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Abstract

A computersystemnis uselesainlesst caninteractwith theoutside
world throughinput/output(l/O) devices.l/O systemsre comple,
including aspectssud as memory-mappedpemtions,interrupts,
and bus bridges. Often, /0 behavioris describedfor isolated
deviceswithouta formal descriptionof howthe completel/O sys-
tembehavesThelack of an end-to-endsystendescriptionmales
thetasksof systenprogrammes and hardware implementos more
difficult to do corectly.

This paper proposesa framavork for formally describing I/O

architectures called Wisconsinl/O (WI0). WIO extendswork on

memoryconsistencynodels(that formally specifythe behaviorof

normal memory) to handle consideations such as memory-
mappedopentions, device opertions, interrupts,and opemtions
with side effects.Specifically WIO asksead processoror device
thatcanissuek opemtiontypesto specifyorderingrequirrmentsn

a k O k table A systemobeys WIO if there alwaysexists a total

order of all opemtionsthatrespectprocessomanddevice ordering
requirrmentsand hasthe value of eadh “r ead” equalto the value
of the mostecent “write” to that addess.

This paperthen presentsexamplesof WIO specificationgor sys-
temswith various memoryconsistencynodelsincluding sequen-
tial consistency{SC),SFARC TSO,an approximationof Intel IA-
32, and CompagAlpha. Finally, we presenta directory-based
implementationof an SC system,and we sketch a proof which

shows that the implementation conforms to its WIO specification.

1 Introduction

Modern computer hardware is comple. Processorsexecute
instructions out of program order non-blocking cachesissue
coherencetransactionsconcurrently and system interconnects
have moved well beyond simplebusesthatcompletedransactions
oneatatimein atotal order Fortunately mostof this compleity
is hiddenfrom software with an interface called the computers
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“architecturé. A computerarchitecturéncludesat leastfour com-
ponents:

* Theinstruction set architectule gives the userlevel and sys-
tem-level instructionssupportedand how they are sequenced
(usually serially at each processor).

®* A memory consistencymodel (e.g., sequentialconsisteny,
SFARC Total StoreOrdet or CompagAlpha) givesthe behar-
ior of memory

® The virtual memoryarchitecture specifiesthe structureand
operation of page tables and translatiaffdys.

® The Input/Output (I/0) architecture specifieshow programs
interact with deices and memory

This paperexaminesssuesn theoften-nglected/O architecture.
The I/O architectureof modernsystemss comple, asillustrated
by Smothermars venerabld/O taxonomy{14]. It includesat least
the following threeaspectsFirst, software,usually operatingsys-
tem device drivers, must be able to direct device activity and
obtaindevice dataand status Most systemsodayimplementthis
with memory-mappedpeitions A memory-mappedperationis
a normalmemory-referencenstruction(e.g.,load or store)whose
addresss translatedy the virtual memorysystento anuncache-
ablephysicaladdresghatis recognizedy a device insteadof reg-
ular memory A device respondgo a load by replyingwith a data
word andpossiblyperforminganinternalside-efect(e.g.,popping
the read data from a queue).A device respondsto a store by
absorbingthe written data and possibly performing an internal
side-efect (e.g., sendingan external message)Precisedevice
behaior is device specific. Second,most systemssupportinter-
ruptswherebya device sendsa messagéo a processarA proces-
Sor receving an interrupt may ignoreit or jump to an interrupt
handler to processit. Interrupts may transfer no information
(beyond the fact that an interrupthasoccurred),include a “type”
field, or possiblyincludeoneor moredatafields. Third, mostsys-
temssupportdirect memoryaccesgDMA). With DMA, a device
cantransferdatainto or out of aregion of memory(e.g.,4Kbytes)
without processor inteention.

An examplethatusesall threetypesof mechanismss a disk read.
A processobaginsadisk readby usingmemory-mappedtoresto
inform a disk controllerof the sourceaddres®n disk, the destina-
tion addressin memory and the length. The processorthen
switchesto other work, becausea disk accesgakes millions of
instructionopportunities Thedisk controllerobtainsthe datafrom
disk andusesDMA to copy it to memory Whenthe DMA is com-
plete, the disk controllerinterruptsthe processoto inform it that
the data isailable.

A problemwith currentl/O architecturess that the behaiors of
disks,network interfaces framebuffers, /O buses(e.g.,PCl), sys-



tem interconnects(e.g., PentiumProbus and SGI Origin 2000
interconnect)andbus bridges(that connectl/O busesandsystem
interconnectspare usually specifiedin isolation. This tendeng to
specify thingsin isolation makes it difficult to take a “systems”
view to answer systematel questions, such as:

* Whatmustaprogrammeto do (if anything)if he or shewants
to ensurethat two memory-mappedtoresto the samedevice
arrive in the same order?

® How doesa disk implementorensurethata DMA is complete
sothataninterruptsignallingthat the datais in memorydoes
not arrve at a processor before the data is in memory?

®* How muchis the systeminterconnector bus bridge designer
allowed to reorder transactionsto improve performanceor
reduce cost?

This paperproposesa formal framework, called Wisconsin|/O
(WIO), that facilitatesthe specificationof the systemsaspectsof
an l/O architecture WIO builds on work on memoryconsisteng
modelsthat formally specifiesthe behaior of loadsand storesto
normalmemory Lamports sequentiatonsisteng (SC),for exam-
ple, requiresthat“the resultof arny executionis the sameasif the
operationsof all the processorsvere executedin somesequential
order and the operationsof eachindividual processo@ppearin
this sequencen the order specifiedby its program[11].” WIO,
however, mustdealwith severalissueshotincludedin mostmem-
ory consisteng models:(a) a processorcan performmore opera-
tions (e.g., memory-mappedtoresand incoming interrupts), (b)
devices perform operations(e.g., disks doing DMA and sending
interrupts),(c) operationscan have side effects (e.g.,a memory-
mappedoad poppingdataor aninterruptinvoking a handler),and
(d) it maynotbeagoodideato requirethatthe orderamongoper-
ationsissuedby the sameprocessor/déce (e.g.,memory-mapped
stores to dierent deices) alvays be preseed by the system.

