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ISBN 3-7643-2746-4.

Principal Shift-Invariant Spaces

Generated by a Radial Basis Function

Abstract. Approximations from the L2-closure S of the finite linear com-
binations of the shifts of a radial basis function are considered, and a thor-
ough analysis of the least-squares approximation orders from such spaces
is provided. The results apply to polyharmonic splines, multiquadrics, the
Gaussian kernel and other functions, and include the derivation of spectral
orders. For stationary refinements it is shown that the saturation class is
trivial, i.e., no non-zero function in the underlying Sobolev space can be
approximated to a better rate. The approach makes an essential use of
recent results of de Boor DeVore and the author.

§1. Introduction

A substantial progress in the understanding the L∞- and L2- approxima-
tion orders of principal shift-invariant spaces was recently obtained in [4] and
[2] respectively. While [4] discusses the application of the methods there to
radial functions, no such discussion can be found in [2], and the present paper
is meant to fill in that gap. Thus, it is devoted to the analysis of the L2-
approximation orders associated with principal spaces generated by a radial
function via the ideas, methods and results of [2].

It seems best to start our discussion with an explanation of the title.
First, all functions here are assumed to be either real or complex valued and
are defined on the real Euclidean space IRd, for some d ≥ 1. A shift means
“an integer translate” or “an integer translation”, hence a shift-invariant
space S is a space which is invariant under the shift operation, i.e., satisfies

f ∈ S ⇐⇒ f(· − α) ∈ S, α ∈ ZZd. (1.1)
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We also assume that S is a closed subspace of L2(IR
d). For f ∈ L2(IR

d), we
denote by S(f) the space generated by f , i.e., S(f) is the L2-closure of
the finite linear combinations of the shifts of f :

S(f) := closureS0(f),

with
S0(f) := {

∑

α∈ZZd

aαf(· − α) : almost all aα are zero},

i.e., S(f) is the smallest closed shift-invariant space that contains f . Certainly,
S(f) ⊂ S for every f ∈ S. We say that S is principal if it is generated by a
single function, i.e., if there exists φ ∈ S for which

S = S(φ).

We remark that Theorem 2.16 of [2] shows that in case φ ∈ L2(IR
d) is com-

pactly supported, S(φ) contains all the infinite combinations of the shifts of
φ (calculated pointwise) which happen to be L2(IR

d)-functions.
In order to read and understand the main results and applications in this

paper, no previous knowledge on radial basis functions is required. However,
some, or even a good, knowledge of the present state-of-art and the present
concepts in the area will help in understanding the novelty of the approach
here. By “present state-of-art” we mean the survey of Powell [17], with the
complement of some more recent results from [7], [6] and [15].

What do we mean here by a radial basis function? In [17], Powell lists
six functions as being the major examples of radial basis functions. These
are |x|, |x|3, |x|2 log |x|, e−|x|2 , and (|x|2 + c2)±1/2, where |x| stands for the
Euclidean 2-norm

|x| :=
√
x2

1 + x2
2 + ...+ x2

d.

All these functions are, indeed, radially symmetric, some of them grow at
∞ and some of them decay at ∞. For our purposes, the radial symmetry
of the basis function plays less than a role, and we use the terminology “a
radial basis” function more for convenience, (as a matter of fact, a few of our
examples are not radially symmetric). The two basic properties of the basis
function φ which we employ here are (1) its smoothness or, more precisely,

the decay at ∞ of its Fourier transform φ̂, and (2) its “ellipticity”. By the

latter we mean that the (generalized) Fourier transform of φ̂ is a well-defined
smooth function in the complement IRd\0 of the origin, and does not vanish
there.
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To pursue further the discussion, we want to introduce the notion of
approximation orders. For f ∈ L2(IR

d), the distance E(f, S) of f from the
(shift-invariant) space S is defined as usual by

E(f, S) := min{‖f − g‖ : g ∈ S}, (1.2)

where ‖·‖ is the L2(IR
d)-norm. Assume further that we hold in hand not one

principal shift-invariant space S(φ), but a collection of them {Sh := S(φh)}h,
where h varies over either the interval (0, 1] or some discrete subset of this
interval. A priori no connection between the generators {φh} of the various
spaces is assumed. Each of the shift-invariant spaces Sh is then dilated to the
h-level as follows:

Shh := Sh(φh) := {f(·/h) : f ∈ Sh}. (1.3)

Note that the dilated space Sh(φh) is generated by the hZZd-shifts of the
dilated function φh(·/h). We say that {Sh}h (or {φh}h) provides approxi-
mation order k > 0 (in the 2-norm), if

E(f, Shh ) = O(hk), ∀f ∈W, (1.4)

where W is some smooth subspace of L2(IR
d) which depends on k, usually a

Sobolev space.
More than any other case, the literature studies the so-called stationary

case in which only one function φ is employed, i.e., φh = φ, all h. In this case
Sh = S(φ), all h, and the scaled spaces in (1.3) are all dilates of one basic
space. The study of non-stationary settings was initiated in spline theory
(exponential box splines [18], [9]), but there are also very good reasons for
considering non-stationary refinements in radial basis function theory. This
point is so important, that we pause here momentarily to discuss the following
example.

Example 1.5. Let φ be the Gaussian kernel, i.e., φ(x) = e−|x|2 . Despite
of the superior smoothness and decay properties of this function, it has been
conceived as a poor choice as far as approximation orders are concerned. The
heuristic reason for this is that the dilated function φ(x/h) = e−h

−2|x|2 con-
verges to the δ functional faster than our linear refinement of the translates,
and the task of approximating from this space becomes hopeless. But, a
small change in the dilation process alters the picture dramatically: we ob-
tain approximation orders as large as are wished by choosing λ(h) to be a
function that decays to 0 with h (e.g., λ(h) = O(1/| log h|)), and defining
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φh := e−λ(h)|·|2 . (Note that φh(·/h) = e−λ(h)h−2|·|2 , and so the λ(h) parame-
ter slows the convergence of φ(·/h) to the δ functional.) Further, the choice
λ(h) := hν , ν > 0, results in spectral approximation orders, i.e., approxima-
tion orders that depend only on the smoothness of the approximand.

