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ON CALCULATING WITH B-SPLINES
II. INTEGRATION

Carl de Boor, Tom Lyche, and Larry L. Schumaker

This paper is a continuation of the paper r1] of the
same name by the first author in which it is shown how
values of B-splines and their derivatives can be computed
by stable algorithms based on recursions involving only
convex combinations of nonnegative gquantities (cf. also
Cox 3] ). In this paper we consider integrals of B-spli-
nes and of B-spline series, In addition, we derive recur-
sions for the computation of integrals of products of
B-splines (of possibly different orders and on possibly
different knot sequences). As an application, we consider
the numerical computation of the Gram matrix which arises
in least squares fitting using B-splines.

§ 1. Introducticn

We begin by introducing some basic notation. Let k be
a positive integer, and suppose x denotes a biinfinite se-
quence of real numbers

(1.1) veree £ X_5 £ X_q S X, S XS aenann

o}
with at most k values equal to each other (i.e., Xy < Xy.p

for all i).
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We define mese recursions are proved by applying Leibniz's rule

for the st divided difference of a product of two func-
vx|4
+

(1.2) om.u.mﬁdv 1= ﬂx»."...xu+uuﬁmc&vw|4 .

tlons to the functlon Amndvmnm (s-t) = (s-t . Because

k

When there is no chance of confusion, we shall usually of the support properties of the Du.u. the value of

suppress the x subscript on the symbol DM 3 x* Except
rJar A

k

an (t) can be computed recursively by forming only
1 1s the B-spline of order . L5l
r

for normalization factors, Q
sonnegative combinations of nonnegative quantities.
k which is positive on Axu.xu+wv and 1s zero outside

[%4,%;,]. Specifically,
§ 2. Integrals of B-splines.

wﬁ '
(1.3) ZH.W = k DH.W

In this sectiocn we are interested in computing

is the B-spline normalized to have unit integral while values of Hmow.uﬁﬂva& for given 0 <« J £« m < k and ¢ < d.

k

: here J = m, we begin
= - gince the most interesting case 1s w y
(1.4) Ny x (% xuvow.w

vith 8 lemma concerning it. As it is somewhat more conven-
is the B-spline normalized so that I N
1

For J < k, DM 3 1s a polynomial spline which is useful
L3

= 1,
ik {ent to work with a normalized B-spline, we define

: o = o Q™ (t)at = [¢ M, _(t)at
constructing a basis for natural splines (see e.g. 15,91} (2.1) HMAo.nv mfe DH_Eh ) [e H.BA )

k

It is easily seen that oH.u is positive on (- nyw+uv

tpMA 2.1. For any 1 < m s k,
and 1s zero on Axp+u.Q&. We note that

(2.2) If(e,d) =2 Ny, 4(d) - B Ny 4(c).
(1.5) Q) 1(¢) .@:xui-xt Tow Xy & % « Ky ok &

0 otherwise.

Moreover, 1t is known (cf. 1,91) that proof: First, we observe that

(1.6) @f 4(t) = Qf7I 4 (8) + (x;,-t30¥"](w),

an\n«vzw.s+4ﬁdv AQ\Q&VAﬁHH+A.....xH+E+4u (s |de

m
and if x; < Xi4y, |ﬁNH.....NH+BuA. -t), )

m- 1
o[ Xy qreeerXyypyq] (02 )0

(1.7) ow.u?v - ?-xtow”w-é?T?T%SowﬂLLT& . S TP TR S ORI S L

Axu+u - %)

ZH.EAdV - 3H+4.Ehdv"
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and hence,

z».s+4Anv z».B+4on oy %m azH.BA&v T z»+J.BAavua¢.

Thus,

Hon.nv m %M 3H+4.5Advnd 4 z».s+aﬁnv zH.B+4nov.

Repeating this process until the M's no longer have sup-
port on (c,d) leads to (2.2).

