Computer Sciences Department, Unsisr of Wsconsin-Madison, @thnical Report #1340,dh 1997

A Sunwey of UserLevel Network Interfaces for System Area Netwvks

Shubhendu S. Mukherjee and Mark D. Hill

Computer Sciences Department
University of Wsconsin-Madison
Madison, Wsconsin 53706-1685 USA
{shubu,markhill}@cs.wisc.edu

Abstract

System Area Netarks (SANSs), such as Myricom Myrinet and IBMiNan, preide lateng, bandwidth, and reliability that
are orders of magnitude better than traditional local aresoniesw SAN benefits are, Wever, proffered to applications only
if light-weight protocols (not TCP/IP) andfiefent netvork interfaces are used. SAN benefits are squanderedsdore, if
applications must iroke the operating system to send and xecenessages. In contrastserlevel Network Interfaces
(ULNIs) allow host applications to directly access the mekninterface without compromising protection by memory map-
ping internal inteidice rgisters into user space (e.g., the Myricom Myrinet netvinterface).

Future trends in processor and SAN performance ivgnent indicate that ULNI accesses will become a critical bottle-
neck—if not the most critical bottlenke-in systems bilt around SANs. Although processor accesses to ULfjlsters are
simply reading and writing ULNI memarglmost all ULNIs today treat them as I/O operations that candide €ects (e.g.,

a message send). In this paper wguarthat processor accesses to ULNI memory should be treated by design dectide-ef
free rgular memory accesses, and not as I/O operations. Suchvantional treatment of ULNIs will alle a processor to
use traditional memory access optimization techniques such as cachesjedmaemaory access optimizations such as out-of-
order accesses, speculatloads, lock-up free caches, split-transaction memasgd) etc. to reduce and tolerate the Igtémc
access ULNI rgisters.

To substantiate our claim weamine seeral ULNI design options, including ULNI gester location, dedicated vs. non-
dedicated ULNI memorycoherent caching, memoruydalternaties, data meement alternates, application programming
interface, notification alternats, data copies, protection and address translation, and future system\ate(aaji, SMPs,
speculatre processors, etc.)oFeach design option we shidhow treating ULNI rgjister access asgelar memory operations
can help impree ULNI performance.

1 Introduction

The increasing demand forwerful commercial seers has opened up awenarlet for high-bandwidth, \o-

latengy networks. The adent of world-wide web search engines and database queries on terabytes of data, and the
possibility of netvark computers with “thin” clients and perful seners, promise to stress the communication
subsystem between clients and high-endessrvarallel computers are used increasingly as high-encerserv
because todag’uniprocessor arkstations cannot match the tremendousvtftan computation, memonand 1/0
requirements of these applicationgvolnev kinds of parallel computers Y@ evolved—Symmetric Multiproces-

sors (or SMPs) and Cluster of SMPs (CSMPs). SMEand the traditional wrkstation architecture with multiple
processors on a single memonskand (optionally) with more memory and disks. Thiadity of scaling todays

memory luses bgond 20-30 processors has inspired themnoof a second class of parallel computers called
CSMPs in which multiple SMPs are connected together through a high-bandwidtatdog network.

The demand for high performance communication subsystems—to connect hundreds of clients and high-end serv-
ers and to bild high-end sermsrs from clusters of SMPs—cannot be met by commodity local areanketw

(LANSs) that hae traditionally connected geographically close PCs amdkstations. ddays commodity LANs

offer very high lateng (100-1000s of microseconds) and redalty low bandwidth (1-10 ngabytes/second). The

poor performance of LANs has led to th@laition of a ner generation of high performance netks called Sys-

tem Area Netwrks (SANSs) [4]. Examples of SANs include the Myricom Myrinet [6] and the IBNt&h [16]

switches. SANs daler very low latencies (less than afemicroseconds) andewy high bandwidth (in the 100s of
megabytes/second range).

SANSs not only preide very high performance,ub also hae the potential to defer this high performance to end-
user applications. This enables user applicationsfimesftly communicate between themsswvith fine-grain
messages. Fine-grain messages arise both in request-response protocols (e.g, Remote Procedure Calls in the Ne

This work is supported in part by Wright Laboratoryiénics Directorate, Air 6rce Material Command, USAEnder grant #F33615-94-1-1525 and ARP
order no. B550, NSF Grants MIP-9225097 and MIPS-9625558, and donations from IBM and Sun Microsystems. TivertdrBe@ds authorized to repro-
duce and distrilte reprints for Geernmental purposes notwithstanding anpyright notation thereon. The vis and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representirfigitiigooficies or endorsements, eithe&peessed or implied, of the Wright Labo-
ratory Avionics Directorate or the U.S. @arnment.

work File System) in a client-saw ewvironment and in parallel database queries and parallel scientific applica-
tions. Request-response protocolsehfine-grain communication because requests are typically small. Empirical
evidence [29] suggests thate: a major fraction of the responseficain applications such as the Nerk File

System consists of small messages that are less than 200 bytes. Fine-grain communication is an important compo
nent of parallel applications such as parallel database queries and parallel scientific applications because communi:
cated data is often generated at a fine granularity at run-time. In modern microprocessramiite, ea single

store instruction can generate only between 1 - 16 bytes. Empiridahee [30, 11] shas that a major fraction of
messages in a parallel database application amdadgparallel scientific applications consists of small messages.

To allow user applications to communicatéi@éntly with fine-grain messagesar SANs, the laterycto access
the SAN interhce must be reduced significantlyhis lateng consists of three parts—the sodine protocol
lateng, the lateng through the operating system, and the haréwateng to access (e.g., read data from) the
SAN interface. LANs use ery heay-weight software protocols such as TCR/MWhich male the conseative
assumption that LANs, likthe internet, are highly unreliableorFSANs, such eerly conserative protocols can
be replaced with lean communication layers such avé\bdliessages [54, 24]ypically, LAN interfaces delier
messages to user applications via the operating system, which camybexpensve. For SANs, the latenc
through the operating system can be eliminated byigirm applications with direct uségvel access to the net-
work interface hardwre. For example, the Thinking Machines’ CM-5 alis protected, usdevel access to the
network interface hardwre by memory-mapping the intece rgisters into user space.eé/dall such inteeces
UserLevel Network Interfacegor ULNIS). Finally, the lateng to access a SAN intaxfe can be reduced with
novel technigues such as Udevel DMA [5] or Coherent Netark Interfaces [36].

Technology and application trendswever, indicate that the latepdo access the SAN intade will become a
critical bottleneck—f not the most critical bottlen&e—in systems bilt around SANs. A netark interface has tw
sides—an internal inteate that talks to microprocessors, main memang (perhaps) disks within a host node
and an gternal interfice that talks to the netwk that connects dirent host nodes. Pressure on both the internal
and eternal interhces of a netark interface is increasing at a tremendous pace.

The pressure on the internal insé is increasing because obtreasons. First, the rate at which applications are
generating messages and, therefore, accessing therkétteriace is increasing rapidlyhis is because processor
performance is imprang exponentially; the steady drop in feature sizes and the introduction of microarchitectural
technigues such as out-of-order and spesdatiecution are projected to impm processor performance by a
factor of 80 in the né ten years [23]. Second, multiple processors in an SMP nodewrghaoing the same net-
work interface to send and regeimessages from a SAN. This is increasing the pressure on the interraaknetw
interface. This has been made possible by theradef coherent memoryubes; multiple processors cananbe

easily connected together to the memarg to form an SMP node.

The pressure at thexternal interfce is a result of the tremendous inyerment in netwrk performance. The
adwent of optical fiber netarks hae provided lov cost, ery high bandwidth netarks. Optical fiber netark
bandwidth has impred by more than aé€tor of 20 in the last 10 yearsd and is projected to impve by another
factor of 20 in the ndé decade if this trend continues. End-to-end oetwateny is primarily determined by the
network switch latencies, which has also dropped steadiy the last decade. Switches with latencies less than
one microsecond are alreadyadable today Switch latencies will continue to drop in future with the exuvof
low-cost CMOS processes, v switch architectures [3], and high-speed optical switches [38].

Designing high performance internal netWw interfaces for fine-grain communication that arises in message-pass-
ing applications is singularly more challenging than designingxieeral netwrk interface. Since netwk inter-
faces and netwk switches typically come from the same mawctirer the manudcturer is free to change and
optimize the gternal interbce between the netwk interface and the netwk switch. Havever, to allov reuse of
network interfaces across machines or acroseiht generations of the same machine, the internabrietnter-

face must conform to a standard specification (earkstation 1/0 lis specification). As illustrated by the DRAM
market [41], squeezing performance from standard specifications acrémemifgenerations of machines and
technologies can be &y hard problem. In this paper we focus on design alteasatdr high performance inter-

nal netvork interfaces for fine-grain communication.

There are tw fundamental obstacles to impiag the lateng to access the internal nefl interface. First,
although accesses to internal netiwinteriace rgisters is primarily reading and writing memotlyey have tradi-

tionally been treated l&k processamitiated disk 1/O operations.df example, accesses to internal nethinter-

face rgisters are either routed through the operating system (similar to a file I/0O operation) or performed through
uncached loads and stores twide ragisters memory-mapped to user I/O space. Additiontdly netvark inter-

face deice has been rgjated to the 1/0 bs, where I/O dédces such as disks typically reside.

Second, accesses to internal ragtninterface rgisters often hze side efects they can trigger special actions such
as popping of a hardave fifo luffer or a message send that a processor cannot detect. Thestesidevefiich are
a result of the tight coupling betweervib® memory access andvilse commands, pvent the ne/ generation of
microprocessors (such a&-RISC, Intel Pentium Pro, MIPS R10000) from independently optimizing ar&tw
interface rgister access performance through out-of-order accesses and sy tdals.

In this paper we gue that to impree accesses to internal netlk interface rgisters in high performance systems,
we must treat accesses to theggsters as igular memory accesses, not as 1/0O operations, and decouple these
accesses from commands that trigger special actions in therkenteriace. Additionally the deice commands
themseles, wheneer possible, should be treated as memory operations (e.gica demmand to send a message
can be accomplished simply by incrementing a pointer). Such treatmeve allorocessor to use traditional mem-
ory access optimization techniques such as cachesxplaitéemporal and spatial locality andvabd memory
access optimizations such as out-of-order accesses, specldatis, lock-up free caches, split-transaction mem-
ory huses, etc. to reduce and tolerate accesses tonketwerface rgisters. Since theag between processor and
DRAM access performance is increasing [23], microprocessors will continueetd imvel techniques to bridge
this gap. Treating netwrk 1/0 as memoryand not as 1/O, will all internal netwrk interface accesses to &k
advantage of such future inwations. Bblel examines seeral myths about traditional netvk interface designs;
most of these myths are a result of treating ngtW/O as 1/O, and not asgelar memory

To substantiate our claim weamine the eolution of SANs (Sectio) and define the ddrent components of
UserLevel Networks Interfaces (or ULNI$dr SANs (Sectior8). Then we gamine seeral factors—Ilocation
(Sectiond), dedicated vs. non-dedicated memory (Se&)oroherent caching (Sectié), memory hs alterna-
tives (SectiorY), data meement alternaties (Sectior8), application programming intexde (Sectio®), notifica-
tion alternaties (Sectiorl0), data copies (Sectidd), protection and address translation (Sect®y and future
system alternates (Sectiori3)—that influence the design of such matwinterfaces. Br each éctor we sha
how treating netwrk I/O as memory can help imp®the internal netark interface performance.

2 Ewlution of System Area Networks (SANS)

SANs fall somavhere in between standard LANs thafeofgood scalability and reusability acrosdeatiént com-
puter systems and custom memoumgds that dér low lateng, high bandwidth, and high reliabilitin this section
we discuss hw SANs hae e/olved to combine the benefits of memonses and LANSs.

The demand for high performance communication subsystems, which are used to connect cliewedot po
commercial serrs and to bild high-end serers from clusters of SMPs, cannot be met by commodity LANSs.
Shared media LANs such as Ethernet or FDidrofery high lateng (100 - 1000s of microseconds) and re&kli

low bandwidth (1-10 ngabytes/second). The recent transition to 100abigs/second Ethernet or switched LANs
such as switched-Ethernet ofF M alleviates this situation only partiallffhese recent netwks increase the band-
width only somehat and their latencies continue to be in the 100s of microseconds range.