To handlethis generality WIO askseachprocessomwr device to
provide atableof orderingrequirementslf a processor/déce can
issuek typesof operationsthe requiredtableis k O k, wherethe
i,j-th entry specifiesthe orderingthe systemshouldpresere from
anoperationof typei to an operationof typej issuedaterby that
processopr device in programorder(i.e., in theorderspecifiedoy
the processoror device’s program).A disk, for example, might
never needorder to be presered amongthe multiple memory
operationmeededo implementa DMA. A systemwith p proces-
sorsandd devicesobeys WIO if thereexists a total orderof all of
the operationgssuedin the systemthat respectghe subsewf the
programorder of eachprocessorand device, as specifiedin the
p+d tablesgiven asparameterssuchthatthe value of each“read”
is equal to thealue of the most recent “write” to that addréss.

This paperis organizedasfollows. In Section2, we discusgelated
work. Section3 presentghe modelof the systemwe arestudying.
Sectiond explains the orderingsthat are usedto specify the I1/O
architecturefor a systemwhose memory model is SC, and it
defines Wisconsin I/O consisteng basedon these orderings.
Section5 extendstheframework to incorporateothermemorycon-

1. Thesametablecanbere-usedor homogeneouprocessorand
devices. W\ precisely define “read” and “write” in later sections.

sisteng models.Section6 describes systemwith 1/O thatis com-
plex enoughto illustrate real issues,but simple enoughto be
presentedn a conferencepaper In Section7, we outline a proof
that the system describedin Section6 obegys Wisconsin 1/0.
Finally, Section8 summarizes our results.

We seethis paperashaving two contritutions. First, we presenta
formal framework for describingsystemaspectsf 1/0 architec-
tures.Secondyve illustratethatframevork in acompleteexample.

2 Related Work

The publicly available work that we found relatedto formally
specifyingthe systembehaior of I/O architecturess sparse As
discussedn the introduction,work on memoryconsisteng mod-
elsis related[1]. Prior to our currentunderstandingpf memory
consisteng models, memory behaior was sometimesspecified
individually by hardware elements(e.qg., processarcache,inter-
connect, and memory module). Memory consisteng models
replacedhis disjoint view with a specificationof how the system
behaeson accesset® mainmemory We seekto extenda similar
approach to include accesses across /O bridges anditesle

Many populararchitecturessuchasIntel Architecture-32(1A-32)

andSunSFARC, appeamnotto formally specifytheir I/O behaior

(at leastnot in the public literature). An exceptionis Compaq
Alpha, whereChapter8 of its specificatior[13] discussesrdering
of accesseacrosd/O bridges,DMA, interrupts,etc. Specifically
a processolaccesses device by postinginformationto a “mail-

box” atan1/O bridge.The bridgethenperformsthe accessn the
I/0O bus. The processorcanthen poll the bridge to seewhenthe
operationcompletesor to obtainary returnvalue. DMA is mod-
eled with “control” accesseghat are completely ordered and
“data” accessedhat are not ordered. Consistentwith Alpha’s
relaxedmemoryconsisteng model,memorybarriersareneededn

mostcasewheresoftwaredesiresordering(e.g.,afterreceving an
interrupt for a DMA completionand before readingthe newly-

written memory buffer). We seekto define a more generall/O

framevork thanthe specificoneAlpha choseandto moreformally
specifyhow /O fits into the partial andtotal ordersof a systems
memory consisterycmodel.

3 System Model

We considera systemconsistingof multiple processornodes,
device nodes, and memory nodes that share an interconnect.
Figurel shows two possibleorganizationsof sucha multiproces-
sor system,where sharedmemoryis implementedusing either a

broadcasbus or a point-to-pointnetwork with directorieq5]. The

addressablanemory spaceis divided into ordinary cacheable
memoryspaceanduncacheablé/O spaceWe now describeeach

part of the system.

ProcessoNodes:A processonodeconsistof a processarcache,
network interface,andinterruptregister Eachprocessofissues”a

streamof operationsandtheseoperationsarelisted anddescribed
in Tablel. Note that LD andLDio are not necessarilydifferent
opcodesin mary machinesthey aredisambiguatedby theaddress
they accessWe classify operationsbasedon whetherthey read
data(ReadOPYr write data(WriteOP).If the cachecannotsatisfy
an operation,it initiates a transaction(thesewill be describedn

Section6) to eitherobtainthe requestediatain the necessargtate
or interactwith anl/O device. The cacheis alsoallowedto proac
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TABLE 1. Processor Operations

Operation Class Description

LD ReadOP | Load- loadwordfrom ordinary
memory space

ST WriteOP | Store - store wrd to ordinary
memory space

LDio ReadOP | Load I/O - load werd from 1/O
space

STio WriteOP | Store 1/O - store wrd to I/O
space

tively issuetransactionssuchas prefetchesln addition, the pro-
cessor(logically) checksits interruptregister which we consider
to be partof the l/O spacepeforeexecutingeachinstructionin its
program,andit may branchto an interrupthandlerdependingon
the \alue of the interrupt ggster

Device Nodes:We modela device nodeasa device processoand
adevice memory Eachdevice processocanissueoperationdo its

device memory In addition,it canalsoissueoperationsvhichlead
to transactionsacrossthe 1/0 bridge (via the I/O bus). These
requestallow a device to readandwrite blocksof ordinarycache-
ablememory(via DMA) andto write to a processonodes inter-

rupt register The list of deice operations is skm in Table2.

