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A. INTRODUCTION

1. Motivation. Practical interest in schemes of interpolation and approximation
has been greatly stimulated by the development of high-speed digital computing
machines having a large storage (“memory”). Moreover, the availability of such
machines has also heightened interest in the question of representing more or less
arbitrary curves and surfaces by relatively simple formulas. In particular, the
automobile industry would like to represent car body surfaces by formulas which
could be handled by such machines.

We have been working on this problem for several years, in collaboration with
the mathematics staff at the General Motors Research Laboratories, with the pri-
mary aim of developing simple, economical, accurate and flexible procedures.
From the beginning, it has been our conviction that piecewise polynomial functions
were the most suitable, and our experience indicates that they are basically satis-
factory. We wish here to explain why we believe that they are well suited for treating
general problems of interpolation and approximation on high-speed computing
machines.

The theoretical literature on piecewise polynomial functions constitutes a small
fraction of the existing mathematical literature on interpolation and approximation
theory. The bulk of this literature has been concerned with the fitting of functions
of one real or complex variable by analytic functions. Interpolation and approxi-
mation by polynomial and rational functions offer a wealth of alternative pos-
sibilities [10, Chapter VIII; 7, 8, 16], and many theorems have been proved about
the convergence of such schemes as the degree tends to infinity. However, as is well
known, simple polynomial interpolation fails to converge as the mesh-length
tends to zero, even for some very smooth analytic functions (e.g., 1/(1 + x2) on
[—35, 5]),% and uniform meshes,

For periodic functions tabulated on a wuniform mesh (i.e., one with constant

* Work partly supported by the Office of Naval Research.
* J. F. Steffensen, Interpolation, 2nd ed., Chelsea, New York, 1950, p- 35. The counterexample
is due to C. Runge, Z. Math. Phys. 46 (1901), 224-243,
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mesh-spacing 4), a reliable scheme of accurate analytic interpolation is provided
by truncated Fourier series (trigonometric polynomials). This scheme was extended
from truncated Fourier series to truncated Fourier integrals, by E. T. Whittaker,
in his classic study of “cardinal functions’ [18; 8, p- 330]. These define an inter-
polation scheme for functions tabulated on a uniform mesh with mesh-points
Xy =nh (n=0, £1, £2,--), which is ideal for many theoretical purposes.
For any continuous, square-integrable function f in the Hilbert space Ly(— oo,
+ c0) it reproduces exactly the component f, from wave-numbers g € [—m/h,
w[h], but replaces each Fourier component with wave-number q ¢ [—=/h, w[h] by a
“cotabular” function with the same coefficient but different wave number q
satisfying ¢" = ¢ (mod 2n/h) and |¢'| < n/h. Hence it rotates the orthogonal
component f — f; through 90° in the Hilbert space. It is convergent in the mean-
square, and the error is O(4") if the rth derivative 7(x) € Ly(— o0, 4 o).

However these schemes are inflexible (the mesh-spacing must be constant);
they are incompatible with most boundary conditions; and we shall see (§11) that
they are sensitive to roundoff errors.

Much less is known about the more difficult problems of interpolation and
approximation to functions of two or more variables. The Weierstrass Approxi-
mation Theorem assures us that any continuous function can be approximated
arbitrarily closely on any compact set by polynomials of sufficiently high degree

‘[4, §6.6]. Approximations can be computed systematically, as convolutions with

Bernstein polynomials; moreover one can also match finite sets of derivatives
arbitrarily closely [4, §6.3]. From the standpoint of existence theory, this leaves
little to be desired. Moreover, because high-speed computing machines have
arithmetic units especially designed to perform rational operations, polynomials
and rational functions are well adapted to them.

However, even for functions of one variable, the use of Bernstein polynomials
to compute accurate polynomial approximations is uneconomical [4, p. 116]. In
practice, Newton’s and Lagrange’s interpolation formulas are far more widely
used, even though they may diverge if pushed too far.

2. Piecewise polynomial functions. To represent smooth curves and surfaces
economically, with the help of high-speed digital computers, we recommend the
use of piecewise polynomial functions,

Indeed, we will be much more specific. Although piecewise quintic polynomials
have proved useful on occasion and, for some applications, approximation by
piecewise quadratic or even linear functions is most suitable, in general we recom-
mend piecewise cubic polynomials for fitting smooth curves, and piecewise bicubic
polynomials for fitting smooth surfaces, as good bets to be tried first, in the absence
of special reasons for trying something else.

Piecewise cubic polynomial functions of one variable, with continuous slope
and curvature, have long been used by draftsmen and engineers. For practical
design work, they have used mechanical spiines: thin beams carrying loads w;
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concentrated at points x;, according to the classical Euler-Bernoulli theory.? Such
mechanical splines (of small “stiffness’”) have been used as analog computers to
fair curves through given sets of points.

It was probably known to Euler that the “strain energy” minimized by such
splines is proportional to § "2 dx in the small-deflection (linearized) approxima-
tion. Moreover, the shape of “non-linear splines” (or elastica) minimizing | «® ds,
the integral of the squared curvature with respect to arc-length, has also been
worked out [9, §262].

The use of mechanical splines to interpolate smooth nearly horizontal curves
through a given set of points is similar to that of computing the deflection of a
thin beam of given stiffness k. In both cases, the third derivative undergoes a jump
of wi/k = Ay}" at the ith joint x,, and the deflection y(x) is given (approximately)
by a cubic polynomial between successive “joints” x,. The difference is, that in
the problem of spline interpolation one is given the y, = y(x,), whereas in the
problem of the loaded beam one is given the w; (or Ay/). Moreover by clamping
the spline at any joint, one can control the slope there.

By using clamped splines, one can represent very accurately horizontal plane
sections of ship hulls.* Typically, ship hulls have long straight midsections, onto
which a smooth, pointed bow and stern are appended. The advantages of using
splines or other piecewise polynomial functions to represent such profiles seems
indeed fairly obvious, if one considers the principle of analytic continuation.

It can hardly be said that this idea is either very deep or very novel. The use
of generalized splines, and other piecewise polynomial functions of higher degree,
to approximate smooth functions of one variable, was considered earlier very
carefully by I. J. Schoenberg in an important paper [13] where deep results were
obtained for the case of a uniform mesh on the infinite line. A thorough study of
the literature would probably reveal many other relevant papers.

What is important is that spline interpolation converges rapidly on a wide
variety of meshes, that it is insensitive to roundoff, and that it is easy to perform
on high-speed computers. The demonstration of these facts seems to be new.
What we consider most original about our work is the development of practical
schemes of surface-fitting, applicable to wide classes of smooth surfaces.

B. PIECEWISE POLYNOMIAL INTERPOLATION

3. Spline functions. To introduce the subject technically, we will adopt the
approach of Schoenberg [13]. We define a spline function of degree k, with joints
at points x, < x; < -+ - < x,, as a function f(x) of one real variable x, which is

* See for example J. L. Synge and B. A, Griffith, Principles of mechanics, McGraw-Hill, New
York, 1959, §3.3.

4 See F. Theilheimer and W. Starkweather, MTAC 15 (1961), 338-355. It was in connection
with this application that the senior author first became attracted to spline functions, around 1955.
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of class C*, and is equal on each interval [x,_,, x,] to a polynomial of degree k.

Spline functions of odd degree k = 2m — 1 have the basic variational property
of minimizing the integral | [f'™(x)]? dx for given y, = f(x,); this is immediate
if one integrates by parts. Thus, cubic spline functions (m = 2) appear as the
logical next step after piecewise linear (“polygon”) functions of x (the case m = 1),
as a scheme of piecewise polynomial interpolation. For given y; and endslopes
Yo Vus they are easily calculated as follows.

