E

(j)
k (α) = γk,j > 0.

The interpolation property (1.1) shows that f0(ν) = (−)ν+⌊(j+1)/2⌋ and Theorem 2.(ii) shows then that

(4) Aνf0(ν) = |Aν | > 0 for all ν ∈ ZZ.

From (1) and (2), we find that

(−)ν+⌊(k+1)/2⌋+⌊(j+1)/2⌋f
(k)
0 (x) = γk,k > 0 on (ν − τ, ν + 1 − τ)
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for all ν ∈ ZZ, and Theorem 2.(iii) then shows that

(5) K(x)f
(k)
0 (x) = |K(x)|γk,k > 0 for x ∈ R\(ZZ + τ).

By (3), (4) and (5), the relation (2.4) becomes

(6) f
(j)
0 (α) =

∞∑

ν=−∞

|Aν | + γk,k

∫ ∞

−∞

|K(x)| dx.

If f is an arbitrary function in IL
(k)
∞ (R) satisfying the assumptions (1.7), we may also assume that

f (j)(α) ≥ 0, for if not we consider −f instead, which also satisfies all assumptions. Applying the differenti-
ation formula (2.4) to our f , we obtain from (1.7) that

(7)

0 ≤ f (j)(α) =

∞∑

ν=−∞

Aνf(ν) +

∫ ∞

−∞

K(x)f (k)(x) dx

≤
∑

ν

|Aν | + γk,k

∫ ∞

−∞

|K(x)| dx = f
(j)
0 (α),

the last equality following from (6). We have just shown that

(8) |f (j)(α)| ≤ |f
(j)
0 (α)| = γk,j .

If x0 is real and if we apply our result to f(x + x0 − α), then we obtain that |f (j)(x0)| ≤ γk,j and the
conclusion (1.8) is established.

Let us now assume that in (7) we have f (j)(α) = f
(j)
0 (α). This implies the equality of the two middle

terms of (7), and this we may write as

(9)
∑

ν

(|Aν | − Aνf(ν)) +

∫ ∞

−∞

{γk,k −
K(x)

|K(x)|
f (k)(x)}|K(x)| dx = 0.

By (1.7), we see that all terms of the series are nonnegative, and so is the integrand almost everywhere.
From (4), we conclude that

Aνf(ν) = Aνf0(ν) for all ν ∈ ZZ

and (5) shows that

K(x)f (k)(x) = K(x)f
(k)
0 (x) for almost all x.

Therefore

(10) f(ν) = f0(ν) for all ν, f (k) = f
(k)
0 a.e. .

Integrating the last relation k times, we conclude that f and f0 may differ only by a polynomial of degree
< k, and the first relations (10) show that this polynomial is identically zero. Hence

(11) f = (−)⌊(j+1)/2⌋Ek.

This completes our proof of Kolmogorov’s theorem and also a proof of
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Corollary 2. Let f satisfy the assumptions (1.7) and therefore also the conclusions (1.8). If, for some value
of j ∈ [1, k− 1], the equality sign holds in (1.8), and if the extremum ‖f (j)‖∞ = γk,j is attained in the sense
that

(12) |f (j)(x0)| = ‖f (j)‖∞ for some x0,

then f is necessarily of the form

(13) f(x) = ±Ek(x − c).

Remarks. (i) Since we have used Theorem 2 in our proof, we have also implicitly assumed that k ≥ 4.
For the elementary cases when k = 2 and 3 see [16]. Corollary 2 is valid also for k = 3, but requires a special
proof given in [16, §8]. For a discussion of the extremizing functions in the weak sense (when there is no x0

satisfying (12)) see [16, §8].

(ii) For the case j = 1, Kolmogorov proved the stronger result: If f ∈ IL
(k)
∞ (R), and a, b and c are such

that the function g(x) := aEk(bx + c) satisfies ‖g‖∞ = ‖f‖∞, ‖g(k)‖∞ = ‖f (k)‖∞, and g(x0) = f(x0), then
|g(1)(x0)| ≥ |f (1)(x0)|.

(iii) For the general formulation of Kolmogorov’s theorem see, e.g., [16, §6].