A requesfrom a processonodeto a device memorycan“cause”
thedevice to “do somethinguseful’ For example,awrite to adisk
controller statusregister cantrigger a disk readto begin. This is

modeledby thedevice processoexecutingsomesortof aprogram
(thatspecifieghedevice behaior) which, for example malkesit sit
in a loop, checkfor external requestdo its device memory and
then do certainthings (e.g., manipulatephysical devices) before
possiblydoing an operationto its device memoryor to ordinary
memory The device programwill usually be hard-codedn the
device controllercircuits, while the requestdérom processonodes
will be partof a device driver thatis part of the operatingsystem.
Notethat,in generalthe executionof asubroutinedy thedevice in

TABLE 2. Device Operations

Operation Class Description

LDio ReadOP Load /O - load werd from
device memory (I/O space)

STio WriteOP Store I/O - store wrd to
device memory (I/O space)

INT - Interrupt - send an interrupt to
a processor node

LDblk ReadOP LoadBlock - load cacheblock
from ordinary memory

SThlk WriteOP StoreBlock - storecacheblock
to ordinary memory

response¢o anexternalrequesto device memoryneed4o bemade
atomicwith respectto otherexternal requestso device memory
This avoids data races in accessingide memory locations.

Memory nodes:Memory nodescontainsomeportion of the ordi-

narysharednemoryspaceln a systenthatusesadirectoryproto-
col, they alsocontainthe portion of the directory associatedvith

thatmemory Memory nodesrespondo requestsnadeby proces-
sornodesanddevice nodes.Their behaior is definedby the spe-
cific coherence protocol used by the system.

InterconnectTheinterconnectonsistof the network betweerthe
processoandmemorynodesandthel/O bridges.This couldeither
be a broadcasbus or a generalpoint-to-pointinterconnectiomet-
work. Thel/O bridgesareresponsibldor handlingtraffic between
the processoandmemorynodes,andthe device nodes Notethat,
while we allow a systento containmultiple bridgeswe doassume
thatasingledevice is accessibleia exactly onebridge.This could
perhapsbe extendedto systemswhere devices are accessible
throughmultiple bridges(for fault-toleranceeasons)by assuming
that only one déce-bridge pairing is acté at ay point in time.

Example:We now presentan examplethat shovs how this model
canbe usedto describea commonl/O scenarioTable3 illustrates
disk readswhich, for example,might beinitiated by the operating
systemfor pagingvirtual memoryor for accessindiles in a disk-
basedfile-system.In the example,the first operandof a memory
operationis the destinationandthe secondoperandis the source.
The example assumes hypotheticaldisk controller with device
registers DRO, DR1, DR2, and DR3 mappedinto I/O address
space.Theseregistersare usedto control the initial disk block
numberto read,the startingmemoryaddresf the buffer which
will containthe datato be read,the length of the buffer, andthe
command(Read)to be executed.In the table, physical time flows
downwards.Thefinal STio to DR3 (the commandregister)imme-
diately “triggers” the device to readall of the device registersand
to setup the disk to do the read.Datais transferredusing DMA
betweerthe disk andcoherenmemoryvia physicaldisk readsand
SThlks.It is usefulto noteherethatmostoperatingsystemswould
male sure that these SThlks do not generateary unnecessary
coherenceactiity by invalidatingall sharedand modified copies
(to speedupthe DMA). Finally, aninterruptis generateadvhenthe
disk controller hasfinishedthe DMA. This triggersthe interrupt
handler at the processor which can then use the data.



TABLE 3. Disk Read

Processor Disk Controller
STio Block, [DRO]

Setup STio Address, [DR1]
STio Length, [DR2]

STio Read-Cmd, [DR3]

Read DRO, DR1, DR2,
DR3 and set up disk read

Read in data from disk,
issueSThblkfor eachcache
block of data to appropri-
ate address

INT

DMA

Interrupt handler runs
Use LD R1, [Address]
data ST [Address+4], R1

4 An /O Framework for Sequential Consistency

As the examplein the previous sectionshaws, certainorderings
betweenoperationsare requiredin orderto getdevice operations
to work. Theobjective of our framework is to conciselycapturethe

orderingsrequiredof asystemIn this sectionwe presentiversion
of our framework for orderingthe memoryandI/O operationsn a

systemwherethe memorymodelis sequentiakonsisteng (SC).

Section5 will addresssystemswith other memory models. We

begin with the orderingat individual processorgnd devices,and

thenwe incorporatetheseorderingsinto a framework for system-
wide ordering.

4.1 Processor and Deice Ordering

In a given execution of the system,at eachprocessoror device
thereis a total orderingof the operations(from the list LD, ST,
LDio, STio, INT, LDblk, andSThlk) thatcanbeissuedby thatpro-
cessor or dace. Call thisprogram oder and denote it by s

Let partial program order be ary relaxationof programorderat a
processopr adevice processorFor example,let <,, bethepartial
programorder that respectgprogramorder with respecto opera-
tionsto thesameaddressindalsosatisfieghe constraintof Tables
4 and 5, where entries in these tables use thenfiokpnotation:

A: OP1 <,, OP2 alvays

D: OP1<ppOP2if theaddressesf OP1andOP2referto thesame
device

TABLE 4. Partial Program Order at a Processor

Operation 2
LD ST LDio STio
- LD A A A A
S |stT A A A A
i LDio A A D D
O STio - - D D

TABLE 5. Partial Program Order at a Device Processor

Operation 2
LDio STio INT LDblk SThlk

LDio A A A A A
76—' sTo | A A A A A
I INT - - D - -
S | LDblk A
s . . . .