Concerning the other type of B-splines, we have the
following result,

LEMMA 2.2. If 0 < J £ m-1 < k, then

d
AN.UV B.—.O H uAva..n T, DB+4AOV B+4AQ.V

Proof: Clearly, we have’

nf, »+u uAavnd = mXg ey Xy y) Hc»+u Amudvsu

- ﬁx».....xp+uuAmucvw a+4 (u) .

Subtracting the values for u = ¢ and u = d, we obtain
(2.3). m

The identity (2.3) is also true for j = m, provided
that Xy < X4omo and thus provides an alternative way of
computing integrals of the ordinary B-splines. The rels.
tion A»m generally not .na.rm for j = m and Xy = Xy.m 8ince

in this case we want to consider the integral to be 0,

while the right-hand-side may not be zero in view of the

;w” {2.8) T™(c,d) = Aolxuve%lgAo.nv+ﬁx»+sloveﬁ+4Ao d)
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fact that

(2.6) Qf*2(t) = (x, -'t)0

in this case.

To use Lemma 2.2, we may use the recursions of section
1 to compute the two B-splines, and then do the subtrac-
tion. It is also possible to derive a direct recursion in
vhich only nonnegative combinations of nonnegative quan-
tities appear, and for which no subtraction is needed at
the end. For convenience, we set

(2.5) 12(c,q) - afiale) - af*l(a)

LEMMA 2.3. For any ¢ < d,

1

 u I;(c,d

| .A AN.OV HHAO.QV " .__.A ’ mvu s Al b g un“_. < XH...;

; Axulov+ i Ax»snv+ » 1L x; = Xi4¢1 0
vhere

Annov\ﬁxu+a|x»v if xy s csds X441

4 wmwan 7) HAAo d) MM»+4|QV\AKH+41x»v if X{ & 9= Xj41 s @

: ;V 4 {(c,d) = uxHV\Ax»+4|va ifcsx <dsx X4 41
1 if c < Xiw Kyta s o
0 otherwise .

+
(X = xy)

+ (d-c)af (a),
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and hence, interchanging c and d in (2.8), als

Txd) = TPT0y,8) + (d-x)a? | (a).

-1
d-x, )T '(c,d)+(x, _~-d)T®" Ao nv :
(2.9) .H.M_Ao.av . (il : i+m i+1 - Yo, if we continue this process of reduction, we obtain
(x - x,;) : -1
i+m i m
(2.10) T{(x,,d) = I tdexy et (@)

> Aa-ovow.sﬁov.

¥hen X, < x, - this gives the value of 1™ (x d), and form-
1 +m 1\%404/,
Proof: The computation of H“_.Ao.av is easily carried out

ala (2.10) is exactly that of Gaffney r4), which, inciden-
using (1.5). Now if we use the recursion (1.7) in (2.5)]

o tally, provided the impetus for this paper,
we obta

§ 3. Integrals of B-spline expansions.

ewﬁo.nvAx»+E|xHV|Aonx»vow.BIAon+Ax»+anovD»+4 m-1(¢)
In this section, we consider the question of find- "
tag the indefinite or definite integral of a B-spline -

m
~(d-x0)Qy g (@)=, y-)0T, 1 g (@) A
- expansion of the form

=(c-x VHDH auéﬁovuo%.suéﬁavu +

: N
b B s(t) = T ey af (1) .

. u_.?n:.o

L 0.2) S(8) = [T s(wau . .
By the definition of divided difference and using (2,5) : _‘,..‘
again, we obtain (2.8). nn follows that S is a polynomial spline of order k+1 with f
e same knot sequence x as s. Thus, it can also be writ- Ry
We emphasize that the coefficients in front of all 4 Woas a linear combination of B-splines over the knot w
nonzero quantities in formulas (2.8) and (2.9) are nonne. ..ac.:om X, but of order k+1, of course.
gative. Coupled with (2.7), these recursions permit the & ;
stable evaluation of definite integrals of B-splines wim, P 3.1. If s is given by (3.1), then its indefinite ww_
out performing a subtraction of two other integrals, s..“ vegral S as in (3.2) is ot
We close this section by mentioning another formuly N
for computing the definite integral of a usual wnmvﬁu‘. R 808 |»Mnu4oM Cowﬁiﬁv » X4 st s XN+k