The poor performance of LANs is aggated by the huge lateynto access a LAN intemte from within a com-
modity workstation node. This latenés a result of threeattors. First, lgacy protocols such as TCP/IP and UDP/
IP used to communicatever LANs male the conseative assumption that LANSs, kkthe internet, are highly
unreliable and therefore can drop, corrupt, repdagose, foge, and arbitrarily delay nebsk messages. These
assumptions result in compleoftware protocol stacks that incur hugeetheads at both the sending and rgngi
host nodes. & example, Clark, et &k [10] analysis of an optimized TCP/IP implementationashthat in the
common case the TCP/IP protocol stagkarites roughly 700 instructions just to process the TCP/IP protocol
headers. Second, all message sends andesage routed through the operating system, which caarpepen-
sive. Anderson, et al., [2] found that jumping in and out of operating systees 18Ks of instructions/en on
modern microprocessors.dnée, operating system performance is inapr@ at a much sleer rate compared to
the impravement in microprocessor performance [40]. Third, the LAN iaterfresides on the I/Qu$é because,
unlike memory hses, I/0O bses are standardized, which a#athird party endors to design the intade to a stan-

Myths

Reality

All network accesses must be rou
through the operating system.

éiche operating system is required only to guarantee protected acces
network interface. The neterk interface and the operating system car
designed to wid the operating system in the critical path of mes
sends and reoets (Sectiori2).

Network interfaces must be optiNetwork interfaces must also pay attention to small messages, whic

mized to handle Ige messages.

very important for request-response protocols in clientesepplications
and parallel database queries, and in parallel scientific comput
(Sectionl).

The netverk interface must resid
on the 1/O lois.

eTraditionally, network interfaces hee resided on I/Ouses because the
buses are typically standardizedwewer, network interfaces can resid
on memory hses if memory s designers puide personality interfaces
(Sectiord).

Processor gister file is the ideg
place to map the netwk interface
registers.

IAlthough processor gisters proide \ery fast access, thgeneither ofer a
standard integfce (Sectiod) nor prwide plentiful luffering (Sectiorb).
The former can dvie up the cost, while the latter cangdede perfor
mance.

The netvork interface requiresery
few messageudfers.

Network interfaces can require lge amounts ofudfer space (Sectios).

Accesses to the netrk interface
must be uncached.

Network interfaces can be designed to allboth processors and netrk
interfaces to cache nebrk interface rgisters (Sectiol).

Caching netwrk interface rgisters
cannot impree performancg
because netark 1/0 does not hae
ary locality.

Network interface rgister accesses V& both temporal and spatial loc
2ity; hence, caching them can help imygoperformance. Additionally
memory luses are optimized for cache block transfers; hence,et
uncached accesses, cached accesses to therkatteriace allovs us to
use the full transfer bandwidth of memonysks (SectioB).

Processes must use the underly
data meement primitves (e.g.
uncached loads or stores, DMA)
the application programming intg
face (API) for the netark interface.

imge user API can be decoupled from the underlying datement prim-
itives; such decoupling alle independent optimizations of the user 4
asd data meement primitves (Sectior®).

r

Data copies must bevgided at all
cost.

Carefully making multiple copies of data can actually imprperfor-
mance (Sectiodl).

Network Interfaces cannot hand
virtual addresses.

&letwork interfaces can be designed to directly deposit data into the
virtual space (Sectioh2).

Combining netwrk interface acces
with network interiace command
improves performance.

sCombining netwrk interface access with commands can actually
performance by prenting out-of-order and speculati accesses to t
network interface registers (Sectioi3.2.1).

Processors cannot perform out-

order and speculat accesses t@ccesses to nebrk I/O space (Sectiob3.2.1).

network 1/0O space (i.e., the netrk

ofletwork interfaces can be designed to allout-of-order and speculaé

interface rgisters).

TABLE 1. Some Myths About Network Interfaces

dard specification. Because of this restriction all accesses to a LANw&enfust tneerse the memoryds and the
I/O bridge, which connects the memory and 118ds togetheAdditionally, I/0 buses are typically much sier
(roughly a &ctor of four or more) compared to memonsés, which further shes davn accesses to the LAN
interface.

Memory hus interconnection technology is in striking contrast with LANs. Memasesb delier extremely lav
latencies (10s of nanoseconds) aedyvhigh bandwidth (100 - 2500 gabytes/second). Memorybes can be
accessed from processors in & farocessor ycles because their high reliability and highly trustedrenment
avoid software interention, their direct accessibility (e.g., through cache misse&isaoperating system inter-
vention, and their proximity to the processor (onlyva pgocessorycles avay) avoids the eerhead of I/O bridge
and I/O s trarersals. But, unli& LANs, often memory uses are customized andveanon-standard intextes,
and are hard tox¢éend to hundreds of hosts spread across a room.

Ideally, we want a netwrk that combines the best of memonses and LANs. Wwant a netwrk that combines
the performance and reliability of a memonslso that we carvaid running TCP/IPbut we also want the scal-
ability and standardized intaexdes of LANSs, so that thecan be reused acrosyaral generations of machines and/
or can be manattured by third partyendors. Thus, four goals\yegiven rise to a ng generation of netarks
called System Area Netwks (SANSs). These goals are:

* Performance (M lateng and high bandwidth),
* Reliability,

* Scalability and

* Reusability

Gordon Bell [4] coined the name System Area Neks, lut did not define their characteristics. In oumwvgome
MPP netvorks such as the TMC CM-5 natvk or the Meilo CS2 netwrk can be classified as SANs. More recent
examples of SANs are the Myricom Myrinet switch [6], the IBMI&dan switch used in SP2 [16], the Spider switch
used in the SGI/Cray Origin machine [19], the Cray T3E adty45], Navatzyk, et als S-Connect [37], Dolphin
SCI switch [49], the Fujitsu AP-Net [47] and the Cray &igg [44]. andem$ SererNet [26] can also be classi-
fied as a SAN. Hoever, the Tandem SemrNet is unique because it replaces the memasythe 1/O bs, and the
LAN with a single interconnection nebrk called the SeprNet.

All these SAN switches deter latencies less than amanmicroseconds and link bandwidtkoeeding 80 nga-
bytes/second. Tlyeare highly reliable—thedo not drop netark messages, priwle CRC checks for error detec-

tion, and arexpected to operate in a closed, secure, and trustéomment such as aibiness dice or a machine

room. Hence, errors are considerett@mely rare; if the system does detect a SAN error (e.g., CRC error) it can
either return the error status to the end-user application or crash the user application itself. These switches can be
composed to dild configurations that connect hundreds of host nodes, whiclesnthkm highly scalable (&k

switched LANS). Finallythey provide internal netwrk interfaces that can be reused acrostediht machines or

across dfierent generations of the same machine.

3 Components of a UsekLevel Network Interface

A network interface in a host node is avilee that allevs a processor to send and reegnessages to and from a
network that connects these host nodes. The ort@ccepts messages from a ratninterface and deliers them

to one or more netwrk interfaces connected to the netk. A network interface consists of taparts: the internal
network interface and thexternal netvark interface. Vi define the internal nebsk interiace as the netwk inter-
faces interfice to the processanain memoryand (perhaps) disks, andernal netwrk interface as the netwk
interfaces interface to the netark (Figure 1). The internal netrk interface contains logic and memory that the
processor uses to send and reeenessages to and from the natkvinterface. Br example, an internal netwk
interface may contain datagisters that the processor writes messages tox#ennal netwrk interface performs
network-specific functions such as CRC calculations, ndtvgpecific framing, etc.

We defineUserLevel Network Interfac€ULNIs) as the internal netwk interface that non-prileged user code
can directly access to send and reeenessages withoutyanperating system inteewtion, at least in the common
case. Taditionally the operating system had ¢akresponsibility to send and reseimessages from user pro-

Processo

Internal External
Main Memory Network Network |<«——m» SAN
Interface Interface

Disks (optional

FIGURE 1. Internal and Extemal Network Interfaces

cesses. 6 example, Unix users can send and reeenessages through the seckterfice. Havever, SANs such
as the Myricom Myrinet alls direct, lot protected, user access to the mekninterface by allaing users to
memory-map the internal intede memory into the ussraddress space. The Myrinet host istegfis, therefore,
a ULNI. In this paper we limit oursedg to design alternagis for ULNIs for SANSs.

A ULNI consists of tw parts: the send intade or the send ULNI and the raeeinterface or the recee ULNI.
Each interce consists of four components: statggsters, control rgisters, data gsters, and an optional notifi-
cation mechanisntere we use the ternegisters just as an ahitectual specification the rgisters themsebs
may be implemented with DRAMs, foxample. V¢ will examine alternatie implementations of thesegisters
and notification mechanism latén this section we discuss the function of each of the components.

Status RegistersULNI status rgisters contain NI déce status information.df example, a recge ULNI status
register can indicate that awenessage has areid from the netark and a send ULNI statusgister can indicate
that the netwrk interface has successfully injected a message into thernetw

Control Registers.ULNI control ragisters allavs a user process to pass information and commands to the NI
device. For example, a processor mayant NI interrupts disabled in a critical section. It can do so by writing to a
control rayister in the ULNI.

Data Registers.ULNI data rgisters contain message data sent by a processor aectbgithe NI from the net-
work.

Notification mechanism.A ULNI notification mechanism is a mechanism through which the ULNI informs the
user process of grchange in NI déce status. &r example, the ULNI can interrupt the user process on a change
in device status such as arai of a message from the netk. Such gplicit notification may be unnecessary if a
user process monitors changes in the ULNI stagyistezs. Hence the notification mechanism is optional.

To send a message to the natky a processor first reads the send ULNI statgistey to ensure there is enough
space in the send ULNI datayisters. If there is enough space, the processor writes mmassage to the datayre
isters. If there is not enough space, the processor can either spin on the send ULNIgit&tysioesomething
else and come back later to check the stagjistez a@in, or totally &oid the ULNI until it is notified through an
interrupt that the datagesters are free and it can send another message. Orimgdbe n&v message in its data
register the ULNI hands the message to theemal netwrk interface, which injects the message into the nekw

When a message areis at the receing external netwrk interiace, it &tracts the message from the netkvand
hands the message to the reedJLNI. The recaie ULNI writes the message to its datgiséers, assuming there
is enough spa&eand sets a statuggister that indicates to the processor that a message hvasl anrthe recee
ULNI. Additionally, if the control rgisters hae been appropriately set by the procegber ULNI can send a noti-
fication to a processor in the regzihost node about the amal of this message through a processor interrupt.
Finally, a processor in the regeihost node reads thewenessage from the ULNI dategisters.

1. We can lose a netwk message if there is not enough space in theveetiN| data rgisters. ® avoid losing messages, theternal netwrk interface can
use some form of fle control (e.g., return-to-sender [17]).

Main

Memory

Memory Bus
I/O Bridge

/O Bus
Disks

FIGURE 2. Architecture of a typical workstation available today.

4 Location of ULNI Registers

There are tw design alternates for ULNI ragister location. The ULNI igisters (data, status, and control) can
either be all located in the same place oy tten be decoupled and placed ifatiént lezels of the memory hierar-
chy. Sectiord.1 discusses the tradéobf ULNI register placement. Secti@gh2 discusses altermagi implementa-
tions of decoupled ULNI architectures.

4.1 Tradeoffs of ULNI Register Placement

In a standard host node such ascaikstation or a personal computer the choice of ULNI location is dictated pri-
marily by the tradedfbetween the proximity of the ULNI to the processor and tadability of a standardized
interface to which ULNIs can be designed. Fig2rehavs the architecture of a tyflcal host node. In such a node,
the ULNI can be located in #eral places—processorgisterlevel, the cache us;” the memory bs, or the 1/0O

bus. Proximity of the ULNI to the processor impes the latencto access netwvk interface rgisters because
ULNI accesses tkeel shorter distances and tie upvés resources along the access path. ULNIs mapped to proces-
sor rgisters and located on the I/@dprwide the tvo extremes of ULNI locations. Regstermapped ULNIs pro-

vide the fstest access because procesgisters can be quickly accessed (in 5-10 nanoseconds), whereas I/0 b
ULNIs have the highest access latgr(typically around one microsecond). Accesses to a ULNI on theufO b
additionally tie up the memoryub and I/O bridge, at least partialduring the duration of the accesses, which can
degrade performance because the mema/dnd I/O bridge are resources shared by main memory and possibly
other processors in an SMP node. Memarg Bnd cacheus ULNIs praide intermediate points in the access
lateng spectrum.