SThlk - - A - -

It is importantto realizethata programmemho wishesto enforce
orderingbetweenoperationghatare not guaranteedo be ordered
can createan ordering through transitvity. For example,a pro-
grammercan order a processos LD after a STio by insertinga
LDio to the samedevice asthe STio betweerthe two operations.
SinceSTio <pp LDio andLDio <pp LD, we have STio <pp LD (for
this particular sequence of three operations).

4.2 System Ordering: Wsconsin 1/0O Consistencydr SC

Usingthe definition of partial programorder we cannow definea
systemorderingwhichwe call Wisconsinl/O ordering.The defini-
tion of Wisconsinl/O (WIO) orderingtakesasa parameteran n-

tuple of partial programorders,suchas the 2-tuple specifiedby
Tables4 and5. Let <y be a total orderingof all LD, ST, LDio,

STio, INT, LDblk, SThlk operationsf anexecutionof the system.
Then <y satisfiesWisconsinl/O with respectto a given partial
program order if:

1. sy respects the partial program orczmd

2.thevaluereadby every ReadOPoperationis thevaluestoredby
the mostrecentWriteOP operationto the sameaddressn the <y,
order

In Sectionss and7, we will describeanimplementatiorfor anSC
system and outline a proof that sisit obe's this specification.

-: no ordering constraint on OP1, OP2 (if not to the same address)

Theentriesin the tablesreflectthe behaior of a hypotheticalsys-
tem. For example,in mary systemsSTios to multiple devicesare
not guaranteedo be orderedin ary particularway. Also, thereis
no orderingfrom a STio to a subsequentD or ST, sincethat
would requirethe processoto wait for an acknaviedgmentfrom
the deice.

5 An I/O Framework for Other Consistency Models

To easepresentatiorcompleity and concentrateon I/O aspects,
we have thusfar assume@d memoryconsisteng modelof sequen-
tial consisteng. More relaxed models,suchas SFARC TSO and
CompadAlpha, canalsobeaccommodatedndwe now shav how
this canbe accomplishedWe accommodatéhemby changingthe
partial programorderingat the processarbut we leave the device
processoorderingunchangedOne could easily imagine provid-
ing aWIO specificationwherethe device orderingdoesnot match



the orderingspecifiedin Table5, but insteadmatcheghat of the
specific deice(s) being modeled.

5.1 Processor and Deice Ordering

As in Sectiond.1, for eachmemory consisteng model, we will

presentablesof orderingrequirements$or partialprogramorderat
processorsin the following discussionwe do not include syn-
chronizationoperations such as Read-Modify-Write (RMW). A
RMW canbe thoughtof asan atomicoperationwhich includesa
LD andthena ST. It would be orderedsuchthat orderbetweena
RMW andanotheroperation,OP2,respectghe union of ordering
rules between OP2 and a LD and between OP2 and a ST

5.1.1 SRARC Total Store Order (TSO)

SFARC Total StoreOrder(TSO)[16] is avariantof processorcon-
sistency{7,8] that hasbeenimplementedon Sun multiprocessors
for mary years.TSO relaxes SCin that STscanbe orderedafter
LDs which follow themin programorder(solong asthereareno
intervening memorybarriers(MB) andthe two operationsare to
differentlocations).Thus, TSO sometimesallows a load to geta
valuefrom a “future” store.In realimplementationsthis behaior
is manifestwhenaprocessog LD returnsavaluefrom its own ST
thatis still on its own first-in-first-out(FIFO) write buffer andhas
notyet seenby otherprocessorst shouldbe notedthat TSO sup-
portsmultiple flavors of MBs, but we only concernourseheswith
the stronges{i.e., an MB that enforcesorderbetweenary opera-
tion before it and gnoperation after it).

In previous research3], we developeda memory model called
WisconsinTSO that is equivalentto SFARC TSO, andit elimi-
natesheoddity of gettingavaluefrom a“future” storeby splitting
eachST into a STyyjyate and a STpypjic WisconsinTSO respects
programorderbetweenSTyyats andLDs, while STy s canbe
delayeduntil the next MB in programorder In addition, ST ;S
mustalso stay in programorder with respectto eachother The
STorivate@NASTypiic cOrrespondingo the sameST carrythesame
value.A LD getsits valuefrom either(a) the mostrecentSTyyate
by the sameprocessoras the LD for which the corresponding
SToublic hasnotyetoccurredif ary) or (b) themostrecentSTypjic
otherwise.The STyivate OF STpubiic from which the LD getsits
valueis consideredo betheapplicableWriteOP Practitionercan
think of a STyyate as a storeenteringa processos FIFO write
buffer, case(a) as bypassingfrom the write buffer, STy pjic asa
store exiting the write buffer, and case(b) as obtaininga LD’s
value from cache or memory.

This definitionleadsto theorderingrulesshawvn in Table6 for par-
tial programorderat a processqrwheredifferencedrom Table4
are shaded.Note that a programmercan enforce order from a
STyublic to @ LD by inserting an MB between them.