If we put ¢ = x; in (2.8), we obtain
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where ] X4k
(x ) e | oX x?vnd = 1/k
(3.4) oA...._v ol ) i e nu B x,
i x =1

| ve immediately obtain (3.5). m.
Proof: If S is given by (3.3), then N

The required Hwﬁm b) can be computed recursively by

G o (4)=k
St (t)=k M A 1) [9f (%) 441, k(1)1 nmAavLm o»ow.xﬁdr

i i ( ) 121 9. formula (2.8) for those in the first sum and formula
o Xioke1 = X4 e

By the linear independence of the Q's, the coefficients x ﬂu-«»os is essentially equivalent to two evaluations of
must agree, and (3.4) follows.®m .,

This lemma permits the evaluation of the definite {y
b

a ®? :
tions of the indefinite integral S(t). An alternate ap-

. 4, Inner products of B-splines,

tegral [, s(t)dt for any a < b in terms of two evaluae

We begin with the odmm.némﬁ,o: that

Y
proach to computing definite integrals is to use th b L J+1 om
g o fon ._.,AQ._.J:V m ,?.,_ Qi ,m,x(t)at

mulae of section 2. We have

LEMMA 3.2. Let p and r be such that Xp % 8 <x 2 l_m. 2 Quinv.uva ._. o» m x:vou A.M?vnﬁ '

Xp <D g x, 4. t..o the x and y subscripts on the Q's indicate the knot
!c.ucou over which they are defined (cf. section 1 )e

g- shows that the definite integral of a B-spline is

Then

-k
(3.5) [2 s(t)atedy 3 0, 1%(a,b)+ 3 o

max(1, cil_& v+._

famer products of B-splines of arbitrary orders on two
min(r,N}

5 ’ o»HMAm.UVu {pess1bly) different knot sequences.
max(p+1,r+1-k} ;

Proof: By the support properties of the Q's and the i : iu..n X,k and that y is a similar sequence with
that .
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(8.1) 135 = Mnuuﬂ.wq_?:. I ow.s.mﬁvow.:k?v& ’

Ab kv H uDB+5

m
.u = (=1) TX{peaesX 3,0,

i+m

It Xy = Xy OF %u = <u+b. we take H u = 0. We have in-

troduced the factorials in the definition (4.1) in oaaonw
to simplify certain recursions to be obtained for their ,
stable computation. The special case where the knot se-
quences x and y are one and the same is discussed in a

greater detail in the following section.

.m ¢:on B w XS and <u < <u+= S

Ve now give some recursions for the quantities TT

,n
- 5%

& 1M 4.1, Suppose 1 s m < k and 1 £ n £ h, Then
We now show that the integrals H u are closely cone &

ves n-1 eB|4 n

yn=1
ﬁx»+s|&uves P +A<u+=ux LR i

nected with certain divided differences. Let i+m

(4.2) 1Y u = T:s_.x».....x?a:_.vd.....wu;.._m?..sw;.., 4

;.,aqcpnmdwm when x

i, 1 t+4m = Yyen 804 ¥y < vy, 1)

i,3
<u - <u+: * In fact, we observe that

is well-defined as long as not both Xy = Xy, and S8

(x4-y)T 5 +@u+=-x»vss u: + T 7]

C(8.6) TS -

AEEL (Yy4n = ¥4)

2 v ow.a@% ' ¥4 = Vy4n +n 20, n
(4.3) T¢

u ha+s|4.

