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Abstract

Historically, processor accesses to memory-mappedcde
registers have been magkl uncabable to insue their visibility to
the deice The ubiquity of snooping dae coheence howeer,
males it possible for cessos and deices to inteact with cab-
able, coheent memory opations. Using coh@nce can impve
performance by facilitatingust transfes of whole cdee bloks
and reducing conwl overheads (., for polling).

This paper bgins an @ploration of network interfaces (NIs)
that use coh@&nce—coh@&nt network interfaces (CNIs)—to
improve communication performancég restrict this study to NI/
CNls that eside on cohent memory or I/Oudses, to NI/CNiIs that
are mub simpler than pycessos, and to the performance of fine-
grain messging from user pocess to user pcess.

Our first contrilution is to deelop and optimize two miea-
nisms that CNIs use to communicate witbcpssos. A cabable
device register—derived fsm cabable contol registers [39,40]—
is a coheent, cabable blo& of memory used toansfer status,
contol, or data between a diee and a pocessar Cadable
queues gnerlize cabable deice rmgisters from one caeable
coheent memory bldcto a contiguousegion of cabable coher-
ent blo&ks manged as a cicular queue

Our second contrilition is a taxonomy and comparison of four
CNIs with a mae corventional NI. Micobentimark esults show
that CNIs can immve the ound-trip latency and duevable
bandwidth of a small 64-byte megsaby 37% and 125%espec-
tively on the memoryus and 74% and 123%espectively on a
coheent I/O lus. Experiments with five mabentimarks show
that CNIs can impmve the performance by 17-53% on the memory
bus and 30-88% on the 1/Qub.

This work is'supported in ‘part by Wright Laboratoryidnics Directorate,
Air Force Material Command, USAEnder grant #F33615-94-1-1525 and
ARPA order no. B550, NSF PYlward CCR-9157366, NSF Grant MIP-
9225097, an |.B.M. cooperaé fellovship, and donations from A&T.

Bell Laboratories, Digital Equipment Corporation, Sun Microsystems,
Thinking Machines Corporation, and Xerox Corporation. Our Thinkiomg
Machines CM-5 was purchased through NSF Institutional Infrastructaire
Grant No. C[A-9024618 with matching funding from the Warsity ofie
Wisconsin Graduate School. The U.Sv&mment is authorized to repro-
duce and distrilte reprints for Geernmental purposes notwithstanding
ary copyright notation thereon. The wis and conclusions contained

1 Introduction

Most current computer systems do ndicédntly support fine-
grain communication. Processors reeeidata from xernal
devices, such as high-speed neths, through DMA and uncach-
able deice ragisters. A processor becomesase of an rternal
event (e.g., a message aal) via interrupts or by polling
uncached status gisters. Both notification mechanisms are
costly: interrupts hae high lateng and polling vastes processor
cycles and other system resources. A processor sends data with an
uncachable store, a mechanism that is rarefgrgfirst-class sup-
port. Both uncachable loads and stores incur higarhead
because thecarry small amounts of data (e.g., 4-16 bytes), which
fails to use the full transfer bandwidth between a processor and a
device. Optimizations such as block gopt2] or special store
buffers [42, 23] can help impve the performance of uncachable
accesses by transferring data in chunksvéter, these optimiza-
tions are processa@pecific, may require meinstructions [42, 23],
and may be restricted in their use [42].

Snooping cdee coheencemechanisms, on the other hand, are
supported by almost all current processors and memasgsb
These mechanisms aloa processor to quickly andfiefently
obtain a cache block’worth of data (e.g., 32-128 bytes) from
another processor or memory

This paper ®plores leeraging the first-class supporvgn to
snooping cache coherence to improcommunication between
processors and netrk interfaces (NIs). NIs need attention,
because progress in high-bandwidthydateng networks is rap-
idly making NIs a bottleneck. Rather than try xplere the entire
NI design space here, we focus odors three ways:

® First, we concentrate on Nis that reside on memory oru&2d
In contrast, other research hasmined placing Nls in proces-
sor raisters [5,15,21], in the Vel-one cache controller [1], and
on the leel-two cache bs [10]. Our NIs promise Veer cost
than the other alternais, gven the economics of current
microprocessors and higher igtation level we epect in the
future. Nevertheless, closer irgeation is desirable if it can be
made economically viable.

® Second, we limit oursebs to relatiely simple Nls—similar in
complity to the Thinking Machines CM-5 NI [29] or a DMA
engine. In contrast, other research hasréned compbe, pow-
erful Nls that intgrate an intger processor core [28, 38] tdaf
higher performance at higher cost. While both simple and com-
plex NlIs are interesting, we concentrate on simple NIs where

herein are those of the authors and should not be interpreted as necexdazily coherence has not yet been fulipited.

representing the fifial policies or endorsements, eithexpeessed or
implied, of the Wright Laboratory onics Directorate or the U.S. @o
ernment.

® Third, we focus on program-controlled fine-grain communica-
tion between peer user processes, as required by demanding par-
allel computing applications. This includes notifying the
receving process that data issadlable without requiring an
interrupt. In contrast, DMA deces send layer messages to
remote memoryand only optionally notify the reaéing process
with a relatvely heay-weight interrupt.

We explore a class ofoheent network interface€CNIs) that
reside on a processor nasl@emory or coherent I/Qub and par-
ticipate in the cache coherence protocol. CNIs interact with a



coherent bis like Stanford BSH’s RC/PCPU [30], bt support
messaging rather than distited shared memarZNIs commu-
nicate with the processor throughatwnechanismscacdable
device mgisters (CDRs) andcadchable queuegCQs). A CDR—
derived from cachable control gisters [39, 40]—is a coherent,

cachable block of memory used to transfer status, control, or data

between a dace and a processotn the common case of
unchanging information, e.g., polling, a CDR rem® unneces-

small 64-byte message by 37% and 125% resdgton a mem-
ory hus and 74% and 123% respeely on a coherent 1/Ous.
Experiments with fig macrobenchmarks shothat a CNI can
improve the performance by 17-53% on the memary &nd 30-
88% on the I/O bs.

We see our paper iag two main contrilntions. First, we
develop cachable queues, including using lazy pointers, message
valid bits, and sensewrerse. Second, we do the first micro- and

sary lus trafic because repeated accesses hit in the cache. When macro-benchmarks comparison of altenetCNIs—eposed by
changes do occu€DRs use the underlying coherence protocol to  our taxonomy—with a cantional NI.

transfer messages a full cache block at a time. Cachable queues
(CQs) are a e mechanism that generalize CDRs from one cach-

able, coherent memory block to a contiguougame of cachable,

A weakness of this papdrovever, is that we do not do an in-
depth comparison of our proposals with DMA. The magnitude of
this deficieng depends on lweimportant onexects DMA to be

coherent blocks managed as a circular queue to amortize control compared to fine-grain communication in future systems. Some

overheads. @ maximize performance we@oit several critical
optimizations: lazy pointes, messge valid bits and sense-
reverse Because CQs look, smell, and actlikormal cachable
memory message send and reeeoverheads arextremely lav:

a cache miss plusseral cache hits. Furthermore, if the system
supports prefetching or an update-based coherence protesol, e

amgue that DMA will become more important as techniques lik
Userlevel DMA [3] reduce DMA initiation @erheads. Others
argue DMA will become less important as processors add block
copy instructions [42] (making the brealen size for DMA
larger) and as the mginal cost of adding another processor
diminishes [48] (making it lessxpensve to temporarily \&ste a

the cache miss may be eliminated. Because CNIs transfer mes- processor).

sages a cache block at a time, the sustainable bandwidth is much

greater than camentional program-controlled NIs—such as the
CM-5 NI [44]—that rely on slaver uncachable loads and stores.