Before [4] and [2] were written, the standard approach for the analysis
of approximation orders went along the quasi-interpolation argument guide-
lines, which can roughly be divided into three steps. The first of which is
localization (referred to sometimes as “preconditioning”): since φ usually
grows at ∞, one applies to φ a (finite/infinite) difference operator to obtain
a function ψ with nice decay properties at ∞. Then, one tries to reproduce
polynomials: if ψ decays fast enough at ∞, then, for some k ≥ 1, the sum

ψ∗′p :=
∑

α∈ZZd

p(α)ψ(· − α)

converges uniformly on compact sets for every p ∈ Πk−1, with Πk the space
of all polynomials of degree ≤ k (in d variables). Under certain conditions on
φ and by a careful choice of the difference scheme employed, it is possible to
prove that ψ∗′p = p, for all p ∈ Πk−1. This gives rise to the approximation
scheme

f ≈ ψ∗′f, f ∈W. (1.6)

The third step is the error analysis where the polynomial reproduction is
shown to imply that the scheme (1.6) provides approximation order k. In
case ψ is compactly supported, the conversion of polynomial reproduction to
approximation orders provides no difficulty (cf. e.g., [1]), and the same holds
in case it is known that ψ decays at ∞ like O(|·|−k−d−ε) for some ε > 0 (cf.
Proposition 1.1 and Corollary 1.2 of [8] and the arguments in [13]). However,
things become more involved if the above decay holds only with ε = 0, and
subtle information on φ and ψ is then required.

The focal point of our discussion here is that we do not employ any
step of the quasi-interpolation argument approach; specifically, we do not
reproduce polynomials (nor do we reproduce exponentials or any other “nice”
functions). This results in a tremendous relaxation of the localization step,
as the function ψ is no longer required to decay in a manner related to the
desired approximation order k, but merely to lie in L2(IR

d).

Example 1.7. Let φ be the univariate inverse multiquadric, i.e., d = 1 and

φ := (1 + |·|2)−1/2.

In this case φ ∈ L2(IR), hence S := S(φ) is well-defined. We assume that S is
refined by dilation, i.e., that φh = φ for all h. It was conjectured by many (cf.
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e.g., [5]) that φ above provides no positive approximation orders; this, indeed,
will be proved here. On the positive side, we show that

E(f, Sh) = o(1), ∀f ∈ L2(IR). (1.8)

In the terminology of [2] φ provides density order 0. We will even deter-
mine the rate of decay of E(f, Sh) for smooth f (e.g, for f in the Sobolev
space W 2

1 (IR)). An L∞-analogue of (1.8) has been recently established in [6].

We mentioned one drawback of the quasi-interpolation argument, i.e.
that it requires high decay rates from the basis function ψ. There is, however,
another significant deficiency in this argument: it provides only lower bounds
on the approximation order, in the sense that by quasi-interpolation one can
only conclude that the approximation order is at least some k. General meth-
ods for the derivation of upper bounds on the approximation order were known
only for the stationary case, and even there only for weaker versions of ap-
proximation orders (the so-called “controlled”, “local” and “controlled-local”
approximations), and only for basis functions which decay like O(|·|−k−d−ε)
at ∞ (cf. [20], [3], [14], [12], [10]). In contrast, [19], [4], [2] as well as this
paper employ methods that determine the exact approximation order.

It then becomes very interesting to compare the lower bounds on approx-
imation orders provided by quasi-interpolation with the exact orders that will
be described. For this purpose, we state (and prove in the next section) the
following theorem.

Theorem 1.9. Let φ be some function which grows no faster than polyno-
mially at ∞, and let φ̂ be its Fourier transform. Assume that ψj , j = 1, 2, are

two L2(IR
d)-functions which satisfy the equations

ψ̂j = uj φ̂, j = 1, 2,

where uj , j = 1, 2 are some 2π-periodic functions each vanishes only on a set
of measure 0. Then

S(ψ1) = S(ψ2).

How is this theorem connected to our discussion? As mentioned, when-
ever the basis function grows at ∞, a localization process precedes the con-
struction of an approximation scheme. Whatever approach one chooses from
the present literature, the connection between the original φ and its localized
version ψ is given on the Fourier transform domain by an equation of the
form ψ̂ = uφ̂, where u is some 2π-periodic function (the product uφ̂ should
be interpreted in a distributional sense). The above theorem then says that
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the type of localization process used is immaterial to the approximation or-
ders provided by the localized function. In particular, the decay rates at ∞
of the localized function ψ, as well as the zero that ψ̂ might or might not
have at the origin, are irrelevant to approximation orders. This is in stark
contrast with the lower bounds on approximation order suggested by quasi-
interpolation, which are improved together with the decay rates at ∞ of the
localized function.

At a first look, the above remarks might seem surprising, since several
authors (including myself, cf. [11], [5], [8]) proved that (for some specific basis
functions) the approximation orders are improved together with the better
decay rates of the function, and even proved that the approximation orders
stated in their theorems are the exact (i.e., best possible) ones. This does not
contradict the present statements: what is established in the above citations
and other references is that for the given localization ψ the approximation
scheme (1.6) approximates to a certain (exact) order. The right conclusion is
that the approximation scheme (1.6) fails to provide optimal approximation
orders whenever ψ decays at ∞ too slowly. As a matter of fact, for functions
which decay slowly at ∞, optimal approximation schemes (i.e., these that
realize the approximation order) are not local. For example, in case f happens
to be compactly supported, (1.6) employs only finitely many shifts of f , and
these shifts are determined by supp f . In contrast, the approximation schemes
used here employ infinitely many shifts even in case f is compactly supported,
and the coefficients associated with these shifts decay sometimes at ∞ in a
slow rate determined by the decay rate of the basis function ψ.

