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by
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ABSTRACT

Seven FORTRAN subprograms are presented for dealing with
: pPiecewise polynomial functions (of one varisble) computationally,
! The package is built around an algorithm for the stable evaluation
i of B-splines of arbitrary order. Three exemples illustrate what
i uses one might make of these routines: interpolation by splines
: of general order k (and not necessarily at the knots), the deter-
! mination of the derivative of & spline with respect to a knot,
and the approximate solution of an ordinary linear differential
equation by collocation,

K-f

{ 1, REPRESENTATIONS () e
In this set of subroutines, a piecewise poly- 8277 (t) =§ ; Clr + 1,4)(t = XI(1))" "/ (r = 5)¢
rm

nomial function 1s represented either in terms of
its local polynomial pieces (pp-repr.) or in terms
of 1t8 coefficients with respect to the appropriate where i is such that
Begspline basis (B-repr.).

More precisely, the pp-representation for a 1=1eandt <X1(2),

plecewise polynamial function, s(t), consists of: or 1<i<IXT and XT(1) <t < XI(i +1),
The integers K and IXI, giving the order or 1 = IXI and XI(IXI) = t.
(i.e., K -~ 1 is the degree) and the mmber of
polynomial pieces, respectively; " The B=representation for a piecewise poly-
f The one-dimensional arrey XI(1), i = 1,...,IXT,  nomial function, s(t), consists of:
[ giving the bresk points (in increasing order); The integers X and N, giving the order (as a
| and spline) and the number of linear parameters
! The two-dimensional arrsy C(Jj,1), J = 1,...,K; for s, respectively; '
i=1,..., IXI, with The cne-dimensional array T(i), i = 1,...,
) N + K, containing the joints (possibly
. c(iﬁ') = 83" (xz(1)), wn partially coincident)in increasing order; and
The one-dimensional array A(i), i = 1,..., N,
the various derivatives of s at the-various containing the coefficients with respect to
break points. the B=-spline basis on T.

From this, B(J)(t) is found (iq PPVALU) as




Formally,

N

s .ZA(i) Mg s ()

i=1
vhere
Ni,r(t) = g (T(1),...,0(1 + 7)5 £) ({1 + 7)= T(1))

is a so-called "normalized" B-spline. Here
gr(ti""’ti-fr;t) is the r-th divided difference
(in s for fixed t) of

(8 =t)1, s>t

P
g.(s58) = (s - %), , st

From this, s9)(t) is fomd (in BSPLEV) as

1
o) = Z A, 340N,y o(8) (2
r=i-K-Jj+l

where

A(r) 29 J =0
Alz,3) = Alz-1,)

'J/
T(r+ke]) « T(r)

A(r,;j+l) =

23>0 (3
(as calculated in BSPLIR), provided that

T(1) €t <T(1 +1) and K1 <N,

T(1) €t <T(1 + 1) spd 1 = N,

Othervise, B(J)(t) is defined to be zero; i.e., s
is taken to vanish idenmtically outside the inter-
val [T(X), T(N + 1)), This is done for Yrogram-
ming convenience and agrees with the usual inter-
pretation of (1) only if T(1) = T(K) and

(N +1) = T(N + X), Tt 1s also in comtrast to
the pp=repr. which defines s on the emtire real
line by extending the first and the last polymo-
mial pieces.

Note that 8 and its derivatives are taken to
be contipuous from the right; i.e,, if t equals a
joint, then 8'9/(t) is taken to be the mmber
s(‘j)(t+) except when t =T(N+1), the right end
point, where 5(3)(t) =5(J)(t-). Similarly, the
pp-repr, is interpreted as right-continucus at
the breakpoints XI(i), 1=2,...,IXI. Those who
prefer left-continuous functions will find vit
easy to modify BSPLEV (or PPVALU) accordingly
right after the call to INTERV, so as to pick i
such that

T(1) <+t £ P(4 +1)
{or XI(1) <t SXI(1 +1) ).

B-splines were introduced in [1], and many
of their properties are discussed in [2],
Additiona) material on which some of these sub-
routines are based cen be found in [3]. '

2, CONVERSION FROM ONE REFRESENTATION TO THE

OTHER ] .

B-repr. to pp-repr. is easily accamplished
(in BSPLPP): The IXI distinct points among
(1), i = 1,...,N, ave stored in XI(1), i = 1,
eeeyIXI, and for j = 1,...,K, the value of
s(j'l) (XI(1)) is computed (in BSPLEV) and stored
in €(3,1), i=1,...,IXI.