For symmetric multiprocessors (SMPs), which are often limited

by memory lns bandwidth, the reduced$occupangcfor access-
ing the netwrk interface translates into bettevesall system per-
formance.

An important adantage of CNls is that thellow main mem-
ory to be thehomefor CQ entries. The home of a ysical

address is the 1/0 dige or memory module that services requests

The rest of this paper describes CDRs and CQs in detail
(Section2), presents CNI taxonomy and implementations,
(Section3), describes waluation methodology (Secti@h), ana-
lyzes results (Sectiob), reviews related wrk (Sectior6), and
concludes (Section).

2 Coheent Network Interface Techniques

In this section, we describe amtechniques for implementing
CNils: Cachable Déce Raisters (CDRs) and Cachable Queues

to that address (when the address is not cached) and accepts thgCQs). A CDR is a single coherent cache block used by a proces-
data on writebacks (e.g., due to cache replacements). Using main sor to communicate information to or from a CNvide. A CQ

memory as a home for CQ entriegeo$ seeral potential adan-
tages. First, it decouples the logical angigital locations of net-
work interface hiffers. Logically these bffers reside in main
memory a relatvely plentiful resource that eases problems of
naming, allocation, and deadlock.yBltally, they can be located
in processor or déce caches to all@ access at maximum speed.
Second, it preides the same intex€e abstraction for local and

generalizes this concept into a contiguougia® of coherent
cache blocks. & describe the major issues in successfully
exploiting CDRs and CQs. ®/describe their operation assuming
write-allocate cachesept consistent by a MOESI writevialidate
coherence protocol [43].

remote communication. The sender cannot distinguish if the 2.1 Cachable Deice Registers

recever is local, nor can the reger tell. Third, it can xploit

Cachable Déce Raisters (CDRs) combine the traditional

future processor and system optimizations, such as prefetching, notion of memory-mapped dee registers with the ne-ubiqui-
replacement hints, or update protocols, that can further reduce the (o5 hys-hased cache-coherence protocols supported by all major

overheads of accessing Nbisters or datauffers.

To expose the CNI design space, weelep a taxonomy rem-
iniscent of DifX [2]. We denote traditional netwk interiace
devices as NKX and coherent netwk interface deices as CNK.
The subscript specifies the portion of an NI queue visible to the
processarThe dehult unit ofi is memory/cache blocksybcan
also be specified in 4-byteonds by adding the i ‘w’. The
placeholder X is either empt®, or Q,. X empty represents the
simple case where the Ntmoses only part or whole of one mes-
sage to the processdys a result there are nggicit head or tail

microprocessors. Reinhardt, et al., [39, 40] first proposed CDRs to
communicate status information from a special-purpose rzaedw
device to a processokVe etend their vork to use coherence to
efficiently communicate control information and data both to and
from a netverk interface.

A CDR is a coherent, cachable memory block shared between
a processor and a coherent ratwinterface (CNI) deice. The
CNI sends information to the processor—i.e., to initiate a
request or update status—by writing to the block. The CNI must
first obtain write permission to the block in accordance with the

pointers to manage the NI queue. X = Q represents the more com- nqerlying coherence protocol. The processor vesehe infor-

plex case where thexposed part of the NI queue is actually man-
aged as a memory-based queue witplieit head and tail
pointers. X = @, denotes that the home of thepkcit memory-
based NI queues is main memory

We then ealuate four CNIs—CNj, CNI;Q, CNI51Q, and
CNI;gQm—and compare them with Bjj—an NI that uses
uncached accesses to its daifidrs and deice ragisters, detied
from the Thinking Machines CM-5 NI. &/consider placing the
NIs on both a coherent memorysand a slwer coherent I/O
bus. Microbenchmark results skhahat compared to N, CNIs
can imprwoe the round-trip laterycand achieable bandwidth of a

mation by polling the block. Unl&k eisting polling schemes,

the CDR block is cachable, so in the common case of unchang-
ing information, the processsrunsuccessful polls normally hit

in the local caché.Bus trafic only occurs when a die
updates the information. Figuteillustrates this case under a
write-invalidation based MOESI coherence protocol, assuming
both the CNI and processor caches start with a read-onjyafop

1. Cache conflicts can cause replacements, whiebtaferformanceut
not correctness.



Clearon-read does notavk well for CDRs, since most pro-
CPU cessors do not pvile the same atomicity guarantees for cache
~. blocks. The load that causes the cache miss should be atomic (to
CACHE‘ > 5 close the “windw of vulnerability” [27]); havever, there are no
guarantees for the remainingords in the block. Before subse-
/r/ AN quent loads complete, a cache conflict (e.g., resulting from an
7 7 T interrupt) could replace the block.it clearon-read semantics,
the remainder of the data in the CDRRuAd be lost foreer.
©) l\(3) ,(‘4) Memory Bus Instead, CDRs require anxgicit clear operation by the
X recever to enable reuse of the block. Under a MOESI protocol
even this clear operation requires avslthree-gcle handshak
CACHE between the processor and CNI to maure that the processor
Coherent sees ne@ data when it re-reads the CDR. In the first step of this
Interface Hardware | | Network handshag, the processor issues ampléit clear operation by per-
Interface forming an uncached store to a traditionatide register In the
FIGURE 1. Coherent Network Interface with Cachable Device second step, the processor must ensure that the CNI has seen the
Register clear request. Since most modern processors grsfce hiffers,
___ - - this step may incur additional stalls while a memory barrier
the CDR. The CNI generates awvalidation to obtain write per-  instruction flushes the store out to thesbwhen the CNI obsezs
mission (arc 1), and the processor incurs a cache miss to fetch thehe eplicit clear operation, it walidates the CDR by arbitrating
CDR on its ngt poll attempt (arcs 2-5). Because a CDR consists for and acquiring the memorys. The third step of the handshak
of a whole cache block, an entire small message can be commuss for the processor to ensure that thelidation has completed. It
nicated between processor and CNI in a singie transaction, does this by reading, potentially repeatedlyraditional uncached
amortizing the fied ozerheads across multipleovds. device status mister’ Consequently while CDRs diciently
A CDR can also transfer information from the processor to the transfer a single block of information, theerform much less well
device, in a logically symmetric ay. Processor writes to the CDR  for multiple blocks. Vi address this problem by introducing cach-
are treated just Ik for a normal coherent cache block, obtained able queues.
using the standard coherence mechanisms. The Chtede
receves the information by reading the block, in a mannervegui
lent to polling. Havever, because the dige obseres the coher- 2.2 Cachable Queues

ence protocol direct)yit knowvs when the processor requests write Cachable Queues (CQs) generalize the concept of CDRs from

permission to the block. Thus it need not poll periodically can one coherent memory block to a contiguousiae of coherent

read the block back immediately after the processor requests W”tememory blocks managed as a queue. CQs are a general mecha-

permission. The dece can pruide a system programmable back-  pigm that can be used to communicate messages betweenoiw

off interval to reduce the l&ihood of “stealing” the block back cessor caches or a processor cache andviaedeache. A &y

before the processor completes its writes to the CDR. This tech- adwantage of CQs is that theimplify the reuse handshaland

nique, calledvirtual polling, is necessary becausevfprocessors amortize its werhead wer the entire queue of blocks. Liu and

can eficiently “push” data out of their cachesrfprocessors (€.9.,  cyller [31] used cachable queues to communicate small messages