{table when < X, and
n V ou.bﬁva T Wit 7T B L : fnP||lll '3 » A I <u+sv ’

- I4.5 -1 -
GE x»veﬂ.u +Ax»+5..<uvn.wim_ eB.ML

To see the connection with the integrals IT s (8.7) .&.”w 3
g i u. uppose vy Axu+s & xuv

.nm:...ga when Xy < v.u and Xy <X

insert the function f(t) = (m-1)!(n-1)! om:w y(£)/(men-1)

in the well known formula (cf. e.g. 5])

»+Bv %

-1,n m,n-1

g : -1,n
Awu+= x»vaﬂ.u. +Ax»+sl<u+sv « oy 0 e HH.u

[(XyseeesXy I8 = [7 o» e xﬁvmﬁs:sn«\?kr :

Ax»...a = x»v

When then obtain :
1ﬁnnn-cwo when Yi4n < Xy,p and Xy < xu+sv .
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(We emphasize that the factors in front of the T's are ; .fﬂ section for the case x = y. We close this section by men-

always nonnegative whenever the T is nonzero, so that B _ tloning that recursions similar to those in Lemma 4.1 can
5 xw. . also be obtained for the expressions

only nonnegative combinations of nonnegative guantities

i ﬁo,,,

need ever be computed). .”....W ﬁ“w.a = (-1 vs;». 7o e .x“_.+su.d_.<u S .<u+sumﬁmn$mi

~ for general r.

L. § .

Proof: It will be enough to prove the first formula, a
the others are proved similarly. Using (1.7), we have,

. § 5. Computing the Gram matrix.

m+n

u.S.K.
A (t-y,)Q3* R0 (£)+ (v, ~£)Q5H 070 4 (1) w

A%u+5 -~ %uv

m
(=1) eu. u = _.xu......x»iuuo Let x: € soek xa be a sequence of real numbers

uw
39 at most k repetitions, and let Ho» x:IS._ be the

" gorresponding B-splines, Then in least squares approxima-

-k
coa by splines using the basis Ho»usm is necessary to

= [XgreeesXyinlt

Now, applying Leibniz's rule for the divided difference
of a product, (cf. [1]), we obtain

on.!._«o the matrix

bmlx

(1Y g4ny )45 =
% @Lv G = 35:.?54 ' o»uuhow.x?vow.x?vnd 3

A m+n-1 m+n-1
. A*H+E|<Uyﬂxpn o‘o -xu.#.suou -Nw';—#-—-xu-- oo. .xH-?BlJ uou-:-g

m+n-1

; \_‘ﬂ.ﬁng- matrix also arises in an algorithm mwu. computing
* (Vgen ™ gem) (Xgre e o 0Xg Qg0 noq=[Xg0 e e 0 Xy ypq) )

mtural interpolating splines; cf. mm.ﬂ.m . Clearly G
.ul_oﬁ.»o. and in view of the support properties of
¢ Q's, it is also banded, with o»u = 0 whenever
——uu_ x k.

a:f._ -
Duoa ,

P

Dividing through by A-4V5A<u+=-<uv and identifying terss

leads to equation (4.5). ® :

: ..uu this section we want to discuss several methods for

ting the matrix G, or what is equivalent, the matrix
 (144)

k,k 2k-1)! G
i,] * hllllPM 1,9 o

(k=1)!

upper indices on e u until we reach one of the onuo-,
(4.3), where values of ordinary B-splines are needed
These in turn can be computed conveniently using g._‘_

cursions given in section 1. We discuss the nnﬁw»u.u ° " faviev of (4.2), it is clear that the matrix I can be

4

.w!.n directly using divided differences. If the com-

carrying out this recursion for computing e» u in nwo
‘ tion is properly arranged, this can be accomplished
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in order zxm operations (cf.,e.g., (7]). This will be pere

fectly suitable if the order is not too high, and if the
spacing of the knots is relatively uniform. If not, the
definition of divided difference implies that numerical
difficulties may be encountered, (cf. the example in sece
tion 6).