The conversion from pp-repr. to B-repr. is
more difficult because the pp-repr. comtains no
explicit information sbout the defect at the
break points, i.e., sbout the kmot miltiplieity
at the break points necessary to represent the
given function, If s(t) is known to be repre-
sentable as a spline of order K with the (possi-
bly partially coincidemt) knots T(1), i = 1,...,
K + N, then the coefficients A(1) for the B-repr.
can be calculated explicitly (see [4]) as

Keral) Ker-1 (r)
(7 (=) s (),

()

L (
A(4) = mrgc %

vhere T is arbitrary, except that

T()+ s T<T(L +K)- ,
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,function.

i
P

¥ (8) = (2L 1) - £) (P(2+2)-8) ... (T(1+K-1) -4).

If 8 i8 so representable, then T can always be cho-
sen to be one of the break points XI(J) so that the
required derivatives of s can be read off directly
from the pp-repr.

3., EXAMPLES

The subroutines are written with the idea that,
in determining a piecewise polynomial function from
certain linear (or nomlinear) information ebout it,
one would attempt to calculate its Berepr. by solv
ing an appropriate system of equations, and then
convert to pp-repr for later use of the calculated
In this way one makes use of the good
condition (relative to other yossible bases for
gplines [3])of the B-spline basis while determining
the spline, and later exploits its piecewise poly-
nomial character for economical evaluation,

As an example, consider the problem of deter-
nining & spline s of order k on [a,B] with simple
lmots €, <...<§ in (o,B) which agrees with a giv-
en function f at the points T <7, <...<T in (o,p],
where N=k +m, Every spline of order k with simple
knots at El,...,Em can be written in exactly one

way as
o N

8 =Z ANy

i=1

with N the B-splines based on the Imot set

1,k

T(1) =T(2) =,,, =T(k) = ;
1

T(k+l§=gi, 1=1,...,m; X

T(N+1)=.,..=T(N+k) =p ,

Further, there exists, regardless of f, exactly one
such spline that agrees with f at the points Ty if,
and only if, the 1'1'3 satisty

Ni,k(Ti) £0, 1=1,...,N. (&)

Assuming that X=k; M=m; XI(1) =Cs i=1,...,M5
and TAU(4) mTyy A=1y...,0 with N=K+M to be input
already, the following program fragment sets up the
NN matrix, C, and the right side, B, of the linear
system

C¥A =B,

whose solution vectar, A, contains the coefficients
A(1), i=1,..,,N of the interpolating spline. State-

ment 99 is an error return signalling violation of
(W),
IF (TAU(1) .GE. XI(1)) GO TO 99

DO 10 I=1,K

10 T(1) ="TAU(1)
JPK=K
DO 11 J=1,M
JPK=JPK+1

11 T(JPK) =XI(J)
IF (TAU(N) .LE. XI(M))
DO 12 J=1,K
JPK=JPK+1

12 T(JPK) = TAU(N)
KMl=K=1
WPMK=N+2-K
DO 30 I=1,N
DO 13 J=1,N

13 ¢(1,J) = 0.
CALL INTERV(T(K) , NP2MK, TAU(I),ILEFT,MFLAG)
TLEFT = ILEFT + KML
IF éMFIAG) 99,15,14

14 ¥ (I .11. N) GO TO 99
ILEFT =N

15 CAIL BSPIVN(T, TAU(I),ILEFT,K,1,DUMMY)

GO TO 99

L=L+1
16 ¢(I,L) =DUMME(J)

IF (c(1,I) .|. 0.)
30 B(T) =F{TAL(T))

GO TO 99

In practice, one would make explicit use of the
fact that C is a band matrix of band width 2k -1 (or
even smaller, if the 'ri's are regularly spaced with
respect to the gi'a). This is done in the last ex~
ample below, But, to complete the present example,
suppose that we wish to caleulate s"(to), vhere s is
the interpolating spline just computed and to is a
point between T, and ™ If no other use of 8 is to
be made, then it does not pay to convert to pp-repr.
Tn any event, one might do one of the following, (At
stetement 50, SV comtains the desired mmber.)

(a) Simple but costly:

CALL BSPLDR{T, A, N, K, 3)
CALL BSPLIEV(T, A, N, K, TO, DUMMY, 3)
5 SV = DIMMY (3)

(b) Chesper but less simple:

Sv=0.
CALIL INTERV(T(K), NP2MK, TO, TLEFT,MFIAG)




IF (MFLAG)
39 IF (TO .GT. T(N+1))
ILEFT = ILEFT - 1 ,
ko cALL BSPLDR(T(ILEFT), A(ILEFT), K, X, 3)
TLEFT = ILEFT + KM1
CALL BSPLEV(T, A, N, K, TO, DUMMY, 3)
5 SV = DUMMY(3)
O s pow s

50,40,39
GO TO 50

(e) Whole hog:

SV = PFVALU(XI, C, LXI,/TO, 2)