Although placing the ULNI close to the processor can iwgnoerformance by reducing the access Iatethe
ULNI location is lagely influenced by thevailability of a standard inteate so that third partyemdors can design
the ULNISs to the standard specification. Hence almost all third paniyors design the netvk interiaces to the I/
O hus, which usually has a standard iraed. Although memoryuses are typically proprietathe SRRC MBus

1. For processors with multidel caches, one has the option of placing the ULNI &rdifit cache U levels.

Main

Memory
| |
Memory Bus
:F Personality Intedce
ULNI

i

FIGURE 3. This figure shavs how a personality interface connects a mprietary memory bus to a ULNI. The I/O bridge is a classic
example of a personality interface.

had a standardized intade to which SRRC processors such as Cypress’ Sup&FR8P and Ross dchnologys
hyperSRARC were designed. This enabled MPPs such as the TMC CM-5 and U8ikto design their ULNIs to
the SRRC MBus. Designing to the cached) although possible, andperimented with by research machines
such as the MIT Al@ife machine [1] and the MIT *NG [9] is not a feasible approach today because micropro-
cessors neithexpose their eternal cacheus interbces to independengérdors nor promise to preserthat inter-
face across d#érent generations of processors. Procesggisteemapped ULNIs are much harder to design
because these ULNIs are tightly coupled with the microproceSdew research projects such as MIT J-machine
[12] and the MIT M-Machine [17] hee explored rgistermapped ULNIs. Unfortunatelypo microprocessor man-
ufacturer hae felt the need to pvide a ULNI in their microprocessors because microprocessors are produced pri-
marily for the uniprocessor PC matkand not for the multiprocessor metrkand current microprocessors do not
have a standardized /O intade to thexernal world.

Since I/O luses are usually standardized, there is a strongatioti for independentendors to design ULNIs to
standard 1/O bses. Hwever, 1/0 bus performance has lastt behind memoryus performance by more than an
order of magnitude.d¥ example, the current generation of 32-bit PG$ lvith 33 MHz clock can pwide only a
peak bandwidth of around 111 gabytes/second [23], whereas Sldécent memoryus called the Ultra Gay
plane [48] pruides a sustained bandwidth of 2.6apgtes/second. CleaslyLNIs designed for I/O dses cannot
harness the tremendous bandwidflerefd by todays memory bhses because the I/Qitself is a potential bottle-
neck.

The key to ULNI placement is to find a location that cafeph standard inteaite and the datapath to which from
the processor is not a bottleneckgReéermapped and cachei® ULNIs are too tightly ingrated to the micropro-
cessor and do notfef a standard inteste, whereas the I/Qub cannot yield adequate performance. The memory
bus, therefore, appears to be the most viable candidate forxhgereration of ULNIs. It prades \ery high
bandwidth, particularly with the adwt of split transactions, and reledly low lateng. The memory bs perfor-
mance will continue to impk@ in future to satisfy the memory bandwidth demands of memory-hungry out-of-
order and speculat microprocessors.

Although current memoryuses do not support a standard irstegf there are geral solutions to this problemoF
companies that maragture both microprocessors and ratg for high performance systems (e.g., Intel, IBM),
designing internal netwk interfaces to their memoryus may not be a problem. In®eIMPP supercomputer
called eraflop, for @ample, attaches the ULNI dee directly on the PentiumPro memonysh8]. For indepen-
dent vendors finding a standard int@ee on the memoryuls may imply coordinating with microprocessor compa-
nies to get access to their memongstspecification. Alternately, manubcturers of proprietary memoryges
could pravide personality interfaceso other open standard intackes such as the PCI inté.

Personality intedces are inteazices that corert proprietary signals, in our case memomng signals (Figur8),
into open standard specifications. A classiangple of such an intexte is the 1/0O bridge, which connects the
memory lus to a standard 1/Qub. The SGI Reer Challenge [20] used personality intarés to connect standard
interfaces (e.g., the SCSI intack) to its proprietary split-transaction 1/Qsb Personality inteates dier two
advantages for ULNIs. First, tedecouple the memoryb from the ULNI deice, which allevs microprocessor
designers to independently optimize the memaiywithout vorrying about the installed base of ULNI haaie.
Second, thegallow ULNI devices to connect to the memomysbwithout requiring dece requests and responses to
additionally traerse the I/O bs. Hence, a ULNI mana€tured to a standard I/Qidb specification, ut attached to
the memory bs through a personality intade, can dér significantly laver latencies compared to a ULNI sitting
on the 1/O los.

Even with a personality inteate, a ULNI manuwctured to a standard I/Qub specification may ka its lateng

and bandwidth limited by the clock rate and width of the #®. In future this draback of personality intestes

can be eliminated in threeays. First, ULNI deices can be designed to other higher performance specifications
such as the Accelerated Graphics Pof&PA [57], which gtends the basic PCI architecture téeohigher band-
width through a demultipleed addressus, pipelined transfers, and 133 MH#eefive transfer rate. In this case,
we need a personality intafe that coverts memory bs signals to &P signals.

Second, one can @sion the emagence of a standard coherent memaug bpecification, which euld allov
ULNI vendors to coherently cache netl data in the ULNI déces. In the past the 8RC MBus [25] preided
such a standard specification, at least fokF8P processors. Heever, the adent of major architectural changes
such as split transactions made this standard obsolete. In the absencsuahamajor changes in the near future,
its possible that such a standard will egeeagin. A personality intedce would still be useful because thabwd
still allow microprocessorandors to add little twists to their memonysies to impree the lateng to main mem-
ory.

Third, its possible that memoryses may be replaced altogether with small high performancenikstwvhich
removes the critical timing requirement imposed by coherent memasgsh This shift mas it much easier to
manufcture coherent ULNI déces to memory s personality inteaices because the ULNIwdee, and hence,
the personality inteafce, is no longer required to snoop on the memuosywithin a critical timing intersd. Cur-
rent coherent memoryubes (see Sectidh?2) require caches to snoop on all memary &ddresses and intercept a
cache block read request to main memory withinedftkme interal if they have the most recent cgpf the cache
block. Havever, unlike memory hses, deices on general-purpose neiks cannot obseevall such requests to
main memoryHence, with such netwks coherent memory is usually implemented through reneldirectory
protocols [31, 55], which typically implement coherence through point-to-point messages, at least in the common
case. The shift from a broadcast-based memaosytd point-to-point messaging with general-purpose oy
will force designers to relax the timing constraint imposed by tedagmory hses and makit easier for ULNI
designers to mana€ture ULNI deices.

4.2 Decoupled ULNIs

Decoupled ULNI architectures can also be a viable altemdtithe future, particularly with the asivt of high
performance coherence protocols thatvjmte a single image of memory locations within a host noded#fine
decoupled ULNI architectures as those thatehtheir status, control, and datayisters located in diérent
places—processor gister processor cache, cachesbmemory bs, or 1/0O lms—of the host node (see Fig@e
For example, the Cornell U-Net [53] is axample of a decoupled ULNI architecture in which the dagesters
reside in main memoryvhile the status and controbjisters reside in the ULNI dize on the memory or I/Ous
(Figure4). The combination of locations within a host node and ULNisters gves rise to a ariety of other

Main
Memory

ULNI
Data
Reagisters

T~ A |}

Memory Bus
Y Ej 1/O Bridge/

I/O Bus
[TTITTT] Status & Control
ULNI Ragisters

FIGURE 4. An example of a decoupled ULNI achitecture. The ULNI status and contol registers eside in the ULNI itself
However, the ULNI data registers from which a processor eads messagesdm or writes messages to arlogically mapped to main
memory. When a message comes in, the ULNI must write the message.(esigg DMA) to the ULNI data registers in main memory
Similarly, when a message indy to be sent, the ULNI mustead the message m the main memory data egisters. Havever,
since main memory can be cached, the message caygbally reside in the pocessor cache. The Coell U-Net architecture is an
example of such a decoupled ULNI arhitecture.

decoupled architecturesoiFexample, Stodolsk et al's [51] optimistic interrupt protection scheméeofa decou-

pled ULNI architecture in which the status and contrgisters are mapped to adik global rgister in a proces-

sor, but data rgisters can reside in the I/@$HULNI device itself. When a message aes at the ULNI déce, it
informs the operating system about thevatriof a message through an interrupt. The operating system then
updates the statusgister or interrupts the user process based on the current cogistérénformation. The
advantage of this scheme is that for small critical sections, in which a message rarely e user process can
simply turn interrupts éfand on by writing to a control gister mapped to its globalgister This aoids epen-

sive uncached stores to the I/@sbULNI control rgisters to turn interrupts foind on before and after the critical
section.

The presence of a coherent memoryvedlagreater fiability in decoupled ULNI architectures.oF example, if
ULNIs DMA data into data igisters residing in main memeoine corresponding memory locations in the proces-
sor caches must bevalidated. In the absence of coherent memibrig data must be\mlidated from processor
caches undermxglicit software control, which can slodown accesses to the ULNI datayisgters. Similarly Stod-
olsky, et al's optimistic interrupt protection scheme can be implemented in a simpler manner if the cgisterisre
could be cached in the processor caches and shared by the Widélaled the processors. In Sectwe discuss
how the presence of coherent memorywddJLNI registers to be cached. Caching of ULNgisters enhances
performance by reducingib trafic and the latencto access thesegisters. More aggres& coherence protocols
such as an update protocol can further boost performance twnglldLNI devices to directly inject its msters
into processor caches.

5 Dedicated vs. Non-dedicated Memory

High performance ULNIs can require daramounts of memory (e.g., tens ofgaigytes) to bffer outgoing and
incoming netwark messages. This requirement is because of four reasons. First, thanetienvin microproces-
sor and SAN switch performance and theirvglorates, the asnt of a wide ariety of custom communication
protocols, and the loose coupling of microprocessors and SANSs, oftenactamedl independently by tifent

10

vendors, can temporarily create a huge mismatch between the rates at whitk nedasages are generated,
transferred, and consumed. Hence the absencegefdanounts of messagefter space in the ULNI can create a
serious performance bottleneck because both theoretand processor mustwdlock waiting for the other to
clear and consume neatvk messages.

Second, with limited Wffering and lage hursts of messages—a common occurrence in loosely synchronized paral-
lel applications—a processor must constantly monitor ULNI status changes anve reggsages from the limited
ULNI buffers to aoid clogging up the netwk. Karamcheti and Chien [28] Y& shavn that processor perfor-
mance can agade significantly if it is required to constantly monitor ULNI status in #skibn.

Third, since ULNIs preide direct access to the netk without operating system int@mtion, it must be virtual-
ized to allev multiple processes to access theicke simultaneoushiimited amounts of Wffering in the ULNI
implies that either the deee of multiprogramming must be restricted or the ULMffdyss must be comnke
switched between multiple processes, whiajrdées performance.

Fourth, SAN interaces to thexdernal network interface are sometimes designed (e.g., Myricom Myrinet switch)
to drop netwark messages if theternal netwrk interface refuses to accept messages for a certain amount of time.
This decision, we belie, is motvated by thedct that the netark is shared among multiple applications, and so
backing up the netork instead of dropping the messages camgmteother processes from making progress. T
guarantee reliable dedry, hovever, the ULNIs must quickly bffer the netwrk messages or use some form of
flow control (such as all-to-alluffer reserations [35], return-to-sender [17]) twaad hbuffer overflow in the
ULNIs. In the absence of ige amounts ofidfering, such flav control stratgies can significantly dgade perfor-
mance.

Current ULNI interaces for SANs typically prade around hundreds of kilobytes of messagiéebs in the ULNI.
However, this does not prade enough bffering to support laye systems with a Ige dgree of multiprogram-
ming. Thus, Fujitss AP3000 machine, foxample, restricts the deee of multiprogramming of its ULNI to three
(one system, tar user). Alternatiely, ULNIs could preide lage memories to uffer messages;ub this would
drive up the cost of the ULNI.