Notations: The symbol “const” stands for a generic positive constant,
hence constants appearing in the same display need not to be the same. The
notation “f ∼ g on Ω” means that supp f ∩ Ω differs from supp g ∩ Ω by a
null-set, and f/g, g/f ∈ L∞(Ω).

§2. Approximation Orders in the L2-Norm

The paper [2] provides a complete analysis of approximation orders from
closed shift-invariant spaces of L2(IR

d). We could have applied those general
results to the radial functions considered here, but prefer to derive our results
more or less directly, since in this way we obtain finer statements and tighter
bounds.

Given ψ ∈ L2(IR
d), the space S(ψ) is defined as in the introduction.

Throughout the paper, we assume that the generator ψ̂ is non-zero a.e. This
assumption is not essential, but is satisfied by all examples in radial basis
function theory.
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Given the spaces {Sh := S(ψh)}h, ψh ∈ L2(IR
d), our goal is to pro-

vide a realistic estimate for {E(f, Shh )}h, f ∈ L2(IR
d). Since E(f, Sh) =

hd/2E(f(h·), S), as can be easily verified by scaling, we might study the iden-
tical quantities

hd/2E(f(h·), Sh),

as we occasionally do here. To make the analysis more concrete, we briefly
discuss some of the possible choices for the sequence {ψh}h.

Example 2.10. (a) The basis function φ is chosen to be a fundamental solu-
tion of a homogeneous elliptic differential operator (with constant coefficients)
P (D) of orderm > d/2. In case P (D) is the m/2-fold iterated Laplacian, (i.e.,
if P (x) = |x|m), φ(x) can be chosen to be c|x|m−d or c|x|m−d log |x|, depend-

ing on the parity of d. The Fourier transform φ̂ coincides with the reciprocal
of P (i·) on IRd\0. Since φ grows at ∞, we need to localize it before entering
the discussion of approximation orders, and thus we assume that ψ is a local-
ization of φ, which means that ψ ∈ L2(IR

d) and ψ̂ = uφ̂ for some 2π-periodic
function (even a trigonometric polynomial may do, and recall from Theorem
1.9 that S(ψ) is independent of the periodic u chosen). In the present example
we consider only the stationary case, i.e., defining S := S(ψ), we study the
decay rates of

hd/2E(f(h·), S),

for a smooth f . Since the localization ψ plays a dummy role, it is desirable
to analyse the problem in terms of the basis function φ, or, if possible, in
terms of the underlying polynomial P . We mention that in case P (D) is the
iterated Laplacian, the space S above is intimately related to the space of
polyharmonic splines studied e.g., in [16].

(b) φ(x, c) = (|x|2 + c2)m/2, (m ≥ −d, m 6∈ 2ZZ+), or φ(x, c) = (|x|2 +
c2)m/2 log(|x|2 + c2) (m ∈ 2ZZ+). This contains the multiquadrics and inverse
multiquadrics which correspond to the values m = +1,−1 respectively. The
present example has the following important advantage over the previous one:
since φ here is infinitely smooth, its Fourier transform decays rapidly (as a
matter of fact, exponentially) at ∞, and further this transform is known to
vanish nowhere on IRd\0. Because of these two properties, we will show that
an appropriate change of the parameter c from one h-level to another results in
an improvement of the approximation properties of the corresponding spaces.
Thus, we have two alternatives to choose from:

(b1) The stationary case: as before, we might localize φ to get ψ, define
S := S(ψ), and do not change ψ with h. This case becomes very similar in
its analysis to the one considered in (a). In both of them the approximation
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orders are determined by the rate of growth of φ at ∞, or, more precisely, by
the singularity order of φ̂ at the origin.

(b2) The non-stationary case: here we change the parameter c with h,
i.e., define φh := φ(·, ch). Each φh is then localized to obtain a sequence {ψh}h
of L2(IR

d)-functions (again the type of localization used is insignificant, but
it can be shown that the same periodic function u can be used for all φh).

By letting {ch}h grow to ∞, the fast decay of φ̂ would provide approximation
orders that supersede the orders obtained in the stationary case (b1).

It should be observed that for the φ considered in (a), the trade-of be-

tween singularity order of φ̂ at 0 and its decay rate at ∞ provides no benefit.
Because of the homogeneity of φ̂, the order of its pole at 0 is the same as its
decay rate at ∞.

(c) Here we consider again a one-parametric family φ(·, c) of very smooth

functions, which, further, are in L2. For example, φ(·, c) = e−c|·|
2

, or φ =

(|·|2 + c2)−(d+1)/2. In such a case φ̂ admits no singularity at 0, and the only
way to obtain positive approximation orders is as in (b2) above. In this regard,
examples of the present type are advantageous over the examples in (b) since
we do not need to localize our function.

In all the above examples, the Fourier transform φ̂ of the basis function
φ could have been identified on IRd\0 with some smooth function. Since this
is typical of radial basis functions, we adopt such an assumption from now
on. In particular, in all subsequent analysis the notation φ̂ stands also for
the function which is defined on IRd\0 and coincides there with the Fourier
transform of φ.

§2.1. The PSI space S(φ) and the function Λφ

From the definition of S(ψ) it is clear that S(ψ) contains any finite linear
combination of the shifts of ψ, and, furthermore, any function s ∈ S(ψ) can be
arbitrarily close approximated by these finite linear combinations. In terms
of ψ̂ (which is known to be in L2(IR

d) since ψ is assumed to be so) we know

that Ŝ(ψ) contains all functions of the form τ ψ̂, where τ is a trigonometric
polynomial. The following characterization of all elements of S(ψ), (ψ ∈
L2(IR

d)) has been obtained in [2]:

f ∈ S(ψ) ⇐⇒ (f ∈ L2(IR
d), f̂ = τ ψ̂, τ is 2π − periodic). (2.11)

We want to emphasize that the 2π-periodic τ in the above characterization
is not assumed to be integrable or square integrable or even measurable (al-
though it can be proved to be measurable). Further, as any L2-function, the
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product τ ψ̂ is defined almost everywhere, and consequently τ might be defined
only a.e.