(vi) For the special case k = 4, j = 1, we find that α = 1
2 and jump αK(2) = −1. This shows that the

right hand side of (1.13) in Lecture 9 of [15] has the wrong sign as does the first line of the right hand side
on (1.21) in the same section.

4. A proof of Theorems 1 and 2. The proof is divided into six parts.

(α) A proof of the unicity of K. If we have two functions, K1 and K2 say, satisfying the conditions
of Theorem 1 for the same k and j, then, in forming their difference

S := K1 − K2,

the discontinuity in the (k − j − 1)st derivative at α cancels out, and we conclude that S is a spline of order
k with simple knots at ZZ, and vanishes at ZZ + τ ; in short, S is a cardinal nullspline. Hence, with

S(x) :=

{
(S(x), . . . , S(k−2)(x)/(k − 2)!), if τ = 0,
(S(x), . . . , S(k−1)(x)/(k − 1)!), if τ = 1

2 ,

we infer from Part B that

S(ν + τ) =

q∑

i=p

ci(−λi(τ))νu(i,τ), all ν ∈ ZZ,

for a certain basis (u(i,τ))i and a certain strictly decreasing positive sequence (λi(τ))i. On the other hand,
S must be in IL1(R) since both K1 and K2 are, by assumption (iii). Therefore, letting ν → ∞, we see that
ci = 0 for all i with λi(τ) ≥ 1, while, letting ν → −∞, we see that ci = 0 for all i with λi(τ) ≤ 1. In short,
S = 0.

(β) A proof of the symmetry relation (iv) of Theorem 2. We are to show that the unique K
of Theorem 1, if it exists, must satisfy

(1) K(α + x) = (−)k−jK(α − x) for all positive x.

For this, define K1 by

K1(α + x) := (−)k−jK(α − x) for all x 6= 0.
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Then K1 is in IL1(R) since K is, K1 vanishes at ZZ + τ since K does, and K1 is a spline of order k with knots
at ZZ, K having this property, except for the discontinuity in the (k − j − 1)st derivative at α. But

jump αK
(k−j−1)
1 = K

(k−j−1)
1 (α+) − K

(k−j−1)
1 (α−)

= (−)k−j(−)k−j−1{K(k−j−1)(α−) − K(k−j−1)(α+)}

= jump αK(k−j−1) = (−)k−j ,

so that K1 also satisfies the jump condition (2.1). But now (1) follows from the unicity of K just proven.

(γ) A proof of existence of K when k is odd. Motivated by the symmetry (1), we actually
construct K by determining a spline function S in IL1[α,∞) of order k with simple knots at the positive
integers which vanishes at ν + τ for all nonnegative integers ν, and which satisfies

(2) S(r)(α+) = (−)k−jδr,k−j−1/2 for r =

{
0, 2, . . . , k − 3 if j even
1, 3, . . . , k − 2 if j odd

Any such S will give rise to a K of the required sort by

(3) K(x) :=

{
S(x) x > α
(−)k−jS(2α − x), x < α

with the conditions (2) guaranteeing that

jump αK(r) = (−)k−jδr,k−j−1 for r = 0, . . . , k −

{
2

1

}
if α =

{
0
1
2

}
.

Since k is odd, τ = 0, i.e., S is to vanish at its knots 1, 2, . . .. With

S(x) := (S(x), . . . , S(k−2)(x)/(k − 2)!)

as in Part B, the condition that S have simple knots at the positive integers and vanish at these implies that

(4) S(ν + 1) = (−Ak)νS(1) for ν = 1, 2, 3, . . . ,

where Ak is the matrix described in Section B2. Hence, S is determined on [1,∞) once we choose S(1). In
particular, with (u(i))k−2

1 a complete eigenvector sequence for Ak corresponding to the decreasing eigenvalue
sequence (λi)

k−2
1 , any S(1) of the form

(5) S(1) =
k−2∑

i=m+1

ciu
(i)

will give rise to an S in IL1[1,∞) since λi < 1 for i > m := ⌊k/2⌋ (see Theorem B1). On the other hand,