The condition that f(x) e C?, for f(x) cubic in the intervals [x,_,, x;] and [x,,
X;4], is equivalent to the following linear equation:

(3.1) Axy, + 2(&3‘5—1_ + Ax)y] + Ax; 1 Vi
= 3[(AxAy;_,JAx; ) + (Ax,_,Ay/Ax)],

where Ax; = x;,; — x; and Ay; = f(x;,,) — f(x;). The resulting system of n — 1
equations is not only linearly independent; it is tridiagonal and diagonally domi-
nant; hence it can be very stably solved for interior y; if yg, y,, are given. Having
solved for y, and y; [i =0, 1, - -, ], one easily computes f(x) in each interval
[x;_1, x;] by Hermite interpolation.

The preceding method can be adapted to cover also the “free endpoint”
conditions y; = y, = 0. In this case, one must supplement (3.1) by

(3.1) 2y + y1 = 3Ayo/Axy,  ypa + 2y, =34y, 4/Ax, ;.

Unfortunately, a valuable property is lost when one passes from m =1 to
m = 2. Whereas broken line interpolation is /ocal, in the sense that the value of
the interpolating function at a given point depends only on the f; at a fixed finite
set of neighboring points, this is not true of cubic spline interpolation. The values
of f(x) in any interval [x,_;, x;] depend on all f(x;}, without exception.

Local piecewise polynomial interpolation. In this respect, Bessel’s method of
local cubic interpolation has an advantage over spline interpolation. In local
cubic interpolation, the numbers y;, y;, - - *, ¥,_, are calculated from

(3.2)

(Ax;y + Ax)y; = [Axi%;‘:j + Ax;, ij::] ;
Hermite interpolation is then again used to compute f(x) in each interval. This
gives a piecewise cubic polynomial of class C* only whose value at any point
x € [x,_,, x,;] depends just on the eight numbers x;, y; (j=i—2,i —1,i,i+ 1).
One can achieve continuity of the second derivative by increasing the degree
of the polynomial pieces (and the number of points used). Jenkin’s interpolation
formula [13], for instance, uses quartic polynomials, to obtain an interpolating
function of class C? whose value in most intervals [x; ;, x,] depends on the six
numbers y, 5, -, y;.. For intervals near the endpoints x,, x,, it must be
altered.



168 G. BIRKHOFF AND C. R. DE BOOR

More generally, (local) interpolation formulas can be easily constructed [13, 11]
for any positive integer m, which yield functions f€ C™ which are piecewise
polynomial of degree k  m + 1, with “joints” at the x,. However, it is our
impression that such formulas are more cumbersome to use than spline formulas
of equal accuracy.

4, Convergence to curves. Let m: 0 = x, < x; < *** < x,, = 1 be a partition of
the unit interval, and, for a given function f(x), let s(x) = s(x, =, f) denote the
cubic spline which satisfies s(x;) = f(x)), i=0, 1,---, n, and 5'(0) = f"(0),
s'(1) = f'(1). What happens to the error s(x) — f(x) as |#| = max Ax; shrinks to
zero?

A first answer to this question was given by Ahlberg and Nilson [1], where it was
stated that if f(x) € C?[0, 1], and if the mesh becomes eventually uniform as
|7| = 0, then s(x) and its first two derivatives converge uniformly to f(x) and its
first two derivatives. We have extended this result in [2], by showing that if f(x) €
C[0, 1], and if the mesh-ratio M_ = max (Ax;/Ax,), the maximum ratio of mesh-
lengths, is bounded, then s*//(x) converges uniformly to f“(x), j=0,---, 3, as
l7| — 0. In fact,

(4.1) ls9(x) = f O] = K- |=l*.

The uniform convergence of s®)(x) to f®(x) was also proved, assuming only that
[ ¥)(x) was absolutely continuous.

The technique used in [2] was based on a study of the cardinal functions Cy(x)
associated with spline interpolation at the joints x; of a given partition . These
are the spline functions with joints x; defined by

(4.2) Cdx;) =i, Ci(xg) = Ci(x) =0,
i=1-,nm—1, j=0---,n

For bounded M,, these are uniformly bounded and integrable—in fact they die
away exponentially by a factor appreciably less than one in each successive
interval.

When f € C*[0, 1], formula (4.1) implies that the approximation to f’(x) by s"(x)
is O(|m[®). A stronger statement can be made in case x = x; for some i, and = is
uniform. In this case equation (3.1) reduces to

@.3) ;—‘(s'(x;-_l) £ 450x) + 5'(xin)) = S(esa) — S(xic)

where h = |7|. One recognizes (4.3) as Simpson’s Rule, and concludes from this
(or computes directly) that

(4.9) s'(x0) + 45'(x) + 5" (xp0) = f(x20) + 4f'(x)
+ f'(x:2) + O(7}9),

A —— e e e e e -
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in case fe C®[0, 1] (since s(x;) = f(x;)). Hence, since 5'(0) = f7(0), s'(1) = f'(1),
and the eigenvalues of the tridiagonal matrix with general row {I, 4, 1} are all
greater than 1, it follows that

§'(x) = f'(x) + O(=]Y).

It is clear that this conclusion remains true if the condition that = is uniform is
replaced by the condition that = becomes asymptotically uniform as |=| — 0.
Unfortunately, the analogous result does not hold for s”: even at the joints,

s"(x) = f"(x) + O(l=*).

5. Convergence and continuity. We will now introduce some general concepts,
which characterize valuable features of the (cubic) spline interpolation scheme
defined in §3. An interpolation scheme J will be called algebraically well-definea
for a real closed domain D and class II of meshes o on D when, for any function®
fe C®(D), any = 1L, J,[f] exists and is uniquely determined. Here, it is under-
stood that derivatives of f may be admitted as values, as limiting cases (Hermite
interpolation). Clearly, Lagrange, trigonometric, and (cubic) spline interpolation
are all algebraically well-defined, linear interpolation schemes.

For an interpolation scheme to be a good scheme of approximation, a small
maximum mesh-length {=| must result in a small interpolation error (J/,f)(x) —
f{x). This leads to the question of whether or not a given interpolation scheme
J is convergent on a set S = C(D) of continuous functions on D, in the sense that

(5.1) ma; e )x) = f(x)| >0 for me]], as |a|—0.

Usually, one takes for S the set C¥(D), for some k = 1, and can often derive
statements about the order » of convergence as well, where » is defined as the largest
integer for which

(5.2) s (N —f®) = 0@, =], feCHD).

Thus equal-spaced trigonometric interpolation is convergent on C*[a, b] for
k =z 1, the interpolation error being O(|=[*In [#[) [7]. We have just seen that
spline interpolation on [a, b] for given s'(a) = f'(a), s'(b) = f"(b) is convergent or
C*[a, b}, with order of convergence equal to 4, provided IT consists of partition:
with uniformly bounded mesh-ratios M,. By contrast, as remarked earlier, poly-
nomial or Lagrange interpolation (on uniform meshes) is not convergent even or
C*(D) for all analytic functions! Also, not all schemes of spline interpolation are
convergent. For example, if the condition s'(5) = f’() is replaced by s"(a) = f"(a)
or by s'((a+ b)/2) =f'((a + b)/2), one would get algebraically well-definec
schemes which are not convergent even on C*[a, b].

5 Note that any set of values and derivatives can be assumed by some function f'€ C*(D).
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Theoretical results on the orders of convergence of interpolation schemes ap-
plied to a sufficiently smooth function f lose some of their practical interest be-
cause of roundoff. Although a smooth function f is to be interpolated, random
roundoff errors will result in a non-smooth interpolating function g, the maximum
difference between f and g being of the order of magnitude of the roundoff. Hence,
it is essential for practical purposes that a small || and a small roundoff error &
imply a small interpolation error. This demands continuity of the interpolation
scheme in the sense that

max ng(x) e f(x)l = Os and iwnl —0, Ty € 1_,[,

(5.3) )
imply mfgl(h,,fa)(x) —f(x)]—>0, as &—0.