Proof of Theorem 1.9. To prove that S(ψ1) = S(ψ2) it suffices to show
that ψ1 ∈ S(ψ2) and vice versa. Defining τ := u1/u2, we know by the
assumption on u2 that τ is defined almost everywhere, and because the uj ’s
are 2π-periodic, so is τ . On the other hand,

ψ̂1 = τ ψ̂2,

and ψ1 ∈ L2(IR
d) by assumption, and therefore, by (2.11), ψ1 ∈ S(ψ2), while

the converse holds by symmetry.

The approximation properties of the space S(ψ) are determined by be-
haviour of the function

Λψ := (1 −
|ψ̂|2

ψ̃2
)1/2, (2.12)

where ψ̃ is the following 2π-periodization of ψ̂:

ψ̃ := (
∑

β∈2πZZd

|ψ̂(· + β)|2)1/2. (2.13)

The convergence of the sum in the last definition can be taken in the L1-sense.
It is easy to see that, with

C := [−π, π]d,

ψ̃ ∈ L2(C) if and only if ψ ∈ L2(IR
d). Note that Λψ is non-negative and

bounded by 1.
We already know, by Theorem 1.9, that, at least from a theoretical point

of view, the specific choice of the localization process is not important. This
choice lacks also any significance in the practical computation of approxi-
mation orders: the approximation orders depend on the behaviour of Λψ (see

below), but we observe that, because ψ̂ = τ φ̂ and τ is 2π-periodic, the function
Λφ is also well-defined and coincides a.e. with Λψ, (subject to the assumption
that τ is non-zero a.e.). Thus, to dispense entirely with ψ, we define

S(φ) := S(ψ),

with ψ some (any) localization of φ. Note that, because of (2.11), the Fourier

transform of every function f in S(φ) can be written in the form f̂ = τ φ̂, for
some 2π-periodic τ .



10 Amos Ron

We could have defined S(φ) directly, without any recourse to localiza-

tion, by an appropriate distributional interpretation of the product τ φ̂, τ
2π-periodic. There are two reasons for the indirect definition chosen above:
first, the approximation map and its error analysis require the use a local-
ization ψ; second, there is no real loss in the indirect definition, since by our
assumption on φ, φ̂ has an isolated singularity at the origin, hence of finite
order, and consequently this singularity can always be removed, e.g., by an
application to φ of a finite difference operator which annihilates polynomials
of sufficiently high degree.

§2.2. The stationary case

For the sake of clarity, we first consider the stationary case. Thus, the
space S := S(φ) is fixed and, for the given smooth f , we need to study the
quantities

E(f, Sh) = hd/2E(f(h·), S). (2.14)

The space of smooth functions is chosen as the potential space W k
2 (IRd):

W k
2 (IRd) := {f ∈ L2(IR

d) : ‖f‖Wk
2

(IRd) := (2π)−d/2‖(1 + |·|)kf̂‖L2(IRd) <∞}.

In case k is an integer, W k
2 (IRd) is the usual Sobolev space of the functions

whose derivatives up to order k are in L2(IR
d).

Since the Fourier transform is an isometry on L2(IR
d), we might alterna-

tively study the quantities hd/2E(f̂(h·), Ŝ), with Ŝ the range of S(φ) under
the Fourier transform.

Our first step is truncation: instead of approximating f̂(h·), we approx-
imate only the portion of it that is supported on some 0-neighborhood B, and

add the rest of f̂(h·) to the error bound. Since f̂(h·) = h−df̂(·/h), it is easy
to prove (cf. Lemma 3.8 of [2]) that, for any fixed 0-neighborhood B,

hd/2‖f̂(h·)‖L2(IRd\B) ≤ cBh
kεf (h)‖f‖Wk

2
(IRd), (2.15)

for whatever k ≥ 0 we choose, with εf (h) ≤ 1 and decays to 0 with h. Hence,

for f ∈W k
2 (IRd),

|E(f, Sh) − (2π)−d/2h−d/2E(χ
B
f̂(·/h), Ŝ)| = o(1)hk‖f‖Wk

2
(IRd),

with the o(1) factor bounded independently of f , and where χ
B

is the char-
acteristic function of any fixed neighborhood of the origin. Therefore, the
truncation process is harmless to the task of determining the approximation
orders.

The function Λφ then enters the discussion because of the following result
of [2]:



L2(IR
d)-approximation orders 11

Result 2.16. Let f ∈ L2(IR
d) and assume that supp f̂ ⊂ B ⊂ C. Then

E(f̂ , Ŝ) = ‖f̂Λφ‖L2(IRd) = ‖f̂Λφ‖L2(B).

From the last result we conclude that, if B ⊂ C, then

E(χ
B
f̂(·/h), Ŝ) = ‖f̂(·/h)Λφ‖L2(B).

Thus, since h−d/2‖f̂(·/h)Λφ‖L2(B) = ‖Λφ(h·)f̂‖L2(B/h), we arrive at the fol-
lowing:

Corollary 2.17. Let B ⊂ C be a neighborhood of the origin, and let f ∈
W k

2 (IRd), k ≥ 0. Then

E(f, Sh) = (2π)−d/2‖Λφ(h·)f̂‖L2(B/h) + o(1)hk‖f‖Wk
2

(IRd),

with the o(1) factor bounded independently of f .

We will make now specific assumptions on the basis function φ which will
allow us to replace Λφ in the last corollary by a simpler expression. Through-
out the rest of this subsection we assume that φ satisfies the following condi-
tions:

(a) Smoothness condition: The function Mφ which is defined by

Mφ
2 :=

∑

β∈2πZZd\0

|φ̂(· + β)|2 (2.18)

is (essentially) bounded on some neighborhood B of the origin.

Condition (a) is satisfied by all the functions φ we consider, since they

all enjoy the stronger property |φ̂(w)| = O(|w|−(d/2+ε)) as w → ∞. Without
loss, we assume that the set B appearing in the above condition is identical
with B in Corollary 2.17.