(6) S(r)(α+) =
k−2∑

i=r

S(i)(1)(α − 1)i−r/(i − r)! + S(k−1)(1−)(α − 1)k−1−r/(k − 1 − r)!

for r = 0, . . . , k − 1, so that, with the choice (5) for S(1), (2) constitutes an inhomogeneous linear system of
(k − 1)/2 equations in the

k − 2 − m + 1 = (k − 1)/2

unknowns cm+1, . . . , ck−2 and S(k−1)(1−).
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We are therefore assured of the existence of exactly one solution (necessarily nontrivial) in case the
corresponding homogeneous equations have only the trivial solution. But that is certainly so here, since a
nontrivial solution would give rise via (3) to a cardinal nullspline in IL1(R), a possibility already rejected
when proving unicity.

We conclude that (2), considered via (5) and (6) as a linear system for cm+1, . . . , ck−2 and Sk−1(1−),
has exactly one solution, proving the existence of K for this case.

(δ) A proof of Theorem 2 when k is odd. We obtain the exponential decay as described in (i)
of Theorem 2 at once from (4) and (5) above with e−B = λm+1. As to (ii) and (iii), we begin with the
observation that roughly half the numbers S(α), . . . , S(k−1)(α+) vanish. Precisely, as we saw in the existence
proof, (2) comprises (k − 1)/2 equations all but one being homogeneous, hence (k − 3)/2 of the k numbers
S(α), . . . , S(k−1)(α+) must be zero. Therefore,

(7) S−(S(α), . . . , S(k−1)(α+)) ≤ k − 1 − (k − 3)/2 = m + 1,

with m := ⌊k/2⌋ = (k − 1)/2 as before. Let now p + 1 be the smallest integer ≥ m + 1 for which cp+1 6= 0
in (5). Then

S(ν) = (−λp+1)ν−1cp+1u
(p+1) + o((λp+1)ν−1) as ν → ∞,

therefore, by the Corollary to Theorem B1,

(8) S+(S(ν), . . . , S(k−1)(ν−)) = p + 1 ≥ m + 1 for ν near ∞.

But, on (α, ν), S is a spline of order k with simple knots only, and with at least as many zeros as knots, and
all these zeros must be isolated since, by (ii) of Theorem B1 and by (5),

S−(S(1)(ν), . . . , S(k−2)(ν)) ≥ p ≥ m > 0 for ν = 1, 2, . . . ,

hence S cannot vanish identically on a positive interval. Also, S is not just a polynomial of degree < k − 1
since S 6= 0. Therefore, from the Budan–Fourier theorem for splines, and from (7) and (8) we have for ν
near ∞ that

(9)

ZS(k−1)(α, ν) ≤ number of active knots of S in (α, ν)

≤ number of knots of S in (α, ν)

≤ ZS(αν)

≤ ZS(k−1)(α, ν) + S−(S(α), . . . , S(k−1)(α+))

− S+(S(ν), . . . , S(k−1)(ν−))

≤ ZS(k−1)(α, ν) + (m + 1) − (m + 1)

= ZS(k−1)(α, ν),

showing that equality must hold in all inequalities used to establish this string of inequalities.
We harvest the fruits of this statement one at a time. Equality in (7) implies that all entries of the

sequence S(α), . . . , S(k−1)(α+) not explicitly set to zero by (2) must be nonzero and alternate in sign. Since
we know that

S(k−j−1)(α+) = (−)k−j/2,

we therefore know that

(10a) (−)k−j−rS(k−j−2r)(α) > 0 for r = 1, 2, . . .

and

(10b) (−)k−j+rS(k−j+2r)(α+) < 0 for r = 0, 1, 2, . . . .

27



If now j is odd, then α = 1
2 and k − j is even and (10a) implies that

(11) (−)(k−j)/2S(1
2 ) > 0 for j odd.

Further, k − 1 = k − j + 2r with r = (j − 1)/2, hence (10b) gives that

(12) (−)(j−1)/2S(k−1)(1
2 ) < 0 if j is odd.