CALL BSPLPP (T, A, N, K, XI, C, IXI)
K, /
50 ...,
Tt is, of course, assumed above that DUMMY, XI, and
C have all been dimensioned (C was used earlier),
typically as sufficiently large one-~dimensional
arrays,

A completely different example arises in least-
squares approximation by splines with varigble knots,
With T, A, @, B, k, and N as defined in the pre-
vious example, we wish to determinme A(i), i=1,...,
Nand @ € P(k+1) £ ,,, S T(K) £8 so as to mini~

mize

N 2
EQA,T) = |l £ -Z AGL) My I,
i=1
with
2
I e “2 = {g, g, 811 g;
i.e., “ “2 is the norm derived from some inner pro-

[0

(3/a t,) Nj’k(t) = {

\ O

B (by s by s byg s eees Byps
(tj+k - tj) gk(tj _—

Bk(t,j-{-l, ...,tj*Q'k-l’ tj*‘k, td"’k;t) , i=3+k

duct, Some methods for minimizing E require know-
ledge of the first partial derivatives of E with
respect to each of the 2N -k variables, Write

a, =A(1), ti =T(i), to simplify notation., Then, the

partial derivatives with respect to the a,ts are

i

(38 8) B = -2(f - ? 85Ny 1 Ni,k) ;

whereas those with respect to the ti's are
(a/ati)E = -2<f - ? a,ij,k, Ej: a’J- (a/ati)N'j ,k) ?

and therefore require the evaluation of
(/3 t,) N,j,k .

Clearly, this last partial derivative is zero if
i<J orif 1 > j+Xk, because only the knots
gy eees b

enter the formula for N
3,k

N,j,k<t) = (t3+k - t,j) gk(tj, vee s tj+k;t)

= gk(tj*l, ese t[j-’-k;t) - gk(t‘j’ e tj+k-l;t) '

Here, gk(s 3t) = (8 = t)‘:'l . Now, from the general
theory of divided differences,

(a/atl) f(to, e y ti-l’ ti; ti+l, ree 3 tr)

i-l R ti ,ti’ti +11' ",tr)

if f is sufficiently smooth. Hence,

> 1<

t) , 1=7]

.,ti,ti,...,tj+k;t) s J<i<i+k

, d+k<i .

Theref
A
t
gset 3

(i.e.,
we her

where

T(L)
{not

VD(m

as at




Therefore, with ﬁ x the B-spline based on the knot IMK =1 - X
A 3 C DO 19 JJ = IMK, I
set 3, with 19 VD(J7) = 0.
IF(L.GE.I) L=L+1
s 51 R - - SO B 1]
s ’ | JLOW = MAXO(1 ~ IML, 1) + IMK 2 MAYO (L DY~ KM
= JHIGH = MINO(K - IML, KP#P + IMK = MinolL,T)
t s8> 1 : IF (JLOW .GT. JHIGH) GO TO 50
! D020 JJ =1, I

K =N+ K
THAT(JJ) = T{JJ)
(i,e., with the @ltiplicity of ti increased by one), ; @; 2 53 = I, NEK

we have | 21 THAT(JJ + 1) = T(JJ)
: CALL BSPLVN (THAT,XX,L,K,1,DUMMY)

i

(a/ati) Nj’k(t) =8 1" & %anél

Haexmy

KEPT = KML + J
vhere 4o vD(J ~ 1) = ;UMMY(WJ)/(T(MPJ) -T(J))

. DO M1 J = 1,K
ﬁ;},k(t)/(tj+k-l'tj) s 1-k<gEd VD(3J) = vD(3J) - V(3T - 1)
4, = 1 J3 = JdJ7 - 1
J 0 , otherwise, 50 .. s aw

Finally, we include a program for experimenta-
tion with the collocation method for solving ODE's
which uses, explicitly or implicitly, all of the
subroutines in this package. Note,in particular,
the use of BSPLVD in the generation of the matrix
for the linear system to be solved (in SUBROUTINE
PQUATE). This program was used to calculate the

With T(K) $ T(L) < T(L+1) £ T(N+1) and
(L) £ XX £ T(L+1), one might generate the k+1
(not trivially zero) numbers

(m) = (33 N (K), mei-k,...1,

as at the top of the neit column. numerical example in [5].

