To appear in the 10th AnnualCM Symposium onapallel Algorithms and Ashitectuies (SRA), Line 28-dily 2, 1998, Puertoallarta, Mexico

Lamport Clocks: Verifying a Directory Cache-Coheence Potocol

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, Mark D. Hill
Computer Sciences Department,
University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.
{pl akal , sorin, condon, markhi ||} @s. w sc. edu

Abstract system still behzes correctlyCurrently industrial product groups
spend &r more time in erifying their system than in actually

Modern shaed-memory multimcessos use complememory sys- designing and optimizing the system.

tem implementations that include a variety of non-trivial and inter-
acting optimizations. Mar time is spent in verifying the A case in point is the design of d@-scale cache-coherent shared-
correctness of sicimplementations than in designing the system. memory systems that araiith using distrituted-memory nodes

In particular, large-scale Distribted Shaed Memory (DSM) sys- with private caches that are connected by a general interconnection
tems usuallyely on a diectory cabe-coheence potocol to po- network. Such hardare Distriluted Shared Memory (DSM, [19])
vide the illusion of a sequentially consistent sitdbaddess space systems operate by sharing memory through a scaditgletory
Verifying that sub a distributed potocol satisfies sequential con- coheence potocol.A directory protocol must present a consistent
sistency is a dicult task. Curent formal potocol verification view of memory [1, 4] to the processing nodes, with sequential
techniques [18] complement simulationytbare somwhat non- consisteng (SC) [11] being a common requirement. The require-
intuitive to system desigreand verifies, and thg do not scale ments of SC (quoting Lamport [11]) are:

well to pactical systems. ‘the result of any execution is the same as

In this paperwe eamine a n& reasoning telenique that is - if the operations of all the processors were
cise and (we find) intuitiveOur tedinique is based on Lampat’ executed in some sequential order, and the
logical clodks, whit weee originally used in distribted systems. operations of each individual processor
We male modestxensions to Lampod'lagical cloking stieme appear in this sequence in the order speci-
to assign timestamps t@&levant piotocol eents to construct a fied by its program.’

total ordering of sub events. Sut total oderings can be used to
verify that the equirements of a particular memory consistency
model have been satisfied.

The directory itself is a data structure whose entries record, for
every block of memorythe state (i.e., cache access permission)
and the identities of the processors whictieheached that block.

We apply Lamport cldcs to pove that a non-trivial diectory po- The directory is often distriied along with the memargs is the
tocol implements sequential consisteny do this, we describe case in the protocol that we wilekify. Nodes gchange messages
an SGI Origin 2000-lik piotocol [12] in detail, povide a times- with each other and with the directory to coordinate accesses to

tamping sbheme that totally afers all potocol events, and then each block of memory
prove sequential consistency (j.a load alwayseturns the value

of the “last” store to the same adelss in timestamp der). Determining which messages are necessary requires delving into

the subtleties of directory protocols. In our protocol, fareple,

a processos message writing a block back to memory must be
acknavledged so that we can distinguish the common case from
the race condition where the directory has alreadgngpermis-
sion for the block to another processor and there is a afoling”
message in flight.

1 Introduction
Modern high-performance multiprocessor systems are becoming
increasingly complicated. System designerseh@oposed the use
of a \ariety of complg and interacting optimizations to impe
performance. This trend ignores thefidiflty of verifying that the
This work is supported in part by Wright Laboratoryiénics Directorate, Air Brce Cu(;re?ttpmtoco' anlcart_:orj]_steghmqq[es bas?d gn _moo_lc_el-chtecklng
Material Command, USAFunder grant #F33615-94-1-1525 and AR®&rder no. an _S ate-space searc [] 0 not seem to be wetudi SYS em_
B550, National Scienced@ndation with grants MIP-9225097, MIPS-9625558, CCR designers, and tigedo not scale well to systems of a practical size.
9257241, and CB-9623632, a Wsconsin Romnes Felisship, and donations from Alternatively, protocol optimizations are sometimes justified with
Sun Microsystems. The U.S. Gnment is authorized to reproduce and disteb imprecise informal guments and the results of protocol simula-
reprints for Geernmental purposes notwithstanding amopyright notation thereon. . Ve ificati hni hat is both !
The vievs and conclusions contained herein are those of the authors and should not gpns. - propose a mever |Cat|0n.tec. .n'que t at Is both precise
interpreted as necessarily representing tieial policies or endorsements, either (Unlike informal aguments) and intuite (unlike formal agu-
expressed or implied, of the Wright Laboratoryidnics Directorate or the U.S. @o ments). Vé hare applied the technique to a norvl directory
ernment protocol that is similarthough not identical, to the protocol used
in the SGI Origin 2000 [12].

Most memory consistegcmodels, including SC, are defined in
terms of a hipothetical ordering of all memory references jvo-

pose to construct such an ordering by timestamping protocol
events that occur in the system. Our timestamping schemesmak
modest gtensions to Lampox’ logical clock scheme [10]. This
scheme s used to maintain global time and implement mutual
exclusion in a distribted system. W attach logical clocks, which

are merely conceptual dees, to arious parts of a multiprocessor
system. These logical clocks are used to assign logical timestamps

to the protocol transactiong(i.e., actions that cause processors to
change their access permissions to blocks of data)nemdory
opentions (loads (LDs), and stores (STs)) that occur while a pro-
tocol operates.

‘ N/w interface ‘

The timestamps are split into three pesitintaggral components:
global time, local time, and processor ID. Such 3-tuple timestamps
can be totally ordered using the usualdegraphic ordering. Glo-

bal timestamps order LD and ST operations nedatth transactions

“as intended by the desigiiefhis is made precise in twimes-
tamping claimdater in our paperOne of these claims is that for

every LD and ST operation on avgh block, proper access is |

ensured by thenost ecenttransaction on that block in Lamport
time. (in contrast, in real time, a processor may perform a LD oper-
ation on a block after it has answered a request to relinquish the
block [20]). Roughlythe other claim is that, in logical time, trans-
actions are handled by processors in the order in whighatee
receved by the blocls directory (In contrast, in real time, a pro-
cessor may reces transaction-related messages “out of order”).

‘ Niw interface ‘

-N/w interface

Directory Directory

N/w interface ‘

N/w interface ‘

Memory Memory

FIGURE 1. The Target Multipr ocessor System

Both the caches and the directory are operated by finite-state-
Local timestamps are assigned to LD and ST operations in order tanachine controllers which interact bxchanging messages in
presere program order in Lamport time among operations that order to implement a coherence protocol. Notice that this system
have the same global timestamp. Local timestamps are not neededonfiguration subsumes the case where each directory node is co-
for transactions. Theare used to enable an unbounded number of located with a processing node and the directory controls access to
LD/ST operations between transactions. Processor ID, the thirdthe local memorywned by that node. ®/do not assume that the
component of a Lamport timestamp, is used as an arbitrary tie-interconnect guaranteesyakind of ordering of messages sent or

brealer between te operations with the same global and local

receved between nodes.a\do assume that the neik guaran-

timestamps, thus ensuring that all LD and ST operations are totallytees gentual and reliable dekry of all messages.

ordered.