(b) “Ellipticity” condition: the function Mφ is bounded below away of zero

around the origin, while the function |φ̂| (which, by assumption, is defined
on IRd\0) converges to ∞ at 0.

In all the examples considered here the boundness below of Mφ follows

from the fact that φ̂ is continuous on IRd\0 and does not vanish either there
or in some neighborhood of ∞.



12 Amos Ron

Corollary 2.19. Let f ∈ W k
2 (IRd), k ≥ 0. If φ satisfies condition (a) above,

then

E(f, Sh) ≤ const‖f̂/(φ̂(h·))‖L2(B/h) + o(1)hk‖f‖Wk
2
(IRd), (2.20)

with const independent of f and h, and with o(1) being bounded indepen-
dently of f . Furthermore, if φ also satisfies condition (b) above, then the
converse inequality holds as well (with, possibly, a different constant).

Proof: With Mφ as in (2.18), we observe that

Λ2
φ =

M2
φ

|φ̂|2 + M2
φ

≤
M2
φ

|φ̂|2
.

Assuming (a), it thus follows that Λφ|φ̂| is bounded on B, and an application
of Corollary 2.17 yields (2.20).

If, further, we assume Condition (b), then, assuming also (without loss,

since we can change B if necessary) that 1/|φ̂| is bounded on B, we conclude
that

M2
φ + |φ̂|2 ≤ c|φ̂|2, on B.

Since we also know that 1/Mφ is bounded on some 0-neighborhood, it follows
that around the origin

Λ2
φ =

M2
φ

M2
φ + |φ̂|2

≥ const|φ̂|−2.

Again, an application of Corollary 2.17 proves that the converse inequality
holds as well.

Example 2.21. We proceed with case (a) of Example 2.10, i.e., assume that

|φ̂| = 1/P (on IRd\0) with P (D) an elliptic operator, degP > d/2. It is then
easy to verify that conditions (a) and (b) that were required in Corollary 2.19
hold, and therefore we obtain the following result.

Theorem 2.22. Let φ be a fundamental solution of a constant coefficient
homogeneous elliptic operator P (D) of order m > d/2. Then φ provides
approximation order m in the L2-norm for every function f ∈ Wm

2 (IRd).
Further, for any non-trivial such f , E(f, Sh) 6= o(hm).

Proof: By Corollary 2.19, the first statement of the theorem will be es-
tablished as soon as we show that ‖f̂/φ̂(h·)‖L2(B/h) = O(hm) for every



L2(IR
d)-approximation orders 13

f ∈ Wm
2 (IRd). Since P = 1/φ̂ ∼ |·|m on B (and, as a matter of fact ev-

erywhere), due to the ellipticity of P (D), we can replace ‖f̂/φ̂(h·)‖L2(B/h)

by
‖|h·|mf̂‖L2(B/h) = hm‖|·|mf̂‖L2(B/h) ≤ (2π)d/2hm‖f‖Wm

2
(IRd),

and the desired result follows.
If we assume that E(f, Sh) = o(hm), then, because of Corollary 2.19,

‖f̂/φ̂(h·)‖L2(B/h) = o(hm),

which implies, as above, that

hm‖|·|mf̂‖L2(B/h) = o(hm).

Consequently, ‖|·|mf̂‖L2(B/h) = o(1), which can happen only if |·|mf̂ = 0.

Therefore, f is a polynomial, and hence null, since L2(IR
d) contains no non-

trivial polynomials.

The reader should observe that the assumption m > d/2 is essential: if
m ≤ d/2, φ is not locally in L2.

An examination of the proof of Theorem 2.22 reveals that the actual
choice of φ there played only a minor role. The properties of φ used were the
satisfaction of conditions (a) and (b) and the fact that φ̂ ∼ |·|−m near the
origin. Therefore, by arguments identical to those used in the last proof we
obtain the following:

Theorem 2.23. Assume that φ satisfies the conditions stated before Corol-
lary 2.19, and that φ̂ ∼ |·|−k on (say, the same) 0-neighborhood B, for
some k > 0. Then φ provides approximation order k for all functions in
the potential space W k

2 (IRd). Moreover, for every non-trivial f ∈ W k
2 (IRd),

E(f, Sh) 6= o(hk).

Example 2.24. We now revisit case (b1) of Example 2.10, and since c is fixed
here, we denote φ := φ(·, c). The common feature to all the basis functions
considered in (b) of Example 2.10 is their Fourier transform (on IRd\0):

φ̂(w) = const(c,m, d)|w|−(m+d)/2K(m+d)/2(c|w|),

with Kν being the modified Bessel function of third kind and order ν. The
Bessel function is positive on IRd\0 and decays exponentially at ∞, and from
this we conclude that Mφ is bounded on C above and below by positive
constants. Further, for ν > 0 Kν is known to a have a pole of order ν at
the origin, and therefore, in case m + d > 0, we conclude that φ̂ ∼ |·|−(m+d)

around the origin. Thus, we can apply Theorem 2.23 to the present φ with
k := m+ d to obtain:
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Corollary 2.25. Let φ be as in Example 2.10 (b), and assume thatm+d > 0.
Then the results of Theorem 2.23 hold for this φ with k = m+ d.

Note that φ ∈ L2(IR
d) whenever −d < m < −d/2, and hence for such a

choice of m the definition of S(φ) does not require localization.

We now want to consider in the present example the extreme case when
m+d = 0. Our analysis still applies to this case in the sense that conditions (a)
and (b) required in Corollary 2.19 still hold here, and therefore this corollary

reduces the study of E(f, Sh) to the study of ‖f̂/φ̂(h·)‖L2(B/h). The difference
between this case and the case m+ d > 0 is that the singularity of the Bessel
function is now of logarithmic type. i.e., |φ̂(w)| ∼ | log |w|| around the origin,
and thus the decay rates of E(f, Sh) require the examination of

‖f̂(w)/ log |h|w|| ‖L2(B/h).