If J is a scheme of linear interpolation by continuous functions defined on a
dense subset of C(D), then J, is a linear operator from the Banach space C(D)
(with respect to the uniform norm [ f|| = max. [f(x)]) into itself. In this case,
Jis continuous if and only if J is convergent on C(D). This is a corollary of Banach’s
*“uniform boundedness principle”: J is convergent on C(D) if and only if J is con-
vergent on a dense subset of C(D) and the norms of J, are uniformly bounded
as [, — 0. It is analogous to the Lax-Richtmyer theorem for difference ap-

proximations to differential operators.

The main result of this section is the fact that the (cubic) spline interpolation
scheme of §3 is indeed continuous. For, (J, f)(x) = 3, f(x)C(x), where C{x) is
the cardinal function of spline interpolation corresponding to the partition =
(cf. §3). But, as was shown in [2], >, |Ci(x)| < K for some fixed K depending
only on the maximum mesh ratio M,. Hence, if = is a set of partitions with uni-
formly bounded mesh-ratio, then, for all = € II,

(N = g IfCNICI = IfI - 2 IC0l = K- £,

so that the operators J, are indeed uniformly bounded, while J; f converges to f
for all fin the dense subset C4[a, ] of C{a, b].

This situation is in notable contrast with approximation by cardinal and trigo-
nometric interpolation. That the latter is not continuous is well known.® As to
cardinal interpolation, consider the cardinal function for cardinal interpolation
with mesh-length h, C{x — ih) = [sin (wx/h)]/(7x/k). Since this is square-summable
over i, we see that the cumulative effect of independent randem roundoff errors
of bounded size remains bounded as £)0. Since it is not absolutely summable,
the cumulative error due to systematic roundoff errors with alternating sign and
fixed order of magnitude would be unbounded, if one lets 4 tend to zero.

In general, we surmise that all schemes of interpolation by analytic functions

¢ Cf. A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, London, 1959, Vol. 2.
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will tend to be sensitive to roundoff errors, and any other local irregularities.
This is because of the principle of analytic continuation, which makes the behavior
of an analytic interpolating function in any neighborhood, however small, deter-
mine exactly its behavior everywhere.

6. Non-linear spline interpolation. Linearized interpolation schemes have a basic
shortcoming: they are not intrinsic geometrically because they are not invariant
under rigid rotation. Physically it seems more natural to replace linearized spline
curves by non-linear splines (or “elastica™), well known among elasticians [9,
§262], and this idea has been carefully considered by various people, including
ourselves. Indeed, at least two computational schemes of non-linear spline inter-
polation have been proposed in the literature.

One scheme, proposed by A. H. Fowler and C. W. Wilson at Oak Ridge [27],
goes in principle as follows. Choose coordinates for each segment P;_,P; so that
the x-axis is parallel to the straight line P, _,P;, and approximate P; ,P, by a cubic
polynomial (linearized spline segment) in these coordinates. Then require con-
tinuity of slope and curvature at all interior mesh-points. This requires the iterative
solution of a non-linear system of equations. A simplified discussion of this scheme,
written by the General Motors Research Laboratory staff, is available as a re-
search report [21].

The second scheme, proposed by D. H. MacLaren [28] at Boeing in 1959,
sacrifices continuity of curvature, but has the advantage of being linear. In each
interval, he approximates the curvature « by &= y"/[1 + (Ay/Ax)]*?, and
minimizes § <* ds.

Mechanical splines. The preceding schemes are intended to approximate true
mechanical splines, or “elastica’ constrained to pass through a fixed sequence of
points by pure shear forces. (Only one of the family of curves graphed by Love
[9, p. 404] represents such a mechanical spline.) These curves extremalize the in-
tegral [ «*ds, which is proportional to the elastic strain energy’; they satisfy
8 § k¥ ds = 0. This equilibrium is stable if and only if the extremum is a local
minimum of | 2 ds.

Curiously, an absolute minimum to & § «? ds does not exist except in the trivial
case of a straight line; this is because one can construct large loops joining given
endpoints with given endslopes, of length 277 and curvature « = O(l/r), for
arbitrarily large ~—hence with [ «* ds less than any preassigned positive number.
Related to this, is the absence of an existence and uniqueness theory for non-linear
spline curves having given endpoints, endslopes, and passing through a given
sequence of internal joints.

After looking carefully into the relevant equations, one realizes that the schemes
of [27] and [28)] do not approximate mechanical splines more closely than

7 In general, an elastica extremalizes | (x* — 4, ds, where 4 is a parameter, constant in each
segment, and depending on tension and bending moment at the joints; see [21].
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other curves—nor does it seem particularly desirable to have them do so. For
example, they approximate equally well to Hermite interpolation by segments of
Euler’s spirals,® joined together with continuous curvature. And Euler’s spirals
seem as natural a class of curves as the curves defined by “‘elastica” under pure
shear forces. (The latter satisfy 2d%«/ds* + «* = 0.)

C. INTERPOLATION: FUNCTIONS OF TWO VARIABLES

7. Smooth surface interpolation. The preceding discussion still fails to touch the
basic problem of convergent interpolation for functions of two variables. However,
it suggests an important first step towards solving the problem of fitting smooth
surfaces.?

Namely, let offsets u;; = u(x;, ;) be given on a rectangular grid of points, the
vertices of a rectangular network of lines including all the sides (boundary lines) of
a rectangular polygon R. On the boundary vertices, let also the normal derivative
(slopes) 9u/on be given.’® Then it is clear that exactly one network of linearized
(cubic) spline curves can be passed through the given points, subject to the given
boundary conditions.

The preceding construction raises the question: how can one interpolate surface
elements in the rectangular pieces R;;: [x;_y, x;] X [y;_s, 5], s0 as to obtain a
smooth surface. In principle, one very simple answer to this question is the
following.

At each vertex (x,, y,), the incident spline curves

(7.1) u=u(x,y) =f{y) and u=ux,y;) = g(x)

have well-defined slopes f/(y) and g;(x). Why not interpolate linearly in ou/on
along each edge of R;;, thus achieving a joint of class C*? To solve the problem
of smooth surface interpolation in R for the given data, therefore, it suffices to
find a 12-parameter family of functions determined by the values of u, 0u/dx and
ou/dy on the corners of each R;;, interpolating to « by Hermite interpolation and to
du/on by linear interpolation along the edge.

This defines a classic boundary value problem in the theory of elasticity,
associated with the biharmonic equation Viu = 0; its solution minimizes

J‘ 'f (V2u)? dx dy.

® These are curves defined by the relation d*«/ds* = 0 (whence x = a5 + b, on P,_,P,); see
Am. Math. Monthly 25 (1918), 276-282.

* We ignore the scheme of bilinear interpolation, since it gives surfaces with edges except in
trivial cases.

10 At projec_ting corners, both normal derivatives; at reentrant corners, neither derivative.
As an alternative, one can use the “free endpoint” condition &%/an® = 0.

Sl
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Since this is an exact two-dimensional analog of the spline problem, its solution
constitutes a natural method of surface fitting, proposed in [3]. There, it was
noted that eight linearly independent polynomial solutions are available: 1, x, y,
x2, xy, y%, x3, A,

However, correspondence with Prof. E. Sternberg of Brown University made
it apparent that the other four would be very hard to compute. Therefore
Dr. Garabedian and one of us concocted somewhat arbitrarily four additional
piecewise polynomial functions (Fg Fy, Fy;, Fy, in the notation of [3]) which seemed
adequate for the purpose in hand. These functions gave a surface of class C!
which satisfied the stated boundary conditions. Though it was not of class C?,
it seemed clear that no solution of the problem which had piecewise linear du/dn
along the interfaces x = x; and y = y; could have a continuous cross-derivative
u,, = 0%u0x dy. Hence, the method of surface interpolation proposed in [3] seems
in some sense nearly “best possible” within the framework of a 12-parameter
family of surface elements. '

8. Bicubic spline interpolation. To get a solution in C?, one must abandon the
use of (piecewise) linear interpolation for getting du/dn along the edges of Ry
from the values of u,, u, at the vertices obtained from the network of splines with
joints at these vertices. Instead, one must use spline interpolation in u,, u, (that is,
in Qu/on) as well. This requires using in each R;; the family of all bicubic poly-
nomials

(8.1) u(x,y) = agp + aypx + apy + - + azx’y®

3 3
=3 ax'y.
=1 =1

Algebraically, the bicubic polynomials (8.1) are much simpler and more con-
venient to use than the elaborate functions Fg, F,, Fy;, Fy, mentioned in §7. In
each R, there is one and only one bicubic polynomial (8.1) which takes on specified
values of u, u,, u,, and u,, at the four corners. Moreover, if values of these quantities
are specified at all mesh-points of a rectangular grid in a rectangular polygon,
and Hermite interpolation is used to fill in each rectangular element, then the func-
tion u(x,y) obtained by splicing these elements together is automatically of
class C.