As a second approach to computing the matrix I, we oy
utilize the recursions of section 4 with x = y . In viev

of (1.5), we observe that if Xy < X4, 4, then e

Log

0
I1,°5

1 1,1
g = Tty o A = )

The recursion may be carried out using only (4.7) and :
(4.8), where the first of these is used if j > i and nvt.“m.
second if J < 1. For J = i the choice depends on the myly
plicity of the knots; we use (4.8) in case X141 < Xt L8
(4.7) otherwise. T

With some care, it is possible to write a program te
carry out this algorithm. In section 6 we include an >:ﬂu
procedure for computing I. Since only positive combinge
tions of nonnegative quantities are computed, this me thedt w.
is extremely stable. The number of operations Hs<ow<oa»uA“m
of order Nk however. On the other hand, the computaties
provides the Gram matrices AH%HMV of all orders 1 s mg}
in the process of computing the Gram matrix of order X,
(A similar phenomenon occurs in the stable computation
of the collocation matrix ADMAXQVV using the recurrence
£9..2) Computation by divided differences can be carrief
out with order Nk operations while the recursions woaﬂra.
zxm. On the other hand, all of the collocation matrices
of lower orders are produced as intermediate results »n.
the recursions are used). 4

3

o
Catek _k
By o
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Finally, we want to mention a third method for comput-
ing the matrix I which is also stable, and also involves
order zxu operations. It is well-known that there exist

vo»:Mm.L nq;A...Aaqumsnvom»n»<ooomwhuo»m=dm
m>»u4 so that the Gaussian quadrature formula

k
- ~ 4
mré>»mAaHv % [, s(t)at

is exact for all polynomials g ¢ Qumx. Now if J > i, then

x
il A »+x-4x<+4x ¥
X, Xy

%t in each of these subintervals both 0¥ , and ow . &re
’ ’

polynomials of order k, so the product is a polynomial of
sorder 2k-1, Thus each of these pieces can be computed
exactly using the Gaussian quadrature formula obtained by
¢converting the interval ~x<.x<+éu into [0,1). The values
sf the Q's at the k points in this interval needed for

the quadrature formula can be computed using the B-spline
recursion (1.7); cf. the packages in r2)]. For convenience,
we include an ALGOL procedure for computing the least

squares matrix I using Gaussian quadrature in the follow-
ing section.

¥hen performing least squares fitting of a given func-
tion f by polynomial splines of order k, it is also neces-
mry to compute the integrals

k(B)E(t)dt, 1 = 4,..,,N,

*
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As these usually would have to be computed by a pcmawmdcz,
formula anyway, it seems likely that the use of Gauss qua.
drature to compute the least squares matrix is preferable

to the two methods metioned earlier for general knot se-
quences.

§ 6. ALGOL procedures for the Gram matrix.

In this section we give ALGOL procedures for compu-
ting the Gram matrix defined in section 5 using the recur-
rence method and the Gaussian quadrature method outlined
there.

We conclude this section by mentioning that with
equally spaced knots it is relatively easy to compute the
least squares entries by hand in view of the relative m»?T
plicity of the B-splines in this case. For comparison and

checking purposes, we list the HmmcHdm for orders k = 2 w,
L ]
with Xy = 4 =il bl N el

We begin with the recurrence method. The input to the
following procedure is:

n1 integer , the index of the first knot
n2 integer , the index of the last knot (with n2-nizk)

x integer , the order (degree +1) of the spline (k22)

2,1 2
(5.0 T o r s 2, B0 e

st 1,141 x arrayrnlin2], the knot sequence in increasing order
with Xy < Xy e 1=ty o ynl=ic,
(89 il el e ey >
R e » 130349 = 2/3
e output of the procedure is the array crnl:n2-k,0:k-1],
2 2 ~ where
15,4 = 1372 = 11/12 = 9.16666666666,- .
32 %o (t)a¥ (£)ae, Lwnt,s .. 2=k
12°5,5 = 1/12 = 8.33333333333, - -1)| al Leie o s
1,i+2 3333, gy ® gle-1) ! 4=0,1,...,min(k-1,n2-k-1)
R !
3.3 o r(k=1)17 0 otherwise
HH“H = 11/6 = 1,83333333333
3.3 procedure RR(n1,n2,k,x,c);
’
13’941 ™ 13/18 = 7.22222028229, - yalue n1,n2,k; integer n1,n2,k; array x,c
Begin
e S e integer k1;k1:=k-1;
~ begin
~ integer i,J,1,m,i1,12,31,11,12,m1,m2,n2m;
real xi,e;
array A(n1:n2,-k:k,1:k], Qrn1:n2,1:k],Df0:k1];
Dr0] := O