The problem of limited bffering in the ULNIs can be satd by luffering netvork messages in the usewirtual
space [33]. This prades huge amounts otiffering limited only by the size of main memory (and perhapspsw
space), which backs up the user virtual spaceveder, using user virtual space taffer messages posesaw
problems. First, the ULNI must % access to the process identifier and virtual-isighl translations for the user
virtual space. &r example, the Cray T3E [46] and MitsubishART [39] ULNIs have user space translations,
which allovs them to bffer messages in user virtual space. But, this also implies that ULNI must interact with the
operating system to obtain the user space translations, which incurs additionakitgraptee softvare and hard-
ware level. The frequeng of interaction with the operating system canyécer, be minimized by caching user
space translations in the ULNI (see Secfi@y or exposing the page table structure to the ULNlicke, which can
then directly read user space translations from coherent memory space. Segsicd| pages that back up the
user virtual space must either be pinned in memory or the ULNI mustnrachanisms to detect a missinggh
cal page and t&ka pagedult to bring the page back into main memastyssing plysical pages can be detected if
the operating system prioles an gtra bit for each virtual-to-pfsical translation entry to indicate if the page is
swapped out or not. The ULNI can interrupt the operating systemddhakpagedult on its behalf.

Large huffer requirement of ULNI déces suggests that processaisters may not be right location for the ULNI
device. To allow very fast access (e.g., ongcte) to processor gisters, the mgister file is usually made small in
size (e.g., 256 bytes); such smaljister files can onlyuffer a fav network messages. kaver, its possible for
processors touffer messages in user virtual spacet, bhis requiresplicit processor intemntion to cop the
data from the processomisters to the user virtual space, which can significantlyadie performance. Addition-
ally, current microprocessoerdors do not ant to waste precious on-chip resource for natwl/O. Thus, the
unavailability of a standard 1/O intesite (Sectiod) and the lack of plentifuluffering strongly suggest that pro-
cessor rgisters may not be the appropriate place for the ULMicde

11

6 Coherent Caching

Traditionally, the absence of a memorysbcoherence protocol that pides a single image of memory locations
and presence of sidefefts on ULNI rgister access pvented processors from caching ULNbisters. The
absence of a coherence protocol on older memasgdrequired processors to flush their data cache under soft-
ware control before and after avitee DMA-ed data into main memomistorically, this was knevn asnon-coher-

ent 1/O However, flushing the entire data cachegdides performance significantly by increasing cache misses.
Alternatively, designers could mark DMA-edwee data as uncachable, whicroied loading déce data into

the processos’ data cache. The ast of coherence protocols on almost all high performance memsgsb
removes this problem because the haadsvautomatically renves all stale copies of cache blocks in all processor
caches when an 1/O dee DMAs data into main memaryhis is knevn ascoheent I/QO.

The presence of sidefe€ts on deice ragister access also forced designers to mavicdeaister access uncach-
able becausevery access to @&e rayisters had to be made visible to the ULNVide. For example, ULNI
devices that use FIFQuffers to send and resei messages typically pop the FIFO and change internal FIFO point-
ers when the lastaovd of a netwrk message is loaded from or stored to the ULNIage This requireswery pro-
cessor access to the FIFO be visible to the ULNicde and hence uncachable, so that tivicdecan detect access

to the last wrd of a netwrk message. This prents processors from caching ULNIvae ragisters because
cached loads and stores are not visible to a ULMEtdeSuch side &fcts, which are a result of the tight coupling

of device memory access anduvitee commands, are simply astifts, and not features. These sideat$ can be
easily separated by designeWill explore this in Sectio®.

The adent of coherence protocols on almost all high performance memsps llodayallow processors and
memory lus ULNIs to cache ULNI gisters. In Sectiof.1 we eamine hav caching ULNI rgisters help impnee
ULNI performance. Both processors and ULNIs can easily cache Ulg\itees if the ULNI is located on the
memory lus because these ULNIs directly obsetive memory s coherence protocol. I/Qué ULNIs, hevever,
allow limited flexibility in caching ULNI ragisters (Sectio®.2). This agin agues that high performance ULNIs
should be located on the memonysb

6.1 Caching with Memory Bus ULNIs

Since memory s ULNIs obserg the coherence protocol directhrocessors can cache ULNBigters just lile

they cache rgular memory locations. Caching ULNIgisters in processor cachegeofthree adantages [36].

First, caching status gesters in processor caches helps reenonnecessary memorydtrafic. If a processor
were polling on an uncached statugister every processor poll auld go across the memorydto the ULNI
device. In the absence of mmessage in the ULNI, unsuccessful polls that do not find a message in the ULNI
device waste precious memoryd bandwidth. Instead, if the processor polls on a cached memory location, which
contains the ULNI status information, all unsuccessful polls will hit in the processaehe. When a message
arrives finally and the ULNI status changes, the ULNlick invalidates the cached statugister in the proces-

sor’'s cache. On its me poll attempt, the processor will incur a cache miss, which can be satisfied directly by the
ULNI. With an update-based coherence protoa@nehis cache miss can be eliminated because the Uhitiede

can directly update the status information in the processache.

Second, uncached accesses transfer onlw dytes of data (e.g., between 1 - 16 bytes) and cannaysltale
advantage of the full transfer bandwidth of todayiemory hses. Br example, Sun Microsystems’ Ultra Gig
plane has a width of 32 bytesjthuncached loads and stores oABE processors can load or store only upto 8
bytes at a time, which astes three-quarters of theskbandwidth onwery access to the ULNI gésters. Memory
buses are, hwever, designed to speed cache block transfers. Since cache blocks are typically gerqlelgr, 32

- 128 hytes), thecan aploit the full transfer bandwidth of memorudes. Caching ULNI datagisters that con-
tains netwark messages enables us to transfer messages in cache block unitsemdamedses to ULNI datayre
isters as cheap as cache misses. See S&cfimnmore details on data m@ment alternates between the
processor and the ULNI diee.

Third, frequent processor updates to contrglisters can proceedery fast if thegy are cached in the processor’
data cache.dt example, we can va a better implementation of Stodglskt al's [51] optimistic interrupt protec-
tion scheme (described briefly in Sect#®nby using a cached memory location, instead of reservingistae

12

Main

Memory

Memory Bus

D

ULNI

from the limited global mgister pool, to hold the control information. In the absence phaessage, the ULNI
does not read the control information, which w&HBoprocessor accesses to cached contgidtezs to proceed at
cache hit rates for write-allocate caches. Only when a messagsatine ULNI reads the cached contragjiseer
to decide if it should interrupt the processor or simply set the stafistere

FIGURE 5. ULNI cache

Caching ULNI rgisters in processor caches requires us to identifjpdineefor ULNI registers. The home of a

physical address is the I/Oee or memory module that services requests to that address (when the address is not
cached) and accepts the data on writebacks (e.g., due to cache replacements). Either dedicated memory in th
ULNI device itself or main memory can seras the home for the ULNIgisters. As we discussed in Sectgrio

malke ULNIs cost-dective, only limited amounts of dedicated memory can be put on the ULNI. So, main memory
which is plentiful, is more attrage as the home for ULNI gésters. Small amounts of ULNI memory can instead

be used just li& processor caches to cache the ULNisters [36] (Figuré).

ULNI caches help impre performance in threeays. First, processor cache misses for ULNjisters can be
intercepted and satisfied directly by the ULNI cache througlstachiche-to-cache transf8econd, whenursts of
messages aué at an ULNI, the ULNI cache mayerflow; but, ULNI cache replacements to main memory will
automatically bffer these messages withoutygsrocessor inteention. Contrast this with cachedor rgister

mapped ULNIs in which processors muspleitly copy the data from the ULNI gisters to the uses’virtual

space because coherence is usually not an optiomyisterenapped or cachaub ULNIs. Third, if a data block is
packaged in multiple messages and sent ferdifit host nodesver the netwrk (e.g., in an update protocol in a
distributed shared memory machine), in the absence of a cache, the ULNI must fetch the data block for each mes-
sage. Hwever, with a cache, the ULNI has to fetch the block only the first time. Subsequent accesses to these data
blocks will hit in the ULNI cache. Thus, ULNI caches help inyardooth the latencand bandwidth of ULNI
accesses. It impves lateng by directly transferring data throughst cache-to-cache transfers. It im@® band-

width through automatic messagaffering in main memory and by reducing the number of accesses to message
data blocks.

Home Caching ULNI Non-Coherent | Coherent | Coherent I/O + 1/O Bridge
Registers In I/O le] Invalidation Support
ULNI Cache No No No

Main Memory
Processor Cache Slow Yes Yes

ULNI Processor Cache Slow Slow Yes

TABLE 2. Caching I/O bus ULNI registers
6.2 Caching with I/0O Bus ULNIs

Although coherent memoryubes alla processors and ULNIs to coherently cache ULNlsters, the same may
not be possible with standard I/@des such as the SBus or the PG$ ven with its coherentx¢ensions)
(Table2). Two key mechanisms are necessary in the interconnect between the prabessmMI, and the home
to coherently cache ULNI gésters in a processor or ULNI cache. Fiiita processor or ULNI cache contains the
most recent copof a ULNI register it must be able to intercept a coherent read request forgiiséereand preent
the home from responding. Second, a cache must be ablelioate (or update) stale copies of ULNgisters
residing in other caches.

The absence of the first mechanism—the ability to intercept coherent read requests fordiitdhsre-maks it

difficult for I/O bus ULNIs to coherently cache ULNIgisters whose home is in main memdwWain memory

resides on the memoryus, while the 1/0O bs is usually connected to the memons lthrough an I/O bridge.
Because I/O Wises are usually skeer than memory dses and the I/O bridge introduces additional delay on the
memory lus to I/O lus path, it is dffcult for I/O bus deices to intercept a memoryd coherent read request and
prevent main memory from responding in a timedgliion. Memory ibbs ULNI caches, on the other hand, directly
obsenre the memory Uis coherence protocol and therefore can intercept a coherent read request, inhibit memory
from responding (through the memory inhibit signal on the memas}), and respond with the most recentycop

the cache block with the ULNI géstet

Although I/0 lus ULNIs cannot cache ULNI gesters that reside in main memptiiey could write messages
directly to main memoryjust like regular netvark interfaces that DMA messages to main memdhe memory

bus coherence protocols ensures that all stale copies of the data written to main memeajidatedor updated
in the processor cachegadlitionally, this approach has been called coherent I/O.

The absence of the second mechanism—the abilitwédidate (or update) stale ULNIgisters in other caches—

in todays 1/0 luses mas it dificult for processor caches to coherently cache data from aru§@IoNI device

when the home is in main memoihhis is because when a ULNI updates main memory the processor cache can
still contain stale data, which must somehme irvalidated (or updated). Althoughvialidation signals are absent

in todays 1/0 tuses (including PCI), suchvalidations can be synthesized both at the softvievel or at the 1/0
bridge. At the softare level, a processor couldglicitly flush its entire cache (or the ULNIgisters selectely, if
selectve invalidations are allwed) before a ULNI writes me ULNI register data to main memorydowever, this
solution—adopted in today’systems that support only non-coherent I/O—iw $lecause this requires a cache
flush and anxlicit handsha& between a ULNI and processor before the ULNI can writemessages to main
memory

Alternatively, mary systems support coherent I/O by adding functionality to the I/O bridge. When avit@ de
writes data to main memaqrthe I/O bridge imalidates all stale copies of data residing in memaosy/daches. The
same mechanism could be used by ULNIs tonafpoocessors to cache ULNIgisters. Havever, this mechanism
only allovs main memoryand not ULNI memoryto be the home for cachable ULNgrsters. Bela we describe
how we can relax this restriction and al&JLNI memory to serg as the home for cachable ULNgisters.

A third, and uncoventional, alternatie that we propose ailks a ULNI deice to sere as the home for cachable
ULNI registers. In this method the 1/O bridgekés irvalidation signals on the I/Qub using a technique called the
shadow addrss spaceThe shade address space technique has been used before to communicate special signals
and address translations from a processor to an Voag, 22], lut not in an 1/O bridge. In this technique, the I/

14

O bridge creates a shadepace for the galar I/0O space by someviertible function such as flipping a bit. Thus,
if Oxxx represents an I/O spaceygfcal address, 1xxx will represent its shaduysical address. Reads to Oxxx
will proceed normallybut reads to 1xxx will be interpreted by the I/Qvide as a special control operation, which
in our case is anvalidation on the pysical address Oxxx. Thus, when the I/O bridge olesean imalidation sig-
nal for address Oxxx on the memonysbit will corvert it to a read signal on the address 1xxx.v@mely when
the 1/O bridge obsegs an 1/O bs read signal on 1xxx, it will cgart it to a memory s invalidation signal on the
address Oxxx. These enable a ULNVide to obserg all memory bs invalidation signals for ULNI rgisters and
send ivalidation signals for ULNI rgisters to memoryus caches.