If the u;; are given, together with the values of du/0n at all boundary mesh-points,
then u, and u, can be computed as in §4 to give the rectangular network of spline
curves mentioned in §5. For these values of u,, u,, the resulting piecewise bicubic
polynomial function will be not only of class C?, but will have continuous
Uye Uy, along mesh-lines. By specifying u,, at mesh-points from approximate

formulas, such as
= Y = i1 + Uyq,501 — Uia,501
ry ?
(X321 — X {Vis1 — Vi)

one can hope to get quite smooth interpolating functions.
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However, to get interpolating (piecewise bicubic) functions of class C*, more
ingenuity is required: one must use spline interpolation in u, and u, (that is, in
du/on), as well as in u.

The fact that simultaneous spline interpolation in the (u,);; and (u,);; gives
consistent values of the {u,,),;, and is compatible with (8.1), can be most easily
proved by using the notion of fensor products of functions, as follows. (See [5]
for the original proof that bicubic spline interpolation is algebraically well-defined
and more details.)

Given the joints xp < x; < *** < X,,, let Cy(x) (i =0, -+, m+ 2) be cubic
spline functions with joints at the x; such that

(8.2) f(x) = z zLLx) + 2eCia(x) + 25,Cria(X)
satisfies f(x,) = z,,f'(xo) = 25, f'(x,,) = z,,. Let Dy(y) bea oorresponding basis for
the cubic spline interpolation problem of §3, for given g(y), (j=0,-++,n),
£'(¥o), 8'(¥,)- Consider the functions

m+2 nt2
(8.3) u(x, y) = z Eaijci(x} D,(y).

i=0 j=0

Each u(x, y)is of class C*on xy £ x = x,,; o = ¥ = y,.. Moreover
a5 = Uy, i=0)“'9m; j=0)”':n
0
ay = — u(x;, yi), i=0,,m; k=0,n;
oy

(8.4) ak:’=£u(xksyi]’ k:o:m; J‘.__‘o"'-'n;
ox

2

%= ox oy

Hence, given the values at all mesh-points and the normal derivatives at the

boundary mesh-points as in §7, and in addition the cross-derivative at the four
corness, this interpolating function of class C?is determined uniguely.

Along each mesh-line, the surface reduces to a cubic spline, as in §7. But along
each mesh-line, du/on is a cubic spline also, as desired. In each rectangle, u is a
bicubic polynomial (8.1). Its sixteen coefficients can be computed, once u, u,, u,,
and u,, are known at the four corners of R,;. We can compute the u,, u, as in §3,
from (3.1)-(3.1). As u(x, y) is of class C?, we can then compute u,, by spline inter-
polation of the u, values along mesh-lines with constant x, or of the w, values
along mesh-lines with constant y. For example, we can solve

(8.5) ij-—].se',ﬂ-l + 2(Ay, + Ay)s;; + Aysi i

_ =3[Ay, 1 ApifAy; + Ay; Aspi 1 [BY 1),
as in [S. Equation (14)] for s = u,, from the values of p = u, at mesh-points.

= u(x; V), i=0,m; j=20,n.

Y - S—
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It is of interest to generalize the preceding construction to rectangular polygons;
see Appendix A.

Variational property. Bicubic spline functions can also be characterized by a
variational property. Namely, the bicubic spline function satisfying (8.4)
minimizes

ad.u H asu 2
(2w 25
*o '[z ox* 9)* ety E (as” )

subject to the constraints (8.4). Here E is the edge of R, and 0/0s signifies the
tangential derivative.

If only the #,; are prescribed, the minimum of (8.6) defines that spline function
with the joints specified, having “free edges” with 9*u/én? = 0 on E. (In the case
I =J =1 of one rectangle, the resulting function is then bilinear!)

9. Convergence to surfaces. The results of §4 apply to the errors in smooth
surface interpolation and bicubic spline interpolation as well.
Let f(x,y)eC5on0 = x,y =1 and let

m0=x<x<  <x,=1, #:0=p< < <y, =1
define a rectangular partition of this square, let S(x, y) denote the bicubic spline
function (8.1) interpolating f(x, y)} on this partition.

Since, for i = 0, ' - -, m, S(x;, y) is the cubic spline that interpolates f(x;, y) on
«', one has from §4 that

9.1) |'éi—r, (SCxi» y) = f(xi YD) | =0(~""), i=0,"",m.

Similarly, since, for i = 0, m, S,(x;, y) is the cubic spline that interpolates
fx;, y) on ', one has
(9.2)

(S(x,, y) f(x:‘s J'D = O(IW’I‘_")

ot
dy" 0x
Now let y € [0, 1], and let #(x) be the spline function that interpolates f(x, y) on
. Then

9.3) ai',f(x, ¥) — £9x) | = o+,
X

The difference between (x) and S(x, y) is a spline function, hence can be written
as #(x) — S(s, ¥) = 277 a,C{x) + p(x), where the C,(x) are the cardinal functions
of §4, and p(x) is a cubic polynomial. By (9.1) and (9.2),

[p(x)| = O(|='[%),
hence, by (9.1},

a; = t(x,) — S(x;, y) — plx) = (f(x, y) — S(x;, p) — plxy)
= O(|="|%).
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Since the C,(x) are uniformly bounded if M,, M_. are suitably bounded (cf. §4),
it follows that

049 |fCx, p) — SCx, p)| = O(=|* + {=']%).

10. General spline interpolation. The preceding schemes have natural generaliza-
tions in two directions: to splines of higher degree and to functions of # variables.

To interpolate given values f(x,), i=0,---,n by a spline function of odd
degree 2m — 1, m > 2, one proceeds much as in §3. One takes the quantities

f9x), j=1,-++,m—1, as unknowns to be determined from the conditions

that £ be continuous across the joints for j = m, - * -, 2m — 2. This results in a
system of equations whose matrix is block-tridiagonal, each block being an
(m — 1) x (m — 1) matrix. Given fY(x,), f¥(x,), j =1, -+, m — 1, at the two
endpoints, this system has a unique solution. With the f¥(x,) determined, j = 0,
«++,m — 1, the 2m coefficients of the (2m — 1)st degree polynomial in each in-
terval are then quickly computed.

An alternative approach makes use of the existence of a basis M(x), i = —(m —
1), - -+ ,n + (m — 1), for the set of (2m — 1)st degree spline functions with joints at
X5, j=1,++,n, such that M{x) = 0 for x ¢ [X;_,,, X;;,] (this condition being
properly modified for i < m and i > n — m). The linear system which results is
smaller than the system discussed earlier; its matrix is (2m — 1)-diagonal. This ap-
proach is equally well-suited to interpolation by spline functions of even degree. In
this case, one follows Schoenberg [13] and puts the joints of the interpolating spline
between the given data points. In the case of parabolic splines, the choice of the mid-
point between given data points leads to a linear system with diagonally dominant
tridiagonal matrix. _

The generalization to functions of » variables follows the pattern of bicubic
spline interpolation outlined earlier. The interpolating function becomes a tensor
product of n one-dimensional interpolating functions, the interpolation conditions
become correspondingly tensor products of n one-dimensional interpolation con-
ditions.