PaverPC [47]) that do support usevel cache flush instructions,  gnq control information between the compute processor and mes-

the CDR can be directly flushed c_)u_t of the cache. sage processor in the IntearBgon. VE shev haw CQs can be
CDRs allav a processor to ftiently transfer a full cache  ysed to communicate directly between a processor and arketw

block (e.g., 32-128 bytes) of information to or from a CNIt ' interface deice. We first describe the basic queue operation, and

smaller amounts of data, e.g., a 4-bytardy CDRs are less fef then introduce three important performance optimizations.

cient. For most processors, fetching a singlers from an Cachable queues follothe familiar enqueue-dequeue abstrac-

uncached dece register tales roughly the same time as from a  (ion and emplp the usual array implementation, illustrated in

CDR; this is because the CNI responds with the requested W rigure2. The head pointehéad) identifies the ne item to be

first which is then bypassed to the procesklowever, the CDR dequeued, and the tail pointerag | ) identifies the ne free

still has higher werhead since it will displace another block from entry The queue is empty fifead andt ai | are equal, and full if

the cache, potentially causing a later miss. CDRwélo kess well tail is one item less thahead (modulo queue size). If there is
for small transfers to a diee. Because most modern processors g gingle sender and single reggifor this queue, the case we con-
have store bffers, a single uncached store is morcient than sider in this paperthen no locking is required since only the
transferring that wrd via a CDR. Br most processors andises sender updatesai | and only the receer updated;nead3.

the breakven point typically occurs at twor three double ords. A processor sends a message by simply enqueuing it in the

Hené:e, ?ur CtNII(_JIefS|gnst_st|IIfuse %EcaChed storets tt(r)rérggsfer S'ngleappropriate out-bound message queue. That is, it first checks for
words or controf information from the processor to overflow, then writes the message to thetrfeee queue location

For messages lger than a cache block, we require some 5.4 incrementsai | , relying on the underlying coherence proto-
method to reuse the CDRofFexample, after the processor has

read the first block of a message, it manwto read the second
block using the same CDR. Gamtional deice registers often
solve this problem using implicitlear-on-read semantics, where
the raister is cleared after an uncached reamt. &ample, the
CM-5 network interface treats the read of the haedes receie
gueue as an implicit “pop” operation. Clear-read wrks because 2. e assume fid size netark messages in this papbut CQs can be

1. A som&hat more dfcient handshakis possible if the processor pro-
vides a useaccessible cachevalidate operation. Issue clear operation,
flush store bffer, and ivalidate cache entry

processors guarantee the atomicity ofviutial load instructions; generalized toariable length messages in a straight-fmivmanner
that is, _the glue returned by the diee is guaranteed to be written 3. Memory barrier operations may be necessary to peesedtering under
to a rgjister wealer memory models.



Send
Process

FIGURE 2. Local Cachable Queue

col to bring the block(s) local to the cache. A processorvesei

message by first checking for an empty queue, then reading the

gqueue entry pointed to by thead. The message remains in the
queue until the receér eplicitly incrementshead. The head
and tail pointers reside in separate cache blocks.

Because CQs are simply memotlyey have the property that
the message sender and reeehae the same inteate abstrac-
tion whether the other end is local or remote. A local CQ, illus-
trated in Figure2, is simply a coventional circular queue between
two processors. A remote CQ consists ob tlwcal CQs, each
between a processor and CNivide, as illustrated in Figui@

FIGURE 3. Remote Cachable Queue

tion. We can ®oid this transaction (andvaid clearing the alid

bit) using a technique kmm assense everse The ley idea is to
alternate the encoding of thalid bit on each pass through the
gueue. ¥lid is encoded as 1 on odd passes, and encoded as 0 on

The head and tail pointers are also managed as cachable memoryven passes. The sender and nereiboth hae an additional state

A CNI that uses CQs simply actsdilanother processor manipu-
lating the queue.

The head and tail pointers of the CQs are a much simjglgr w
to manage reuse than the comptandsha& required by CDRs. If

bit, stored in the same cache blocks as their respeptinters,
indicating the sense of their current pass. Figdraad5 present
pseudo-code for the simple case where #ii \bit is stored in a
separate wrd in the headeiThe sender first checks if the CQ has

there is room in the CQ, then the tail entry can be reused,; if the CQspace and then writes the messagevi@tbby its current sense as

is non-emptythen the head entry ihd. Hovever, even though

the messagealid bit. The receier compares its current sense to

no locking is required to access the head and tail pointers, athe \alid bit in the message, with a match indicatingabidvmes-

straight-forvard implementation induces significant communica-
tion between sender and reegi This occurs because the sender
must check (i.e., read) the head pointerdetect a full queue, and
the recerer must check the tail pointdo detect an empty queue.
Because the queue pointers aeptkin coherent memargache
blocks may ping-pong with each check.

We can greatly reduce thisverhead using three techniques:
lazy pointes, messge valid bits andsense everse Lazy pointers
exploit the obseration that the sender need not wnexactly hav
much room is left in the queueytbonly whether there is enough
room. The sender maintains a (potentially staleyafthe head
pointer shadow_head, which it checks before each send.
Shadow_head is conserative, so if it indicates there is enough
room, then there is. Only wheshadow_head indicates a full
gueue does the sender rdeehd and updatshadow_head. If
the queue is no more than half full oveeage, then the sender
needs to chechead—and incur a cache miss—only twice each
time around the array

Lazy pointers wrk much less well for the tail pointefhe
recever must check ai | on every poll attempt, to see if the
queue is emptyWhen&er a message aves, the receger’s cached
copy of t ai | gets ivalidated. Thus in the avst case, each mes-
sage arrial causes a cache miss oai | . Instead, we use mes-

sage. Senseverse has been ptieusly used for barriers [34] and
asynchronous logic,ub to our knavledge has ner been used for
messaging.

Combining all three optimizations minimizes theshtrafic
required by CQs. Under a writevadidation based MOESI proto-
col, each block of a message requires omalithation, to obtain
write permission for the sendeand one read miss, to fetch the
block for the receier. The head pointer requires onlychivivalida-
tion-miss pairs for each pass around the circular queue, assuming
the queues are no more than half full gerage. The tail pointer is
private to the sender and generates no coherence actions.

2.3 Home or CQ entries

In most computer systems, alfy physical addresses map to
a home device or memory module. If a block is cachable, for
example, then the home is where data are written on cache
replacement. Should the home for CDRs or CQ entries be at the
CNI, as with a rgular deice register or in main memory?