t PROGRAM TESTBS{INPUT,OUTPUT) coLL 1

DIMENSION A{1000),T{100),X1{100),C(2200}, T1{ 100} coLL 2

C THE FUNCTION TO BE APPROXIMATED IS COLL 3

SOLUIX) = 1./(1.+X} CoLL 4

C Ti(i)I=1,NP COLLOCATION POINTS PER INTERVAL BETWEEN NEIGHBORING CoLL 5

(o BREAKPOINTS FOR STANDARD INTERVAL (-1, 1) ’ COLL 6

C IT IS ASSUMED THAT TI(NP)=1, IN CASE TI{1} = -1. COLL 7

C K ORDER OF SPLINE TO BE USED. COLL &
C NTIMES NO. OF DIFFERENT BREAKPOINT SETS TO BE TRIED. COLL 9 .
C T(1),ARIGHT LEFT AND RIGHT BOUNDARY POINT OF INTERVAL CONSIDERED., COLL 10 ’

C THESE CARRY BOUND,COND. (IF ANY) SPECIFIED IN *EQUATE* COLL 11

C INTERV USED TO SPECIFY BREAK POINTS. COLL 12

C IF INTERV .GT. 0, INTERV-1 EQUISPACED INTERIOR BR.PTS. COLL 13

C OTHERWISE, INTERV IS REDEFINED BY A READ, AND COLL 4

C INTERV- I INTERIOR BREAK POINTS ARE READ IN, COLL 15

C  T1).0=1,JOINTS BREAK POINTS INCL. BOUNDARY POINTS. COLL 16

C N NUMBER OF EQU. TO BE SOLVED IN *BANMAT*, COLL 17

1 READ 500,NP,{Ti{i),1=1,NP) coLL 18

500 FORMATI($3/(5€15.3}} ' coLL 19

PRINT 603,NP,(TH{I),I=1,NP} . CoLL 20

603 FORMAT(13,204 COLLOCATION POINTS /{10F12.8)) coLL 21

READ 501K COLL 22

501 FORMATI(13) coLL 23

KM1 = K-1 coLL 24

READ 500,NTIMES, T(1),ARIGHT COoLL 25

N = NP ' cOoLL 26

DO 60 {DUMMY = 1,NTIMES coLL 27

READ 501,INTERV coLL 28

IF (INTERV .GT. 0) GO TO 9 coLL 29

READ 500,INTERV, (T(1),1=2,INTERV) CoLL 30

GO TO 19 i coLL 31




9 DX = (ARIGHT - T(1))//FLOAT(INTERV)
DO 10 J=2,INTERV
10 T = T+ 1) + DX
19 JOINTS = INTERVH]
TUOINTS) = ARIGHT
CONSTRUCT SET OF JOINTS T AND THE N COLLOCATION EQUATIONS C*X=4. N, C
C AND A ARE SET IN *EQUATE*, THE SOL. X IS RETURNED BY "BANMAT* IN *A*.
CALL EQUATE(TJOINTSK,TIN,C,A)

PRINT 599,N
599 FORMAT(I5,12H PARAMETERS )
IF (N .LE. 0) GO TO 60

CALL BANMAT(N,KM1,KM1,1,1,C,N,AN,DETERM,XH)
CONVERT TO PP-REPR.
CALL BSPLPP(T,A,N,K,XI1,C,LXI)
COMPUTE ERROR AT BREAK POINTS, LOCAL AND GLOBAL MAX. ERROR.
CALL RESETI
XI{LXI+1) = ARIGHT
ERRMAX = 0.
JLOW =1 - K
JHIGH = 0
DO 40 L=1,LXI
ERRLOC = 0.
XX = XIL)
DX = (Xi{L+1)- XI{L})/20,
DO 39 M=1,21
ERROR = ABS(SOLU(XX)- PPVALU(XI,C,LXI,K,XX,0))
IF(M.EQ.21)  A(L)=ERROR '
IF (ERROR .GT. ERRLOC)  ERRLOC = ERROR
39 XX = XX + DX
IF (ERRLOC .GT. ERRMAX) ERRMAX = ERRLOC
JLOW = JLOW+K
JHIGH = JHIGH+K
40 PRINT 600,L,X1(L),ERRLOC,(C{J),J=JLOW JHIGH)
600  FORMAT{20XI5,F12.3,3X14HLOCAL ERROR = E10.3/(20X10E10.3))
PRINT 604,{A(IER),JER=1,LX1}
604  FORMAT(17H ERROR AT KNOTS= /(10X10E10.3))
PRINT 602,ERRMAX
602  FORMAT{17H MAXIMUM ERROR = £10.3)
60 N =NP