One can also use, in any “hyper-rectangle”, tensor products of spline functions
of different degrees in different coordinate directions.

D. APPROXIMATION BY SPLINE FUNCTIONS

11. Interpolation and approximation. In applications, interpolation is commonly
only a means to the end of obtaining good approximations to given functions or
discrete data—and the latter themselves are often only approximate. Hence one
naturally asks: are piecewise polynomial functions more suitable than (say)
polynomial or rational functions, when it comes to approximation? As a back-
ground for this question, we recall some well-known facts.

First, as recalled already in §1, polynomials can be found which give arbitrarily
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good uniform approximations to any smooth function; but the degree may be
extremely large. For fixed degree n, and functions of one variable, the Chebyshev
Equioscillation Theorem [4, p. 149] shows that the best uniform approximation
can also be obtained by Lagrange interpolation on a suitable mesh. Moreover one
can today compute the points of this mesh systematically by the Remez algorithm
[8, pp. 217-232]. The paper by Prof. Stiefel at this Symposium (p. 68) says more
about their location.

From this standpoint, the most conspicuous advantage of spline interpolation
over Lagrange interpolation, as a means of approximation, is that the error is
less sensitive to mesh changes (see §4). A more subtle advantage is the smaller
tendency to give ripples, whose occurrence with best uniform (Chebyshev) ap-
proximation seems indicated by the same Equioscillation Theorem. To avoid
these, it seems likely that other criteria (such as best uniform approximation of
derivatives) are needed, which would lead to additional computational problems.

However, it must be admitted that the preceding statements are conjectural,
and not based on careful study. In practice, we have simply avoided polynomial
approximation.

12. Best approximation properties. Actually, spline interpolation already has
various “best approximation™ properties, associated with its variational property
of minimizing the positive quadratic functional f[y*(x)]® dx. These have been
derived by Walsh, Ahlberg, and Nilson [17], by one of us [6], and by Schoenberg
([14] and Indag. Math. 26 (1964), 155-163). For example let s(x) be the spline
function of odd degree 2k — 1 which interpolates (is “cotabular’” with) a given
function f(x) € C*[q, b] on the joints x; of a given partition = of [a, b]. Then s(x)
is also the best approximation to f(x) in the class of spline functions S(a, b, 7)
with joints at the x;, with respect to the pseudo-norm

(12.1) el =Jb[6“"(x)]2 dx.

It also leads to “best approximations™ of linear functionals L[f] such as
J3 f(x)dx or f"(z) (0 < t < 1) by linear combinations of the values of f at the
Joints x; of a partition 7: 0 = x; < x, <-*+ < x, =1 (say). Following Sard
[12], suppose that for fixed m < n, L[p] = 32, a,p(x,) is exact for all polynomials
p(x) of degree m or less. Then, for f(x) € C™[0, 1], defining K(¢) by

(12.2) L[f]— i a;f(x,) =flK(l)f (1) dt,
i=() ]

the approximation A[f]= Za,f(x;) to L[f] is called “best” if it minimizes
I3 [K(2)]? dt. Schoenberg [14] has shown that if S, (x) denotes the interpolating
(generalized) spline function of degree 2m — 1, then the functional A[f]=
Lis,[f]] is the “best” approximation (in this sense) to a wide class of linear
functionals L.

As an application, consider the error of approximation to f} f(x)dx by
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§3 S(x) dx, where f(x)€ C*. This quadrature formula was first proposed by
Holladay,!* and later shown by Schoenberg [13] to be identical with Sard’s best
quadrature formula [12]. For simplicity, assume that 7 is uniform, 7| = 4. Then
it follows at once that

(12.3) J::f(x) dx =J:S(x) dx + O(h"),

the same order of accuracy as one gets by using the simplest Hermite-type quad-
rature formula in each of the n intervals of the partition. Note that in both cases
(for uniform =), the value of the integral can be computed from f(x,), i =0, - -,
n, and f'(0), f'(1).

Such results are valuable from a computational standpoint, since they permit
the approximation of various functionals from the coefficients of interpofating
splines computed by the schemes of §3.

But it should be pointed out that they are not restricted to spline functions, but
apply to orthogonal projections generally.*? Thus, for m = 1, let H'™ be the Hilbert
space defined on the functions /'€ C™[0, 1] with absolutely continuous (m — 1)st
and square integrable mth derivative by the inner product

(12.4) (%)) =J; [ "(x)g ™ (x) dx + éj L(f)L{8)

where the L, are any » linearly independent linear functionals, linearly independent
over the set of (m — 1)st degree polynomials; let ¢; € H" be such that L,[f] =
(fs ¢,) for all fe H™, j=1,-+-,n Let ® be the subspace of H™ spanned by
the ¢,, and let P = P, be the orthogonal projection of H'™ onto ®.

Then if L[f] = (f, ) is any bounded linear functional on H'™, and ¢ is the
“best approximation” to ¥ as an element of H"), then the best approximation to
L[f] in the usual operator norm is (f, ) = L[f]. Moreover, for all fe H™,
L{f1= (fP,y) = L[fP]. Finally fP is the unique element of ® which satisfies
LifPi=LJ[fi=1,"",n

In the special case that the L, are evaluations of f(x) or some derivative f*(x) at
points x;, the space ® consists of piecewise polynomial functions of degree 2m — 1.

Finally, these facts remain true if D™ in (12.4) is replaced by other linear dif-
ferential operators. Cf. also Golomb and Weinberger [8, pp. 117-190].

13. Data smoothing. The preceding results, however sharp, are far from answering
all the basic questions which arise in fitting approximate data intended to represent
(say) real car body surfaces or plane sections thereof. Such discrete data always
involve random errors; hence they must be smoothed (or “graduated’) without
essential loss of accuracy.

1], C. Holladay, Math. Tables Aids Comp. 11 (1957), 233-243. We have assumed here as
given also f “(0) and f(1).
1 This observation is due to C. de Boor and R. E. Lynch [26].
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This is a very deep problem. As is made clear in [19, §151], “the problem of
graduation belongs essentially to the mathematical theory of probability”. One
must balance the a priori expectation of “smoothness” against the expectation that
the error in the data (or their statistical deviation from the ““true” mean) will be
small.

In practice, this can often be achieved by considering an »n-parameter family
of smooth approximating functions f(x, a,, - -+, a,), where n is a small fraction of
the number of data points u(x,) = u;, and minimizing the (suitably weighted)
mean square deviation

I
(13.1) Z Wy I“s —fxpay,- -, an)|2- w; > 0.
i=1

In some cases, some form of Chebyshev approximation might be more accurate,
but the computational simplicity and generality of least squares approximation
for linear families of functions

(13.2) FO, a5+, a) = ga,«m(x)

seems to make it the best bet for most applications.

For plane curves representing smooth sections of car bodies, we have found the
use of formulas (13.1)-(13.2) with spline functions of degrees two, three, and four
generally satisfactory. The problem of balancing smoothness against closeness
of fit involves the problem of choosing the right number of joints. Since the close-
ness of fit depends on the location of the joints as well as on their number, one also
has the non-linear problem of deciding on the optimal location of joints, for a given
degree of spline (say).

We regard the determination of objective criteria for deciding this, and of
mathematical methods for computing the location of optimal joints given such a
criterion, as one of the most important problems concerning smoothing. We
have used several criteria, including the following:

(i) For w; = 1, find the set of joints which minimizes (13.1),
(i) For w; = 1, find the set of joints which minimizes

min max |u" = f(xb a19 Tt an)l'
i

Grs*=",0n
The error tends to oscillate in sign for both criteria, but we have not developed a
rigorous theory for either of them.