7 Memory Bus Altematives

Earlier we agued that it is critical to place the ULNI on the memoug ko take adwantage of its high bandwidth
and cache coherence protocol. In this sectionxaen@e some of the techniques memangds use today and can
use in future to impnee their bandwidth (Sectionl1) and coherence protocols (Secffo®) and hav ULNIs can
take adwantage of these techniques.

7.1 High Bandvidth

Todays memory hises supportery high bandwidth—between one to threeabigtes/second—through high clock
rates, lage hus widths, and split transactions. High clock rates impriateny and, hence, bandwidth. Man
memory luses are cload at 66 MHz or more. 32-byte wide memonsés are not uncommon tod&plitting a
transaction into a request transaction and a reply transaction for each aceessnalkiple accesses to proceed
simultaneously

Memory luses are primarily tgeted at impraing cache block transfers and hence uncached accesses often cannot
exploit the full transfer bandwidth of todaymemory hses. Br example, increasing the memoryswidth to 32

bytes helps cache block transfers because cache blocks are usually between 32 to 128 bytes. Uncached loads ¢
stores, havever, operate onery small amounts of data, typically between one to eight bytes, and hence can only
use less than a quarter of the memary bandwidth. A f& processors (e.g., R10000jasfspecial mechanisms to
combine consecwe uncached accesses, whichwaidhese accesses to better use the menugripdndwidth.

Even though split transactions allanultiple uncached accesses to proceed simultanedhsiywumber of out-
standing transactions supported by a memasyibteraice is limited. Since multiple transactions can be in flight, a
memory s interbce must hae a transaction identifier that pairs up the request transaction with the reply transac-
tion. The number of transaction identifiers supported in the menagrinterace limits the number of outstanding
transactions from that intexde. Wth the same number of transaction identifiers, cache block transfers can fetch
more data than can uncached loads because uncached load&®casmyall amounts of data compared to cache
blocks.

7.2 Cache Coheznce Pptocols

The cache coherence protocol supported by most memesgslioday is a writeamlidation-based single-writer
protocol. The protocol maintains a single image of all cached memory locationgabgiating all copies of a
cache block in dferent processor or diee (e.g., I/O bridge) caches wheee a ngv writer writes data to the
cache block.

Future memory lises may also support more aggressioherence protocols that can further boost the perfor-
mance of ULNIs by allving processors and dees to update other processor caches the memory lis. These
protocols come in three flars—snarf, update, and push. Snarfing [21] is a technique in which a cache controller
reads data in from thaub wheneer it has a tag match (i.e., space already allocated) for a block ivdltid Btate.
Snarfing can be implemented as atersion to standardvalidation-based coherence protocols. An update proto-
col goes a step further and updates a cache block wdretie block is present (i.e., has space allocated) in the
processoe cache independent of the blacktate in the cache. Finallyush forces a cache block into a cache
independent of whether the block is allocated or not in a processatie. This may cause cache replacements; so
this technique is harder and more comrpteimplement.

15

Virtual Address Space Physical Address Space

Regular Mrtual Regular Plysical
Address Space Address Space

0OXYZzZ OABC

Regulartp-shadav Shadaev-tp-regular
L Virtual-to-physical
1XYZ » 1ABC
(Through Virtual Memory

Shadaev Virtual Translation Hardware) Shadav Physical
Address Space Address Space

FIGURE 6. This figure shavs how the shadav address space scheme in PrincetamUDMA mechanism [5] allavs the UDMA device
to obtain physical addressesdr the DMA transfer. Both virtual and physical address spaces ardivided into two regions—a egular
space and a shadw space. Br each addess space ther exists one-to-one mappingsdm the regular space to the shade space.
initiate UDMA to a destination virtual addr ess 0XYZ, the user pocess does a sterto the corresponding shadw virtual addr ess
1XYZ. We obtain the shada mapping through a simple ivertible function such as flipping a bit. The virtual memory hardvare
translates the shadw virtual addr ess to the shade physical address 1ABC, which the UDMA deice obsewes on the los. Finally,
the UDMA device corverts the shadev physical address back to the egular physical address by flipping the first bit and inteprets
the store to 1ABC as the user pocess’ intention to initiate DMA to the destination plysical address OABC. Thus, a user fmcess
delivers authentic ptysical addresses (in this case the translationdm 0XYZ to 0ABC) using commodity virtual memory hardware
to the UDMA device without invoking the operating system.

ULNIs can use these mechanisms toveoiently push data into a processarache. Hwever, since a cache is

limited in size and, therefore, a precious resource, the ULNI must carefully select which data should be pushed into
the processor cache because pushing all incoming message data into the processor cache can cause cache polluti
andwaste memoryus bandwidth. A ULNI then has three choices. It cavddhe data in the ULNI cache, if there

is one; it can push the data into the processor cachieran write the data to main memo8areful analysis and
experiments are needed teaduate the potential for each of these approaches in the future.

8 Data Movement

Current systems fdr three vays to mee data between the processor and the ULNI. First, the processor can per-
form uncached loads or stores to memory-mappeid@egisters and directly load or store data to or from proces-

sor r@isters. Second, the processor can initiate a DMA request either through a system call or through a User
Level DMA request, which actates the DMA engine in the ULNI. The DMA engine transfers the message data
from the ULNI ragisters to main memorith coherent I/O—a common support in most systems today—the cor-
responding data, if gnin the processor cache isalidated. Third, a processor can read data directly from the
ULNI through cache misses.illW more aggresge protocols that alle the ULNI to update the processor cache,

even these cache misses can be eliminated.

As we discussed earliauncached loads or storesvbaery lov bandwidth and is not a viable altermatiwvithout
special processor support such as coalescing giffezrdbthat can mge multiple uncached stores tovbe rayis-
ters (e.g., R10000) or block mes to floating point gsters (e.g., ultrafRC). Havever, these mechanisms are
highly processedependent and limited in scope and third padgdors cannot afys rely on such support to
design their ULNIs.

DMA is a viable alternatie to uncached accesses for dataentent, particularly with the adwt of UseiLevel
DMA. Traditional DMA allaved users to access the DMA engine ofickes only through a system call because
DMA engines gpect plysical addressesubh operating systems cannot rely on user processes\iol@iorrect
physical addresses. Uskeevel DMA [5] solved this problem through a dainstruction sequence that ails DMA
initiation from user space without a system call. The UDMA sequence looks assfollo

store <DMA transfer size> to shadow(<destination virtual address>)

16

load <status> from shadow(<source virtual address>)

Figure6 shavs hav the shade address space techniqueriss for Princetors UDMA scheme. Thus, this tw
instruction sequence reduces the DMA initiatimertiead significantly and me& DMA a paverful data muee-
ment mechanismven for small transfers.

Although DMA has traditionally been used to transfegégaamounts of data betweervides and main memary

on current systems that support coherent I/0, DMA is usually implemented through a sequence of coherent, cache
block transfers. & NI devices on the 1/O s, the 1/O bridge caerts the non-coherent I/Qué block transfer sig-

nals to memory lis coherent signals. Memory$ NI devices can directly issue coherent signals to implement
coherent DMA.

The third alternatie is to use coherent, cache block transfers to directly read data from the ULENDMIk, this

scheme has the amivtage of transferring data in cache block units. @nRA, havever, message data can be
transferred directly from the ULNI to the processor cache without transferring the message to main memory and
then to the processor cacheitarge amounts of dedicated memory or a cache (with main memory serving as
home) for messages in the ULNI, message data can be read directly into the processor cache from the ULNI mem-
ory or cache. \Wh a ULNI cache, the processor reads the data from main memory only if the ULNI sache o

flows and messages get automaticallffdred in main memoryn the absence of memory on the ULNI, the ULNI

must write messages directly to main memqgugt like DMA, so this scheme requiresawmops (ULNI to main

memory and main memory to processor cache) to reach the processot cache.

9 Application Programming Interface (API)

Computer systems ta often directly gposed the underlying data mement primitves between the processor
and the 1/O deéice as the uses’Application Programming Intexe (API) to the 1/O dace. There gists two such
user APls—program-controlled 1/0 (P10) and ukewel direct memory access (UDMA). In PIO a processor reads
from or writes to a dece through uncached loads or stores. BDMA a processor initiates the DMA engine in
the 1/0O deice, which interrupts the processor on completion of the DMA transfdyoth PIO and UDMA the
underlying data meement mechanisms—uncached access and DMA—are dirgptged as the API.

Recently we hae seen thewlution of a number of diérent usetevel APIs such as Arizona Application {iee
Channels (ADCs) [15], Cornell U-Net [53], MitsubishART [39], and the Wéconsin Coherent Netwk Inter-
faces (CNIs) [36])—none of which can be classified as PIO- or DMA-based. All these APlsithgle memory-
based queue semantics withouy @plicit notion of data meement. The sender enqueues eknmessages at
the tail of the send queue and the reeedequeues messages from the head of theveegaeue. &r message
sends, the sender is a processor and thevegdsithe ULNI. Ier message receipt, the sender is the ULNI and the
recever is a processobevice commands for such APIs are no longgslieit DMA-initiation requests; instead,
device commands simply increment or decrement the queue head or tail poiotesarfple, when a processor
writes a message to a queue and increments the tail pdimtdsLNI interprets this as avdee command to send

a message out to the netik.

There are threeey features of these neAPIs. First, these APIs amemory-basedueues. Sending or reeiig
messages Wiolve simply reading and writing the queue memory and associated data structures (e.g., head and tail
pointers). Both the ULNI and the processor must ¥olofixed protocol to read and write data from these queues;
otherwise, the message data may get corruptedeowdtten. The four APIs, hveever, differ in the location of this

gueue memotyFor Arizonas implementation of ADCs both the send and recqueues reside in dedicated mem-

ory in the ULNI; for the Mitsubishi BRT interface, the send queue resides in host menhotyhe receie queue

resides in dedicated memory in the ULNI; for Corsell-Net implementation both the queues reside in main
memory; finally for CNIs the home for both queues is in main mearythey can also be cached in the ULNI
cache.

Second, these APIs separate dataeneent from the user API itself. Sending or reitg) messages is simply
reading and writing queue memory; the user has nwledge of hav the data is actually mved between the pro-

1. Transferring messages from the ULNI to the processor cachénmmagyer, be wasteful if the application simply intends to transfer data from theamktw
interface to another I/O diee (e.g., disk or graphicauffer).

17

cessor and the ULNI. The implementor can choose the dat@nnent primitve best suited for a particular system.

For example, both the implementations of ADCs anlR? use uncached accesses foricke commands. He-

ever, for message sends, the ULNIs use DMA to transfer data between host processor cache or main memory anc
the ULNI. Message receptionviives two kinds of transfers—DMA to transfer data from the ULNI to main mem-

ory and coherent, cache block transfers from main memory to the host processor cache. The Cornell U-Net API
was implemented on twdifferent interbhce cards—ére Systems’ SB-100 and SB-200 interfices. Br the
SBA-100 card, U-Net transfers both data andicke commands between the processor andceethrough
uncached accesses. TheASBI0 card supports DMA for data mement; so, the SB200 implementation of U-

Net, like ADCs and BRT, use uncached accesses farickecommands and a combination of DMA and coherent,
cache block transfers for data wement. Unlilke the three other ULNIs, CNIs primarily use coherent, cache block
transfers to mee data between the processor and ULNI.

The decoupling of data mement from user API to the ULNI diee provides three & adwantages. First, such
decoupling preides a portable intemte to the ULNI. This portable intade is independent of the underlying data
movement primitves. Second, the implementor can choose the optimal datmeat primitves ofered by a par-
ticular system to implement the user API. The td+Net implementations shohow data meement can be opti-
mized depending on the capabilities of the ULNIs. In the future, systems may support egaedate-based
coherence protocols, which carfiesfnev opportunities for data nvement optimizations. Wth an update protocol

a ULNI can push data directly into the processor cache on message reception. The ULNI is also free to dynami-
cally decide where to place the data— in the ULNI, in the processor cache, or in main nmidnndyyhe API can
itself be optimized independent of the underlying dataem®nt primitves. For example, these queue-based APIs
can use techniques such as lazy pointers, messdigebits, and sensewerse [36] to optimize accesses to the
queues.