Sequential consistepds established in a sequence of lemmas,
using the concept afoheence epdes An epoch is an intea of

2.2 Prliminaries
Our directory protocol is inspired by Culler etsadescription [4]

logical time during which a node has read-only or read-write of the SGI Origin 200® protocol [12]. V& would like to empha-

access to a block of data. The life of a block in logical time con-

sists of a sequence of such epochs. One lemmesgshat, in Lam-

size hevever, that our protocol diérs in seeral respects from
those in the ab@ descriptions. Directory schemeary in the

port time, operations lie within appropriate epochs. That is, eachmanner in which theorganize and allocate storage for the direc-
LD lies within either a read-only or a read-write epoch, and each tory. We will assume that each memory block along with its direc-

ST operation lies within a read-write epoch. Another lemmevsho
that the “correct” alue of a block is passed from one node to
another between epochs. The proofs of these lemuilisib a
modular fishion upon the timestamping claims, thereby localizing
amuments based on specification details. In othek 23], we
have proved the correctness of asprotocol using the same proof
structure; the proofs of the lemmas for tlus brotocol arexactly

as for the directory protocol of this papand only the proofs of
the timestamping claims dfr.

The rest of this paper isganized as folls. Sectior? is a specifi-
cation of the directory protocol. In SectiBn we describe the
details of the timestamping scheme andverthat the protocol
obeys SC. Sectiod discusses relatedork in protocol erifica-
tion. Sectiorb summarizes our conttkions and outlines future
work that can be done with ouerification technique.

2 Specification of a Diectory-Based Coheence Potocol
2.1 Our Target Multipr ocessor System
Our taget multiprocessor system (stro in Figure) consists of a

number of processing nodes and directory nodes connected by am
interconnection netark. Each processing node consists of a single

processqgrone or more leels of cache, and a nedvk interface.
Each directory node consists ofdaectory that is used to store
protocol state information about a range of blocks of memory

tory entry is allocated storage in the local memory of songal fix
“home node” for that block. d¥ our purposes, a directory entry
consists of &lodk stateand a set CBHED of node IDs. This
entry can encode one of the follimg 6 states:

¢ Idle: No node has aalid cached copof this block. It is only
valid at the homa&' memory

Shaed The block is currently cached at one or more nodes in
the read-only state. GHED contains a nodg'D if and only

if that node had requested a read-only cachey obpthis
block.

® Exclusive The block is currently cached in the read-write state
at exactly one node. CBHED contains this nodg1D.

* Busy-Shaed The block had been in the Exclusistate and
another node has requested the block in the read-only state.
The directory is ne in the process of transferring the block.
CACHED contains the ID of the node requesting the block in
the read-only state. Once $haed CACHED will re-include
the ID of the original wner.

Busy-ExclusiveThis is similar to thdusy-Shaed case abee,
with the only diferences being that the waequesting node
has requested a read-write gagf the block, and that once in
Exclusive CACHED will contain only the ID of the me
requester

These memory blocks are also allocated storage at the directory

nodes. Blocks may be present in a process@the in one of three
states: imalid, read-only or read-write.

® Busy-ldle The block is in the process of going from Exlu-
sivestate to thédle state. More information about the need for

this state can be obtained from the description of the Writeback

request in Sectiof.3.

When lusy states beka similarly we will useBusy-Anyto refer
to a block whose state Busy-Shagd, Busy-Exclusiveor Busy-
Idle.

Our protocol is imalidation-based and alie either a single writer
or one or more readers for each block of memaiy will use the
following terms in our protocol description:

® The requestingnode of a block is the node which issues a

request (to the home node) for obtaining that block in the

shared or xclusive state.

2. Shaed The home adds the requesting ned® to CACHED
and sends the block to the requestée requester loads the
block in the read-only state into its cache.

3. Exclusive The home changes the statdtesy-Shagd,
removes the currentwaner’s ID from CACHED and adds the
requesting node’ID to CACHED. It then forvards the request
(along with the identity of the requester) to the curremer
of the block. The wner sends the block directly to the
requesterdovngrades the status of the block in its cache to
read-only and sends an update message (with the block) to the
home. The home then stores the block to local menadids
the former wner’s ID to CACHED and changes the state to
Shaed The requester loads the block into its cache in the read-
only state.

®* Theownernode of a block is either the home node (if no node 4. Busy-AnyThe home sends the requester gatige acknavl-

has cached the block with read-write access) or the node with

read-write access.

2.3 Pmtocol Specification
We will now informally describe he the protocol is used by a

directory controller to handle requests sent to it by requesting

nodes. Note that we ta decoupled the generation of coherence
requests from processoremts. or instance, &et-Shaedrequest
could be generatedren before a processor fars a read miss in
its cache for that block. This may happen, fearaple, if a pro-

cessing node is trying to tolerate memory latencies by prefetching

edgment (MCK), indicating that the requester should try
agnin later

Get-Exclusve: Again, the cases depend on the directory state:

5. lIdle: The directory changes the statdctalusive clears
CACHED and adds the requesting node ID taOB¥ED. It
then sends the block to the requestdrich loads the block in
the read-write state in its cache.

6. Shaed All cached copies must bevalidated. The home
males a list of the nodes corresponding to the node IDs in
CACHED and then clears GXED. It then changes the state

blocks into its cache before it references them. The protocol sup- to Exclusiveand adds the requesting nadl to CACHED.

ports the requests irablel.

For each request, there areverl possibletransactionswhich
depend on the directory state. Including@Ked transactions (of

which there are three), there are 14 distinct transactions (which are
listed belav) in total. Transactions 13 and 14 define transactions
that correspond to a pair of requests, where one request is a Write-

back and the other is @et-Shaed, Get-Exclusive or Upgrade
request. All other transactions/aive only one request.

TABLE 1. Protocol requests

Current Cache | Desired Cache
Request Permission Permission
Get-Shaed invalid read-only
Get-Exclusive invalid read-write
Upgrade read-only read-write
Writebad read-write invalid
Transactions:

Get-SharedThe requester send$et-Shaedrequest to the home.

What happens m¢ depends on the state of the block in the home

directory:

1. Idle: The home clears G2HED and adds the requesting
nodes ID to CACHED. It then sends the block to the requester
and sets the state &haed The requester loads the block in
the read-only state into its cache

1. Here and lateour intended meaning is that the requestatsv
until the block arnes, after which it loads the block into its cache
in the appropriate state.

The home sends\alidations (containing the identity of the
requester) to the nodes in the list it constructed. It then sends
the number of imalidations, along with the block, to the
requesterEach of the sharersvialidates its cop of the block

and sends an ackwtedgment to the requestdihe requester
waits until it recefes all acknarledgments before loading the
block in the read-write state into its cache.

7. Exclusive The home sets the directory statBtsy-Exclusive
removes the currentwner’s ID from CACHED and adds the
requesting node’ID to CACHED. It then forvards the request
(along with the identity of the requester) to threner The
owner invalidates its copof the block, sends an ackwmledg-
ment with the block to the requester and sends an update mes-
sage to the home. The home then changes the state to
Exclusive The requester loads the block in the read-write state
into its cache.