5.1.2 An Approximation of Intel 1A-32

The Intel IA-32 memorymodelis similar to TSO, in thatit is a
variantof processorconsisteng. We approximatethe IA-32 sys-
tem orderingmodel by combiningthe TSO memory model with
our interpretationof the IA-32 I/O orderingrules[4]. IA-32 has
two uncachedUC) operations|.Duc andSTuc, thataresimilar to
our LDio and STio I/0O operationsbut UC operationsare more
strictly ordered All operationdeforea UC operation(in program

TABLE 6. TSO: Partial Program Order at a Processor

Operation 2

LD STprv STy, MB LDio STo

LD A A A A A A

A | ST | A A A2 A A A
c

% STow | - - A A A A

g | MB A A A A A A

O | LDio | A A A A D D

STio - - - A D D

o

a. Includes the case where both operations are caused t
the same Store (i.e., OP1 is the S¥ge and OP2 is the

STpublic for a gien ST).

order) are orderedbeforethe UC operation,all operationsafter a
LDuc are orderedafter the LDuc, and all STs after a STuc are
orderedafterthe STuc. In additionto the UC operations|A-32 has
two “write combining” (WC) uncachedoperations,LDwc and
STwc. Theseoperationsare lessstrictly orderedthan LDio/STio

operationsandthey arewell-suitedto the acces®rderingrequire-
mentsfor a video frame buffer. Thereis no ordering enforced
betweenWC operationsor betweena WC operationanda cache-
able memory operation. Also, IA-32 has several “serializing
instructions” which enforce orderingin much the sameway as
memory barriers, and we will simply refer to them as MBs.

We have madetwo simplificationsin this descriptionof 1A-32.
First, IA-32 hasseveral flavors of cacheablenemoryoperations,
including Write-through , Write-back,and Write-protectedput we
will fold themall into LD/ST operationsSecond,it supportsiN
andOUT I/O instructionswhich arenot memory-mappedfO, but
instead directly accessl/O ports. These I/O instructions are
orderedustasstronglyasMBs, andwe do notincludethemhere.

Table7 shavs the ordering rules at a processorobeying our
approximatiorof IA-32. Onceagain, differencedrom the SCtable
are shadedNotice the extra orderingrequirementof the LDuc/
STuc compared to those of the LDiof§Th Table4.

5.1.3 Compag Alpha

The Compag[DEC) Alphamemorymodel[13] is aweaklyconsis-
tent model that relaxes the orderingrequirementsat a given pro-
cessolbetweenary accesseto differentmemorylocationsunless
orderingis explicitly statedwith the use of a Memory Barrier
(MB). The Alpha memorymodelis formally definedthroughthe
useof two ordersthat mustbe obsened with respectto memory
accesseslhefirst order programissueorder, is a partialorderon
the memory operations(LDs, STs) issuedby a given processar
Issueorderrelaxesprogramorderin thatthereis no orderbetween
accessego different locations without intervening MBs. Issue
orderenforcesorderbetweenaccesseto the samelocation,order
betweerary accesandanMB, andorderbetweerMBs. Thesec-
ond order accesrder is a total order of operationson a single
memory location (rgardless of the processors that issued them).



TABLE 7. “|A-32": P artial Program Order at a Processor

Operation 2
LD STpriv STpub MB LDuc STuc LDwc STwc
LD A A A A A A - -
— STpriv A A A2 A A A - -
IS5 STpub : : A A A A . .
i MB A A A A A A A A
o LDuc A A A A A A A A
STuc - A A A A A - A
LDwc - - - A A A - -
STwe - - - A A A - -

a. Includes the case where both operations are for the same ST (i.e., OP1 is tlaeSAqiOP2 is the STpublic for ey ST).

We previously definedan equivalentmemorymodel, called Wis-
consinAlpha[3], wherean executionof animplementatiorsatis-
fies the Wisconsin Alpha memory model if there exists a total
ordering of all loads, stores, and MBs, such that:

® all of the issue orders are respected, and

* aload returnsthe value of the mostrecentstoreto the same
location in this total order

This definition of WisconsinAlpha is reflectedin the partial pro-
gram ordering rules shavn in Table8. Notice that there are no
orderingrequirementbetweerLDs andSTs(unlesghey areto the
sameaddress)To enforceorder betweenthem requiresinserting
anMB betweerthem,which creategshe orderLD/ST <,y MB <y
LD/ST.

TABLE 8. Alpha: Partial Program Order at a Processor

Operation 2

LD ST MB LDio STio
LD - = A A A

—
s ST - - A A A
s MB A A A A A
§ LDio | A A A D D
STio - - A D D

5.1.4 Release Consistency

Releaseconsisteng (RC), particularlythe RCpcflavor, is one of
the mostrelaxed memoryconsisteng models[7]. To definecon-
sisteng modelslik e this, Gharachorloeet al. developeda general
framavork for memoryconsisteng models wherewrites arebro-
keninto p+1 sub-operationswherep is the numberof processors
in the system[6]. This framework, in turn, is basedon a system
abstraction deeloped by Collier [2].

Along theselines, we could expand our partial program order
tablesto reflectthat a storein an RC systemcould appearto be
brokenupinto a STyyae @ndmary STyypicS, With one STy pjic at

eachprocessarThe applicableWriteOPfor a LD would be either
the STyivate OF the STpypiic at that processorMoreover, RC has
two new operationsAcquiresandReleaseswhich canbe consid-
eredto be typesof MBs for our purposesAcquiresand Releases
would beincludedin the processopartialprogramordertable,and
the orderingrequiredamongthemwould dependon the flavor of
RC. For example theorderingbetweeracquiresandreleasesn an
RCpcsystemwould be the sameasthe orderingbetweern.Ds and
STsin a processorconsistensystem(e.g., TSO). This approach,
however, could lead to laye, unwieldy tables.