A few remarks about the preceding problem may be of interest. To solve it
objectively, one must clearly specify a measure N of error and a measure S of
smoothness. For some “smoothing parameter” & > 0, one can then try to minimize
eN(u — f) + S(f) within the class of functions f, by proper choice of @ = (a,, - " -,
a,). One measure of smoothness for discrete data, proposed in [19], is provided
by a sum of squares of the third divided differences; the continuous analog would
consist in setting S(f) = [ f"2 dx, as proposed by Schoenberg [13]. Other criteria
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have been proposed by Quade and Collatz, Lanczos, and Bizley.'® For example
(Lanczos), in trigonometric interpolation, one may know from differentiability
considerations that the Fourier coefficients should die off like n~*. One can then
truncate Fourier series beginning at some points where this fails to hold.

Unfortunately, it seems impossible to combine the geometric desideratum of
invariance of the approximating scheme under rotation (and translation) with the
algebraic desideratum of linearity.

The problem of interpolating between smoothed “scans” along plane sections,
so as to achieve a satisfactory smooth surface, is evidently related in nature but
even more complicated. We shall not discuss it here.

E. APPLICATIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

14. Integral equations.'* Spline functions seem ideally suited to the approximate
solution of Fredholm integral equations with smooth kernels K(x, y), such as

(14.1) 16 = #69 + A Kex, 90) .

Relative to any partition  of the interval [0, 1] into n segments, one can construct
by cubic spline interpolation and bicubic spline interpolation excellent approxima-
tions to ¢(x) and K{(x, y), respectively—it being understood that = is applied to
both independent variables (I = J = n).

When this is done, the right side of (14.1) is then replaced by an inhomogeneous
linear operator L[f] whose range is contained in the (» 4+ 3)-dimensional subspace
of {(cubic) spline functions on [0, 1] with mesh =. Moreover, writing L[f] =
S[¢] + AK,[f] =g, the values of g(x,), x; € m, and of g'(0), g’(1) are easily computed
from those of S[¢] and K,[f], integrating in closed form polynomials {(of degree
6 or less) in each segment.

This reduces (14.1) to an equation

(14.2) f= Sl¢] + AK,[f]

which is equivalent to a system of linear algebraic equations in n + 3 variables,
whose eigenvalues and solutions can be computed by standard methods. The
results of §9 suggest that the error will be O(n=9).

15. Sturm-Liouville systems. Another promising area of application for piecewise
polynomial functions of degree k& and class C” is to the approximate numerical
solution of boundary value problems. For functions of one variable, we will

13 See W. Quade and L. Collatz, S.-B. Preuss. Akad. Wiss. (Math-Phys. K1) 30 (1938), pp.
29-38; C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956, 321-344;
M. T. L. Bizley, J. Inst. Actuaries Sept. (1958), 125-165.

4 The considerations of §14 occurred independently to Prof. I. Schoenberg, with whom we
have had several stimulating conversations,
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consider primarily the case k = 3, r = 2 of cubic spline functions, emphasizing
applications of the concept of “best approximation™ (§12) where possible.

The simpler case k =1, r = 0 of “polygon” (piecewise linear) functions is
classic.'® Since polygon functions are defined by a local interpolation formula,
their use is equivalent to finite difference methods, and is generally subsumed under
the latter. Although there are many papers relevant to this case, they are not
very relevant to the use of splines.

The use of spline functions for this purpose seems to have been first suggested
in [3]. Here it was noted that one can compute approximate eigenfunctions and
eigenvalues of Sturm-Liouville systems by applying the Rayleigh-Ritz-Galerkin
method to the subspace .§ = S() of (cubic) spline functions with a given mesh

17:0=x0<x1<"‘<x5-+1=1.
ExampLE 1. Consider the Rayleigh quotient
(15.1) R[f1= —=LLfII4lf],

where

11 = reor ax,
(15.2) "

Jilf] =J; [f)F dx = —J;f (x) D*[f(x)] dx.

The eigenfunctions of the Sturm-Liouville system " 4+ Au = 0, 2(0) = u(1) = 0,
are those functions satisfying the endpoint conditions, for which R = 0.
Since the eigenfunctions sin mmx satisfy

(15.3) [S,,(x) — sin mmx| = O(hY),

(15.3) IS;,{x} — mm cos mmx| = O(K®),

the error in (15.3") being O(h*) at mesh-points, it follows that the Rayleigh-Ritz-
Galerkin method applied to the subspace S(N) of (cubic) spline functions on a
uniform mesh and satisfying S(0) = S"(0) = S(1) = S"(1) = 0 should give ap-
proximate eigenvalues x,, (and eigenfunctions w,,(x)) in error by O(#%) or less, for
any fixed m as k0.

However, we prefer to view the problem somewhat differently, so as to bring
out the connection with the ideas of §12. For any given inner product (f, g), de-
fined on a function space which contains the subspace S = S(N) just defined, let
P, be the orthogonal projection onto S. We observe (as did Galerkin) that for f€ §

(15.4) R[f] =_I;1f(x)P[D2U]](x) dx / J;lfz(X) dx,

provided that P is symmetric with respect to the inner product (f; g), = § f(x)g(x) dx;
hence the approximate eigenvalues and eigenfunctions are those of the linear
operator PD?, considered as an operator on S.

1% See for example R. Courant, Bull. Am, Math. Soc, 49 (1948), 1-23.



182 G. BIRKHOFF AND C. R. DE BOOR

More generally, for any projection P onto S, we define the relativization of D*
to S defined by P as the operator
(15.5) E[f1= P[D*[f]}.
We then ask: how well do the eigenfunctions and eigenvalues of E approximate
those of D2? We now answer this question exactly for three projections Py, Py, Ps.
The first two are the orthogonal projections associated with the inner products
Jo and J; respectively:

(15.6) (f: 8o =J.:f(X)8(x] dx and (f, gk =Lf "(x)g'(x) dx.

The projection P, is that associated with the inner product [§ f"(x)g"(x) dx and
defined by spline interpolation itself; cf. §12.

It is shown in Appendix B that, for these three projections, the orders of ac-
curacy obtained in computations of the eigenvalues are O(k**) for /=0, 1, 2.
In all three cases, the approximate eigenfunctions are Py(sin mmx), hence their
order of accuracy is O(h%).

16. Self-adjoint elliptic equations. A fascinating field for future research concerns
the usefulness of piecewise polynomial functions in describing approximate
solutions of partial differential equations. We consider now the case of self-
adjoint elliptic equations, with special reference to the Poisson equation

(16.1) —V2u = S(x, y).

Since solutions of such equations minimize suitable quadratic functionals, the
Rayleigh-Ritz-Galerkin method can presumably be applied in much the same way
as in §15. See example 2 below.

This idea has already been applied by Synge [23, pp. 168 f.] to piecewise linear
(“pyramidal”) functions.'® His results are analogous to those of Pélya and Szegd,”
but the latter made much more extensive use of analytic functions and analytic
methods (especially Steiner symmetrization).

In this connection, one should also mention an ingenious method of finding
analytic approximations to solutions of the Dirichlet problem for V2u =0 pro-
posed by S. Bergman,® and applied by him to many other boundary value problems
of elliptic type. It is classic [16, pp. 36, 45] that any harmonic function can be
approximated uniformly in any compact connected domain by harmonic poly-
nomials. Bergman’s method consists in computing which harmonic polynomial
of given degree most closely fits the boundary conditions (i.e., best approximates
them in some sense, mean square or Chebyshev).

16 Tt would be interesting to compare results obtained using his “square pyramid F-vectors”,
with results using piecewise bilinear functions instead.

17 G, Polya and G. Szegd, Isoperimetric inequalities in mathematical physics, Annals of Math.
Study No. 27, Princeton Univ. Press, Princeton, N.J., 1951.

18§, Bergman, Quar. Appl. Math. 5 (1947), 69-81; Proc. VI Symposium Applied Math.,
Amer, Math. Soc., Providence, R.1., 1956, pp. 11-29, and refs. given there.

PIECEWISE POLYNOMIAL SURFACE FITTING 183

However, this method seems less well adapted to computing machines than
difference methods. These define what are sometimes called discrete harmonic
Jfunctions, satisfying some (typically, 5-point) analog of V2« = 0 or (16.1), and ap-
propriate boundary conditions. There is a large literature on such functions?®,
which we will not discuss here.