8. Busy-AnyThe request is ACKed.

Upgrade As before, the cases depend on the directory stateeh
now have to tackle a number of race conditions:

* |dle: This is impossible. This situation, and three other situa-
tions which will be encountered latewill be shavn to be
impossible in Appendix B.

9. Shaed This is handled just liktheShaed case for th&et-
Exclusiverequest, the only dédrence being that the home does
not need to send the block in its reply to the requeBher
requester then changes the state of the block in its cache from
read-only to read-write.

10. Exclusive This means that another nogl€et-Exclusiveor
Upgraderequest must va beaten thit/pgraderequest to the
home and the home musteasent an iwalidation to the cur-
rent requesteihe home RCKs the request, forcing the
requester to re-try with Get-Exclusiveequest.

11.Busy-Any The request is NCKed.

Writeback The avner sends aWritebadk request to the home
along with the block. Onexpects that the directory will be in state
Exclusivewith CACHED pointing to the requeste8ome of the
subtleties of directory protocols, wever, are reealed by the other
cases that race conditions regsossible:

® Idle: Impossible. See Appendix B.
® Shaed Impossible. See Appendix B.

12. Exclusive The home stores the block to mematyanges the
state tddle and sends an ackntedgment to the (former)
owner The avner then changes the state of the block in its
cache to imalid.

13.Busy-Shaed We hare a race condition here. The requester’
ID is not present in CBHED (proved in Appendix B).
Instead, another nodgelD is present. This means that this
other requester has madéaet-Shaedrequest to the home and
the home has forarded the request to the curremner
(present requester). The fawled request and the write-back
have managed to pass each other in the oitwOur protocol
resoles this race condition by combining theotrequests.
When the home reaass the write-back, it changes the state
from Busy-Shagdto Shaed.It also sends the block returned in
the write-back request to themmeequesteras well as a special
“busy” write-back ackneledgment to the formemmer which
tells it to ignore the forarded request. Thevmer waits for an
acknavledgment from home Uffering ary forwarded requests
it receves. When it recees a “lusy” acknevledgment, it sets
the state of the block in its cache tudlid and discards the
buffered forvarded request (if) or remembers to ignore the
first forwarded request it reaas (and only after it recas
such a request can it generate a request ofvit}. o

14. Busy-ExclusiveSimilar to theBusy-Shaed case, bt with two
race conditions distinguished by which nadi® is present in
CACHED:

(a) The requestex’ID is not present. This case is similar to the
race condition in th8usy-Shagd case abee.

(b) The requestes’ID is present in CBHED. This means that

the requester had originally mad&at-Exclusiveequest to

the home which caused the formamer to send the block to

the requester and send an update message to the home. Subs
guently the requestes’writeback beat the update message to
the home. The home writes the block sent by the requester into
memory clears CAHED, sends an ackmtedgment to the
requester and changes its statBuisy-ldle When the update
message finally axrés, the home goes to thille state. The
requester then sets the state of the block in its cacheatin

® Busy-ldle Impossible. See Appendix B.

2.4 Processor Behaior Requirements

We also need to specify the belwa of a requestenfener with
regard to the requests thean generate and the responsey the
need to preide to eternal requests :

* NACKed requests need to be re-tried. The reguest needs to
take into account theurrent state of the block and the type of
access to be performed. A re-tried request isvatpnt to a
nev network transaction and does not continue to use the
resources of the original transaction (which are freed).

* |nvalidations and forarded requests for a block should be
buffered until the current outstanditiget-Shaed Get-Exclu-
sive Upgrade or Writebad transaction for that block, if gn
has been completedoFexample, a node may harequested a
read-only cop of a block, and it may reasd an ivalidation
before it receies the reply to its request.

® Consider a LD/ST operation to block B, call it,Qf some
fixed processor;plf permission to perform OPag obtained
via transaction ;Twe say that OP isoundto transaction TTo
ensure fonard progress, we require that if transaction T is
issued in order to obtain permission to bind, @®n upon
completion of T (assuming it is notACKed), OP is bound to
T, even if an ivalidation arrved in the meantime.

® We assume that in the protocol, if D&pears before QRn
pi's program ordethen the real time at which @B bound is
less than or equal to the real time at whichy @mbound. There
is a discussion in Appendix A about when this real time
requirement can be reled.

® The following two facts gve processor responsibilitiesadt 1
says that a processor must ensure that a load returnaltee v
of a store it just did (if ar) or the alue it obtained for the
block otherwise. &ct 2 says that, when a processor sends a
block avay, it must send thealues of recent processor stores
(if any) or the \alues it recefed.

Fact 1: Let LD-OP be a LD from wrd w of block B at pthat
is bound to transaction Tet STOP be the last ST tooxd w
of block B by p (if any) prior to LD-OP in gs program order
(@) If STOP is also bound to transaction then the &lue
loaded by LD-OP equals the result of SR

(b) Otherwise, thealue loaded by LD-OP equals thalwe of
word w of block B receied by pin response to transaction T

Fact 2: Suppose that as a result of transactign fof sends
away block B. Let T be the most recent transaction @ripr
to T, (in real time) that caused o receve block B. Then, the
value of word w of block B sent by;pn response to Jis the

e- last ST to word w of block B in ps program order that is
bound to Tif any. If no ST to vord w of block B is bound to,T
then the walue of word w of block B sent by;gs the alue
received by pin response to transaction T

Note: As long as psends the correctalue for each wrd w of

block B, then it is not required to complete all bound LD opera-
tions on block B before walidating that block. Also, in order that
Facts 1 and 2 apply to the case that T grr&spectiely, is a Get-
Shared at a processor other thaiwe say that in this case proces-
sor p sends the alue of block B to itself as well as to the other
processor who issued the Get-Shared request. Also, when a pro-
cessor does an Upgrade, we consider that itvesei @alue from

itself. Thus, corresponding twery transaction ofjpo which an
operation is bound, aalue is recefed by p (possibly from itself).

®* We assume that a node maintains at most one outstanding

request for each block. Multiple requests fofetént blocks
are allaved.

2.5 Extending the Potocol to allow Silent Eviction

Most protocols alle a node to silentlywct a read-only block
from its cache without notifying the Home. The protocol that we
have described in the preus subsections does not include such

silent evictions, which we shall refer to &#ut-Shaed The use of We hae decided to adopt the first approach in our protocol. The
Put-Shaed combined with bffering of invalidation messages additions to the protocol are (1)Pait-Shaed action, (2) the dead-
leads to a rather subtle race condition. Consider the scenaridock detection done by a node (as described/gbthat requests
depicted in Figur@. This irvolves a node Nwhich initially had a Exclusive permission for a block from the Home and (3) avkno
block in the read-only state in its cachected it silently and then edgment of all imalidations receied for a block that is irlid in
proceeded to issue@et-Shaedrequest for the same block. Mean- the cache. Th&ut-Shaed action can be performed byyanode
while, another node Nhas issued &et-Exclusiverequest for the that has a read-only cppf a block. After performing this action,
same block and this has beaten tet-Shaed request to the the blocks state in the cache changes t@liu. Note that we call

Home which proceeds to send awallidation to N. this anactionrather than atransaction(such asGet-Shaed Get-
Exclusivg. These terms will bexplained further in the e sec-
FIGURE 2. Deadlock produced by allaving Put-Shared tion where we praide a formal proof of correctness of the protocol

which includes these additions.