Third, for all these APIs, the ULNIs argvare of the structure of the queues. Contrast this with the Cray T3E
gueues [46] or Breer, et al's Remote Queues [7] in which the queuesipea higher leel programming abstrac-
tion and the underlying ULNI implementation may not necessarilyaeeaof the structure of the queues. Being
aware of the structure of the queues has both itargdge and disadutage. The adwntage is that ULNI accesses
can be optimized. df example, the Wsconsin Coherent Netwk Interfaces optimize accesses to the send queue
using a wariety of techniques mentioned &ko The disadantage is that the queue structure w8 fixed proto-

col and cannot be customized to an applicasioe’ed.

10 Notification Alternatives

A user process must be notified when its ULNI status changes (e.g., when mesgegédoartiat process)wb
common notification stragges are: interrupt the user process when the ULNI status changes (e.g., in Unix, for
example, this is done through the signal irded) or allav the user process to monitor changes in ULNI status by
polling on a memory-mapped ULNI statugister However, notification through interrupts can bewglon todays
processors and commaodity operating systems; hence, diavl designs dier polling as an alternate notification
stratgy. In this section, we firstxamine wly notification through interrupts ixgensve in current systems and

how this cost may be reduced. Finallye ekamine hav polling and lybrids of polling and interrupts may ahNo

faster notification.

In todays processors notification through interruptsasyvsiav because these notifications must betored to

the user process through the operating system, whietutes hundreds of instructions before the interrupt is
delivered to the useFor example, on a message aali, the ULNI deice actiates one of the ¥e hardvare inter-
rupt lines for the processorhis inserts a trap instruction into the processor pipeline. The trap instruction switches
the user process out and puts the processor in thikeged operating system mode. The operating systeassa
the user process’ state, figures out the cause of and handler for the intretytesthe handlerestores the user
process’ state, and switches back to the user process, whichwehamdie the interrupt. Switching back and forth
between the user process and operating system also causes pollution in the pdwassare structures and
tables such as the instruction and data caches, TLB, branch prediction table, etc., whichrebndsgrade per-
formance. Additionally these interrupts may also force out-of-order and spegilgtrocessors (see
Section13.2.1) to stop their out-of-order and speculation engines, which eam afigct performance. Modern
processor architectures such as thaRBP Version 9 [50] hee added special support (e.g., eight scratglsters
that interrupt handlers can use, dirty bits for floating poigisters, etc.) to soméat reduce thewerhead of an

18

interrupt. Neertheless, &ctoring an interrupt through the operating system is and will continue tgpbaste
because interrupts are treated both by the processor and operating systas atibkeception condition and not a
common occurrence.

With adequate support from the processor and ULNI, it should be possilgetéo &n interrupt directly to a user
process without gnoperating system integmtion, at least in the common case @utline one such method here.
This method implements uskewvel interrupts with @ry two minor changes to current processors: the processor
must support threexera ragisters and anxéra hardvare interrupt line. \& require threextra ragisters to hold the
current process’ id, the virtual address of the currenxtcting process’ interrupt handler routine [27], and the
target process id of an aring useflevel interrupt. The xdra interrupt line must be deted for usetevel inter-
rupts. Nav when a message ames, the ULNI will etract the destination process id from the message (either
directly or through a global to local id translation), ensure that thdevstinterrupt line is not sy, write the tar-

get process id to the processahird etra ragister and actrate the uselevel interrupt line. When the processor
sees an adté usetlevel interrupt line, it will compare the @et process id of the interrupt with the current process
id. If both are same, the processor wiledhe taget process’ state in some usecessible area, branch to the
userprovided interrupt handler routine, and clear the Uzl interrupt line. If the ids are digrent, then the pro-
cessor can takthe normal path and insert a trap into the processor pipetinthd-case when the udevel inter-

rupt line is lmusy when a ULNI message ags, the ULNI must ait until the usetevel interrupt line is cleared by
the processor

Since modern processors do not yet support sucHev&tiinterrupts, system architectures rely oo tther noti-
fication alternaties—polling and ybrids between polling and interrupt. In polling, the user process is required to
periodically montor the state of the ULNIilee, detect ay status changes, and ¢éaippropriate actions. Polling
can be much cheaper than interrupts because a user process can check the status of aricgliNlodgh
uncached loads memory-mapped ULNjisters. Havever, polling can be harmful if the frequanés polling is
much higher than the rate at which messagegeaparticularly if the processor musaitvfor the uncached loads
from ULNI status rgister to complete. The cost of polling canwieeer, be reduced significantly if the processor
caches the ULNI statusgister in its cache. In the absence of a message, the processor simply performs a cached
load to the ULNI status géster The first access will missubsubsequent accesses will hit in the processor’
cache. If the ULNI status changes, the ULNI simphalidates the ULNI status gister in the processartache.
When the processor tries to read the statainag incurs a cache miss and fetches the stagistee Even this
cache miss can be eliminated if the system supports some form of update-based coherence protocol.

Alternatively, to remae the cost of polling in the absence of messagesy sy@mtems use a combination of inter-
rupts and polling [23]. When a messagevasgiat the ULNI, the ULNI interrupts the user process, which starts
polling for incoming messages. The user process reswmaestimn only when there is no pending message in the
ULNI. This method tries to amortize the cost of an interrupt s&eral messages. Macquelin, etsa34] polling
watchdog further optimizes this method by not interrupting a user process when a messsgjdataatiovs the
processor a certain time intaio poll for the incoming messages. If the user pro@isstd remoe the message
within this time interal, then the ULNI posts an interrupt.

11 Data Copies

Three types of data copies magse within a host node both before message injection and after message reception:
copies within a virtual address space, copies across multiple virtual address spaces, and copies across multiple
physical locations. Data copies happen within a virtual address space eithey watafrom/to user data struc-

tures to/from the ULNI queues or taffer messages when the ULNI queugsrfion. Data copies across multiple

virtual address spaces happen when data injected ovaddedm the neterk is passed to the user address space
through a difierent address space (e.g., a eesvaddress space or the operating systesinfual address space).

Finally, since messages sent to or reedifrom the netark can be located in dérent places—processor cache,

main memoryand ULNI memory/cache—the message data may be copied multiple times fronysicalpbca-

tion to anotherWith a cache this replication happens without renaminithddt a cache, data must bepkcitly

copied between theseydical locations.

Copying a message multiple times before injecting or after vaxeit from the netwrk has both its adntages
and disadantages. Multiple copies can incur undwerbead and sWo dowvn access to the ULNI, particularly if it

19

is the critical path of message sends and veseHavever, there are tw key adwantages to coping data. First,
explicitly copying data from oneudfer to another frees the originalfter, which can be reused immediatélth-

out a cop the user of the originaluffer must either be notified through an interrupt or the user must check some
data structures to ensure that tédr is free and can be reused. Second, when taé &mount of ULNI bffers
overflow, it may be worthwhile coying the data (eithemxglicitly or implicitly through cache write backs from the
ULNI) to main memorywhich praiides plentiful liffering and allavs the ULNI to drain the netwk.

ULNIs must be designed carefully tecéd overhead due to multiple copies. Theethead due to cgplata to/from

user data structures can heided if the ULNI API allevs a user to specify the virtual address of the data he/she
desires to send to the netsk. The ULNI must then translate the virtual address into the correspondisiggih

address and fetch the data into the ULNI. The APIs with memory-based queues can indicate to the user that the
buffer is free (and ready for reuse) by incrementing the head pointer of the queue. AdditioadlliyNI can gen-

erate an interrupt, if necessaBata copies arising from ULNI queueerflow can be @oided, at least in the com-

mon case, by allging lalge amounts of non-dedicated memory (e.g., main memory) to hold the ULNI queues and
message Uffers. Havever, to do this kind of bffering in the common case withoutyaprocessor inteention

requires the ULNI to hae some form of address translation support, which we discuss in SEztion

With ULNIs copies across multiple address spaces are mostly unnecessary because the user has direct access to t
ULNI. Nevertheless, in situations where when the message data must pass through multiple address spaces (e.g., t
ensure paranoid security constraints), instead ofiogpghe data across address spaces, we could simply double
map the virtual address into theahaddress spaces [14].

Finally, copies across multiple péical locations can bevaided by caching message data in the ULNI cache.
Without a cachewerflow, the data can be directly read from the ULNI cache to the processor cache. When the
ULNI cache eerflovs—a situation that does not happen on the critical path of message sends aad—+dhei
messages are automaticallyffiered in main memory without grnprocessor inteention. Its also possible to
design a system without a ULNI cache thatvjides the same ability—direct read from the ULNI memory and
automatic biffering on memory werflow; but, since data is renamed due to the absence of a coherent memory
these copies must bgmicitly managed.

12 Protection and Address Tanslation

Direct user access to a ULNI requires a ULNI to guarantee protection acfessndiprocesses that are sharing the
same netwrk interface deice. There are threeays to guarantee protection. First, we can digaftaltiprogram-
ming on the host node, which will ensure that only one process runs on the oiodestrnodes connected with
SANs, this may be infeasible because multiple requests mag ammultaneously for multiple sofeke serers.
Second, lik the TMC CM-5, we can tightly couple a user process and the ULNI andteswitch the ULNI
along with the process. This will still alloonly a single process to access the ULNI gtgiwen time. This solu-
tion becomes infeasible with SMP nodes, where multiple processes may simultaneously access the ULNI. Third,
we can map the ULNI memory into a userirtual address space, which will alithe user protected access to the
ULNI memory If the ULNI supports small amounts of dedicated mertbign it is a scarce resource and must be
allocated carefully among multiple processeswEl@r, the constraint of limited memory is retakif main mem-
ory is used as ULNI messagefters because main memory piades plentiful liffering. Nevertheless, the range of
user virtual addresses that a ULNI can access depends on the address translation scheme used in the ULNI.

There are tw alternate address translation schemes that a ULNI can support. First, the ULNI can restrict the range
of addresses in user virtual space that a user can access. This implies that a user must allocate all its communicate
data structures (e.g., memory-based ULNI queues) in this address range. This may also restrict #inditystr’

avoid multiple copies of the message data because the user veay leglicitly copy the message data fromdtk

address range to other user data structures. Second, the ULNIveaachass to the entire user virtual address
range, which can entirelywaid multiple copies of data within the userirtual space. Such access requires the

ULNI to support a full-blavn address translation schemeve&al alternaties &ist—from stashing the entire page

table into the ULNI [46] to caching the translations in a ULNI data structures, either irsf{@2] or in hard-

ware [39].

There are tw problems associated with caching the translations in the ULMI:thdill the ULNI translation
buffer and hav to avoid stale copies of translations when the operating system has remapped a pagpped sw

20

page to disk. The ULNI translatioutier can be filled in tw ways. First, on a translatiomutier miss, the ULNI
can interrupt the operating system, which will insert the requested translation into the ULNI transfégroSdxc-
ond, translations can be inserted into the ULNI translatigfeibdirectly by the user through the shadaddress
space technique [5, 22, 42] using simple uncached loads or stores to the WicKl fike user loads/stores data
from/to an alternate (or shadpvirtual address space. Accesses to the shaiftual address space are translated
into shadw physical addresses, which are obsehby the ULNI deice. The ULNI deice knavs the mapping
between the gular and shadwe spaces; hence, it can reconstruct the origingsiphl address from the shado
physical address. The second solutsonierit lies in the obseation that the user kg the virtual addresses he/
she is sending data from or rageg data to. Havever, the second solution is inferior to the first irotrespects: it
requires direct processor intention @en in the common case of message sends angesegid it uses uncached
loads and/or stores, which gest netvork I/O to be treated asgelar memory accesses.

The translation table in the ULNI must be updated if the operating system either remaps a pags ampage out

to disk. If the operating system decides to remap a page, it can sivgdlgate the corresponding translation in
the ULNI. The operating system mayvkao wait for an access is in progress from the ULNI on that particular
page to complete.dge svaps can be handled indawvays. First, all piassical pages may be pinned in main memory
for the duration of the programofFlong-running programs, this solution may be infeasible. Second, the operating
system can an invalidate the translation in the ULNI translationffer when it svaps a page out to disk. When

the ULNI accesses the pageaay it will have a ULNI translation Wffer miss and request the host processor to
remap the page. The host processor willgihe page back into yp$ical memory and reinsert the translation into
the ULNI translation bffer.

13 Future System Altenatives

Three trends in processor and memory technologies and system designs are making it more and more important tc
treat netwark I/O as memoryand not as traditional I/O that iggegded as a l@ performance subsystem of a com-
puter node. These twtrends are the adut of SMP nodes and the increasimag dpetween processor and DRAM
performance. In the folleing two subsections, we discuss the impact of each of these trends on ULNI design.