for i := n1 step 1 until n2 do
for 1 ;= 1 step 1 until k do
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begin
Q(i,1] := 0;
for j := -k step 1 until k do A[i,3,1] := 0
end zero; .
for m := 2 step 1 until k do 5

12:= n1-1i; if 12 < -m1 then 12 := -m1;
for J := 12 step 1 until -1 do
begin e := A[1+J,1-3,m1];

Ali,3,m] := e+A[i,3,m1 J+D[J+m]*(A[1+],-3,m1 ]-e)
end J;

begin ; A(1,0,m]) := if 12 = -1 then 2%A[1,1,m1]
ml i= m-1 ; m2 := m-2; n2m := n2-m; 3 else 2*A[1,0,m1]
for 1 := n1 step 1 until n2m do % end i;
= x[i+m] > x[1] then B MMIB < k then
begin ~. WM i
xi i= x[i+m]-x[1]; 41 1= 1415 P or i := n1 step 1 until n2m do
for J := 1 step 1 until m1 do “q for J := 1 step 1 until m do
D[J] := (x[1+3]-x[1]) /xi; : .Jmu.u.au t= A[1+3,-3,m]
12 := if x[i+m] > x[i+1] then -1 else 0; . ga
A(1,0,1] := Q[1,1] := if m = 2 then 1/xi St

else D[1] * Q[1i,1];
for J := 1 step 1 until m2 do
begin J1 := J+1; e := A[11,3-1,1];
OmH yJ1 u = DﬁHA .u.._.fUﬁUA .._*AD_“.._..Q-_ ulDHH\_ .u“_v"
Al1,3,1] := e+Q[1,31)+D[3]*(A[1,5,1])-e)
end Jj;
A(1,m,1] := Q(1,m1];
for 1 := 2 step 1 until m1 do .
begin 11 := 1-1; A[4i,-11,1] := D[1])*A[1,-11,1);
for 3 := 1-11 step 1 until 12 do
begin e := A[11,3-1,1];
Al1,3,1] := e+A[1,3,11]+D[J+1 ]*(A[1,3,1 ])-e)
end J;
for J := 12+1 step 1 until m1 do
begin e := A[11,3-1,1]; %23
Al1,3,1] := e+A(1,3+1,11)+D[J]*(A[1,3,1 )-0)
end 4
end 1;

for i :=n1 step 1 until n2m do
for J := O step 1 until k1 do c[1,j] := A[1+]3,-3,k]

—

nd
st RR

. (except that now we limit k < 6). The output in this
" tase is the array a[n1:n2-k,0:k-1] given by

<
-

b
s

o _k k
o .ﬂ D .ﬂ Q..ﬂ H = 5.4 “ o nmlwﬂ
f2a01, k()04 5 (B)a0sE - 0., LRih (e  No=lc1)

0 , otherwise,
_nDMoacao ¢Q(n1,n2,k,x,a);

wmlue n1,n2,k; integer n1,n2,k; array x,a;
@ jegin

Ea 3 integer 1i,J,u,v,11,12,n,n3,k1;
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real t,t1,t2,h,xv;

array a[n1:n2),w,z[1:k];
switch s := L2,L3,L4,L5,L6;
goto s[k-1];

L2: w(2] := 1; z[2] := 0.5773502692; goto next;