<— bG.deadlock———=
3 A Timestamping Scheme and a Pof of Correctness

4.GE 3.1 Notation and Basic Poperties of the Potocol

2.GETS

3.INV 1.GETX In this section, we define some notation used to reason about the
protocol. First, we classify all coherence wityi that occurs in our
system as being related to eitlemsactionsor actions Transac-
tionsare “global” eents initiated by &et-Shaed Get-Exclusive
Upgrade or Writebad request for a block sent by a node, and
The irvalidation is liffered and not responded to before a response INVolve the Home node of that block and perhaps one or more
to Ny's Get-Shaed request is receed. Meanwhile, the Home for- oth_er nodesActionsare local gents that are prate to a node and
wards theGet-Shaed request to N which huffers the request and ~ Which other nodes do not need to knabout. Currentlythe Put-

does not respond to it until it rezes an ackneledgment from Shaedaction is the only>ample of an action in our protocol.

N;. So nav, we hae deadlock with Nand N, each vaiting for a Next, we define the notion of a pblock Address-state, or A-state,
message from the other beforeytitan proceed. of a node. The A-state of a block at a node is used to capture the
The basic problem is that of a node which had a block in the read-Home nodes view of the state of the block at that node after the
only state, silentlycted it and then re-requested it in the read- N°de has performed, or participated in, a sequence of (non-
only state. If an ivalidation message noarrives at the node, does NACKED) transactions. In particulathe A-state of a block at a

the invalidation apply to the pwious “incarnation” of the block node will reflect the change in cohergnce status implied by a mes-
(i.e., before it vas silently eicted) or does it apply to the block 529 sent from the Home (and possibly other nodes). This change

that will be sent in response to the outstanding request? could hae been brought about in response to a request made by
that node, or through anvialidation or forvarded request sent by

There are tw possible ays in which we can sadvthis problem. the Home. A node’ A-state for a block B is defined to be one of
These methods dér in the vay the process iwalidations A, Ag, or Ay (the intended meanings arevaiid”, “shared” and
receved for blocks for which a node has an outstanding request.“exclusive” respectiely). The A-state is set to,Avhen the node
The node can eitheuBer the ivalidation (as we do) or apply it receires an imalidation or a fonarded Get-Exclusive or an
immediately (as in the SGI Origin 2000 anA$H). These alter- acknavledgment for its wn Writebak request. The A-state is set
natives are described in [4]. to Ag when the node recas a dwngrade, or a response to its
One solution is to still alls messages to beutiered until out- OWn Get-Shaedrequest. Finallythe A-state is set to,Awhen the
standing requests are completed (&kQ¥ed). The deadlock is ~ NOde receies a response to itsvo Upgrade or Get-Exclusive
broken by N, which can recognize this situation when it occurs "€duest, along with all associateddfidation acknwledgments.

i.e., when it receies a forvarded request from thery node from As a special case, when the protocol performs the deadlock detec-
which it is to receie an acknaledgment. In this case, it can treat 10N described in Sectidd5, we define the A-state of the node
the forvarded request as an implicit ackriedgment and proceed ~ €C€Ving the ivalidation to change from &\to Ay and then to the

to bind its stores. Ncan then send the data tg tlirectly, telling it A-state appropriate to its original request, when it kexsea block

to ignore ay invalidation that has beerutiered by N. N, also from its former avner The directory entry for a block also has an
sends an update message to the home, as in the normal operation 8fStaté which is one of AAg or Ay (when the bsy bit is not set),

the protocol. In case novalidation has been reved yet, N has according as the directory entry stat€ielusive Shaed or ldle

to remember to drop the firswidation that it sees for that block, ~ respectely. This allavs us to refer uniformly to the A-state of a
and furthermore it cannot generate aaw request for that block node, where a node could refer to either a processor or a directory
until it recevves this iralidation. Note thatactionsdo not change the A-state. So if a processér’
state for a block is 4 it remains A even after the processor per-

outstanding requests completajt io apply them immediately forms aPut-_Shaed_ and the block is walid in the ’cache. Hence,

thus treating them asACKs. The requesting node will alsovea the A-state is not just a synan for the processa’cache state. It

to remember to drop the reply to its original request, and then!S important to realize that the A-state is a conceptuatel¢hat is

male a nev request. This is the solution adopted in the SGI Origin US€d to reason about the protocol. In a harévimplementation of

2000 and the BSH (as confirmed in [13]).dfward progress con- this proto_col, the cachg controlleould use the actual cache state

siderations are met by the use of higlegel mechanisms that ~ (© determine future actions, and not the A-state.

detect a possible lack of progress ancetaker with correctre Transactions on agn block are serialized by the blogidirec-

measures. tory. Hence, we can speak about a sequence of transactions on the
same block where the ordering is implied by their serialization at

The other solution is not tauffer invalidation messages untilyan

the directory For each node N, a sequence of t transactions onimplies an upgrade at node N. At the moment that AFstate
block B (where the order among transactions is seen at the Homeghanges, N updates its clock to equal

defines a unique sequencgA).... of assomated A-states
for N, given some initial A- statealrue at F\I) is not equal to
A(i.1) for some & 1, we say that théhltransactlon in the sequence
“affects” N and that the transaction “implies thas M-state for
block B change from A;) to A;)”. For example, if nodes Nand
N, start with an initial state of y&and the sequence of transactions
at the Home is Ns Get-Shaed N,'s Get-Exclusiveand N's
Writebad. Then the sequence of A-states farawd N is A, Ag,
A, A and A, A, Ak, A respectiely. The Get-Exclusiveaffects
both nodes as well as the directory node, while Wriebad
affects N, and the directoryin the special case that a node is the
directory we say that it is alsofatted by all transactions resulting
from Get-Shaedrequests,\ven though no change in the A-state at
the directory may be implied by such a transaction.

Each transaction implies an “upgrade” of A-state (i.e. change from

state A to Ag, from A to Ay, or from Agto Ay) at eactly one
node. Also, each transaction implies avtgrade” of A-state (i.e.
change from & to Ag, from Ay to A, or from Agto A)) at zero or
more nodes. In the special case that node N is the direat®say
that N's A-state “devngrades” as a result overy Get-Shaed
transaction, een though its A-state may not be changed by the
transaction. On each transactioraely one node upgrades and
zero or more nodes dmgrade.