Since CDRs are each a single block and mosicds will
employ only a fev, the logical choice is to pvade the home
within the deice itself. This can also simplify the implementation
for some memory Uses, because thevilee may not hee to

sage wlid bits—stored either as a single bit in the message headerimplement all cases in the coherence protocol [36].

or in a separate avd—to allav the receier to detect message
arrivals withoutever checking the tail pointer [10, 31]. Thalid

bits indicate whether a cache block containsalidvmessage, or
not. On a poll attempt, the reeei simply &amines the first mes-
sage in the queue (i.e., the one pointed thdwd); if it’ s invalid,

the queue is emptyThus no hs trafic normally occurs in this
case. When aalid message is written to the queue, the sender will
invalidate the receer’s cached cop causing a cache miss when
the recerer polls ag@in. To complete the handshakthe receier
must clear the messagelid bit when it adanceshead.

Clearing the messagalid bit requires the reocgr to write the
queue entry; thus under a MOESI protocol, the vecdiecomes
owner of the queue enty’cache block, rather than simplyvhrey
a shared cop This normally requires an additionaldtransac-

CQs, on the other hand, will benefit from beinggéar For
example, Breaver, et al., hae demonstrated that remote queues can
significantly improe performance by pventing contention on
the netverk fabric [6]. If the CQ8 home is main memory—a less
precious resource than hamhe FIFOs—then its capacity is
essentially infinite. Laye queues help simplify protocol deadlock
avoidance, at least for moderate-scale parallel machinasndda
the CQ home in memory also helps tolerate unreliable anktw
fabrics, since messages need not be vethfrom the send queue
until delivery is confirmed.

To place the CQ home in main memome must address three
operating system issues. First, a CNI needs a translation scheme to
translate the CQ virtual addresses tygital addresses in main
memory In this paperwe assume that the operating system allo-



if (tail == head &&
sender’s sense != receiver’'s sense)
Queue is full, stall or return error

else

{ .
enqueue message at tail + 1;
*tail = sender’s sense;
advance tail modulo CQ size;
if (tail == 0)
{

/* reverse the sense */

sender’s sense = sender’s sense xor 1;

FIGURE 4. Pseudo codedr enqueue with senseaverse

cates CQ pages contiguoysi§lowing CNils to use a simple base-
and-bounds virtual-to-pisical address translation. If the operating

if (*head != receiver’s sense)

{
}

else

{

Queue is empty, stall or return null

dequeue message at head + 1;
advance head modulo CQ size;
if (head == 0)

{

[* reverse the sense */
receiver's sense = receiver's sense xor 1

}

FIGURE 5. Pseudo codedr dequeue with senseaverse

with a CNI using itown data queues and treats thene likgular
cachable memoryThe CNI deice need only maintain a small
amount of state for each queue, e.g., base and bound translations,
head and tail pointers, and a process identifiee process identi-

system cannot guarantee this, then a more complicated translatiorer js ysed to ensure that messages sent from one node are placed
mechanism may be necessary [19]. Second, a CNI must ensure,n the appropriate queue on the reicej node. Since this state is

that CQ pages @ahys reside in main memgrgr be prepared to
fetch them from the sap deice. For our implementations we
assume that CQ pages are “pinhea, that the operating system
does not attempt to page them out. Altexredyj we could adopt a
more fleible scheme [3, 19] at thexgense of a more general
address translation mechanism (e.g., a TLB). Fintligre must
be some mechanism for the rare case in whien aghe lage
amount of memory allocated for a CQ fills up. The simplest option
is to block the sender; tv@ver, this may lead to deadlock. Alter-
natively, as proposed for MIT Fugu [32], the CNMile can inter-
rupt the processprcausing it to allocate free virtual memory
frames and drain the CQ.

Making main memory the home is generally infeasible with a
coherent 1/0 bs. Coherent I/Ouses [18] allv memory residing
on the I/O lois to be cached by the processtmvever, they do not
allow an 1/O deice to coherently cache data from thgular pro-
cessor memory space. It is fditilt to change this in the near
future because the speed mismatch esak hard for the I/O
devices to respond to memorudsnoop requests in a timeash-
ion.

2.4 Multipr ogramming

The demands of multiprogramming require additional support
from a netvork interface. In traditional netarking, an NI is a sin-
gle shared resource virtualized by the operating systermex&m-
ple, in TCP/IP the operating system multide the hardere
device to send and reas netvork messages to and from rnyan
processes. Unfortunatelythe operating systes’ overheads
severely limit performance, especially for small messages.

Many multicomputers reduce or eliminate thigethead by
mapping the NI directly into the useraddress space [1,15,29].
Thus the operating system normally need not gethied when
messages are sent and reedi Havever, usermapped NIs signif-
icantly complicate support for multiprogramming. Possible solu-
tions range from disaeing multiprogramming [15], to taking
special actions at contieswitch time (to conte switch the NI and
network state) [44], to optimistically assuming a message is des-
tined for the current process\(egting to operating systenuffer-
ing if it is not) [32]. Furthermore, these solutions do not easily
generalize to symmetric multiprocessing (SMP) nodes, where
multiple processes may concurrently access the NI.

CNIs vastly simplify the multiprogramming problem by using
memory-based queues as the irteef abstraction, rather than
memory-mapped dice raisters. Each process communicates

typically much smaller than the data queues, a CNI can support
more actve processes than a memory-mapped NI with comparable
hardware. If there are more aeti queues than the CNI state can
support, tvo options hae potential. First, the operating system
can unmap additional queues and acceplt§ when the are
accessed. Second, the operating system can allocate a memory-
based data structure that CNI haade/can use to find the state for

all active queues (lik page tables for a TLB fill).

3 CNI Taxonomy and Implementations

This section proposes a taxonomy of matwinterfaces (NIs)
and describes the implementation otfiIs that we waluated in
this paperWe use the NI queue structure as the main component
to enumerate a taxonomy of nek interfaces. NI queues are the
primary carriers of messages between a processor and its NI. A
processor sends messages to the NI througkethd queuand
receves messages from the NI through teeeive queud-or our
taxonomy of CNIs we assume that both the NI queues tize
same structure.

Our taxonomy is modelled after Agnal et al's classification
of directory protocols [2]. \& use the notation I for traditional
NIs and CNX for coherent neterk interfaces that cache the NI
queues. The subscriptlenotes the size of the NI quexgesed to
the processofThe deéult unit ofi is memory/cache blocksub
can also be specified in 4-byterds by adding the siix ‘w’. The
placeholder X could either be empty, or Q,. X empty repre-
sents the simple case where a mekinteriace &poses only part
or whole of one netark message.df CNIs a netwrk message is
exposed via CDRs. CDR reuse is managed by xiptioit hand-
shale described in Sectichl. X = Q represents the more com-
plex case where thexposed portion of the NI queue is managed as
a memory queue withxplicit head and tail pointers. X =,Q
denotes that the home of theplicit memory-based NI queues are
in main memory The absence of am’ implies that the dece
senes as the home for the NI queues.

Several «isting NIs can be classified with this taxonoriijpe
Thinking Machines’ CM-5 [44] NI is NJ, since it &poses tw
words of a message to the reeei Similarly, the Alevife [1] NI is
Nl16w [26]. The netwrk interface in *FNG [10], which degotes 8
KB for an NI queue and consists of 64-byte cache blocks, is
NI126Q.