13.1 SMPs

Unlike the preious generation of machines, the current generationookstations are SMP nodes withaver
more processors connected to the memars, BMP nodes complicate the ULNI design i tways. First, we
must nev allow several processes to access the ULNlide simultaneouslyThis males multiprogramming the
ULNI device much hardeiBecause multiple processes can access the Ubhhdadsimultaneous|ysimple solu-
tions such as the one adopted by TMC CM-5 in which the ULNI and user process axeswaititbed together are

no longer feasible. Wse, the ULNI deice has no apriori kwadledge of hav mary processes can simultaneously
access the dee. Hence, it must be prepared to wllsome lage number of processes to simultaneously access
the ULNI device.

An elegant way to allav protected access to multiple processes to the ULMNtelés to allev each process to open

its ovn communication channel with the ULNIwdee. Such communication channels can be implemented with
memory-based ULNI queues mapped to user virtual address space [53, 15]. Thus, each proceestwithvina
send and receg queues to the ULNI. These queues introduceasiditional compbdties. First, the ULNI deice

must multiplex the internal and>@ernal netwerk interface ports among these queues. Second, since ULNIs can
only support limited amount of memofyLNIs must be prepared to corteswitch the ULNI state for the queues
and queue data structures ifyireside in dedicated ULNI memomowever, if the ULNI memory is treated as a
cache, then ULNIs do not ato eplicitly manage these queues and catigvitch them because the queues will
automatically get displaced to main memory if the ULNI caclesftows.

Second, multiple processes accessing the ULMtdesimultaneously can createvege contention on the memory
bus. T reduce this contention a process@ctcess to the ULNI diee must be minimized. This can be agkidin

1. For more detailed discussions on protection and address translation issues indheintgviace, please see Heinlein, et al. [22], Blumrich, et al. [5], and
Schoinas and Hill [43].

21

current systems by caching the ULNI queues in the processor caches. As discussed i®,Smationg helps

reduce contention in geral ways. When the ULNI status does not change, processor accesses to cached ULNI sta-
tus and control gisters will be direct cache hits in the processodche, whichwaids accesses to the memory

bus. Caching ULNI queues alls us to transfer data in cache block units, which can transfer significagdy lar
amounts of data compared to uncached accesses. Also, by collocating thegititwsared the first part of a mes-

sage in the same cache block, the first part of a message can be directly transferred from the ULNI to the processol
cache, when the processor incurs a cache miss for the cached gliates Aglditionally, future update protocols

(see Sectiofd) should allav a ULNI to directly update processor caches, which can further reduce fire arad

hence the contention, on the memoug.b

13.2 Bridging the gap between mycessor and DRAM perbrmance

Processor performance is impimg at 55% per yeabut access latencies of DRAM, which is typically used as
main memoryis improving only at 7% per year [23]. This hugemin the performance of processors and DRAM
have forced microprocessor designers to iraie n&v techniques to tolerate and reduce the huge katenaccess
main memoryTwo approaches ka gained importance: out-of-order accesses and spaautécution, and inte-
gration of microprocessor and DRAMs on the same chgdidtuss both of these in the faliog subsections.

13.2.1 Out-of-Order (OOO) Accesses and Speculati Execution

To tolerate the lateryoof main memory access, processorsvalimads and stores to bypass earlier loads or stores.

This is called out-of-order memory accessesurfey system changes V@ talen place to realize out-of-order
accesses to main memory: processors can issue out-of-order loads and stores, caches are non-blocking so that the
do not stall on consecué cache misses; memorydes can support\s&al outstanding requests to main memory;

and finally the memory controller can handle multiple requests to the memory system.

Speculatie execution is more aggressithan OOO accesses in tolerating memory accessyalnocessors spec-
ulate on control dependence (e.g., branch prediction), data dependence, aallidsig@\g., alue prediction [32])
and perform computations based on these speculatedsv If the speculation is successful, idle processor
resources can be usedeetively and memory access latencies can be toleratedeldq if the speculation is
incorrect, then all prdous computation based on specukthiccesses must be squashed agigprotess-specific
state must be rolled back to the point from where the speculatied.f

Current microprocessor designs typically disallmoth OOO and speculedi accesses to the ULNI. This limitation

is a result of tw factors. First, seeral ULNI devices epect messagalffer access and/or ULNI diee commands

to arrive in orderwhich preents both OO0 and speculatiaccesses to the ULNIdee. In the TMC CM-5, for
example, gery word (or double wrd) of a message must be sent and vedein order UserLevel DMA relaxes

this restriction on the messagdfer. It allows messages to be directly written to main memory from which proces-
sors can perform both OOO and specuéaticcesses. kaver, the UDMA derice expects a tw-instruction store/
load sequence that must occur in ordgris prarents OOO and specubati accesses across multiple messages.

Second, ULNI deices often hae side dects that also puent OOO and speculaé accesses to the ULNIgis-

ters. Side décts are manifested in owforms. First, messagelffier access and diee commands often f&fr a sin-

gle point of access. A load or store to such a single address has thefestie¢hat the data or command is
committed to the ULNI and is no longer be visible to the proceasdrhence cannot be unrolled if the processor
so desires. 6 example, in the CM-5, message sends (or ves@irequire uncached stores (or loads) to edfix
memory-mapped ULNI gister Similarly, the UDMA de&vice command sequence is accessed through a single
point for multiple message sends. Secondicgememory access is oftemesloaded with dgce commands. Such
overloading has the sidefeft that a déce memory access automatically triggers a special action in the ULNI
device, which is not visible and versible by the processdfor example, uncached load of the lasire/ of a net-
work message in the CM-5 has the sideafof popping the hardave FIFO that contains the netik message.
However, even if a ULNI exposed the messageffers, performing the last uncached load first—either through
OO0 or speculate access—uauld pop the hardare FIFO and the earlieronds of the messageowid be lost for-
ever.

22

ULNIs can be designed to aldOOO and speculat accesses. This requiretiey design guidelines. First, we
must decouple ULNI messagafter accesses from ULNI commands and treat ULNI messaifer laccesses as
regular memory accesses. EilOMA or UDMA, this method allvs processors to perform OOO and speotdati
accesses to ULNI messageffiers, just lile regular memory space becausguiar memory space accesses need
neither be in order nor cause sidieets.

Second, ULNI deice commands themsels, wheneer possible, should be treated egutar memory accesses as

well. For example, instead of Wing a single status gester which a processor reads through uncached loads to
determine the presence of a message, mess#tgrsbcan be xposed to the processor as message queues
(Section9) and each queue location can be augmented with a status bit (or bits) to indicate the presence or absence
of a message. Exposing the messagtels in this vay allovs OOO and speculag accesses becaus&ide com-

mands such as statugjiger loads for multiple messages no longer need to be in order and messages are not
accessed through a single point of access. Also, loading a s@sisrreo longer triggers grspecial action in the

ULNI device; instead, messagesifiers are eplicitly freed by incrementing the queue head pointer (see
Section9).

Its possible to arision that in future ULNIs will send and reeeimessages speculatiy. This speculatie mes-
sage send and reeeiwould, havever, require four changes to the processor and memgaydbésigns. First, pro-
cessors mustxpose speculate stores either to thegelar memory space or at least to the ULN¥ide. Current
microprocessors do nokgose speculatée stores outside the processor because its hard to ugndiiréoads to
speculatiely stored memoryHowever, designs such as the address resolutidfeb[18] can relax this constraint
and epose speculaté stores to gular memory space and hence to the ULNigke Second, ULNIs should &

the ability to mark a message specuhativhen it sends it to another ULNMiee over the netwrk. Additionally,

if the message is squashed due to an incorrect speculation, the Uiid¢ oheist be able to send anti-messge

to the original receing ULNI of the message. Third, ULNIs mustvkeahe ability to squash an entire sequence of
computations when it reagis an anti-message. Support for this is alreadyilhib modern microprocessorsof~
example, in the R10000 processan irvalidation to a speculately loaded word would squash the entire computa-
tion following the speculate load. Burth, processors shouldveathe ability to distinguish between loads that are
already committed and loads thatvbabeen speculatly given to the processoBupport for speculat stores
should already ensure this capabilithis would allov ULNIs to speculatiely offer a message to the processor

13.2.2 PocessotDRAM Integration

The concept of processBIRAM integration attempts to directly bridge the performanap getween the proces-

sor and DRAM; instead of tolerating the memory access katsith novel techniques such as OOO and specula-

tive accesses, it tries to reduce it by putting both the processor and DRAM on the same chip. Putting the processor
and DRAM on the same chip remas sgeral chip boundary and intade crossings, and hence reduces the katenc

of accessing main memory

There are tw ways to intgrate processors and DRAMgaditionally, processors and DRAMsV&used separate
technologies; so, either DRAMSs could be put on a processor chip or processors could be put on a DRAM chip.
However, processor and DRAM technologies are optimized fdeidiht purposes—processor technology is opti-
mized for speed while DRAM technology is optimized for densignce, DRAMSs on processor chipwd have

a paverful processor coreubreduced amount of memory; processors on a DRAM chip, on the other hand, will
have plenty of memorybut a less pwerful processor tharvailable todayWe already ha processors chips with

plenty of SRAMs (Static RAMSs) that are typically used as caches. Supplementing SRAMs with DRAMs may just
be an egolutionary step. Some DRAM maradturers such as Mitsubishi [52]veatalen the second approach.

They have integgrated processor logic on a DRAM chip.

We beliere that with both approaches designers should still treat Uldidtes access asgelar memory accesses.
The first approach isvelutionary; main memory migrates to the processor chip, instead of resiélicigjpfThe
system architecture, h@ver, remains the same; so, all ourypogis discussions and assumptions hold.

Even with the second approach, we badi¢hat designers should treat ULNbister access asgelar memory

access becausevseal of our earlier assumptions for non-grted systems still hold. ULNIs will still require
plentiful buffering because of the mismatch between the performance of processors and SANSs, the presence of
wide variety of protocols andussty message triad patterns, the requirement for multiprogramming, and manage-

23

ment of ULNI kuffers through some form of flocontrol (see Sectioh). Main memory can easily prigle plenti-

ful buffering at a reasonable cost. Memory-based queues as the API to the Ul @it decoupling and
independent optimizations of data vament and the API itself. Directly depositing data into user memory
(Sectionll) avoids unnecessary data copies. Additionahlis approach mas it less important to map ULNIge

isters on processorgisters because main memory accesses do not cross chip boundaries, at least in the common
case, and prade higher bandwidth since DRAM intades do not necessarilyeao be standardized internally to

the processor

Although current proposals for the second approachcade a single processor per DRAM chip, to better utilize
memory [56], its possible that in the long run the DRAM banks will be dis&ibamong multiple on-chip proces-
sors, which will be connected through a coherent memasyobnetwrk. In other vords, we will hae an on-chip
SMP In this case, we should be able to cache ULNikters in processor caches and treat the ULNI memory as a
cache with the DRAM banks serving as the home for the ULNI queues.

14 Conclusions

To satisfy the increasing demand for high performancearksia nes generation of netarks called System Area
Networks (SANS), such as the Myricom Myrinet and IBMI&&an, hae evolved. SANs der lateng, bandwidth,
and reliability that are orders of magnitude better than traditional LANs|ike LANSs, theg are highly scalable,
and their host inteaices are reusable acrosdati#nt computer systems. Wever, SAN benefits are proferred to
applications only if light-weight protocols (not TCP/IP) anficednt netvork interfaces are used. SAN benefits are
squandered, forxample, if applications mustvoke the operating system to send and keceiessages. In con-
trast, Useilevel Network Interiaces (ULNIs) allav host applications to directly access the meknnterface with-
out compromising protection by memory mapping internal iaterfrgisters into user space (e.g., the Myricom
Myrinet network interface).

Future trends, such as thepenential imprgement in microprocessor and SAN performance and thenaadd

SMPs, indicate that processor accesses to ULNIs will become a critical bottleneck—if the not the most critical bot-
tleneck—for computer systemsilt with SANs. Processor accesses to ULNjiseers is simply reading and writ-

ing ULNI memory However, most ULNIs today treat such accesses as I/O operations thatveasidia diects

(e.g., a message send). Such treatment digattarrent ULNIs to ta& adantage of traditional memory optimiza-

tion techniques such as caches, anedehmemory access optimization techniques such as out-of-order accesses,
speculatie loads, lock-up free caches, split-transaction memasgd) etc.