Instead, we will simply point out that the approximate solutions obtained in this
way cannot be smoothly interpolated by harmonic polynomials, and so it seems
reasonable to expect that interpolation can most effectively be made using piece-
wise polynomial functions, fitted by local bicubic or bicubic spline interpolation,
for example.

It would be interesting to know whether any approximate solutions obtained
from difference approximations in this way coincided with approximate solutions
obtained from the same class of piecewise polynomial trial functions by the
Rayleigh-Ritz-Galerkin method. For example, does the use of piecewise bilinear
functions and a square or rectangular mesh lead to the standard® 5-point or 9-
point formula for V2 = 0? -

To conclude this section, we shall give a discussion of the eigenvalues of the
Helmholtz equation in a square.

ExAMPLE 2. Consider the Helmholtz equation V?u + Au = 0 in the unit square
0 =x,y =1, with boundary condition ¥ =0. We apply the Rayleigh-Ritz-
Galerkin method to the subspace of bicubic spline functions having joints on a
square grid (mesh-length 4 = 1/N in both coordinates), and satisfying the “free
edge” condition d*u/dn* = 0 (and hence u,,,, = 0 at the four corners). The vari-
ables are “‘separable”, and so the approximate eigenfunctions are w,(x)w,(y),
with approximate eigenvalues u! + u!, where u} is the corresponding eigenvalue
of wy(x) under P, (cf. Example 1 in §15).

17. Cauchy problems. We now consider possible applications of the preceding
ideas to initial value problems for partial differential equations or Cauchy problems.
In this, we follow the general approach of [25], restricting attention for simplicity
to Cauchy problems whose exact solutions define Cy-semigroups G of bounded
linear transformations T, = exp (zL) of some Hilbert space $, with infinitesimal
generator L.

For any finite-dimensional or other closed subspace S of $ in the domain of
L, define the orthogonal projection Gg of G onto § as follows. Let P be the orthog-

onal projection of § onto S, with null-space S*; then P[L[«]]is a bounded linear
transformation Lg of S. We let G5 be the Cy-semigroup acting on § generated by

PL. Equivalently, we can define the projection of T, onto S as lim, ., (PT)"
For example, let G be the Cy-semigroup on the Hilbert space Ly(0, 1) associated

1» [22] and refs. given there; Duffin, etc.
10 [24, Chapter 6]; R. Esch, Annals of the Harvard Computation Laboratory, Vol. 31, pp.
84-102, Harvard Univ. Press, Cambridge, Mass., 1962.
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with the heat equation u, = %,, and the boundary conditions #(0) = u(1) = 0.
Let S = Sy be the set of functions expressible as truncated sine series of the
form

(17.1) u(x) = a, sin x + a,sin 2x + * -+ + ay sin Nx.

In this example, since the subspace Sy is invariant under L, the orbits of Gg
also define exact solutions of the given (mixed) boundary value problem.

The preceding property holds in many other examples. Thus, let L be any linear
differential operator with constant coefficients on any periodic or infinite domain.
Then the subspaces defined by truncated Fourier series, and by truncated Fourier
integrals [™¥y e**$(q) dq, are invariant under L. On the other hand, these sub-
spaces are also the ranges of the projection operators defined by the schemes of
trigonometric interpolation [7] and cardinal interpolation [18], already described
in §1. Asis explained in [25], each interpolation scheme J defines a projection oper-
ator on continuous functions f(x), which maps any finto J[r[f]], where = is the
tabulation operator. It follows that, knowing the initial error [, — J[[u,]][ (which
expresses the loss of information caused by identifying “cotabular” functions),
the error ||u(f) — uy(?)| at any later time # is at most || T,|| * [uy — J[7[u]]ll-

The statements of the preceding paragraph apply specifically to trigonometric
and cardinal interpolation, for which it should be remembered that the projection
Plu] = J[[u]} is not orthogonal in the usual L,-norm. We now make a preliminary
study of the analogous situation as regards cubic spline interpolation.

Let S be the N-dimensional subspace of cubic splines defined in Example 1
(§15), and let § be defined by one of the inner products (f; g),, [ = 0, 1, of (15.6).
Then, for the heat equation u, = u,, and the general initial condition u(x, 0) =
2 a;wfx), where the w‘(x) are the approxlmate eigenfunctions of Example 1,
we have u(x, 1) = Z ae tw,(x), where g is the eigenvalue of wy(x). Hence Gg
is a sem1group of diagonal matrices E = 8,,e~#¥ relative to this basis. Numerical
values of ! can be computed from the formulas of Appendix B.

Likewise, let T be the N2-dimensional subspace of bicubic spline functions in the
square, defined in Example 2 (§16), and consider the analogous inner products

(17.2) (/s 8o —f f(x, Ye(x, y) dx dy
and
(17.3) (f, gh =L J; [f.8. + f,g,]1 dx dy.

Then, relative to the eigenfunctions w,(x)w,(y) of this example, the semigroup
defined by the heat equation is defined by the “tensor product” formula

(17.4) uCx, y, 1) = 3 aye it (xhw ().

4
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APPENDIX A. PIECEWISE BICUBIC INTERPOLATION IN
RECTANGULAR POLYGONS

1. Interpolation of class C. Let R be any connected rectangular polygon, whose
sides all lie on mesh-lines x = x;, y = y;, of a fixed rectangular mesh. As in §3
and [3, §§1-2], we have the following result.

LEMMA 1. Let u;; = u(x,, y;) be given at all (interior and boundary) mesh-points
of R, let p;; = u,(x,, y;) be given on the sides x = x; of R which are parallel to the
y-axis (except at reentrant corners), and let g,; = u{x;, y;) be given on the perpen-
dicular sides y = y;. These data are compatible with one and only one network of
cubic spline functions u(x,y,) = f(x) and u(x,, y) = g{y) on the mesh-lines of R.

We next recall [5, Theorem 2], which states

LeMMA 2. There exists one and only one bicubic polynomial

(A.1) wx, y) =3 3 a,x"y"

m=0 n=0
which assumes given values of u, u,, u,, and u,, at the four corners of a given rectangle.

Lemmas 1 and 2 have the following consequence.

LEMMA 3. Let u, u,, u,, and u,, be given at the vertices of two adjacent rectangles
Ry, R, having a common side y = y;. Then there is one and only one function
u(x, y) of class C* on R = R, \JU Ry, which assumes the given values and is bicubic
in each R;, j = 1, 2. For this function, u,, and u,,, are also continuous.

Proor. By Lemma 2, there is only one such function. But for this function,
u(x, y;) and u,(x, y;) have the same values in R, as in R, at the endpoints of
¥y = y;; from these their other values are obtained by spline interpolation; hence
they are the same identically. The continuity of u,, u.., - - - and u,,, t,,,, - * - across
the common edge y = y; follows.

THEOREM 1. In Lemma 1, given s,; = u,,(x,, y;) at all mesh-points, there exists
a unique piecewise bicubic function u(x, y) of class C* in R, for which the mesh-lines
are spline curves, and which satisfies the data of Lemma 1. For this u € CYR),
s(x, y) = u,, is also continuous.

To obtain a reasonably accurate and very simple scheme of piecewise bicubic
interpolation of class C%, it suffices therefore to use some fairly good local approxi-
mation to u,, at mesh-points. For example, one might use

(A2) 0y = w[M‘] & (1 = w)I:q‘“»" - qu‘—m}

Yiz1 — Vi Xiv1 — Xj1
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where p; = u,(x;, ¥, ¢ = t(x;,y), and 0=w=1 (or, 0= w,; =1). Or,
one might use at interior mesh-points

— Ugyy gy F Uyg gq — Up
(A.2) 7y = ikl T Uit L N 1,441

(X1 — xi—l)(yj+1 — V1)

as approximations to the “best” s,; = u,(x;, y;).