5.2 WIO Consistency ér General Memory Models

Extendingthe definition of WIO from Section4.2 to incorporate
memory models other than SC requires that we:

® Add ary new operationssuchasLDwc andSTwc (which area
ReadOP and a WriteQRespectiely).

* Define what the applicableWriteOPsare for a ReadOP For
example,in TSO,the applicableWriteOPfor a LD is the most
recent STpivate at that processorunlessthe corresponding
STouplic IS also beforethe LD, in which caseit is the most
recent Shypiic:

®* Change WIO property 2 to read:

2.thevaluereadby every ReadORoperationis the valuestoredby
the mostrecentapplicableWriteOP operationto the sameaddress
in the <y order

6 An Implementation that Obeys WIO for SC

So far, we have provided abstractspecificationsof systemsthat
includel/O. We now provide a concreteémplementatiorthataims
to conformto the WIO specificationfor SC systemspresentedn

Sectiond. In this section,we specify a sequentiallyconsistent
directory-basedystemconsistingof the componentslescribedn

Section3. This description builds upon the directory protocol

describedin Plakal et al. [12]. The descriptionis divided into

descriptionsof the processornodes,interconnect,l/O devices,

bridge and memory nodes.

ProcessonodesThecacherecevesastreamof LD/ST/LDio/STio
operationdrom the processoand,if it cannotsatisfya requestjt



issuesa transactiont The completelist of transactionsincluding

block transfertransactiongRblk/Wblk) thatcanonly beissuedoy

devices and which will be discussedater, are shavn in Table9.

Cache coherence transactions (GETX/GETS/UPG/WB) are
directedto the home of the memoryblock in question(i.e., the

memory node which containsthe directory information for that
block). I/O transactiongRio/Wio) are directedto a specificl/O

device andalsocontainanaddres®f alocationwithin thememory
of thedevice (and,if Wio, the datato write aswell). Thegranular-
ity of accesdor anl/O transactions oneword (for simplicity of

exposition). Rios generatea reply messagdrom which the cache
extractsaregistervalueandpassedt to the processonVios do not

generatary reply messagefom thetamgetdevice; in thecasethat
a processorissuesa Wio and desiresa responsejt can subse-
quentlyquerythe device with a Rio. Note thateac LDio or STio

generatesxactlyoneRio or Wio (respectiely). Thisis unlike nor-

mal cacheablenemorytransactionsvhere,for example, multiple

LDs or STsmay beissuedto the sameblock aftera single GETX

brought it into the cache.

TABLE 9. Transactions

Transaction Description

GETX Get Exclusie access

GETS Get Shared access

UPG Upgrade (Shared to Exclus) access

wB Write Back

Rio Read I/O - read wrd from I/O space

Wio Write 1/O - write word to 1/0O space

Rblk Read Block - read cache block from ordi-
nary memory

Whlk Write Block - write cache block to ordi-
nary memory

Processonodesmustconformto thelist of behaior requirements
specifiedin Section2.4 of Plakaletal. [12] (e.g.,a processonode
maintainsat most one outstandingrequestfor eachblock). They
mustalsoconformto the orderingrestrictionslaid out in Table4.
Thus,they donotissuea LD/ST until all LDios precedingt in pro-
gramorderhave been“performed”(i.e., thereply hasbeenwritten
into the rgister by the cache).

A processomodes network interfacesendsall transactiongrom
the cacheinto the interconnectiometwork. In addition, the net-
work interfacewill passa Wio coming from the network to the
processos interruptregister It also passesll repliesto transac-
tions to the cache.

InterconnectThe network ensuregoint-to-pointorderbetweena
processonodeandadevice node,andit ensureseliableandeven-
tual delivery of all messages.

Bridge: The I/O bridge performs the following functions: it
receves Rio/Wios from processomnodesand broadcastshemon

1. As noted earliecaches can also proaety issue transactions
without receving an operation from their processors.

thel/O Bus (this hasto be donein orderof receipton a perdevice
basis);sendsWio repliesfrom device memoryto processonodes;
sendsWios (to interruptregisters)from device processors$o pro-
cessornodes; participatesin Rblk/Wblk transactiong(discussed
belov) and broadcastcompletionacknavledgmentson the /O
bus. The I/O bridgemustobey certainrules. It providessufficient
buffering suchthatit doesnot have to dery (hegative acknavledg-
mentor NACK) requestsentby processorsr devices.It alsohan-
dlesthere-try of its own NACKedrequestgto memorynodes) No
order is obsemd in the issuelerlap of Rblk/Wblk transactions.

Device Nodes:Eachdevice processocanissuelLDio/STios to its
device memory and INTs to processorinterrupt registers. INT
operationsare corvertedto Wio transactionsby the I/O bridge.
Theseare directedto a specificprocessos interruptregisterand
donotgenerateeply messagesn addition,adevice canalsoissue
LDblk and SThlk requestsand theseoperationsare corvertedto
Rblk and Wblk transactiongy the bridge and are directedto the
home node. The data payloadfor both requestsis a processor
cachdine (equalto ablock of memoryatamemorynode whichis
equalto the coherenceaunit for the entire system).Both requests
generateacknavledgments(ACKs) on the I/O bus (from the
bridge)and,in the caseof the Rblk, the ACK containsthe dataas
well. A Wblk requestcarriesthe datawith it. Also, eachLDblk/
STblk will generateexactly one Rblk/Wblk (just as with LDio/
STios and Rio/Vibs).

Each device memory receves a streamof LDio/STios from its

device processarn addition,it alsorecevesa streamof Rio/Wios
from the bridge (via the I/O bus)which it logically treatsasLDio/

STios. Thesetwo streamsareinterleaved arbitrarily by the device
memory For eachincomingRio, thedevice memorysendgvia the
busandthe bridge)the valueof thatlocationbackto the nodethat
sentthe Rio. LDio/STios operateon device memorylike a proces-
sor's LD/STs operate on its cache.