L3: w[3] := 0,5555555556; w[2] :=
2[3] := 0.7745966692; z[2] :=
Lb: w[4] := 0.3478548451; w([3] :=
z[4] := 0.8611363116; z[3] :=
goto next; ;
L5: w[5) := 0.2369268851; w[4] :=
w(3] := 0.5688888889; z[5] :=
z[4) := 0.5384693101; 2[3] :=
w(6] := 0.1713244924; w(5] :=
w(k] := 0.4679139346; 2[6] :=
z[5] := 0.6612093865; z[4] :=

L6

next: n := n2-k; n3 := n2-1; i1 := k32; k1 := k=-1;

for 1 := 1 step 1 until i1 do
begin

w(i] := wlk+1-1); z[1] := ~-z[k+1-1)

end weights and nodes;
or i := n1 step 1 until n do

or J := O step 1 until k1 do a[1,J] := O;

or v := n1 step 1 until n3 do
if x[v+1] > x[v] then
egin

o
=

:= 1 step 1 until k do

for u
begin

Q[v] := 0.5/h; t := h*z[ulsxv; 11 = 12 1= v;
for n := 2 step 1 until k do

begin

=(x[v+1)-x[v])/2; xvi=(x[v]+x[v+1])/2; Qlv+1]:=0;

f 12 s n2-n then i2 := 12-1;

0.8888888889;
0; goto next;
0.6521451549;
0.3399810436;

0.4786286705;
0.9061798459;
0; goto next;
0.3607615730;
0.9324695142;
0.2386191861;
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for i := 11 step 1 until i2 do

Qli):=q[i+1 )+ (t-x[i])*(Q[i)-Q[1+1])/(x[1i+n]-x[1])
end n;
t1 := h*w[u];
for 1 := i1 step 1 until 12 do
begin n := 12-i; t2:= t1*Q[1i];

for J := O step 1. until n do

ali1,3] := a[i,j]+t2*Q[i+]]

If the procedure GQ is to be used for k > 6, more
quadrature weights and nodes must be included. Moreover,
if the machine has more than 10 decimal digits of accu-

racy, then the appropriate number of figures for these
econstants should be given.

Both of the procedures RR and GQ were written by the
second named author, and have been tested at the Univer-
sity of 0slo (on a CDC 3300) and at the University of
mmich (on a Telefunken TR 440)., It was found that RR
aad GQ both use essentially the same amount of time, and
also produced numbers which never differed by more than
sne unit in the 10'R figure (after scaling the output of
@i vith the appropriate factorials). On the other hand,
with nonuniform knots, we found that the divided differ-

; WW,‘lxo scheme for computing the matrix I was quite in-

sccurate when the knot spacing ratio became large.

To give a specific example, we computed the values
Ll

: 7 Nu.pnuuu using the knots 5,6,6+10°7,8,9 ; i.e.
if 11 > n1 then begin 11 := 11-1; Q[11] := 0 engy &
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1) change k1 to k in the statement which is 6 lines
below the label " next"; le., to

£y

wa w. J40 0 ﬁom.pAavumnn

X - iz
= [5,6,6+107",8,9],(5,6,6+10 7,8,9) (s-t) for J := 0 step 1 until k do a[1,3] := O;

for values of r = 0,1,...,9. As the following table
shows, the values produced by RR and GQ agreed to 10
figures, while the values found by divided differences,
(using essentially the program in [7]), became FSonomu-;”
ingly inaccurate with r. We have underlined the first
figure in error in the table of values produced by divit.

@ 1) include an extra statement 6 lines above "end GQ;",
namely,

begin b"nHNIH"dN"nd._-.DmHu“ >T..xu = >T..xu+.nwtu.ﬁdv“

ed differences. For further details and other numerical

tests, see Lyche[11].