We examine five different netwrk interface deices in this
paper summarized indblel, to send 256-byte netrk messages.
The first is a corentional netwrk interface modelled after the



NI/CNI  |Exposed Queue Siz®ueue Pinters Home
Nloy, 2 words

CNly 4 cache blocks device
CNI; Q 16 cache blocks explicit device
CNIg;Q | 512 cache blocks explicit device
CNI1gQm | 16 cache blocks explicit main memory

TABLE 1. Summary of Network Interface Devices

Thinking Machines CM-5 NI. Messages are sent by first checking
an uncachable statuggister to ensure there is room to inject the
message, then the message is written to an uncachahle ohg-
ister backd by a hardare queue. Similarlyreceves check an
uncached statusgester to see if a message \aiable, then read
the message from an uncachable/icke register Because all
accesses to the NI queues are non-cachable, amdotwbyte
words of the message argesed, we classify this dee as N},

The second Nbaends this baseline diee by using four CDRs
to expose a 256-byte nebrk message. This diee, denoted by
CNly, exploits the memory s’s block transfer capability to e
a message between the processor and theedéiavever, the sta-
tus and control gisters are uncached. After radeg a message,
the processor issues an uncached storaglicily pop the mes-
sage dfthe queue. By atays checking the uncached statugise
ter—which does not indicate message readyregntil the cached
copy has been walidated—the processor and GNlevice per-
form a three-gcle handshakthat preents &lse hits.

The three-gcle handshak limits the bandwidth achiable by
CNl,. The third and fourth NIs sadvthis problem by empying
CQs for message data angutar memory for control and status
information (head and tail pointers). Gi® and CN§;,Q cache
up to 16 and 512 blocks, respeety. The memory that backs up
the caches resides on thevides themsekls. The lager capacity
of CNI5;Q reduces the number of flocontrol stalls, increasing
performance for applications with mamessages in flight.

Sending messages to a @QIdevice irnvolves three steps:

Operation Cache | Memory | I/O Bus
Bus Bus

Uncached 8-byte load from NI 4 28 48

Uncached 8-byte store to NI 4 12 32

Cache-to-cache transfer fron 42 76

CNI to processor (64 bytes)

Cache-to-cache-transfer fron 42 62

processor to CNI (64 bytes)

Memory-to-cache transfer (6 42

bytes)

TABLE 2. Bus Occupancy br Network Interface and Memory
Access in Pocessor Cycles

The CNI deices implement aariant of virtual polling to min-
imize the number ofus transactions on the critical path. Specifi-
cally, under the bs's write-irvalidation based MOESI protocol,
the processor must generate araligation signal to acquiream-
ership of a cache block before it can write to it. Since our CQs are
filled in FIFO orderan irvalidation signal for all blocks other than
the first block of a multi-block message implies that the processor
is done writing the preéous cache block. When the CNIwige
detects an walidation signal it issues a coherent read on thépre
ous cache block of the same message. Thus part of the message is
transferred to the CNI cache before the processor has completed
writing all the cache blocks of the message.

4 Methodology

This section describes the system assumptions and benchmarks
used to ealuate the fie netvork interface designs. Sectidnpre-
sents results from thevauation.

4.1 System Assumptions

Our simulations model a parallel machine with 16 nodes, each
with a 200 MHz dual-issue 8RC processor modelled after the

checking for space in the CQ, writing the message, and increment-ROSS HyperSRRC, 100 MHz multipleed, coherent memory

ing the tail pointerThe send is further optimized by sending a
message ready signal to the CNvide through an uncached store.
As discussed in Sectighl, uncached stores are morécednt

bus, 50 MHz multiplged, coherent I/Ous, and a netark inter-
face (Nb,, or one of the four CNXs). Both luses support only
one outstanding transaction. The memaug'$ coherence proto-

than cache block operations for small control operations. Hence col is modelled after the MBus \el-2 coherence protocol [24].

for the send queue, the CNIvilee does not use virtual polling.
Instead, the CNQ uses the message ready signaletepka count

Coherence on the I/Qub resembles that of the coherexteasion
to PCI [18]. An I/O bridge connects the memory and I(Qds.

of pending messages. This count is incremented on each messagé&he bridge bffers writes and coherentalidations, it blocks on

ready signal and decremented when thécdeinjects a message

reads. When transactions are simultaneously initiated on the tw

into the netwrk. As long as this counter is greater than zero, the buses, the I/O bridge ACKs the 1/O s transaction to pvent
CNI;Q device pulls messages out of the processor cache (unlessdeadlock. Birness is preseed by ensuring that the xtel/O bus

the blocks hee already been flushed to their home in thaodg
and increments the head point®n the receke side, the processor
polls the head of the queue, reads the message valtidn then
increments the head point@&oth sender and rewer toggle their
sense bits when thevrap-around the end of the CQ.

The last deice, CN| Q. caches up to 16 cache blocks on the
network interiace deice, and werflons to main memory as neces-

transaction succeeds.

The single-lgel processor cache is 256 KB direct-mapped,
with duplicated tags tatilitate snooping and 64-byte address and
transfer blocks. The CNI caches are also direct-mapped with 64-
byte address and transfer blocks. The CNI cache siags v
according to the subscriptin the CN|X nomenclature. dble2
shavs the lis occupangc for our netvork interface and memory

sary The total size of the memory-based queue is 512 cache/mem-accesses in processoctes. Since the I/OuUs is connected to the

ory blocks. Haing main memory as home for the CQ simplifies
software flav control. Specificallyfor the other NIs, whewrer the
sender cannot inject a message it mugiligitly extract ary
incoming messages andffer them in memory [6]. Caersely
the CNLgQq, does this bffering automatically when the CNI
cache cannot contain all the messages. The Q| taxonomy
allows for memory werflow to occur on both the sending and
receving CNIs. Havever, for simplicity, this paper only>xamines
memory huffering at the receer.

processor via the memory$ the s occupancnumbers for the
I/O bus includes the corresponding memaug bccupangccycles.
Network topology is ignored and netwk message size is &d
at 256 bytes. All messages ¢ak00 processorycles to traerse
the netvork from injection of the last byte at the source tovatri
of the first at the destination.eAfmodel hardare flav control at
the end points using a hardwe sliding windw protocol. A pro-
cessor can send up to four netlw messages per destination
before it blocks witing for acknwledgments. & avoid dead-
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FIGURE 6. This figure shavs the process-to-process round-trip message latency (grtical axis) for different message sizes
(horizontal axis). (a) shevs the round-trip message latencydr NI ,,,, CNI 4, CNI16Q, CNI5;Q, and CNI14Q,, on the memory tus. (b)
shows the same (except CNEQ,,) on the 1/O hus. (c) compaes CNk;Q, CNI,1gQy,, and NIy, on the I/O, memory, and cache bises
respectvely. [m = CN|4, = CNIlﬁQ’ += CN|512(3, o = CNIlGQm]

locks, if a processor blocks on a message send, it reads messages Moldyn is a molecular dynamics application, whose computa-

from the NI and bffers them in user spacex¢ept for CNL¢Qyy, in tional structure resembles the non-bonded force calculation in
which messages automaticallyeoflov to main memory from the CHARMM [7]. The main communication occurs in a custaumkb
CNI cache). reduction protocol [35], which constitutes roughly 40% of the
All benchmarks are run on thefipest parallel programming  applications total time with N}, as the neterk interface. One
interface [22]. Message-passing benchmarks use osiyp@ss execution of the reduction protocol iterates as yrtémes as there

active messages [37]. Shared-memory codesemmpEst also use are processors. In each of these iterations, a processor sends 1.5
active messages,ub assume hardave support for fine-grain kilobytgs of data to the same neighboring processor throegh T
access control [39]. Codes with custom protocols use a combina-pests virtual channels.