If, on the other hand, j is even, then α = 0 and k − j is odd, and 1 = k − j − 2r with r = (k − j − 1)/2, so
(10a) implies (for r ≥ 1) that −(−)(k−j−1)/2S(1)(0) > 0, therefore

(13) (−)(k−j−1)/2S(1
2 ) > 0 for j even,

since this follows directly in case j = k − 1. Also, k − 2 = k − j + 2r with r = (j − 2)/2, so
−(−)(j−2)/2S(k−2)(0) < 0 by (10b), hence

(14) (−)j/2S(k−1)(0+) > 0 for j even.

Further, since the number of active knots of S in (α, ν) must equal the number of zeros of S(k−1) there,
it follows that S(k−1) changes sign strongly across each integer 1, 2, 3, . . .. But then K(k−1) must change sign
strongly across each ν ∈ ZZ: This is obvious in case α = 1

2 ; but it is also true in case α = 0 for then j is

even, hence k − j is odd, and therefore all even derivatives of K are odd around α = 0, hence K(k−1) is odd
around α = 0, showing that K(k−1) changes sign strongly also across α = 0. It follows that

AνAν+1 < 0 for all ν ∈ ZZ

and it remains only to show (2.7) for a particular value of ν, say for ν = 1, in which case (2.7) asserts that

(−)⌊(j+1)/2⌋ jump 1K
(k−1) < 0.

But that is now a consequence of the fact that, by (12) and (14),

(−)⌊(j+1)/2⌋S(k−1) > 0 on (0, 1).

Finally, even counting multiplicities, S must have exactly as many zeros in (α, ν) as it has knots, hence S
changes sign strongly at all positive integers and nowhere else in (α,∞). K therefore changes sign at the
integers and nowhere else: This is clear for α = 1

2 . But it is also true for α = 0, since then, as we just said,
K must be odd around 0, hence must change sign strongly across 0. It remains to verify (2.8) for some ν,
say for ν = 0, in which case (2.8) asserts that

(15) (−)⌊(k+1)/2⌋−⌊(j+1)/2⌋K > 0 on (0, 1). thefirst⌊h⌋asonlyone),butIputintwo

But ⌊(k + 1)/2⌋ = (k + 1)/2. Further, for odd j, ⌊(j + 1)/2⌋ = (j + 1)/2 while, by (11), (−)(k−j)/2K > 0
on (0, 1), proving (15) for this case. If, on the other hand, j is even, then ⌊(j + 1)/2⌋ = j/2 while, by (13),
(−)(k+1−j)/2K > 0 on (0, 1), thus proving (15) for this case, too.

This proves all assertions about K made in Theorem 2, for odd k.

(ε) A proof of existence of K when k is even. In this case, it becomes convenient (and perhaps
more diverting) to construct K in the form

(16) K(x) :=

{
(−)k−jS(2α − x), x > α

S(x) , x < α
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with S a spline of order k in IL1(−∞, α] with simple knots at the nonpositive integers and which vanishes
at ν + 1

2 for all negative integers ν and satisfies

(17) S(r)(α−) = −(−)k−jδr,k−j−1/2 for r =

{
1, 3, . . . , k − 3 if j even

.
0, 2, . . . , k − 2 if j odd.

As S is to vanish at ν + τ for −ν ∈ IN and τ = 1
2 , we recall from Sec. B3 the abbreviation

S(x) := (S(x), . . . , S(k−1)(x)/(k − 1)!),

in terms of which then

(18) S(ν − 1
2 ) = (−Ak,τ )νS(− 1

2 ), ν = −1,−2, . . . ,

where Ak,τ is the matrix described in Section B3. Hence, S is determined on (−∞,− 1
2 ] once we have

chosen S(− 1
2 ). In particular, with (u(i,τ))k−1

1 a complete eigenvector sequence for Ak,τ corresponding to the

decreasing eigenvalue sequence (λi(τ))k−1
1 , any S(− 1

2 ) of the form

(19) S(− 1
2 ) =

m−1∑

i=1

ciu
(i,τ)

gives rise to an S in IL1(−∞,− 1
2 ], since λi(τ) > 1 for i < m := ⌊k/2⌋ and τ = 1