In this paper we gued that to impnee processor accesses to ULNgisters, ULNI memory accesses must be
treated as ular side-dect-free memory accesses, and not as I/O operations; thiss gllocessors to hide and
tolerate the latencto access ULNI mhsters through traditional andvel memory access optimization techniques.
To substantiate our claim weamined seeral ULNI design options, including ULNI gester location, dedicated

vs. non-dedicated ULNI memargoherent caching, memorydalternaties, data meement alternates, applica-

tion programming integce, notification alternats, data copies, protection and address translation, and future
system alternates (e.g., SMPs, speculaiprocessors, etc.)oFeach design option we sied hav ULNI perfor-
mance can be impved by treating ULNI accesses agukar memory operations.

Acknowledgments

We would like to thank nnis Schoinas,0Bhi Shimizu, and.TN. Vijaykumar for their ery helpful comments on
different drafts of this article.

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, KirkJohnson, David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The MIT
Alewife Machine: Architecture and PerformancePioceedings of the 22nd Annual International Symposium on Computer Architpetges 2—-13, June 1995.

[2] ThomasE. Anderson, Henri¥. Levy, BrianN. Bershad, and Edwafdl Lazowska. The Interaction of Architecture and Operating System DesBradeedings of the Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASRIa989\p8-120, April 1991.

[3] ThomasE. Anderson, SusaB. Owicki, Jame8. Saxe, and Charlé®. Thacker. High Speed Switch Scheduling for Local Area NetworkBrdeeedings of the Fifth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPages 98—-108, 1992.

[4] Gordon Bell. 1995 Observations on Supercomputing Alternatives: Did the MPP Bandwagon Lead to a CulGdenBagfications of the AGN89(3):11-15, March 1996.

[5] MatthiasA. Blumrich, Cesary Dubnicki, Edwai¥. Felten, and Kai Li. Protected User-level DMA for the SHRIMP Network Interfaderdoeedings of the Second IEEE
Symposium on High-Performance Computer Architectee®ruary 1996.

24

[6] Nanettel. Boden, Danny Cohen, RobErtFelderman, Alai. Kulawik, Charled.. Seitz, JakoW. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area
Network.|IEEE Micro, 15(1):29-36, February 1995.

[7] Eric A. Brewer, Frederid@. Chong, LoKT. Liu, ShamikD. Sharma, and John Kubiatowicz. Remote Queues: Exposing Message Queues or Optimization and Atomicity. In
Proceedings of the Sixth ACM Symposium on Parallel Algorithms and Architectures (f&de%)42-53, 1995.

[8] Joseph Carbonaro and Frank Verhoorn. Cavallino: The Teraflops Router and NiE Iiterconnects l\Vpages 157-160, 1996.

[9] Derek Chiou, Boors. Ang, Arvind, Michael. Becherle, Andy Boughton, Robert Greiner, JameHlicks, and Jame3. Hoe. StartT-ng: Delivering Seamless Parallel
Computing. InProceedings of EURO-PAR '9Stockholm, Sweden, 1995.

[10] DavidD. Clark, Van Jacobson, John Romkey, and Howard Salwen. An Analysis of TCP Processing ONgfefire@dmmunications Magazingages 23-29, June 1989.

[11] R.Cypher, AHo, S.Konstatinidou, and MMessina. Architectural Requirements of Parallel Scientific Applications with Explicit Communicati®rodeedings of the 20th
Annual International Symposium on Computer Architectpages 2—13, 1993.

[12] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Michael Larivee, Rich Nuth, Scott Wills, Paul Carrick, and Greg Flyer. The J-Machine: A Fine-
Grain Concurrent Computer. In &. Ritter, editor,Proc. Information Processing 8&lsevier North-Holland, Inc., 1989.

[13] Martin dePrycker.Asynchronous Transfer Mode: Solution for Broadband ISDN, Second EditiisrtHorwood Publishers, 1993.

[14] Peter Druschel and Larty. Peterson. Fbufs: A High-Bandwidth Corss-Domain Transfer Facilifyrdeeedings of the 14th ACM Symposium on Operating System Principles
(SOSP)pages 189-202, 1993.

[15] Peter Druschel, Larrly. Peterson, and Bruc Davie. Experiences with a High-Speed Network Adaptor: A Software Perspec8@3OMM '94 pages 2—13, August 1994,
[16] CraigStunkel e@l. The SP2 High-Performance SwittBM System JournaB4(2), 1995. to appear.

[17] Marco Fillo, Stephei. Kekler, WilliamJ. Dally, Nicholas?. Carter, Andrew Chang, Yevgeny Gurevich, and Widyee. The M-Machine Multicomputer. Technical Memo
A.l. Memo No. 1532, MIT, March 1995.

[18] M. Franklin and GS. Sohi. ARB: A Hardware Mechanism for Dynamic Memory DisambigualitflE Transactions on Computes5(5):552-571, May 1996.
[19] Mike Galles. The SGI Spider Chip. Hot Interconnects IVpages 141-146, 1996.

[20] Mike Galles and Eric Williams. Performance optimizations, implementation, and verification of the SGI Challenge multiprodesstgredtings of the 27th Annual Hawaii
International Conference on System Scient894.

[21] JamesR. Goodman and Philip. Woest. The Wisconsin Multicube: A New Large-Scale Cache-Coherent MultiprocesBoocéedings of the 15th Annual International
Symposium on Computer Architectupages 422—431, 1988.

[22] John Heinlein, Kourosh Gharachorloo, ScatDresser, and Anoop Gupta. Integration of Message Passing and Shared Memory in the Stanford FLASH Multiprocessor. In
Proceedings of the Sixth International Conference on Architectural Support for Programming Languages and Operating Systems (AS&Ie€3S38450, 1994.

[23] JohnL. Hennessy and Davidl. PattersonComputer Architecture: A Quantitative Approadfiorgan Kaufmann, 1990.

[24] Mark D. Hill, JamesR. Larus, and David. Wood. Tempest: A Substrate for Portable Parallel Progral@OMPCON ’95 pages 327-332, San Francisco, California, March
1995. IEEE Computer Society.

[25] SunMicrosystems IncSPARC MBus Interface Specificatigkpril 1991.
[26] TandemComputers Inc. ServerNet Interconnect Technology. Available from http://www.tandem.com/INFOCTR/PROD_DES/SRVNETPD/SRVNETPD.HTM.
[27] Douglas Johnson. Trap Architectures for Lisp System$999 ACM Conference on Lisp and Functional Programnyages 79-86, 1990.

[28] Vijay Karamcheti and Andrew. Chien. A Comparison of Architectural Support for Messaging in the TMC CM-5 and the Cray TBEnckedings of the 22nd Annual
International Symposium on Computer Architectyages 298—-307, 1995.

[29] Jonathan Kay and Joesph Pasquale. The Importance of Non-Data Touching Processing Overheads in SIGRIIMM93 pages 259 — 268, 1993.
[30] Kimberly A. Keeton, Thomag&. Anderson, and Davidl. Patterson. LogP Quantified: The Case for Low-Overhead Local Area NetwoHst Interconnects [11995.

[31] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford DASH
MultiprocessorlEEE Computer25(3):63-79, March 1992.

[32] Mikko H. Lipasti, ChristopheB. Wilkeson, and JohRaul Shen. Value Locality and Load Value PredictionPtaceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLQyé5 138-149, 1996.

[33] Kenneth Mackenzie, John Kubiatowicz, Anant Agarwal, and Frans Kaashoek. Fugu: Implementing Translation and Protection in a Multiuser, Multimodel Multiprocessor.
Technical Memo MIT/LCS/TM-503, MIT Laboratory for Computer Science, October 1994.

[34] Olivier Maquelin, GuangR. Gao, Herber Hl. Hum, Kevin Theobald, and Xinmin Tian. Polling Watchdog: Combining Polling and Interrupts for Efficient Message Handling.
In Proceedings of the 23rd Annual International Symposium on Computer Archifgrges 179-188, 1996.

[35] Richard Martin. HPAM: An Active Message Layer for a Network of HP Workstatiortdotrinterconnects |11994.

[36] Shubhends. Mukherjee, Babak Falsafi, Makk Hill, and DavidA. Wood. Coherent Network Interfaces for Fine-Grain CommunicatioRrdneedings of the 23rd Annual
International Symposium on Computer Architectya@ges 247-258, May 1996.

[37] AndreasG. Nowatzyk, MiachaeC. Browne, Edmund. Kelly, and Miachael Parkin. S-Connect: from Networks of Workstations to Supercomputer Performance. In
Proceedings of the 22nd Annual International Symposium on Computer Architpeiges 71-82, 1995.

[38] AndreasG. Nowatzyk and PalR. Prucnal. Are Crossbars Realy Dead? The Case for Optical Multiprocessor Interconnect Syseeateeltings of the 22nd Annual
International Symposium on Computer Architectyr@ges 106—-115, 1995.

[39] Randy Osborne, Qin Zheng, John Howard, Ross Casley, and Doug Hahn. DART - A Low Overhead ATM Network Interfacel@Higehsonnects1996.
[40] JohnK. Osterhout. Why Aren’t Operating Systems Getting Faster as Fast as Hardwa8ENiK Summer Conferenciine 1990.
[41] StevenA. Przybylski.New DRAM Technologies: A Comprehensive Analysis of the New ArchiteMigexDesign Resources, 1994.

[42] SteverK. Reinhardt, RobelV. Pfile, and DavidA. Wood. Decoupled Hardware Support for Distributed Shared MemoRrdeeedings of the 23rd Annual International
Symposium on Computer Architectukéay 1996.

[43] loannis Schoinas and Makk Hill. Address Translation in Network Interfaces. Unpublished Manuscript.
[44] Steve Scott. The SCX channel: A new, supercomputer-class system intercondetinkerconnects 1[11995.
[45] Steve Scott and Gregol. Thorson. The Cray T3E Network: Adaptive Routing in a High Performance 3D Totdst Interconnects IVpages 147-156, 1997.

[46] Stevel. Scott. Synchronization and Communication in the T3E MultiprocessdPrdneedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS¥gjgs 26—36, 1996.

25

[47] O. Shiraki, M.Nagatsuka, THorie, Y.Koyanagi, T.Shimizu, and Hishihata. AP-Net Advanced High-Performance Network for Scalable Parallel Setdet.litterconnects
IV, 1996.

[48] Ashok Singhal, David Broniarczyk, Fred Ceraukis, Jeff Price, Leo Yuan, Chris Cheng, Drew Doblar, Steve Fosth, Nalini Agarwal, Kenneth Harvey, Erik Hagersten, and Bjorn
Liencres. Gigaplane (TM): A High Performance Bus for Large SMPdotrinterconnects I\Vpages 41-52, 1996.

[49] DolphinInterconnect Solutions. Dolphin SCI Switches. Available from http://www.dolphinics.no/Products/Switches.html.
[50] Inc. SPARCInternational. The SPARC Architecture Manual (Version 9), 1994,

[51] Daniel Stodolsky, Brad Chen, and Brian Bershad. Fast Interrupt Priority Management in Operating Syst8etorid USENIX Symposium on Microkernels and Other
Kernel Archtitecturespages 105-110, September 1993. San Diego, CA.

[52] Jim Turley. Mitsubishi Mixes Microprocessor, Memokjicroprocessor Reportl0(7):10-12, May 1996.

[53] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A User-Level Network Interface for Parallel and Distributed CorRputieediimgs of the
15th ACM Symposium on Operating System Principles (S@8§9s 40-53, December 1995.

[54] Thorsten von Eicken, Davifl. Culler, SettCopen Goldstein, and Klalsik Schauser. Active Messages: a Mechanism for Integrating Communication and Computation. In
Proceedings of the 19th Annual International Symposium on Computer Architeetges 256—-266, May 1992.

[55] David A. Wood, Satish Chandra, Babak Falsafi, MBriHill, JamesR. Larus, AlvinR. Lebeck, JameS. Lewis, Shubhend8. Mukherjee, Subbarao Palacharla, and St&ven
Reinhardt. Mechanisms for Cooperative Shared Memorirdceedings of the 20th Annual International Symposium on Computer Architeetges 156—168, May 1993.
Also appeared in it CMG Transactions,/ Spring 1994.

[56] David A. Wood and MarlD. Hill. Cost-Effective Parallel ComputinEEE Computer28(2):69-72, February 1995.
[57] Yong Yao. AGP Speeds 3D Graphibsicroprocessor Reportl0(8):11-15, June 17 1996.

26