GO TO 1
END

SUBROUTINE EQUATE(T JOINTS,K,TI,N,C,A)
DIMENSION T{1),TI{1),C(N,1),A(1),DUMMY{64),v(9]
INTEGER TKM1
C  Po, Pl, .., PM ARE COEFFIENT FUNCTIONS OF M- TH ORDER DIFF. EQU.
C HERE, M = IDEGRE-I. F IS THE RIGHT SIDE FUNCTION.
C BOUNDARY CONDITIONS ARE SPECIFIED IN THE PROGRAM AS ILLUSTRATED.
PO(X) = - 1./(1.+X)**2
PI) = 1/{1.4X)
P2(X) = 1.
F(X) = 0.
IDEGRE = 3
KM1 = K-1,
TKM1 = K + KM1
NP = N
IF (NP .NE. K- IDEGRE+1) GO TO 99
LLOW = 1
IF (TI1) .EQ. -1.) LLOW = 2
GO TO (101,102),LLOW
101  MULTIP = NP
N = (JOINTS- 1)*MULTIP + IDEGRE - 1
GO TO 103
102 MULTIP = NP - 1
N = (JOINTS- 1}"MULTIP + IDEGRE
103 JOINT = JOINTS
JOINTS = 2*K + MULTIP*(JOINTS- 2)
N = JOINTS
DO 104 LL=1,K
T(X) = TWOINT)
1048 N=W-1
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[
JN = JOINT CoLL 102
DO 105 J=2 JOINT COLL 103
W= d -1 COLL 104
DO 105 LL=1,MULTIP COLL 105
T(W) = T COLL 108
106 M= -1 CoLL 107
106 T = T(1) COLL 108
H=d-1 coLL 109
IF (M .GT. 1) GO TO 108 COLL 110
PRINT 600,JOINTS,(T(M),M=1,JOINTS) coLL 111
600 FORMAT(15/(10F12.5)) CoLL 12
c COLL 113
DO 107 JJ=1,N coLL 114
DO 107 KK=1,TKM1 COLL 1156
107 C(W,KK) = 0. COLL 116
ID=20 CoLL 117
I =K COLL 118
XX = TiK) COLL 119
CALL BSPLVD(T K ,XX,1,DUMMY,DEGRE) COLL 120
C NEXT 6 CARDS SPECIFY FIRST BOUND.COND . (NOT NEC. TO HAVE ONE AT COLL 121
C BOTH ENDS.) COLL 122
D=1 ; COLL 123
KK =1-1D COLL 124
DO 201 L=1,K coLL 126
KK = KK+1 COLL 126
201 C{1,KK) = DUMMY/(L) CoLL 127
A1} = 1. ’ CoLL 128
C THE FOLLOWING CARDS WOULD INTRODUCE A SECOND B.C. AT THIS END. COLL 129
C THE BC IS  2.%U- 3 *UPRIME = 25. COLL 130
C ID =1ID + ] COLL 131
c KK =1-1ID COLL 132
C JI =K : COLL 133
c DO 202 L=1,K © COLL 134
c JI=J7+1 COLL 135
c KK = KK + 1 COLL 136
C 202 C((2,KK) = 2.*DUMMY(L) - 3.*DUMMY(JJ) COLL 137
c Af2) = 25, ’ COLL 138
C COLL 139
C SET UP EQUATIONS ARISING FROM COLLOCATION. COLL 140
IBACK = 1 COLL 141
GO TO {114,10),LLOW COLL 142
14 IBACK = 2 COLL 143
DO 119 1=K,N,MULTIP COLL 144
XM = (T(+1) + T(1))/2. COLL 145
DX = (T(I1+1) - TU))/2 COLL 146
DO 119 LL=LLOW,NP COLL 147
XX = XM + DX*Ti(LL) COLL 148
CALL BSPLVD(T,K,XX,1,DUMMY, IDEGRE) COLL 149
GO TO 10 COLL 150
118 CONTINUE coLL 151
19 CONTINUE COLL 152
Il =N COLL 153
XX = T{JOINTS) COLL 154
CALL BSPLVD{T, K, XX, DUMMY, IDEGRE) COLL 155
C THE NEXT 6 CARDS SET UP B.C. U = _.5 AT RIGHT END POINT COLL 156
C  ADDITIONAL COND. COULD BE SPECIFIED FOLLOWING THIS AND EARLIER MODEL COLL 157
ID = ID#+1 COLL 158
KK =1- 1D COLL 159
DO 401 L=1,K COLL 160
KK = KK+1 ' coLL 161
401 C(ID,KK) = DUMMY(L) COLL 162
AllD) = 6 COLL 163
GO TO 30 COLL 164
10 V(1) = PO(XX) COLL 165
Vi2)} = P1(XX) COLL 166
V{(3) = P2(XX) COLL 167
ID = 1D+ ' COLL 168
KK =1 - ID COLL 169
DO 15 J=1,K COLL 170
N=J . CoLL 17"
KK = KK+1 COLL 172