de -Boor, C., On calculating with B-

Th, 6 AAO.NNV . EOSED. splines, J. Approx,

r| RR and GQ DD ‘2. de Boor, C., Subroutine package for calculatin
: o g with
0 | 4. 19LLLGLES | G.19464AGES B-splines, MRC TSR 1333, to appear, SIAM J. Numer.
|| ke
23 Qs 2 3 Cox, M.G., The numerical 1
4,037345542 | 4,037344000 # £ evaluation of B-splines, J.
m p.ouqomqoom n.wwmm#mem 2. Inst. Math. and Appl. 10(1972), 134-149.
3. | seOonRle i A, Caffney, P.W., The calcul
| 40310326 | a:02070es6r ® | srels'of Bliplines, CSS 10, ABRE Hamer:oinics
° . g .ﬁ....‘«.n ’ -
8 | 4.037037040 | 4.051030623 I shire, Ingland, July, 1974,
9 |4.037037037 | 2.076235838 - % Groville, T.N.E,, Introduction to spline functions
w.. %:zeMQomw www~>vvanmd»o: of Spline Functions, ’
We should also remark that it is easy to modify tee & dwmw..dnuw. e, ed., Academic Press, New York,

4 B s HAavo».xAdvnﬁ. 1 m Y ye e Bi2=k

R
needed in performing least squares using the B-splines =

S 1(1964), 53-68,

procedures for interpo-

lation by spline H:boa»oammﬁmﬁ}gtwﬂ,zcamﬁ. Anal,

¢ % Merriot, J.G. and C.H. Reinsch, Procedures for nat-

. ural spline interpolation, Algorithm 472, Comm,

S A.C.M. 16 -
(Qy xﬁmnx . Indeed, if f is a real procedure, then % % ,m\m, VI972) 763760,
; AL )
th & & Jerome, J.W. and L.L. Schumaker
quantities r 4,...,Ty,_) Will be stored in the k »Mt@,;mvm matural spline functions by ﬁmo>mWMMmeM MWMWWMme

column of the matrix a provided we modify the vﬂooaenl

GQ as follows:

mmﬁﬁmmm‘. Lyche, Tom and Larry L. Schumaker,

of Attela and Laurent, SIAM J. Numer. Ana

R Atta 1. 5(1968),

Computation of
al splines via
>:mH.AOA4mquv.Aomﬂnéoum.

szoothing and interpolating nat
local bases, SIAM J, z:ammm 3

23 Sl Asmndems &y
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10. Lyche, Tom and Larry L. Schumaker, Procedures for 2
computing smoothing and inter olating natural S SN
splines, Comm. A.C.M. 17(1974), 463-467. % _

11, Lyche, Tom, Computation of B-spline Gram matrices, SIMULTANAPPROXIMATION BEI RANDWERTAUFGABEN
ISBN 82-553-0226-3, No. 7, Mathematics Institute,

ot

University of Oslo, 1975. :
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tusammenfassung:

Ay
o

-~

.. . 3_.<2.uo:wmnm:me«vm=<o:wmnn:mnnm:wmmcm:xm::smsswa
g{1fe von Simultanapproximation N#herungsl¥sungen aufstel-
; ten. Man hat bei der Simultanapproximation die M8glichkeit,
¢urch geeignete Wahl des Typs der Niherung und durch ver-
schiedene Gewichtung in den einzelnen Komponenten dem zu-

grundeliegenden realen Problem weitgehend Rechnung zu tra-

Carl de Boor

Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

o

Tom Lyche

Department of Mathematics
University of Oslo

Oslo 3, Norway

@,...».,.. plese Beispiele sind ausfihrlich durchgerechnet und durch-
" weg sehr einfach gewdhlt, um die Methode besser hervor-

treten zu lassen; es sind meist lineare (aber auch eine

Larry L. Schumaker
Department of Mathematics
University of Texas
Austin, Texas 78712

.ﬁ.po:czmm: und eine Integralgleichung 1. Art.

garber hinaus sollen hier weitere Kriterien filr die Wahl
. gar Cewichtsfaktoren angegeben werden. Im Falle der Giltig-

ok #

B 4, Problemstellung:

- I sel B ein Gebiet des n-dimensionalen Punktraumes R".
A ~ rir eine Funktion ixuv der Koordinaten x,,...x  sei eine
. itnezre oder nichtlineare Differentialgleichung

e