The definitions of “dects” and “implies” in the prgous two para-

1 + max{Ns current clock time, timestamps assigned to T by all
nodes other than N that ardemtted by T},

and assigns the updated time to transactidgyTClaim 1, &actly
those nodes other than N that arfeeted by transaction T send a
message to N. The ab® definition of timestamp is well-defined
because N does not upgrade its A-state until it hasvesteai mes-
sage from all other nodes that arkeeted by transaction. TVe can
think of each d&cted node as sending its timestamp of T along
with its message to N. Thus at the moment that N upgrades its A-
state, it has all of the information needed to timestamp transaction
T.

Claim 3: For a transaction T on block B,

(a) The timestamps of the wingrades associated with T are less
than or equal to the timestamp of the upgrade associated.with T

(b) The timestamp of the upgrade associated with T is less than the
timestamp of the upgrade associated witlp xansaction T' on
block B occurring after T in the serialization order at the directory
so long as one of T or T’ is a Get-Exchesior Writeback

Proof: Claim 3 can be pred true for all transactions T by induc-
tion on the serialization order of the transactions at the tdock’
directory The proof of Claim 3(b) relies on Claim 2 and thetf
that the Lamport order of transactions (as defined by their global

graphs depend only on the sequence of transactions on block B aimestamps) is the same as their order in real time at the directory

B’s directory In Claim 2 bela, we shav that the protocol specifi-
cation ensures that, atexy node, the actual sequence of changes
to the A-state for block B occurs in the order implied by the serial-
ization of the transactions at$Bdirectory even though messages
on successe transactions may be reesdl out of order by a node.

Claim 1: For each transaction & message is sent teeey proces-
sor afected by TAlso, if node N upgrades as a result pédactly
those nodes that ardedted by transaction T (other than N) send a
message to N.

Proof: Claim 1 can be preed true for all transactions T by induc-
tion on serialization order of the transactions at the bdodkec-
tory.

Claim 2: The sequence of A-state changes on block B at a node,
occurs in real time in the order implied by the serialization of
transactions on block B at its directory

Proof: A case-by-case proof of Claim 2 can be found in Appendix
A.

3.2 Timestamping in a Directory Protocol

Now, we need to assign timestamps to LD and ST operations. If
LDs and STs were whys performed in program order immedi-
ately after binding, one could simply timestamp an operation by
the current time of the processoglobal clock at the moment the
operation is performed. Our definition is more general, and applies
also to cases where a processor may perform operations out of
order

The global time stamp of an operation OP (a LD or ST) ist get
to be equal to

max{R’s timestamp of the transaction to which the LD/ST is
bound, global timestamp of last LD or ST airpprogram order}

The local timestamp of OP is defined to be 1 if OP is the first oper-
€ation in program order with global timestamp t and is otherwise
equal to one plus the local timestamp of the most recent operation
in the program order

We nav consider anxample which illustrate the timestamping
scheme. Consider first a scenario containing 2 nodesrfdl N)
and 2 blocks of memory (A and B).;Nas block A in the read-
only state, while Mwants to obtain block A in the read-write state.

Imagine that each processor has a global clock that is updated ifMN; also is performing stores to block Bable2 shavs the scenario
real time. In addition, each directory entry has a global clock. The in physical time, while &ble3 shavs the scenario in Lamport time
clocks are used to associate global timestamps with LD and STwhere @ents hae been ordered by their timestamps ®Wésume

operations and with transactions (thus defiriogeence epadus).

that the global clocks of both processors are initially set to 1.

Distinct nodes may assign distinct timestamps to the same transac-

tion. We only use global clocks for transactions (i.e.,
epochs); local time will be used to distinguish LD/ST operations
within the same epoch. Note that we do not timestamgPthe
Shaedaction.

Let us first consider the timestamping of transactions. All of the
following applies to a fied block B. Suppose that a transaction T
implies a dangrade at node N. At the moment that its A-state

changes, N increments its global clock by 1 and assigns the
updated time to that transaction. Suppose that a transaction T

to delineate

TABLE 2. 2 nodes, 2 blocks, pysical time
Time N, N,
1 sendGet-Exclusive store to B

for A
bind load from A

receve irvalidate for
A, send ack

TABLE 2. 2 nodes, 2 blocks, pysical time (a) Every LD/ST operation on block B af {$ contained in some
epoch for block B atjmnd is bound to the transaction that caused

Time N, N, that epoch to start.
4 receve ack for A perform bound load, (b) Furthermore,\wery ST operation on block B at is contained
invalidate from cache in some &clusive epoch for block B atjjand is bound to the trans-

5 store to A action that caused that epoch to start.

Lemma 3: If block B is recered by node N at the start of epoch
TABLE 3. 2 nodes, 2 blocks, Lamport time [t1.ty), then each ard w of block B equals the most recent store to
’ i word w prior to { or the initial \alue in the directoryif there is no

Timestamp Ny N, store to verd w prior to global timeyt
1.10.2 store to B The proof of the Main Theorem shis hav sequential consistenc
follows from the lemmas.
1.11.2 load from A .
o Main Theorem: The \alue of &ery load equals thealue of the
2 invalidate A, most recent store or the initiahlae, if there has been no prior
send ack store.
3 receve ack for A Proof: Consider a LD at processoy. jret the LD be bound to
3.1.1 store to A transaction T which has timestamp @t processor;pThere are
two cases.

Note that, in this>ample, the Lamport ordering places’'§Nload
from A before N’s store to A een though thg may occur out-of-
order in an aggresa implementation of our protocol, whichff
ers the imalidation to apply it much later while sending the
acknavledgment immediately [20].

The first case is that the most recent ST has global time stamp at
least . In this case, from Lemmas 1 and 2, this ST is also at pro-
cessor pand is bound to transaction.TTherefore, by &ct 1 (a),

the walue of the LD equals thelue of the most recent ST

Claim 4: Every LD/ST operation on block B at processors The second case is that the most recent ST ha§ global time stamp
bound to the most recent (in Lamport time attmnsactioﬂ on less thant In th's. case, by Lemma 2, no ST prior to this LD is
block B that afects p. bound to transactloanTherefore,. by &ct 1 (b), the &lue of the

LD equals the alue receied by p in response to transaction.T
Proof: The proof of Claim 4 uses thadt that binding of opera- By Lemma 3, this alue equals thealue of the most recent ST or
tions is done in program order in real time (4thllét of the initial value if there has been no prior store. QED.
Section2.4). These real-time properties of the protocol can be

relaxed somehat while maintaining the correctness of this claim. 4 Related Work

This issue is discussed and the claim is@dan Appendix A. Most of the related wrk in coherence protocoletification is
_) based on formal methods [18] that use state-space search of finite-
3.3 Poof of Sequential Consistency state machines, and theoremapng techniques. These are rigor-

ous methods that can capture subtle erratsthey are currently
limited to small systems because of the state spgaesion for
large, complicated systemsoi-example, the SGI Origin 2000
coherence protocol isevified for a 4-cluster system with one
cache block in [6], the memory subsystem of the Sun S3.mp
We frame the proof of sequential consisient terms of coher- cache-coherent multiprocessor system ésified for one cache
ence epochs. Aoheence epdtis simply a Lamport time inteaV block in [17], the correctness of the Stanford FLASH coherence
[t1,t2) during which a node has access to a block. All LDs and STsprotocol is ‘erified for small test programs and small configura-
that hae global timestamp t wherg £ t < t, are contained in tions in [16], and the SMRC Relaxed Memory Order (RMO)
epoch [{,t;). A shared orxclusive epoch for block B at node N memory consisterycmodel is ‘erified for small test programs in