2 , by Theorem B2 or by the
Corollary to Theorem B3. On the other hand,

(20) S(r)(α−) =

k−1∑

i=r

S(i)(− 1
2 )(α +

1

2
)i−r/(i − r)! + S(k−1)(0+)αk−1−r/(k − 1 − r)!

for r = 0, . . . , k, so that, with the choice (19) for S(− 1
2 ), (17) constitutes an inhomogeneous linear system of{

m−1
m

}
equations for

{
even
odd

}
j in the unknowns c1, . . . , cm−1, and also in S(k−1)(0+) in case α 6= 0. Hence, in

terms of (19) and (20), (17) constitutes an inhomogeneous linear system in as many unknowns as equations
and is therefore uniquely solvable (since a nontrivial solution to the homogeneous system would give rise to
a nontrivial null spline in IL1(R), an impossibility.) This proves the existence of K when k is even.

(ζ) A proof of Theorem 2 when k is even. The argument parallels closely that given when k
is odd. The exponential decay is again obvious from the construction. Further, Equations (17) set to zero{

m−2
m−1

}
terms in the sequence S(α), . . . , S(k−1)(α

−) for
{

even
odd

}
j. Hence, choosing the sign of these zeros to

alternate in conjunction with the nonzero term S(k−j−1)(α−), we see that

(21) S+(S(α), . . . , S(k−1)(α−)) ≥

{
m − 2

m − 1

}
for j

{
even

odd

}
.

Also, with p − 1 the largest integer ≤ m − 1 for which cp−1 6= 0 in (19), we have

S(ν − 1
2 ) = (−λp−1(τ))νu(p−1,τ) + o((λp−1(τ)ν ) as ν → −∞.

Therefore, by Theorem B2. (iii),

(22) S−(S(ν − τ), . . . , S(k−1)(ν − τ+)) = p − 2 ≤ m − 2

for all integers ν near −∞. Further, on (ν−τ, α), S is a spline of order k (and certainly not just a polynomial
of degree < k − 1) with simple knots at ν − 1, ν − 2,. . . ,−1, and also at 0 in case α = 1

2 , i.e., when j is
odd, and nowhere else, while S vanishes in (ν − τ, α) at ν − 1 − 1

2 , . . . ,− 1
2 . Since these zeros are necessarily

isolated, we have

number of knots of S in (ν − τ, α) ≤ ZS(ν − τ, α) +

{
0

1

}
for j

{
even

odd

}
.
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The Budan–Fourier theorem for splines, and the inequalities (21) and (22) now give, with β := ν − τ and ν
near −∞,

(23)

ZS(k−1)(β, α) ≤ number of active knots of S in (β, α)

≤ number of knots of S in (β, α)

≤ ZS(β, α) +

{
0

1

}

≤ ZS(k−1)(β, α) + S−(S(β), . . . , S(k−1)(β+))

− S+(S(α), . . . S(k−1)(α−))

≤ ZS(k−1)(β, α) + m − 2 −

{
m − 2

m − 1

}
+

{
0

1

}

= ZS(k−1)(β, α)

showing that equality must hold in all inequalities used to establish this string of inequalities.
In particular, S changes sign strongly across ν + 1

2 for each negative integer ν, and changes sign nowhere
else in (−∞, α). K must therefore change sign strongly across ν + 1

2 for each ν ∈ ZZ and nowhere else,

which reduces the proof of (iii) to checking (2.8) for ν = 0. Also, S(k−1), and therefore K(k−1), changes sign
strongly across each knot, which reduces the proof of (ii) to checking (2.7) for ν = 0. But since there must
be equality in (21), and since K(α + x) = (−)k−jK(α − x), we have with A.1.(1) that

S−(K(α), . . . , K(k−1)(α+)) = k/2 +

{
1

0

}
for j

{
even

odd

}
.

This forces the k − m +
{

2
1

}
of the k terms K(α), . . . , K(k−1)(α+) not explicitly set to zero by (17) to be in

fact nonzero and to alternate in sign, and the verification of (ii) and (iii) proceeds from this and from the
fact that

(−)k−jK(k−j−1)(α+) > 0

much as in the case k odd.