Our result with respect to basis functions whose Fourier transform has a
logarithmic singularity at the origin is as follows.

Theorem 2.26. Assume that φ satisfies the following two conditions:
(a) Mφ is essentially bounded below and above by positive constants on some

0-neighborhood.
(b) φ̂(w) ∼ log |w| around the origin.

Then:
(i) φ provides no positive approximation order k for any f ∈ W k

2 (IRd) and
any k > 0.

(ii) E(f, Sh) = o(1), for all f ∈ L2(IR
d).

(iii) For every k > 0, and every f ∈W k
2 (IRd),

E(f, Sh) ≤ const| log h|−1‖f‖Wk
2

(IRd),

for all h ≤ h0, where const and h0 depend on k but not on f .

Proof: Statement (ii) follows from Theorem 1.7 of [2]. That theorem says
that the property E(f, Sh) = o(1), ∀f ∈ L2(IR

d) (referred to as “the density
property”) is equivalent to Λ2

φ having a Lebesgue value 0 at the origin. The
result applies here since, by the assumption made on φ, it is clear that Λφ is
continuous at the origin and vanishes there.

Now fix k > 0. To prove (i) and (iii), we follow the remarks preceding
this theorem and consider the quantities

‖f̂/ log |h·| ‖L2(B/h).



L2(IR
d)-approximation orders 15

We already know that, up to a term of order o(hk), these numbers determine
the decay rates of E(f, Sh) (as h→ 0). Without loss we assume that B is the
ball of radius 1/e. For simplicity, we also assume that h = e−l for some integer
l (other values of h are treated as below with some obvious modifications).
We divide the ball B/h = elB into annuli as follows:

R0 := eB, Rj := {w : ej−1 ≤ |w| ≤ ej}, j = 1, ..., l − 1. (2.27)

On Rj , j > 0, we have the estimate (log(h|w|))−2 ≤ (j − l)−2, and thus, for

f ∈W k
2 (IRd),

‖f̂/ log(h|·|)‖2
L2(Rj)

≤e−2k(j−1)(j − l)−2‖|·|k|f̂ |‖2
L2(Rj)

≤const e−2kj(j − l)−2‖f‖2
Wk

2
(IRd).

Summing this last estimate for j = 1, ..., l − 1, we arrive at

∫

(B/h)\R0

|f̂ |2(log(h|·|))−2 ≤const‖f‖2
Wk

2
(IRd)

l−1∑

j=1

e−2kj(l − j)−2

=const‖f‖2
Wk

2
(IRd)e

−2kl
l−1∑

m=1

e2km/m2.

Elementary integral tests show that the sum in the last expression is O(e2kl/l2)
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= O(h2k/ log2 h), and therefore∫

(B/h)\R0

|f̂ |2(log(h|·|))−2 ≤ const‖f‖2
Wk

2
(IRd)| log h|−2.

Also, on R0 we have∫

R0

|f̂ |2(log(h|·|))−2 ≤ (log h)−2‖f̂‖2
L2(IRd)

≤ const(log h)−2‖f‖2
Wk

2
(IRd).

We conclude that for some f -independent h0 and const, and for every h ≤ h0,

‖f̂/φ̂(h·)‖L2(B/h) ≤ const‖f‖Wk
2

(IRd)/| log h|.

Substituting this into Corollary 2.19, we obtain (iii).
We now prove (i): let f ∈ W k

2 (IRd). Upon assuming that φ provides
approximation order k to f , we conclude from Corollary 2.19 that

‖f̂/ log(h|·|)‖L2(B/h) = O(hk). (2.28)

Let j ∈ ZZ and let Rj be the annulus in (2.27). For sufficiently small h, Rj ⊂

B/h, hence ‖f̂/ log(h|·|)‖L2(Rj) = O(hk) and since (log(h|·|))2 ≤ (log h−j+1)2

on Rj , we conclude that

‖f̂/ log(h|·|)‖L2(Rj) ≥ | log h− j + 1|−1‖f̂‖L2(Rj).

Combining (2.28) with the last inequality, we arrive at

lim sup
h→0

h−k

| log h− j + 1|
‖f̂‖L2(Rj) <∞,

which can happen only if f̂ = 0 a.e. on Rj . Since j was arbitrary, f̂ = 0 a.e.

on IRd\0, hence f = 0.

We have discussed cases (a) and (b) in Example 2.10. Let us briefly

review case (c) there. In the two examples considered in (c) φ̂ is a continuous
positive function with exponential decay at ∞. Therefore, Λφ is a continuous

positive function. If now f ∈ L2(IR
d) = W 0

2 (IRd) then, by Corollary 2.19,
(with S := S(φ)),

E(f, Sh) =const‖Λφ(h·)f̂‖L2(C/h) + o(1)

≥const‖f̂‖L2(C/h) + o(1) → const‖f̂‖L2(IRd).

Therefore, unless f = 0,
E(f, Sh) 6= o(1),

i.e., φ does not provide even density order zero for any non-zero L2-function.
Here, the only information used is the fact that Λφ is non-zero on C (and
actually C could have been replaced by any neighborhood of the origin).
Therefore, we have
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Corollary 2.29. Assume that Λφ is bounded below by a positive constant

in some neighborhood of the origin. Then, for every non-trivial f ∈ L2(IR
d),

E(f, Sh) 6= o(1).

In particular, this holds for φ = e−c|·|
2

and φ = (|·|2 + c2)−(d+1)/2.

§2.3. The non-stationary case

In the context of radial basis functions the notion of “non-stationary
case” is connected with “spectral approximation orders”. Here, we employ
a sequence {φh}h of basis functions each of which is some dilate φ(λ(h)·) of
one fixed function φ. In the analysis of the stationary case the approxima-
tion orders provided by φ were determined by the behaviour of φ̂ on small
neighborhoods of the lattice 2πZZd. This is no longer the case here, and our
conditions on φ̂ are of global nature.