2. Interpolation of class C2 The problem of devising a *“well-set” piecewise
bicubic interpolation scheme of class C? in a general (connected) rectangular
polygon R is much more difficult. We will suppose below that « and its normal
derivative are given and differentiable along the edges of R, and that the given values
of the normal derivative are compatible in the sense that (x,), = (,), at external
(i.e., non-reentrant) corners. Figures 1 and 2 illustrate two instructive cases.

Rectangular hexagon Rectangular dodecagon
FIGURE 1 FIGURE 2

Let R be subdivided into two subregions R, and R, by a mesh-line y = y,
Xp = X = Xy, and suppose that common values of # and u, are assumed along
y =y, by functions u,(x, y) defined and of class C'in each R, [k = 1, 2] separately.
Suppose also that u;(x, y) and uy(x, y) are both piecewise bicubic, i.e., satisfy
(A.1) in each rectangle R, bounded by pairs of adjacent mesh-lines. Finally,
suppose that the values of the w,(x, y) are defined by cubic spline functions along
each mesh-line, so that u,, is continuous on the mesh-lines x = x; and u,, on the
mesh-lines y = y,.

Then, by Lemma 3, u,, will be continuous across y = y;, together with
Uy Uy, Uy, * * * and u,, U, -+ + . But u,,, the second normal derivative, need not
be continuous. Though we know of no method for making u,, continuous, the
jump in w,, can usually be made negligible in practice by proceeding as follows.

Where possible, use spline interpolation to determine u,, at reentrant corners.
For example, in Figure 1, use spline interpolation in u, on EPF to compute u,,
at P, then use spline interpolation in u, on PCB to compute %,, at C. One can then
use bicubic spline interpolation in R, and R,, to determine functions u,(x, y) of
class C*in R, [k = 1, 2]. By splicing these functions together, one obtains a piece-
wise bicubic spline function of class C'in R, U R, = R. We now examine more
closely the behavior of the higher derivatives of u(x, y) along the “seam” PC. By

construction (cf. §5), u,, is continuous across PC (i.e., it assumes the same value on
both sides) at all mesh-points, including P and C; moreover u,, and u,, assume the
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same values at all points. Furthermore (§6), u,, is obtained on both sides of PC
by spline interpolation from the same u,,, though generally different “endslopes”
U,y at P and C. Due to the stability (§8) of spline interpolation, the difference be-
tween the values of u,, along PC on the two sides will therefore be an oscillating,
exponentially damped function as one goes away from the endpoints (for uni-
formly bounded mesh-length ratios [Ax;|/|Ax;| < M,). Hence, if M. is held fixed
while the maximum mesh-length tends to zero, the values of u,, will approach
the same limit at all points other than reentrant corners.

In the rectangular polygon of Figure 2, no such simple procedure is possible.
For expeditious computation, it seems best to assign (by local extrapolation) an
approximate value to u,, at C, and then to decompose R into rectangles by in-
duction, using HIQ as one boundary; at worst, one has more than the minimum
number of “‘seams” to consider.

Though we doubt the existence of a “stable” (i.e., uniformly bounded) procedure
for finding a piecewise cubic function of class C? in a general rectangular polygon
(e.g., in the L-shaped region of Figure 1), the following result may be of interest.

THEOREM 2. Let the mesh-line y =y, xo S x = xp, divide the rectangular
polygon R into subregions R, and R,. Let u(x, y) be a piecewise bicubic function
which is of class C? in R, and R, separately and on mesh-lines, and of class C* in R.
Then u(x, y) is of class C* in R if and only if s; = u,(x,, y,) satisfies

(A4) bsy g1 + 2(b + ©)s; ; + €550
b " '
= 3[; (P41 — Piy) + b—(Pf,ﬂ - Pi.i—l)], i=0,M,

where b = y; — y; ; and ¢ = y, ., — y,.
We omit the proof.

APPENDIX B. STURM-LIOUVILLE COMPUTATIONS

In order to compute the eigenfunctions and eigenvalues of E, = P,D?, it is
convenient to pick a basis {#;}{' of § = S(V) and to consider the matrix representa-
tion E, of E, with respect to that basis. Its eigenvectors are the coefficients of the
eigenfunctions of E, with respect to {t,}7, and its eigenvalues y! are those of E,.

For I =0, 1, P, f satisfies

(B.1) (fit),=(Pfit), i=1---,N.
Hence, for s = 3V | at, € S, with Es = 3¥ 8.z, 1= (D%), satisfies
N

N
Safti, t) = 'Z Bt ths

=1
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therefore

(B-Z) Ea = Ag_lBts Al = {(t;'- f:)z}s B: = {(ffs r.‘i)i}! I=0,1.

We now choose a basis {t,}; of S convenient for the computation of E,.
Define

(B.3) ) = (x — x,)} — 2(x — x)3 + (x — x. ) + ax
ax, X=Xy
ax + (x — x,_1)°, Xe1 EX =X
TG — D= =% xS xS X
by(x — 1), Xy = X,

where a; = 6h*x; — 1), b; = 6h*x;, i=1,---, N. This choice makes B, tri-
diagonal, since 1;(x) = 0 for x & (x,_y, X;1)-

Case I = 1. In fact, one computes that

B, = —6h¥(C + 6),
where Cis the N X N tridiagonal matrix with general row {1, —2, 1}. With some-
what more effort, one computes that
Ay = —£h5(C + 30 + 120CY).

Consequently
- [=_CC+e

h* C* + 30C + 120
But this implies that the eigenvectors of £, are those of C, viz., {sin ijhm}]_,. Hence
if {2;}¥ denotes the corresponding set of eigenvalues of C(4;) = 2 (cos ihmr — 1),
then the eigenvalues p} of E, and E, are

20 A4+ 6)
B.5 =
S M= e 2 1 304, + 120°
while the eigenfunctions w} of E, are

N

(B.6) wi(x) = 3 t,(x) sin ijhm.
p

Caske [ = 0. One proceeds just as in the case / = 1. The matrix B, is —4,. The
matrix 4, turns out to be

A, = %W{C + 126) + 12K7C + 36K°C2.
Hence the eigenvalues u! of E; and E, are

2 ga2

(B.7) W= 42 z.,-(f.i-+ 304; + 120) ‘
h® 22 4 12642 + 16804, + 5040

while the eigenfunctions w? of E, are again those of E,.
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In fact, one verifies that

(B.8) wl = w! = K1 + 6A79Py(sin inx), i=1,---,N,

where P, is the projection associated with spline interpolation, as defined in §15.
Casg [ = 2, In this case, one makes use of the identity valid for fe §:

%(f "(xim) + () (X)) = F (i) — 2 () + Hxan)-

This gives
6 C

Ey=———,

T hc+6
S0

6 A
B.g 2=_ : N -=1')‘l"}Nl
(B9) M pre

while the eigenfunctions of E, are again those of E; (and E,).

In all three cases, the approximation to the eigenfunctions is, therefore, O(h%).
The approximations to the eigenvalues, on the other hand, vary in order of ac-
curacy. Let »; denote the eigenvalues of D3 i.e.,

i = —-(fqr)z, i = 1: 2! :
then one computes

6!

— i 4,2 1_263 )
#1-—1’;(1'!-6!}!1?, Srh :+ H
oy =21 pe )
P"—?‘(l 38!h,’i+ A

Hence the application of the Rayleigh-Ritz-Galerkin method to the space of cubic
splines with uniformly spaced joints gives an approximation to the eigenvalues of
D? of order O(#°). The following table gives —ulfor/=0,1,2, N=1,2, 3, and
i=1,2.

=2 =1 =0 Exact
N=1 12.0 10.0 9.8824
N=2 10.8 9.8901 9.870300 } 9.86960438 i=1
N=3 10.39 9.8755 9.869706
N=2 54.0 41.54 39,9512
39.478416 i=2
N=3 48.0 40.00 39.5304
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