tion of the tvo. Appbt is a parallel three-dimensional computational fluid
dynamics application [8] from theA$ benchmark suite. It con-
4.2 Macrobenchmarks sists of a cube dided into subcubes among processors. Commu-

) ] ) ] nication occurs between neighboring processors along the
Table3 depicts fie macrobenchmarks used in this study poundaries of the subcubes througinipest defult irvalida-
Spsohe [12] is a ery fine-grained iterate sparse-matrix sadv in tion-based shared memory protocol [38].
which actve messages propstg devn the edges of a directed
agyclic graph (DAG). All computation happen at nodes of the
DAG within actve message handlers. The messagirghead is 5 Results
critical because each aaimessage carries only a 12 byte payload

and the total computation per message is only one doudrig-w This section gamines the netork interfaces’ performance
addition. Seeral actve messages can be in flight, which can create with two microbenchmarks and &vmacrobenchmarks. On the
bursty trafic patterns. memory lus we simulated all four CNIs plus §j] On the I/O ks
Gauss is a message-passing benchmark thatssallinear sys- ~ We simulated all &t CNI;Qp,, since CN{¢Qp, cannot be imple-
tem of equations using Gaussian elimination [9]. T&edommu- mente_d with current cohergnt I/Qdes (Sectloﬁ.3)_. Since _coher-
nication pattern is a one-to-all broadcast of wopiron (two ence is usually not an option on cachisés, we did not simulate
kilobytes for our matrix size). CNIs there. Br each microbenchmark and macrobenchmark we

Em3d models three-dimensional electromagnetizenpropa- compare the performance ofjjlon the cacheus with the best

gation [13]. It iterates eer a bipartite graph consisting of directed Of the CNI alternaties—CNheQp, on the memory Us and
edges between nodes. Each node sendsrtiegers to its neigh- ~ CNIs1Q on the /0 bis. Since Nj,, on the cacheus is closest to
boring nodes through a custom update protocol [1Bdveral the processoiit provides a rough upper bound to the performance

quate messages (with 12 bytge payload) can be in flight, which achievable with diferent coherent netwk interfacest
like spsole, can createusty trafic patterns. 5.1 Microbenchmarks

This section gaminesprocess-to-pscessround-trip message
latengy (Figure6) and bandwidth (Figurgé) for our five netvork
spsohe Fine-Grain Messages3720 elements interface implementationsThese numbers include the messaging
layer overhead for coging a message from the netik interface

Benchmark |Key Communication |Input Data Set

gauss One-To-All Broadcast|512x512 matrix

em3d Fine-Grain Message$1K nodes, dgree 5, 10%
remote, span 6, 10 iter

1. Rav data at URLht t p: // www. cs. wi sc. edu/ ~wwt / cni 96.

2. Each message is begkinto one or more 256-byte neik message(s).
appbt Near neighbor 24x24x24 cubes, 4 iter Each netwrk message has a 12-byteethead for header information. The
message sizes in both Figirend Figur& do not include this header

moldyn Bulk Reduction 2048 particles, 30 iter

TABLE 3. Summary of macrobenchmarks
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FIGURE 7. This figure shavs the process-to-process message bandidth (vertical axis) for differ ent message sizes (horizontal axis).
The message bandidth is expressed as a fraction of the maximum banddth two processors on the same colert memory bus can
sustain using a local memory queue (Figer2). (a) shavs the message banddth for NI, CNI4 CNI;1¢Q, CNI51Q, and CNI1gQp,
(with and without snarfing) on the memory lus. (b) shavs the same (except CNEQ,,) on the 1/O hus. (c) compaes CNi;Q,
CNI16Qm, and Nl,, on the I/O, memory and cache lises espectiely. [m = CNI,, O = CNI1Q, T+ = CNI51Q, ® = CNI1gQp,, U =

CNI16Qn, with snarfing]

to a usetlevel huffer, and vice ersa. Thus data gims in the send-
ing processos cache and ends in the reteg processos cache,
rather than simply mang from memory to memory

5.1.1 Round-Tip Latency

Figure6 shavs the round-trip laterycof a message for each of
NI,y and the four CNKs. It shavs two important results. First,
CNIs reduce messagingerheads significantlyFor small mes-
sages, between 8 and 256 bytes, {gQll, is 20-84% better than
NI,y on the memory Us (Figureba) and CN4; Q is 29-141%
better than NJ,, on the I/O lns (Figuresb). Second, CNEQ,, on
the memory bs increases the latgnover Nl,,, on the cacheus
by only 43% (Figurésc). This is significant, because the CNIs do
not require modifications to the processor or processor board.

The four CNIs hee similar latencies with minoraviations
among them. CNIperforms verst because it polls an uncached
status rgister and must use thepensve three-gcle handshak
to invalidate the prdous message from the processor cache.
CNI;16Q and CN§; Q consistently hze the lavest lateng due to
efficiently polling the cached messagelig bit and by using
explicit head and tail pointers to amortize the reusertead
across the entire queue of messages £N|'s lateny is slightly
worse (on the memoryus) because when its cacheedlows, it
must flush (i.e., writeback) messages to main memfryetter
replacement policand/or a writebackuifer can help tak these
flushes dfthe critical path. Haever, as we will see later with the
macrobenchmarks, ChQ,, consistently outperforms the other
three CNIs on the memorus due to its ability toverflov mes-
sages to main memory instead of backing up thear&tw

5.1.2 Banavidth

Figure7 graphs the bandwidth prded by the fie network
interfaces. The ertical axes are normalized to the maximum
bandwidth tve processors on the same coherent memasychn
sustain while transfering data from one cache to the.dteour
simulation parameters §ble2), this bandwidth is 144 MB/s. This
is the maximum bandwidth the four CNIs can hope to &ehie
with our simulation parameters.

Figure7 shavs two interesting results. First, CNIs impeothe
bandwidth @er Nl,,, significantly even for very small mesges
On the memory s, CNLgQy, is 59-169% better than by}, for 8-
4096 byte messages (Figuta). For the same message sizes,

CNIl51Q is 51-287% better than H} on the 1/O bis (Figurerb).
Second, NJ,,’s bandwidth on the cachaidis only 50% more
than CNL¢Qp,’'s on the memoryus (Figurerc).