DO 15 L=1,IDEGRE coLL 173
CiD,KK) = ClD,KK) + VILI*"DUMMY{JJ} cOLL 174

15 =4+ K cotLL 178
- AlID) = F(XX) CcoLt 176

GO TO (114,118),IBACK coLL 177

99 N=0 coLL 178
30 RETURN COLL 179
END COLL 180

4.  SPECIFIC DESCRIPTION OF THE ROUTINES

Internal DIMENSION statements (in BSPLEV, and,
more importantly, in BSPLVD) arbitrarily restrict
the order to K S 20,

a. SUBROUTINE BSPLDR (T, A, N, K, NDERIV). The
array A is assumed to have as its first N entries
the coefficients of some s(t) with respect to the
B-spline basis on the knot set T(i), i= 1,%. ,N\;K
Treating l.l:)_‘as a two-dimensional array with columnb
length N, the routine generates the mumbers AL1,D),
i=3,...,8 §=2,...,NDERIV, which are needed in
BSPLEV for the calculstion of s\J)(t) for J<NDERIV.

It is a waste of time (though not fatal) to
have NDERIV > K or RDERIV < 2.

b. SUBROUTINE BSPLEV (T, A, N, K, X, SVALUE,NDERIV).

With s{t) the function whose
T, A, N, K, the routine calculates NERS (X) and
stores it in SYALUE(3), j=1,...,NDERIV, If NDERIV
>3, then it is assumed that a

CALL BSPLDR(T, A, N, K, NDERIV)

has been executed at least once before the call to
BSPLEV.

The routine uses INTERV to determine the appro-
priate integer, I, such that

KSISK and T(I) $X<T(I+1)
(or T(I)<X$T(I+1), if T(I+1) =T(N+1)).
If no such I exists, SVALUE (J) is set to zero,

3=1,..., NDERIV.
The routine also uses BSPLVN.

B-repr. is contained in

¢. SUBROUTINE BSPLFP (T, A, W, X, XI, C, IXI).

. This routine converts the B-repr, contained in T,A,

N, K into the pp-repr., storing it in XI, C, LXI,K.
The routine uses BSPLDR and BSPLEV,

d. SUBROUTINE BSPLVD (T,K,X, ILFFT, VNIKX,NDERIV).

This subroutine is of help in the efficient construc-

tion of & system of equations to determine the
B-repr, for s(t) from information sbout its value
and its derivatives. The routine generates the val-
ue at t=X of all N, () and their first NDERIV-L
derivatives vhich a.re not trivially zero at X.
Specificelly, the routine returns the numbers

VNIKK(1,M) =N§.TI-LIFEE)'1‘-K,K(X) )

1=1,...,K; M=1,...,NDERIV

VNIKX is taken to be a two-dimensional array with
column length K. It is assumed that ILEFT is such
th_at both

T(ILEFT) < T(ILEFT+ 1)
and
T(ILEFT) € X % T(ILEFT+1) .

The routine uwaes BSPLVN.

e, SUBROUTINE BSPLVN(T,X,ILEFT @Igg,nmm,vm)
This routine incorporates the second algorithm of
[3] for the stable evaluation of B~splines. The
routine returns, in the one-dimensional array VNIKX,
the numbers

m(i)’nnm-:+i,.r(x)' i=1,...,0 , (5)

whers the value of the integer J depends on JHIGH
and INDEX:




ey

Bah

if INDEX = 1, then J = JHIGH;

if INDEX = 2, and, on entering, J =m,
then J = max (JHIGH, m + 1).

The second possibility is useful in the efficient
evaluation of a spline and its derivatives (as in
BSPLEV and BSPLVD). If INDEX = 2, then VNIKX is
assumed to contain, on entering, the numbers des-
cribed in (5) with J as it is on entering. Furthesy
ILEFT is assumed to be such that both

T(ILEFT) < T(ILEFT+ 1)

and
T(ILEFT) S X $ T(ILEFT+1) .

me e
Division by zero mey result if this last assumption

= T licea+d
is not satisfied, TULES) WER+
AT vl

w . o [ E~Ta¥
WESETH

f. SUBROUTINE INTERV(XI,IXI,X,ILEET,W’I.AG). This
subroutine assumes that XI is a one-dimensional ar=-

- ray of length IXI containing a nondecreasing se-

quence of real numbers, It returns integers ILEFT

and MFLAG as follows:

ILEFT MFLAG
X < XI(1) 1 -1
if \XI(I) € X and X < XI(I+1)},then| I 0
XI(IXI) <X IXI 1

The program starts the search for ILEFT with
the value of ILEFT that was returned at the previous
call (and was saved in the local variable I) to min-
imize the work in the common case that this call's
X is close to the previous callts X. Should this
assumption not be valid, then the program locates I
and THIGH such that

XI(I) <X < XI(IHIGH)

and, once they are found, uses bisection (on the
function (1) = XI(1) - X) to find the correct
value for ILEFT,

The local variasble I is initialized to the val-

g. FUNCTION PPVALU(XI,CLIJC[,K,X,IDER%) .
This function returns the value of s {1hEiv) x),
where s(t) is the piecewise polynomial function
whose pp-repr. is contained in XI, C, IXI, K.