Define Sh := S(φh). The approximation order provided by {φh}h to the
function f is determined by the rate of decay (as h→ 0) of the numbers

E(f, Shh ), h > 0. (2.30)

For f ∈W k
2 (IRd), Corollary 2.17 shows that

E(f, Shh ) = (2π)−d/2‖Λφh(h·)f̂‖L2(B/h) + o(1)hk‖f‖Wk
2

(IRd).

It is important to note that second term in the last equation, the truncation
error, is independent of {φh}h.

The basic idea in the derivation of spectral orders is very simple: we
estimate

‖Λφh(h·)f̂‖L2(B/h) ≤‖f̂‖L2(IRd)‖Λφh(h·)‖L∞(B/h)

=(2π)d/2‖f‖L2(IRd)‖Λφh‖L∞(B).

We do not want to specify in advance the smoothness class from which f is
selected, and therefore we are unable to bound the truncation error in the
way we did in Corollary 2.17. Instead, we recall, (2.15), that this truncation
error has the form

hd/2‖f̂(h·)‖L2(IRd\B) = ‖f̂‖L2(IRd\(B/h)).
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In summary, we obtain the following seemingly coarse estimate for E(f, Shh ):

E(f, Shh ) ≤ ‖f‖L2(IRd)‖Λφh‖L∞(B) + const‖f̂‖L2(IRd\(B/h)). (2.31)

Our objective is to make the first term above decaying to zero so fast that,
unless f is exceptionally smooth, the approximation rate provided by {φh}h
to f will be determined by the second term, i.e., by the smoothness of f .
Recall that by (2.15) the second term here is o(hk) for every f ∈ W k

2 (IRd),
hence in particular we have the following:

Proposition 2.32. Assume that the sequence {φh}h satisfies, for some 0-
neighborhood B,

‖Λφh‖L∞(B) = O(hk), ∀k ∈ IR+.

Then, with Sh := S(φh),
E(f, Shh ) = o(hk)

for every f ∈W k
2 (IRd).

In order to estimate ‖Λφh‖L∞(B), we write again

Λ2
φh

=
M2
h

|φ̂h|2 + M2
h

≤
M2
h

|φ̂h|2
,

with M2
h :=

∑
β∈2πZZd\0 |φ̂h(·+ β)|2. In the stationary case we dispensed with

Mh by assuming that in some small neighborhood of the origin Mh is bounded
above; the desired properties of Λφ were then derived from the behaviour of

1/φ̂ at the origin. This is no longer the case: choosing

φh := λ(h)dφ(λ(h)·),

we have
φ̂h = φ̂(·/λ(h)),

and therefore, if λ(h) → 0 with h and φ̂ decays fast at ∞, the values Mh

assumes around the origin tend to zero, with their decay rates being controlled
by {λ(h)}h. At the same time, φ̂h also tend to 0, and thus an estimate of the
form

‖Λφh‖L∞(B) ≤ const‖Mh‖L∞(B)

is not valid.
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In order to focus our discussion and in view of the examples that initiate
this discussion, we assume that

|φ̂(w)|2 ∼ σ(|w|),

for some univariate positive function σ which is non-increasing on [0,∞). Let
ρ < 2π; then for w in

Bρ := {w : |w| < ρ}

we have:
Mh(w)2 =

∑

β∈2πZZd\0

|φ̂((w + β)/λ(h))|2

≤const
∑

β∈2πZZd\0

σ((|β| − ρ)/λ(h))

≤const
∞∑

j=1

σ((2πj − ρ)/λ(h))jd−1

≤const

∫ ∞

2π−ρ

σ(t/λ(h))td−1 dt

=constλ(h)d
∫ ∞

(2π−ρ)/λ(h)

σ(t)td−1 dt.

(2.33)

On the other hand, we can also estimate

|φ̂(w/λ(h))|2 ≥ constσ(ρ/λ(h)), w ∈ Bρ

which, together with (2.33), yields the following bound for ‖Λφh‖L∞(Bρ):

‖Λφh‖
2
L∞(Bρ)

≤ constλ(h)d

∫ ∞

(2π−ρ)/λ(h)
σ(t)td−1 dt

σ(ρ/λ(h))
.

In view of (2.31) and Proposition 2.32, we arrive at the following:

Theorem 2.34. Assume that φ̂(w)2 ∼ σ(|w|) on IRd, where σ is a univariate
non-increasing positive function defined on [0,∞). Let Sh := S(φ(λ(h)·)),
λ(h) > 0. Then, for 0 < ρ < 2π and f ∈ L2(IR

d),

E(f, Shh ) ≤ cρ‖f‖L2(IRd)

(λ(h)d
∫ ∞

(2π−ρ)/λ(h)
σ(t)td−1 dt

σ(ρ/λ(h))

)1/2
+ ‖f̂‖L2(IRd\Bρ/h).
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In particular, for f ∈W k
2 (IRd),

E(f, Shh ) = o(hk)

if

λ(h)d

∫ ∞

(2π−ρ)/λ(h)
σ(t)td−1 dt

σ(ρ/λ(h))
= o(h2k).

The point in this theorem is to choose ρ < π and to rely on the decay
of σ (equivalently, |φ̂|) at ∞. In order to capture Examples (b2) and (c) in

Example 2.10, we assume φ̂ to decay exponentially with order r > 0 and type
n > 0:

σ(t) := e−2n|t|r .

Assuming that λ(h) < 1, we have for this σ that

λ(h)d
∫ ∞

(2π−ρ)/λ(h)

σ(t)td−1 dt ≤ constn,r,d,ρ λ(h)rσ((2π − ρ)/λ(h)).