By construction, the Lamport ordering of LDs and STs within an
processor is consistent with program ordEnerefore, to pnee
sequential consistencit is suficient to shav that the alue of
every load equals thealue of the most recent store.

starts at time4tif a transaction with timestamp (at N_) implies [15]. In contrast, our approach can precisayify the operation of
that N's A-state for block B changes ta;Ar Ay respectiely. The a protocol in a system consisting ofyanumber of nodes and
epoch ends at timg,twhere 4 is N’s timestamp of the métrans- memory blocks.

action on block B that implies a change in A-state at N. In the
example from the prdous section, the shared epoch of A at N
ended at global time 2 while’'f\exclusive epoch at Nstarted at
global time 3. W kuild up to the proof of sequential consistgnc
using the tw timestamping claims of Secti@®2.

A formal approach désed by Shen and Arvind uses terrwvri¢-
ing to specify and pree the correctness of coherence protocols
[22]. Their technique Wwolves shaing that a system with caches
and a system without caches can simulate each . olligs
approach lends itself to highly succinct formal proofe fvid
Lemma 1 shes that tvo processors cannoty&“conflicting” per- Lamport clocks easier to grasp, while not lackingressie
mission to the same block at the same (Lamport) time. Lemma 2power. It is not clear whether or hothe two techniques comple-
states that processors do LDs and STs within appropriate epochsnent each othefferm revriting relies on an ordering of wgite
Finally, Lemma 3 shes that the “correct” blockalue is passed rules (each of which corresponds to aer#) and, as such, may
among processors and the directory between epochs. Proofs of theenefit from the Lamport clock technique which can ordents
lemmas can be found in Appendix A. in logical time.

Lemma 1: Exclusie epochs for block B do noterlap with either There is another body ofask that deles into memory consis-
exclusive or shared epochs for block B in Lamport time. teng models that are more aggressthan sequential consistgnc

Lemma 2: [1, 2, 3,5, 7, 8,9, 21]. Handling more aggressinodels leads to

formalisms that are more werful but more compbe than we [5]
require (e.g., themust handle non-atomic stores). Furthermore,
much of this wrk seeks to characterize when programs will
appear sequentially consistenter when running on the more
aggressie hardvare, an issue that is moot for us. [6]

Informal intuitive reasoning is more tractable and easier to under-
stand than formal analysisutbit becomes less cuimcing as it
becomes more informal. Moreer, the flavs in memory system
designs are generally the subtle types ofvdlahat vould be 7]
missed by high-kel intuitive reasoning. Informal reasoning is
often combined with xensive simulation in an &rt to explore
the state space fougs in the protocol, i simulation is gpensve
and cannot be guaranteed to wercerery obscure g in a proto- (8]
col. In other vark [23], we shw that Lamport clocks alsofef the
opportunity to analyze, formally or semi-formal§pecific parts of
the protocol to pree the walidity of an optimization, whereas other
verification techniques often require complete analysis of the sys-
tem before ayoptimization can bealidated. Lamport clocks kia 9]
also been used in other research, including a paper by Neiger and
Toueg [14] that uses the clocks to determine whatvkadge is
available to each processor in a digitéxd algorithm.

(10]
5 Conclusions and Futue Work
Shared-memory systems are becoming increasingly cerapie
the need of the hour is for bettarification tools that are intuite, [11]
precise and scalable.aNpropose aaerification framavork based
on Lamports logical clock scheme that creates a total order of rel-
evant protocol eents. This order is a construirealization of the

ordering lypothesized in the definitions airous memory consis- [12]
teny models. V8 can then construct proofs that whthat the
requirements of a particular memory consisyemodel are met in
this total order The notion of coherence epochs arises naturally [13]

from such a logical ordering o¥ents, and this notion clarifies the
operation of the protocol as well as its proof of correctnegs. W (14]
have presented our technique and then successfully applied this
technique to the proof of a nonvial directory cache-coherence
protocol. W& expect the technique to apply equally well toyan

other directory protocol, or aub-based protocol (as st in [15]
[23]).

Future vork with Lamport clocks will gtend the range of systems

to which our analysis can be applied, and we plan oisidg a

generic proof that can be easily tailored tovrsystems. The me [16]
systems that will be analyzed may include: clusters of SMPs, sys-
tems with consistent I/0, and systems thatyatmnsisteng mod-

els other than sequential consistente also beliee that Lamport

clocks are a useful tool for reasoning about the possibilities of
deadlock, Nelock, and staation in a directory protocol, and we [17]
intend to &plore this area of research.

6 References

[1] SaritaV. Adve and MarkD. Hill. Weak Ordering—A New [18]
Definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecturpages 2-14, Seattle,
Washington, May 28-31, 1990.

19
[2] Hagit Attiya and Roy Friedman. A Correctness Condition for 9]
High-performance Multiprocessors. FProceedings of the 24th
Annual ACM Symposium on the Theory of Compufiages 679— 20
690, May 1992. [20]
[3] William W. Collier. Reasoning About Parallel Architectures
Prentice-Hall, Inc., 1992. [21]

[4] David Culler, JaswinddPal Singh, and Anoop Gupt8raft of
Parallel Computer Architecture: A Hardware/Software Apprgach
chapter 8: Directory-based Cache Coherence. Morgan Kaufmann,
1997.

Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory
Access Buffering in Multiprocessors. Rroceedings of the 13th
Annual International Symposium on Computer Atchitecipaiges
434-442, June 1986.

AsgeirTh. Eiriksson and Keh. McMillan. Using Formal
Verification/Analysis Methods on the Critical Path in Systems
Design: A Case Study. IRroceedings of the Computer Aided
Verification Conferenceliege, Belgium, 1995. appears as LNCS
939, Springer Verlag.

Kourosh Gharachorloo, Sara Adve, Anoop Gupta, JoHn
Hennessy, and MarR. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-1199,
University of Wisconsin — Madison, December 1993.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecturgpages 15-26, May 1990.

Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo.
Proving Sequential Consistency of High-Performance Shared
Memories. In Symposium on Parallel Algorithms and
Architectures pages 292-303, July 1991.

Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed SystemCommunications of the AGN1(7):558-565,
July 1978.

Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess progratBEE Transactions on
ComputersC-28(9):241-248, September 1979.

Jamed. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. IProceedings of the 24th
International Symposium on Computer Architectienver, CO,
June 1997.

Daniel Lenoski. Personal communication, March 1998.

Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and
Common Knowledge in Distributed System¥ournal of the
Association for Computing Machinery0(2):334-367, April
1993.

Seungjoon Park and David Dill. An Executable Specification,
Analyzer and Verifier for RMO (Relaxed Memory Order). In
Proceedings of the 7th Annual ACM Symposium on Parallel
Algorithms and Architecturespages 34-41, Santa Barbara,
California, July 17-19, 1995.