The routine uses INTERV.

5. FORTRAN LISTING OF THE SUBROUTINES

FORTRAN decks are available upon request s as
of the date of distribution of this report, from
Group C-6 at Los Alamos or from the author at the
Computer Science Department, Purdue University.

SUBROUTINE BSPLDR(T,A,N,K,NDERIV)

C TO DIFFERENCE B- SPLINE COEFFICIENTS PREPARATORY TO DERIV.CALC.

DIMENSION T(1),A(N,7)
KMID = K
DO 20 IDERIV=2,NDERIV
KMID = KMID - 1
FKMID = FLOAT(KMID)
DO 20 I=IDERIV,N
IPKMID = | + KMID
DIFF = T(IPKMID) - T(l)

20  IF (DIFF .GT. 0.

*  A(LIDERIV) = (A(LIDERIV-1) -

NDEAYV/

RETURN

END

All- 1,IDERIV- 1))/DIFF*FKMID
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BSPL
BSPL
BSPL
BSPL
BSPL
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BSPL 11
BSPL 12
BSPL 13
BSPL 14
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K/

CALCULATES VALUE OF SPLINE AND ITS DERI VATIVES AT ‘X * FROM B- REFR.

2

CON VERTS B- SPLINE REPRESENTATION TO PIECEWISE POLYNOMIAL REPRESENTATION,

SUBROUTINE BSPLEV(T,AN,K,X SVALUE,NDERIV)

DIMENSION T(1),A(N,f), SVALUE(1)
DIMENSION VNIKX({20)

DO 5 IDUMMY=1 NDERIV
SVALUE(IDUMMY) = 0.

KM1 = K- 1

CALL INTERV(T(K) ,N+1- KM1,X,1, MFLAG)
I = I+KM1

IF (MFLAG) 99,20,9
IF (X .GT. T(DH GO YO 99
IF{l .LE. K) GO TO 99
=11

IF (X .EQ, T{1)) GO TO 10

KPIMN = K+1- NDERIV
CALL BSPLVN(T,X1,KP1MN,1,VNIKX)
IDERIV = NDERIV
LEFT = | - KPIMN
DO 22 L=1,KPIMN
LEFTPL = LEFT+L
SVALUE(IDERIV) = SVALUE(IDERIV) + VNIKX{L)*A{LEFTPL IDERIV)
iF (IDERIV .LE. 1) GO TO 99
IDERIV = IDERIV - 1
KPIMN = KPIMN + 1
CALL BSPLVN{T,X,1,0,2,VNIKX)
GO TO 21
RETURN’
END

.

SUBROUTINE BSPLPP(T,A,N,K XIC LX)

DIMENSION T(1),A(N.),X1(1),CK,1)

CALL BSPLDR{T,AN,K,K)

LXf =0

DO 50 JLEFT=K,N

IF {TOALEFT+1) .EQ. TULEFT))GO TO 50
LXI = LXI + 1

XIHLX1) = TULEFT)

CALL BSPLEV(T,AN,K XIH{LXI!),C(1,LX1),K)

50 TINVE
ottt e RETURN

10

CALCULATES VALUE AND DERIV.S OF ALL B-SPLINES WHICH DO NOT VANISH AT *X*

1

15

19

END

SUBROUTINE BSPLVDI(T K X,ILEFT,VNIKX,NDERIV)

DIMENSION T{(1),VNIKX{K,K),A{20,20) 200

CALL BSPLVNI(TX,ILEFT K+1- NDERIV,1,VNIKX(NDERIV,NDERIV))
IF (NDERIV .LE. 1) RETURN

DO 10 i=1,K

DO 9 J=1,K

Al =

ALY =1,

IDERIV = NDERIV

DO 15 1=2,NDERIV

IDERVM =~ IDERIV- 1

DO 11 J=IDERIV,K

VNIKX(J- 1,IDERVM) = VNIKX(J,IDERIV)

IDERIV = IDERVM

CALL BSPLVN(T,XILEFT,0,2,VNIKX(IDERIV,IDERIV))
CONTINUE

KMD = K

DO 40 M=2,NDERIV
KMD = KMD- 1

FKMD = FLOAT(KMD)
| = ILEFT

J=K

M1 = J.1
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IPKMD = | + KMD
DIFF = T(PKMD) - TH)