As in the round-trip microbenchmark, all four CNIsréaimi-
lar bandwidth with minor ariations among them. CNperforms
worst of the four CNIs because of its higiethead for polling
uncached mgisters and the thregrde handshak in the critical
path of message reception. GShavs two different knees on the
memory and I/O bses respecttly. The knee on the memory$
appears when a message crosses the first cache block boundary
and writes to the second cache block. The second cache block is
partially empty resulting in asted vork by CNl, which must
still read the entire block. Since CNeuses CDRs, the processor
must vait for CNl, to complete the entire read (and the three-
cycle handshak) before it can write another message. The CQ-
based CNIs do not ke this problem because instead of blocking,
a processor simply writes to thexhe@ueue location. This same
knee does not shoup on the I/0O bs because the higher I/Q%
access latencies dominateeo the pipelined transfer time for the
cache block. On the 1/OuB a diferent knee appears when GNI
saturates the 1/Ous.

CNI{gQ and CN§;Q perform the best due to theimigoll
overhead and ability to cache multiple messages (aonktmes-
sage fits in four cache blocks). Wever, when the message size
reaches tw kilobytes, CN|¢Q’s performance on the I/Qubé dips
slightly. This is because the small queue size forces frequent
updates to the shadichead pointer on the regeiqueue, which in
turn creates contention at the 1/O bridge. £MD does not
exhibit this problem because its d¢@r queue requires less fre-
qguent updates to the shadbead.

CNI;gQm, achieves slightly laver bandwidth than CN{Q.

This is because the message send rate is significantly higher than
the message reception rate, causing the wiegeiCNIl;gQp,'s
cache to werflow. The resulting writebacks to main memory
induce moderateus contention which decreases the maximum
communication bandwidth. Unfortunatebecause the problem is
bandwidth not lateng a writeback bffer will not help with this
microbenchmark as iteuld for the round-trip microbenchmark.

However, an alternatie technique, calledata snarfing[17,

14], can potentially impnee both lateng and bandwidth. In data
snarfing, a cache controller reads data in from tisawheneer it

has a tag match (i.e., space allocated) for a block in taidn
state. Thus in our microbenchmark, the processor cache on the



receve side simply snarfs in the cache blocks that,@Q}}, writes

back to memoryThis eliminates manof the irvalidation misses
on the recefe cachable queue and impes the bandwidth by as
much as 45% (Figuréa). W also gpect that an update-based 16 1
coherence protocol auld have similar behaor. However, while

data snarfing significantly impres microbenchmark perfor-
mance, we found it had little fett on macrobenchmark perfor-

MEMORY BUS

mance and do nokamine it further 1.0
The absolute bandwidthfefed by CNIs can impk@ signifi-

cantly with a more aggressi system. Wh our simulation param-

eters—200 MHz processdt00 MHz memory bs, 64 byte cache 05 r

blocks, and 230 ns cache-to-cache transfer—the maximum band-
width achieed by CNE;,Q on the memoryus is 107 MB/s. This
represents \@r 73% of the bandwidth achible between ta 0.0
processors on the same coherent memas; More aggresse spsolve gauss em3d moldyn appbt
system assumptions, such as non-blocking caches, bigger cache

blocks, prefetch instructions, support for update protocols, and a

pipelined or packt-switched bis, would significantly imprge this /0 BUS EE‘!\j Nizw

Speedup/Nl,,,,memory bus

absolute performance. CNIy
CNIl16Q

CNI510Q

16

lizes the memoryus’s high-bandwidth block transfer mechanism
by transferring messages in full cache block units. ;gQlland
CNI5, Q further reduce verhead by amortizing the thregete

5.2 Macrobenchmarks E B - -
Figure8 shavs the performanceains from CNils for the fig g
macrobenchmarks described in Sectdh £ 1 ] o e
CNly, CNI1gQ, CNIs1Q, and CN|{gQy, offer a progression of = 0
incremental benefitsver NI, Unlike NI, which can only be &
accessed through uncached loads and stores, ffii¢tively uti- P
éL 05 r
(]
g
n

handsha& over an entire queue of messages. Thgelacapacity 0.0

of the CQs also helps ment ursty trafic from backing up into spsolve gauss em3d moldyn appbt
the netvark. CNI;gQp, further simplifies softare flav control in
the messaging layer by alling messages to smoothlyesflow to

main memory when the dige cache fills. Thiswmids processor ALTERNATE BUSES Nlzy, Cache Bus
intervention for messagelffering, which, otherwise, could signif- N e B
icantly dgrade performance [25]. 16 ¢ '

Block Transfer. The increase in bandwidth obtained by trans-
ferring messages in whole cache block units has a major impact on
performanceGaussandmoldyndo hulk transfers anappbtcom-

municates with moderately & (128-byte) shared-memory 1.0 N N
blocks.Gaussperforms a one-to-all broadcast of a 2KB/rahile

moldyns reduction protocol transfers 1.5KB of data between

neighboring processors. CNimproves gausss performance by 05

39% and 46%moldyris performance by 42% and 20%, and

appbts performance by 10% and 11% on the memory and 1/O

buses respestely. Even for spsolveand em3dthat send small N

messages (12-byte payload), GNIperformance impk@ment

over Ny, is significant (between 13-21%). SpS(_)IVE_} gauss em3d moldyn appbt
CN|4’S performance impmment fon’no|dyn0n the I/O hs is FIGURE 8. Thls flgure COmpaES our f|\e net\/\ork Il‘lterface

not as high as on the memonystbecause of contention at the I/O ikggrr)llghnrjne;rtlfsfio'lr'ﬁeo\gri?c%lrgirgsogIt/kcm)é S‘ngﬁg‘;hh%ht‘ﬁgigé;g’fp
bridge. The Nj,, device never tries to acquire the memory or 1/O over Nly, on the memory his. (a) compaes Nby, CNIg,

bus because it iswhys a s slae. Hovever, the CNJ, cache

competes with the processor cache to acquire the memory and I/OE:ONnL%)GESéSC,:\]'\IIZI\;%?\i| 4??sz EGNQl‘l?S]“a g£|5tlh2eQ Bty ?/ohé‘j's ((?:))
buses. Simultaneousub acquisition requests at the 1/O bridge compares Nk, on the cache bs, CNI;¢Q;, on the memory hus,
from the processor cache and GNache creates contention. This  and CNIg;,Q on the I/O hus.

effect is seere in moldyn because message sends, message

Speedup/Nl,,,,memory bus

receies, and polls on uncachedvite ragisters are partiallyver- achieved by our CNIs on the memoryiband 25-52% of that on

lapped inmoldyrs kulk reduction phase. Thus, the memonsb  the I/O lus.

occupang for a system with CNlon the 1/O las compared to a Extra Buffering. The CQ-based CNiIs prigle etra kuffering

system with Nj,, on the 1/O lns decreases by 41% gauss but that helps smooth ouubsts in message tfaf. However, CNI;gQ

by only 15% inmoldyn and CNE;Q cannot alvays tale adantage of this feature. The
Overall, for the fie macrobenchmarks, CNimproves the per- problem is that once a sender blocks, thes ftmntrol softvare

formance wer Nl,,, between 10-42% on the memonysband 11- aggressiely kuffers receied messages in memofbhis results in

46% on the I/O bs. This amounts to 28-92% of the totalirg messages being pulled out of the GN¢ache, ven when there
was still room for additional messages. Furth®rcause of its



small queue size, ChQ frequently updates its shaddead by
reading the processerhead pointewhich createsus contention.
Because of thesefetts, CN}¢Q and CN} achiere roughly the
same performance on the memorysbCNE,Q’s lager queue
reduces the frequeycof shadw head updates.ofF em3d this

impraoves CNE;Q’s performance \@r CNLgQ by 29% on the
memory ls.