The device processomust obey the ordering rules specifiedin
Table5. For example,anINT is notissueduntil all LDblk/STblks
precedingt in “device programorder” have beenperformed(i.e.,
an ACK hasbeenreceved from the bridge for the corresponding
Rblk/WbIK).

Memory Nodes:Memory nodesoperateas describedn Plakal et
al. [12] (with respecto directory stateandtransactions)with the
following modificationsfor handlingRblk/Wblk transactionsPro-
tocol actionsdependon the stateof the block atthe homenodefor
both transactions.

Rblk:

Idle or Shaed the homesendsthe block to the bridge,which
broadcasts an@K with the data on the I/Quis.

* Exclusive the homechangesstateto Busy-Rblk removesthe
currentowner’s ID from CACHED, andforwardsthe request
to the currentowner. The owner sendsthe block to the bridge,
invalidatesheblockin its cache andsendsanupdatemessage
(with the block) to the home,which changedhe stateto Idle
andwritestheblock to memory The bridgerecevestheblock
and broadcasts anCK along with the data on the I/Qi&

* Busy-Anythe home MCKs the request.



TABLE 10. Example 1

TABLE 11. Example 2

D1 P2 D3
send Wb W1 to D1

recv Wo W1 send Rio W1 to D1
STio W1 send Rio W2 to D3
recv Rio W1l recv Rio W2
LDio W1; sendto P2 / LDio W2; send to P2
receve W2
LDio W2
receve W1
LDio W1

Whblk:

® |dle: the homestoresthe block to memoryandsendsan ACK
to the bridge. The bridge sendsan ACK to the device (via
broadcast on the I/O Bus).

* Shaed the homestoresthe block to memory sendsinvalida-
tions to all sharedcopies,sendsa countof the copiesto the
bridge and changeghe stateto Busy-Whblk The bridge waits
until it recevvesall ACKs for the invalidationsbefore broad-
castingthe transactioncompletionACK on the I/O Bus. The
bridgealsothensendsan ack to the homewhich enablest to
change its state tdle.

® Exclusive the home storesthe block to memory sendsan
invalidation to the (previous) owner, sendsan ACK to the
bridge,andchangeghe stateto Busy-Wblk The former owner
invalidatesits copy andsendsanackto the bridge,whichthen
sendsan ACK to the device and to the home (which then
changes its state tdle).

* Busy-Anythe home MCKs the request.

Note that we now have two new “busy” home states,Busy-Rblk
andBusy-Whblkwhich sene similar rolesasthe busy statesusedin

the original directory protocol. Thesemodificationsmake some
formerly impossiblesituationspossible.In particular Writebadk

requestanay find the homebusy One solutionis to modify this

transaction case:

® Writebad on homeBusy-Rblkor Busy-Wblk This is the same
as when the home Busy-Shaed

7 Proof that the Implementation Satisfies WIO

We shaw correctnessf theimplementatiordescribedn Section6

as follows. We will usea verification techniquebasedon Lam-

port’s logical clocks[10] thatwe have successfullyappliedto sys-
temswithout I/O [15, 12, 3]. Thetechniquerelieson beingableto

assigntimestampgo operationdn a systemandthenproving that
theorderinginducedby thetimestampsasthe propertiegequired
of theimplementationln orderto apply our verificationtechnique,

D3 P4 P5
GETX B
send Wo W2 to D
recv INV B
recv acks/data for B’
revc Wio W2
STio W2 STB

we first describea timestampingschemethat logically ordersall

ReadOpsand WriteOpsthat occurin ary given executionof the
protocol. Second,we shawv that the resultingtotal order satisfies
propertiesl and2 of WIO consisteny, asin Section4.2for SC.A

detailedspecificationof our correctnesgproof canbe found in a
technicalreportof this research9]; the following is a shortover-

view of our approach.

To specify the timestampingscheme,we augmentprocessors,
directory anddevice processorgall referredto asnodeswith log-
ical clocks.We stresghattheseclocksaresimply conceptuatools,
not partof the actualprotocol.Usingtheseclocks,a uniquetimes-
tampis assignedo eachreadandwrite. In addition,a transaction
that causesa nodeto changeits accesgpermissionto a block of
dataor word of 1/O is timestampedy thatnode.Thus,a transac-
tion may be timestampedby several nodes.Roughly when an
event(i.e.read,write, or transaction}o betimestampedhappens”
atanode,theclockis movedforwardin time andthe updatedime
on the clock is assignedo that event. Of course,eventsare not
atomicandso a centralaspecif the timestampingnethodis the
determination,from the protocol specification,of exactly when
(andwhere)eventsaretimestampedandthuswhenthey arecon-
sideredto “happen”).In this way, the timestampingschemepro-
videsa single, total orderingof all key eventsin the system.The
correctnesproofthenshows thatthereal systembehaesjust asif
the eventshappenedatomically in the order given by the times-
tamping scheme.

Tables10, 11, and 12 are examplesthatillustrate how the times-
tampingschemeworks andhelpin reasoningaboutcorrectnessf
our protocol.We needto describeonefurtheraspecof timestamps
before getting to our examples.Timestampsare split into three
non-ngative integral componentsglobal time, local time, and
processoinD. As will becomeclearerfrom the example, global
timestampselpto ordertransactionsvhich happeracrossnodes
whereadocal timestampshelp to orderreadandwrite operations
that happeninternalto a node.ProcessotD simply actsasa tie-
brealer betweenoperationswith the sameglobal andlocal times-
tamps.