Seungjoon Park and David Dill. Verification of FLASH Cache
Coherence Protocol by Aggregation of Distributed Transactions.
In Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architecturepages 288-296, Padua, Italy, June
24-26, 1996.

Fong Pong, Michael Browne, Andreas Nowatzyk, and Michel
Dubois. Design Verification of the S3.mp Cache-Coherent Shared-
Memory SystemlEEE Transactions on Computeré7(1):135—
140, January 1998.

Fong Pong and Michel Dubois. Verification Techniques for Cache
Coherence ProtocolACM Computing Survey29(1):82-126,
March 1997.

J.Protic, M.Tomasevic, and Wiilutinovic. Distributed Shared
Memory: Concepts and SystemlEEE Parallel and Distributed
Technologypages 63—79, 1996.

Christoph Scheurich. Access Ordering and Coherence in Shared
Memory Multiprocessors. Ph.D. Dissertation CENG 89-19,
University of Southern California, May 1989.

Dennis Shasha and Marc Snir. Efficient and Correct Execution of
Parallel Programs that Share MemoACM Transactions on
Programming Languages and System$(2):282-312, April
1988.

[22] Xiaowei Shen and Arvind. Specification of Memory Models and

Proof: Let OB, be a LD or ST operation on block B with global

Design of Provably Correct Cache Coherence Protocols. Group timestamp 4. Since OR's timestamp is,t OP, cannot be bound to

Memo 398, Massachusetts Institute of Technology, June 1997.

[23] DanielJ. Sorin, Manoj Plakal, MarR. Hill, and AnneE. Condon.

a transaction with timestamp greater tharet T, be the transac-
tion on block B with the layest timestamp, say, tat g such thatt

Lamport Clocks: Reasoning About Shared-Memory Correctness. <t,. We need to she that OR is not bound to a transaction occur-

Technical Report CS-TR-1367, University of Wisconsin-Madison,

March 1998.
Appendix A: Proofs of Claim 2, Claim 4, and the Lemmas

ring earlier than T; hence ORP must be bound toT

Let OP, be the earliest LD/ST operation (not necessarily to block
B) in p’s program order with the global time stargpNote that

Claim 2: The sequence of A-state changes on block B at a node®P1 may equal Op Also, since OPis the first OP with global
occurs in real time in the order implied by the serialization of timestamp 4 OP; must be bound to the transaction with times-

transactions on block B at its directory

Proof: Claim 2 is easily seen to be true for blocls Biirectory
entry since the directory processes transactions in.dfder sup-
pose that T and T, are tw transactions &cting block B of p
where T, occurs before Jin the transaction serialization order at
the directoryand that % is the first transaction after, ©n block B
that afects p. From Claim 1, a message is sent tdath as a
result of T, and T, (although these may not amiat p in order).
We need to she that the change in A-state resulting fromék
occurs before the change in A-state resulting frgm/le consider
two cases.

® Case 1:p; requests @nsaction T. If p; receves messages
relating to transactionslbefore phas changed its A-state cor-
responding to T (transactions 3,6,7,9 from Secti@rB), then

tamp § at p. By the fct that the Lamport order at ¢quals the
real-time order of changes of A-state at the order in which
changes in A-state at a processor are written in real time is the
same as the Lamport ordering of the corresponding transactions at
that processoHence, the alue of the A-state for block B at the
real time that OPis bound must be thelue implied by a transac-

tion on block B occurring no earlier thap. Bince ORis bound in

real time no later than QRS bound, it cannot be bound to a trans-
action occurring earlier thanTas required. QED.

Comment:the proof of Claim 4 uses twfacts about the protocol
relating real time to Lamport time: (a) the order in which changes
in A-state at a processor are written in real time is the same as the
Lamport ordering of the corresponding transactions at that proces-
sor, and (b) binding occurs sequentially in real timeweer, the
protocol can be relad while maintaining the correctness of Claim

p; buffers such messages until all processing of transaction T 4. For example, suppose that the A-states are updated periodically

has been completed (refer to the 3udldi in Sectior?.4). Oth-
erwise (transactions 1,2,5,9,12,13,14), there is no thaphs
A-state could change due tg Before finishing T.

® Case 2p; does notequest tansaction T. First, suppose that
T, implies that gs A-state changes fromyAto Ag or A
Therefore, T must result from &et-Shaed or Get-Exclusive
request from a processqy, other than pIn these cases (trans-
actions 3 and 7 from Secti@3), the directory enters thedy
state and remains in that state until it reegia response from
p;, at which point ps state has been changed 9 A as
appropriate. Therefore, the change in A-state &nplied by
T, occurs before the directory iess the hsy state. T is not

(using queues to order pending updates) and that during an update
of transactions with timestamps in the rangett the binding
process is suspended. The order in which the A-states are updated
need not agree with the order of the corresponding transactions, as
long as at the end of the update period, the A-seiteevof each
block equals that implied by the most recent transaction prior to
that with timestamp,t Once the A-states are up to date, binding of
LD/STs can be resumed. Binds of thextneontiguous block of
LD/ST operations on blocks for which the A-state is set appropri-
ately can be performed out of ordénus relaxing the real time
ordering assumption for binds, as long as potential changes in A-
state are being queued until the binding process anagus-

NACKed, and so the directory does not send a message to pPended.

regarding transaction Juntil after leaing the lusy state for
T,. Furthermore, jdoes not change its A-state as a result,of T
until it receves a message from the directorganeing T,.
Therefore, the change in A-state corresponding g@dcurs
after the change in A-state corresponding{o T

The only other possible case is thatimplies that ps state
changes from Ato A. Hence, T must result from &et-
Exclusiveor Upgrade request from a processq, other than
pi. In this case, the onlyay that §, can afect g is if T, is
requested by;pT, could be a&et-Shaed, aGet-Exclusiveor
anUpgrade since the actual state of the block B jis gache
could be either read-onlgr invalid due to &ut-Shaed action
which does not &ct the A-state. If Jis aGet-Shaed or Get-
Exclusivethen, by the definition of A-state in Secti®nd, the
A-state at pchanges from Ato A (due to) and then imme-
diately to A5 or Ay (due to), as appropriate. If Jis an
Upgrade it is NACKed by the directory (due to;Ttransaction
10 from Sectior2.3). Since } affects p, it cannot be a
NACKed request, and therefore it must be requesteg dfyep
p;i has changed its state tg. QED.

Claim 4: Every LD/ST operation on block B at process@rigp
bound to the most recent (in Lamport time gttmnsaction on
block B that afects p.

Lemma 1: Exclusive epochs for block B do noterlap with either
exclusive or shared epochs for block in Lamport time.

Proof: Let [t;,t5) be an gclusive epoch for block B at node N. Let
transaction T cause the epoch togdia. We claim that no node has
an epoch for block B thawerlaps with [{,t,).