5. A characterization of the differentiation formulae of §2. If α and τ are defined by (2.2) and

(2.3), 1 ≤ j ≤ k − 1, and f ∈ IL
(k)
∞ (R), then we know that

(1) f (j)(α) =
∑

ν∈ZZ

Aνf(ν) +

∫ ∞

−∞

K(x)f (k)(x) dx.

Here K(x) is the kernel of Theorem 1, having the properties

(2) K(τ + ν) = 0 if ν ∈ ZZ,

and

(3) jump αK(k−j−1) = (−)k−j .

Let us first assume that

(4) j ≤ k − 2.

Since K ∈ C(R), it follows that we can write (1) in the form

(5) f (j)(α) =
∑

ν∈ZZ

Aνf(ν) +

∫ ∞

−∞

K(x) df (k−1)(x)

where we interpret the remainder as a Stieltjes integral. Then (5) is surely valid if we only assume that

f ∈ IL
(k−1)
∞ (R), where f (k−1) is uniformly locally of bounded variation, meaning that the total variation of

f (k−1) on the interval [a, a + ℓ] is bounded for every fixed ℓ and all a. This is surely the case if

(6) f ∈ $k,τ+ZZ ∩ IL(k−1)
∞ (R).

In this case, f (k−1) is a step–function with jumps at τ + ZZ, and (2) shows that the remainder term of (5)
vanishes because of (4).
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Lemma 1. If (6) holds then

(7) f (j)(α) =
∑

ν∈ZZ

Aνf(ν),

where in case that

(8) j = k − 1, hence α = τ,

we interpret f (k−1)(α) = f (k−1)(τ) to mean

(9) f (k−1)(α) = f (k−1)(α) := (f (k−1)(α+) + f (k−1)(α−))/2.

Proof: Since the case when (4) holds has already been established before stating the lemma, we
may assume (8) to hold, and are to show that

(10) f (k−1)(α) =
∑

ν∈ZZ

Aνf(ν).

The only difficulty is that by (3), or jump αK = −1, the Stieltjes integral in (5) is not defined. However, it
is defined if

(11) the point x = α(= τ) is not an active, or actual, knot of the spline.

In this case again (10) holds.
Let us remove the restriction (11). Observe that, whatever the parity of k may be, the Euler spline

Ek−1(x − 1
2 ) has its knots at τ + ZZ, and jump τE

(k−1)
k−1 6= 0. It follows that for some appropriate constant c

the spline
f0(x) := f(x) − cEk−1(x − 1

2 )

will satisfy the condition (11). Moreover, Ek−1(ν − 1
2 ) = 0 (ν ∈ ZZ) and therefore f(ν) = f0(ν) for all ν. It

follows that f(x) = f0(x) + cEk−1(x − 1
2 ) has the property that

f (k−1)(α) = f
(k−1)
0 (α) + cE

(k−1)
k−1 (α − 1

2 )

=
∑

ν∈ZZ

Aνf0(ν) + 0 =
∑

ν∈ZZ

Aνf(ν),

which proves (10).

We may now establish the

Theorem 3. The differentiation formula (7) is the unique diff. formula having absolutely summable coeffi-
cients Aν and which is valid for all splines f(x) satisfying (6).

Proof: Suppose that also the formula

(12) f(j)(α) =
∑

ν∈ZZ

A′
νf(ν)

shares all these properties with (7). Subtracting them and setting Ãν = Aν − A′
ν , we conclude that

(13)
∑

ν

Ãνf(ν) = 0

for all f satisfying (6). If we apply (13) to the sequence of B-splines (see, e.g. [15, p. 11])

f(x) = Qk(n − x + τ) (n ∈ ZZ)

we obtain that

(14)
∑

ν∈ZZ

ÃνQk(n − ν + τ) = 0 (n ∈ ZZ).

This shows that the cardinal spline g :=
∑

ν∈ZZ ÃνQk(· − ν) of order k vanishes at ZZ + τ while also, by

assumption on the Ãν , being in IL1(R). But this implies, as in the proof of unicity of K (see Section 4.(α)

above) that g = 0, therefore Ãν = 0, for all ν.
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