TABLE 12. Combined example with timestamps. Initially all clocks (global.local) ae set to 0.0.

D1 P2 D3

P4 P5

send Wib W1 to D1
send Rio W1 to D1
send Rio W2 to D3

1.0.1 recv Vib W1

1.1.1 STow1l

2.0.1 recv Rio W1

2.1.1LDio W1; sendto P2
receve W2
LDio W2
receve W1
LDio W1

1.0.3 recv Rio W2
1.1.3LDio W2; sendto P2

GETX B
send Wb W2 to D3

1.0.5recvINV B
2.0.4 recv acks/data for B

214STB

2.0.3 recv Vib W2

2.1.3STo W2

The first example,shavn in Table10, shovs one processqrP2,
thatcommunicatesvith two devices,namelyD1 andD3. P2 sim-
ply doesa write followed by areadto aword W1 of D1, followed
by a readto a word W2 of D3. Becausethe network preseres
point to point ordering of messagesD1 first receves the “Wio
W1” requestandthenthe “Rio W1" request,D1 performsthese
operationsn orderandreturnsthevalueof W1 to P2.Meanwhile,
D3 handlesthe “Rio W2” requestandreturnsthe value of W2 to
P2.

Table12 showvs how thesereadsandwritesaretimestampedin our
timestampingscheme,readsand writes to device memory are
timestampedt the device (thusensuringthat,in theresultingtotal
ordering,the value of a readis that of the mostrecentwrite to the
sameword). The Wio andRio requestgo D1 areconsideredo be
transactionsindso D1 assigngylobaltime 1 to the Wio andglobal
time 2 to the Rio requestAs with all transactionsthe local times-
tampfor eachof theseis 0, andthe final componenof the times-
tampis thedevice ID, whichis 1 in our example.Whenthe (local)
“STio W1" is performedby D1, thelocal time is incrementedand
thusthe timestampis 1.1.1.Similarly, the timestampof the “LDio
W1" operationis 2.1.1,andthe eventsat D3 aretimestampedn a
mannerconsistentvith thoseat D1. Thus,the “STio W1” appears
beforethe“LDio W1" operationsatD1. Thisis consistentvith our
specificationin Table4 thatreadsandwritesto a commondevice
(in this case,D1) by a processorshould respectprogramorder
Also notethat, regardlessof the relative orderin real time of the
“LDio W1 atD1” and“LDio W2 atD3,;" the“LDio W1" happens
beforethe “LDio W2” in timestamporder simply becauseD1’s
clock is further along than D3'’s clock whenthey perform these
operationsThe timestampsassignedo theseoperationsare also
independenof whetherP2recevesthevalueof W2 beforeor after
P2recevesthe valuefor W1. So, althoughthe “Rio W1" appears
before“Rio W2” in P2’s programorder, the “LDio W2” appears
beforethe“LDio W1” in timestamporder Again, thisis consistent
with Table4, which that specifiesLDios to differentdevices are
not constrained to respect program order

Our secondexample,in Table11, concernsa processorP4 that

recevesexclusive permissiorfor block B, causingprocessoP5to

invalidateits copy of block B. In addition,P4sendsa“Wio W2” to

D3. Table12 showvs how transactionsndoperationsat D3, P4,and

P5 aretimestampedThe timestampingules specify that the glo-

bal timestampassignedby P4 to the GETX transactionmust be

later than the correspondingNValidateat P5. Imaginethat acks
sentto P4from P5includethetimestampof the INValidate.Also,

in contrastwith thefactthatreadsandwritesto devicesaretimes-

tampedat the device, readsandwrites to cacheablanemory(and

thusthe“ST B” operationat P4) aretimestampedt the processor
performing the operation. This is becausepermissionsfor the

block resideat the processqrwhereaspermissiongor a word of

device memory aliays reside at the diee.

Note thatin Table12, at ary single node,the logical timestamps
arealwaysincreasingn realtime, while timestampsmay be “out

of order” acrossnodesin real time. Finally, note that the logical

timestampsprovide a total orderingof all readsand writes; this

total orderingobtainedn our examplecanbe easilyseento satisfy
the conditions of Sectiof.2.

8 Conclusions

Although I/O devices are integral partsof computersystemsand
having cleanl/O architecturesvould offer benefits,the commer-
cial systemswith which we arefamiliar tendto usead hoc, com-
plex, and undocumentedinterfaces. In this paper we have
proposeda framework called Wisconsinl/O for formally describ-
ing I/O architecturesWIO is anextensionof researcton memory
consisteng modelsthat incorporatesmemory-mapped/O, inter-
rupts,anddevice operationghatcausesideeffects.WIO is defined
throughorderingrequirementst eachprocessoanddevice, anda
systemis consideredo obey WIO if thereexistsatotal orderof all

operationghat satisfiestheseorderingrequirementsuchthat the
value of every readis equalto the value of the mostrecentwrite.

We outlinedhow to useLamportclocksto prove thatan example
system that we specified satisfies its WIO specification.



The framework presentecherefor specifyingand analyzingsys-
temswith I/O canbegeneralizedn severalwaysthatwerenot pre-
sentedearlier in order to simplify the discussion.For example,
unlike in Section6, we can model I/O bridgesthat do not have
enough buffering to ensurethat they can sink all incoming
requests.Also, the definition of Wisconsin I/O consisteng is
parameterizetby a n-tupleof partial programordersandis there-
fore easilygeneralizedo handlean arbitrarysetof local ordering
rules.In the extremecase eachprocessorand eachdevice would
have its avn table of partial program orders.
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