We first ague that no epoch for block B that starts prior to tifne t
overlaps with [{,ty). By Claim 3 (b), such an epoch Bwud hae

to result from a transaction occurring befoggrTthe serialization
order Therefore, the end of epoch Eowd have to result from
some transactionglon block B occurring no later than {possi-

bly Tg = Ty). Claim 3 (a) ensures that the end of epoch E must be
less than or equal to the timestamp gfal a unique node, say,N
that upgrades its A-state as a result gf Also, by Claim 3 (b)
again, the timestamp ofglby N, must be less than the timestamp
of T, by N. Hence E ends in Lamport time beforgtf} starts.

Clearly, the only epoch starting at timgis at node N, since N is
the only processor whose A-state is npfer transaction [To
complete the proof, we note that thexntansaction, say ;I on
block B after T, must be assigned timestamyby N. If node N
upgrades its A-state as a result ¢f Tlaim 3 (a) ensures thapN
timestamp of § must be greater thag Hence, by Claim 3 (b), if

an epoch E starts as a result of transactiparT transaction later
than T,, E must start at a time greater thgraes required. QED.

Lemma 2: (a) Every LD/ST operation on block B a} s con-
tained in some epoch for block B aipd is bound to the transac-
tion that caused that epoch to start. (b) FurthermareryeST
operation on block B afj [contained in somexelusive epoch for

block B at pand is bound to the transaction that caused that epoch{E’1

to start.

Proof: Let OP be a LD/ST on block B with global timestamBly
Claim 4, OP is bound to the most recent transaction =t fater
than b, say T, that afects block B of p Let t; be g's timestamp
of T;. Part (a) of Lemma 2 then folles for the follaving reasons:
Since OP is bound to;TT; must imply that ps A-state for block

B changes to Aor Ay and so an epoch for block B agtgparts at
time t;. Moreover, since T is the most recent transaction no later
than b that afects block B of p the epoch starting at inust end

at some time later thanp.tTherefore, OP is contained in some
epoch for block B atj@nd is bound to the transaction that caused
that epoch to start.aPt (b) follovs from the further obseation
that if OP is a ST then;Tmust cause arxelusive epoch to start at
pi- QED.

Lemma 3: If block B is recered by node N at the start of epoch
[t1,to), then each wrd w of block B equals the most recent store to
word w prior to { or the initial \alue in the directoryif there is no
store to verd w prior to global time;t

Proof: We prove the claim for all nodes by induction on epoch

starting time {. The basis case is the first action that causes block
B to be sent. In this case the block is sent from the directory and

equals the initial alue of the block in the directory

Suppose that the claim is true for all epochs with starting time less

than g, and suppose that block B is sent from noge¢d\hode N
in response to transaction, which has timestamp &t N;. First,
suppose that §is not equal to N Let transaction J'be the most
recent action on block B prior to, Th serialization ordeiSince
sends block B in response tq, Ty must be cause arx@usive
epoch to start at fNand therefore &cts N,. Let Ty have times-
tamp § at Ny. From Claim 3, I§'s exclusive epoch for block B
starting at timegmust end prior to timg tMoreover, since and
T, are consecute transactions on block B in serialization order
there is no epoch at arprocessor between the time thag' s\
epoch ends and{\é epoch bgins at time {.

We consider tw cases. The first case is that the last STowaw

of block B prior to time {is actually prior tod Therefore, no STs
to word w of block B are bound to;TBy Fact 2, the glue W of
word w of block B sent by jis the walue recaied by Ny in
response to d By the induction fipothesis, W equals the alue

of the most recent store tavd w of block B prior to timegtor the
initial value of word w in the directoryif no prior store. Therefore,
the \alue sent by pequals the alue of the most recent store or the
initial value in the directoryif no prior store.

The second case is that the last ST tmdmv of block B prior to
time t, occurs after timeyt By Claim 4 and Lemma 2 (b), such STs
must be done by nodgyNBy Fact 2, in this case theue of word

w of block B sent by jlin response to {lis the last ST to ard w

of block B in g's program order that is bound tg. Moreover, the
last ST bound to Jhas global time stamp less thanTherefore,
the \alue sent by Bl equals the alue of the most recent store to
word w of block B. This completes the proof of Lemma 3 in the
case that, in response tg, block B is sent by a node other than p

10

The situation in which jEN;, (i.e., in response to,Tthe \alue of
block B is sent from jpto itself) is similay but only the first case
above can arise. QED.

Appendix B: Impossible Transactions

Upgrade with Directory being Idlé&sssume that;ps the processor
erforming theUpgradeon block B and that it obtained read-only

ccess with transaction Bome other processor mustvéger-
formed aGet-Exclusiveor Upgrade and then aVritebadk before
pi's Upgradereached the directaryet transaction T' be the first
Get-Exclusiveor Upgrade transaction on block B after T in the
serialization orderand assume that it occurs at processoflp
(via transactions 6 or 9 foBet-Exclusiveor Upgrade respec-
tively) ensures that; pnust vait for an acknaledgment from p
before obtaining read-write access. In turp,cannot send an
acknavledgment until itsUpgradeis processed by the directory
Until then, p cannot do &Vritebak, and thus the Directory cannot
beldle.

Writeback Assume that jis the processor performing thérite-
bad on block B and that it obtained read-write access with trans-
action T

Directory is Idle Some other processor mustégperformed a
Get-Exclusiveand then aWritebak before ps Writebadk
reached the directariet transaction T’ be the fir&et-Exclu-
sive transaction on block B after T in the serialization order
and assume that it occurs at procesgdi@vever, T (transac-
tion 7) ensures that the directory will go irBaisy-Exclusive
until it receves a message from. Hence, pcannot obtain
read-write access beforggWritebadk has been processed by
the directorybecause cannot recek a reply from the Home
until pi’s Writebadk request is receed and processed by the
directory

* Directory is Shaed For the directory to b&haed some other
processor must ke performed &et-Shaed before s Write-
badk reached the directary et transaction T’ be the firGet-
Shaedtransaction on block B after T in the serialization order
and assume it occurs at processoHowever, T’ (transaction
3) ensures that the directory will go inBusy-Shaed until it
receves a message from. @herefore, ps Writebadk cannot
see &Shaeddirectory

Directory is Busy-Shat Some other processor mustvea
performed aGet-Shaed before ps Writebadk reached the
directory Let transaction T’ be the fir&et-Shaedtransaction

on block B after T in the serialization order and assume it
occurs at processo[. " (transaction 3) ensures that the direc-
tory will go into Busy-Shaed until it receves a message from
pi. Once the directory enteBusy-Shaed CACHED only con-
tains 9’3 ID. Therefore, s ID cannot be in CBHED.

Directory is Busy-ldie Some other processog must hae
performed aGet-Exclusive receved the block from jp and
performed aWritebak that beat ps update message to the
directory At this point, ag processor that mak aGet-Shaed,
Get-Exclusive or Upgrade request for B will get NCKed
(transactions 4, 8, and 11). Onlygan change the state out of
Busy-Idle and this will happen when its update message
arrives at the directoryNo Writebad can occur while ilBusy-

Idle because no processor has read-write access gjready

in the irvalid state once it has sent the blockjo p