Consequently

λ(h)d

∫ ∞

(2π−ρ)/λ(h)
σ(t)td−1 dt

σ(ρ/λ(h))
≤ conste−2ncλ(h)−r ,

with c := (2π−ρ)r−ρr. Therefore, Theorem 2.34 reads in this case as follows:

Corollary 2.35. If φ̂(w) ∼ e−n|w|r on IRd, and Sh := S(φ(λ(h)·)), 0 <
λ(h) < 1, then, for 0 < ρ < π and f ∈ L2(IR

d),

E(f, Shh ) ≤ const
(
‖f‖L2(IRd)e

−ncλ(h)−r + ‖f̂‖L2(IRd\Bρ/h)

)
,

where c = (2π − ρ)r − ρr. In particular, for f ∈W k
2 (IRd),

E(f, Shh ) = o(hk)

if
e−ncλ(h)−r = o(hk).

The last result indicates that the approximation properties of {S(φh)}h
are improved with the acceleration of the decay of λ(h) to 0. However, when
choosing {λ(h)}h it is good to keep in mind the effects this choice might
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have on the numerical stability of the approximation process: as λ(h) be-
comes small, the function φh flattens, and approximation schemes from S(φh)
become less and less stable.

Corollary 2.35 covers the examples of the Gaussian kernel φ = e−|·|2

(r = 2 n = 1/4), and φ = (|·|2 +1)−(d+1) (r = n = 1). Also, with some simple
modifications, it can be used to cover the examples considered in Example
2.10(b). However, for the case m + d > 0 there, an improved version of
Corollary 2.35 is available. This version takes a simultaneous account of the
positive effect of the singularity of φ̂ at the origin and its decay at ∞. We
first state and prove a general result along these lines, and then apply it to
Example 2.10(b2). In the theorem below, we use the notation

ql(w) :=

{
1, |w| ≤ 1,
|w|l, |w| ≥ 1.

Theorem 2.36. Assume that φ̂(w) ∼ |w|−je−n|w|rql(w) on IRd for some
positive j, n, r and real l ≤ j. Let φh := λ(h)dφ(λ(h)·), Sh := S(φh). Then,
for 0 < c < (2π)r and for every f ∈W k

2 (IRd), we have

E(f, Shh ) ≤ o(hk) + constλ(h)−(j+l−r)e−ncλ(h)−r

{
‖f‖Wk

2
(IRd)h

k, k ≤ j,

‖f‖W j
2
(IRd)h

j , k ≥ j.

Proof: For f ∈W k
2 (IRd), k ≤ j, we estimate ‖Λφh(h·)f̂‖L2(B/h) as follows:

‖Λφh(h·)f̂‖L2(B/h)

≤hk ‖ |·|kf̂‖L2(B/h) ‖ |·|
−kΛφh‖L∞(B)

≤consthk ‖f‖Wk
2

(IRd) ‖
Mφh

φ̂h
|·|−k‖L∞(B).

To estimate ‖
Mφh

φ̂h
|·|−k‖L∞(B), we use the fact that for β ∈ 2πZZd\0 and w

sufficiently small, since l ≤ j,

ql((w + β)/λ(h))

|w + β|jql(w/λ(h))
≤

( |w+β|
λ(h) )l

|w + β|j
≤ constλ(h)−l |β|l−j ≤ constλ(h)−l.

This together with the assumptions made in theorem imply that

φ̂h(w + β)

φ̂h(w)
=
φ̂((w + β)/λ(h))

φ̂(w/λ(h))
≤ const|w|jλ(h)−(j+l) e

−n|w+β|rλ(h)−r

e−n|w|rλ(h)−r
.
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Thus a bound on
Mφh

φ̂h
requires a bound on

Mψh

ψ̂h
, with ψh := ψ(λ(h)·), and

ψ the inverse transform of e−n|·|
r

. Such a bound has been computed in the
proofs of Theorem 2.34 and Corollary 2.35, where it was shown that

‖
Mψh

ψ̂h
‖L∞(Bρ) ≤ constλ(h)re−ncλ(h)−r ,

with c = (2π − ρ)m − ρm. Thus our combined estimate is the following

Mφh(w)

φ̂h(w)
|w|−k ≤ constλ(h)−(j+l−r)|w|j−ke−ncλ(h)−r , w ∈ Bρ.

Since k ≤ j, |w|j−k is bounded on Bρ, and our final estimate becomes

‖Λφh(h·)f̂‖L2(B/h) ≤ consthkλ(h)−(j+l−r)e−ncλ(h)−r‖f‖Wk
2
(IRd).

Invoking Corollary 2.17, we obtain the desired result for k ≤ j.
If k > j, we alternatively use the bound

‖Λφh(h·)f̂‖L2(B/h)

≤hj ‖ |·|j f̂‖L2(B/h) ‖ |·|
−jΛφh‖L∞(B)

≤consthj ‖f‖W j
2
(IRd) ‖

Mφh

φ̂h
|·|−j‖L∞(B),

and follow the proof of the first case. The only change is the disappearance
of the factor |w|k−j .

We can now revisit case (b2) in Example 2.10, where we choose the
parameter c to be 1. Recall that for φ there,

φ̂ = const|·|−(m+d)/2K(m+d)/2(|·|),

with Kν the modified Bessel function of order ν. Since Kν(w) ∼ e−ww−1/2

when w → ∞, is positive on IR+, and, in case m+ d > 0, has a pole of order
(m+ d)/2 at the origin, we conclude that, for m+ d > 0 and on IR+,

w(m+d)/2Kν(w) ∼ e−wq(m+d−1)/2(w).

This shows that φ here satisfies the conditions required in Theorem 2.36 for
the choice j = m+ d, n = r = 1, and l = (m+ d− 1)/2, thereby proving the
following:

Corollary 2.37. Let φ be any of the functions considered in Example 2.10(b),
with m + d > 0. Define Sh := S(φ(λ(h)·)), λ(h) > 0. If f ∈ W k

2 (IRd) then,
for 0 < c < 2π and with ν := −3(m+ d− 1)/2,

E(f, Shh ) ≤ o(hk) + constλ(h)νe−c/λ(h)

{
‖f‖Wk

2
(IRd)h

k, k ≤ m+ d,

‖f‖Wm+d
2

(IRd)h
m+d, k > m+ d.
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