IF (U .LE. 1) GO TO 22

IF (DIFF .EQ. 0.) GO TO 21

DO 20 Ls1J
20 AlLJ) = {(AlLJ) - AlLJ- 1))/DIFF*FKMD
27 J=IM

b=1-1

GO TO 19

22 IF (DIFF .EQ. 0.} GO TO 30

Al(1,1) = A(1,1)/DIFF*FKMD

c Ao

30 DO 38 1=1K
Vi = 0.
JLOW = MAXO(1,M)
DO 35 J=JLOW,K
35 VI = vt + AULJPVNIKX(J M)
DO 40~t=t K"
40  VNIKX{ILM) = Vg
RETURN
END

SUBROUTINE BSPLVN(T XILEFT,JHIGH,INDEX,VNIKX)
CALCULATES THE VALUE AT *X* OF ALL B- SPLINES OF ORDER “JHIGH*
C ON *T* WHICH DO NOT TRIVIALLY VANISH AT *X* .

DIMENSION T(1),VNIKX(1)

DIMENSION DELTAM(20),DELTAP(20)

DATA J/1/,(DELTAM(1),1=1,20),(DELTAP(I},1=1,20)/40%0./

GO TO (10,20),INDEX
10 J=1
VNIKX(1) = 1,
GO TO 29
20 IP) = |LEFT+)

DELTAPW) = T(iPJ) - X

IMJP1 = ILEFT- 1

DELTAM(J) = X - T(IMJP1)

VMPREV = 0.

JP1 = J+1

DO 26 L=14

JPIML = JP1-L

VM = VNIKX(L})/(DELTAP(L) + DELTAM{JPIML))

VNIKX(L) = VM*DELTAP(L) + VMPREV

26 VMPREV = VM*DELTAM(JPIML)

VNIKX{JP1) = VMPREV

4 =JP

29 IF {4 .LT. JHIGH) GO TO 20
RETURN
END

SUBROUTINE INTERVIXI,LXI X ILEFT MFLAG)

LARGEST I (1 .LE. I .LT. LXI}) SUCH THAT XI(I) .LE. X.
RETURNS THIS I IN *ILEFT* WITH *MFLAG* =0
THEN *ILEFT* = 1, *MFLAG* = -

THEN *[LEFT* = LXI, *MFLAG* = |

T OOF (X - X)) 20,10,10
8 | = IHIGH
9 IHIGH = 1+1
10 IF (1 .LT. LXI)
MFLAG = 1

1 tF (X - XIIHIGH)
12 IHIGH = IHIGH + IHIGH - |

IF (IHIGH - LXI) 13,1614
13 IF (X - XI{IHIGH)) 30, 8,12

40, 8,12
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HIGH = LXI BSPL 146

15 IR (X - XILXH) 30, 8 8 BSPL 147
20 IF N _.EQ. 1) GO TO 39 BSPL 148
21 | = - IHIGH BSPL 149
IF { 23,24,22 BSPL 150

22 IF { 21, 9,31 BSPL 151
23 t=1 BSPL 152
24 IF (X - XKD 38, 9,31 BSPL 153
30 1 = (HIHIGH)/2 ' BSPL 154
GO TO 32 BSPL 155

31 IHIGH = (IHIHIGHY/ BSPL 156
32 MIDDLE = {} + IHIGH)/ BSPL 157

IF (MIDDLE - 1) 40,40,33 BSPL 158

33 IF (X - XIMIDDLE}) 34,36,36 BSPL 159
34 IHIGH = MIDDLE BSPL 160
BSPL 161
3B | = MIDDLE BSPL 162
BSPL 163
36 | = MIDDLE BSPL 164
BSPL 166
38 JHIGH = I+ BSPL 166
39 MFLAG = .1 BSPL 167
40  ILEFT = | BSPL 168
RETURN BSPL 169

~—=BSPE—170—

— BSR4

—BSRL—¥72—~

AN -BSRE—373—
END BSPL 174
FUNCTION PPVALU{XI,C,LX),K X IDERIV) BSPL 175
CALCULATES VALUE AT *X* OF *IDERIV* TH DERIVATIVE OF SPLINE FROM PP- REPR. BSPL 176
DIMENSION X1(1),C(K,1) BSPL 177
CALL INTERV{X),LX],X,|,NDUMMY) BSPL 178
DX = X - Xill) BSPL 179
PPVALU = 0. BSPL 180
FLOATK = K - IDERIV BSPL 181
=K BSPL 182
GO TO 2 BSPL 183
1 PPVALU = PPVALU/FLOATK*DX + C(J,1) BSPL 184
4= BSPL 185
FLOATK = FLOATK - 1. BSPL 186
2 IF (FLOATK .GT. 0.) GO TO 1 BSPL 187
RETURN BSPL 188
END BSPL 189
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