On the I/O los, the higher latencies mitite the d&cts of wer
aggressie huffering, by slaving down the rate at which messages
are atracted and Wffered. This allws CQ-based CNIs taxploit
their tuffering and smooth out theutsty trafic of all five mac-
robenchmarks. Ispsolveandem3d several small actie messages
(with 12-byte payload) can be in flight simultaneously causing
bursts in the message aal. In gaussandmoldyn periodic lulk
transfers cause theitsts. Request-response protocols normally do
not cause trsts. Havever, appbtexhibits a hot spot in which one
processor recegs twice as manmessages as other processors.
Thus, CN}gQ improves the performance spsolvegaussem3d
andappbtover CNl, on the I/O los by 15%, 26%, 11%, and 16%
respectrely. For moldyn frequent updates of the shaddead

Network Interface Coherence| Caching Uniform Interface
CNI Yes Yes Memory Interace
TMC CM-5 [44] No No No
Typhoon [38] Possible Possible Possible
FLASH [28] Possible Possible Possible
Meiko CS2 [33] Possible No Possible
Alewife [1] No No No

FUGU [32] No No No
StarFNG [10] No Maybe No
AP1000 [41] No Sender No
T-Zero [39] Partial Partial No
SHRIMP [4] Yes Write Through No

DI Multicomputer[11] No No Network Interface

TABLE 4. Comparison of CNI with other network interfaces

causes contention at the I/O bridge and actually slightly reduces memory lus. Since both yphoon and FLASH he a coherent

CNI1Q’s performance. But thexia kuffering and infrequent
updates of the shadohead result in CNLQ improving perfor-

mance by 13%, 31%, and 51%, respatyi over CNLgQ for

spsolveem3d andmoldyn

Overflow to Memory. CNI;gQp, allows messages to smoothly
overflov to memory when the gize cache fills up. This elimi-
nates the wer aggresse messageuffering that vas a problem for
CNI;gQ and CN§ Q. This automatic dffering improves
spsolves performancewer CNk,,Q by 20%. br the other four
macrobenchmarks, ChNJQ,, is slightly better than CM}Q.
Thus, CN|¢Qp, consistently outperforms CAIl,Q on the memory
buseven with significantly less memory (j.eade) on the déce

On the memory s, CNLQp, shavs the best werall perfor-
mance impreement (between 17-53%), while GhJQ shavs the
best impreement (between 30-88%) on the I/Qusb Also
CNI16Qm on the memory s comes within 4% of N|,'s perfor-
mance on the cach@®bforspsolvegauss andmoldyn and within
17% forappbt(Figure8). For em3d CNI;Q,, on the memory us
slightly outperforms the cachai® Nb,, because N|, has limited
buffering in the deice and the processor mustpécitly buffer
messages in memoryhese indicate that CNQ,,, is an attractie
alternatve because it is feasible with most commodity processors
and requires no change to the processor core or board.

Finally, CNIs significantly reduce the memorysboccupanc
By polling on cached gisters and transferring messages in full
cache block units, CQ-based CNIs on the memasyreduce the
memory lus occupanc by as much as 66%v@raged wver five
macrobenchmarks) compared to )\l In comparison, CNI
reduces the memoryub occupangc by only 23% because it still
requires the processor to poll across the memasy b

6 Related Work

Coherent Netark Interfaces difer from most preious work
on program-controlled netwk 1/O in three important respects.
First, unlike other NIs, CNIs interact with processor caches and
main memory primarily through the nodetoherence protocol.
Second, CNIs separate the logical angsptal locations of NI
registers and queues aNig processors to cache themelimem-
ory. Third, CNIs preide a uniform memory-based intace for
both local and remote communicatiormble4 compares netwk
interfaces of diferent machines with respect to these three issues.
The Thinking Machines’ CM-5 [44], the idtonsin Tphoon [38],
the Stanford FLASH [28], and the M@kCS2 [33] multiproces-
sors preide high lateng uncached access to their Nis on the
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cache in their netark interfaces, the could both support CQs.
The Meilo CS2 netwrk interface supports the memoryuds
coherence protocol,ub does not contain a cache. The MIT Ale-
wife [1] and FUGU [32] machines prile uncached access to
their NIs under control of a custom CMMU unit. The StAiG NI

[10] is not coherent because it is avsl@eice on the non-coher-
ent L2 coprocessor intarde. StarING NI queues can be cached
in the L1 cache, it the processor mustg@icitly self-invalidate or
flush stale copies of the NI queuesis@dnsin TZero [39] caches
device ragisters, Int not queues, and only uses them to send infor-
mation from the déce to the processoAP1000 #1] directly
DMA's messages from the processaache to the NI,ub does

not receve messages directly into the cadhgnceton SHRIMPS
memory lus NI [4] allavs coherent caching on the processat
requires processors to use the highefitrafrite-through mode.
The DI multicomputes on-chip NI [11] neither supports coher-
ence nor allws its reisters or queues to be cached. The processor
chip interfaices with the rest of the system through the NI. @nlik
other machines, the DI-multicomputer supports a uniform mes-
sage-based intex€e for both memory and the netk, whereas
CNI uses the sammemoryinterface for both memory and net-
work.

Unlike maty other Nlis, ouimplementatiorof CNIs does not
require changes to an SMP board or other standard components.
Yet they enable processors and netwinterfaces to communicate
through the cachable memory accesses, for which most processors
and luses are optimized. Henry and 3p§21] and Dally et al.

[15] adwocate changes to a processogjisters. MIT Alavife [1]

and Fugu [32] rely on a custom cache controNM#T StarFNG

[10] requires a co-processor inté at the samevel as the L2
cache. AP1000 [41] requires igtated cache and DMA control-
lers. Stanford FLASH [28, 20] uses a custom memory controller
with an embedded process@ther eforts, such as the TMC CM-

5 or SHRIMP use standards componentst bettle for laver per-
formance by using loads and stores to either uncachable or write-
through memoryinstead of using the full functionality of write-
back caches.

Three eforts that appearery similar to our wrk are FLASH
messaging [19], UDMA/SHRIMP-II [3], and Remote Queues [6].
We differ from FLASH, because we do notvikaa processor core
in the netvork interface, we allee commands to use cachable
loads and stores, and we can notify the xéegiprocess without
an interrupt. W& differ from the UDMA/SHRIMP-II, because we
use the same mechanisms when the destination is local and remote
(whereas SHRIMP-I§ UDMA does not handle local memory to



local memory copies), we use only virtual addresses (where
SHRIMP-II requires that the sender kvothe receier’s physical
addresses), we allodevice ragisters to use writeback caching,
and we focus on fine-grain ugeruser communication in which
the recering process may be notified without an interrupé. tf-

fer from Remote Queues by being at wdelevel of abstraction.
Remote Queues prie a communication model similar to Acti
Messages [45] xeept etracting a message from the netlwand
invoking the receie handler can be decoupled. Implementing
Remote Queues with CNIs is straightfand and ders adan-
tages wer CM-5, Intel Rragon, MIT Alevife, and Cray T3D net-
work interfaces. CNIs support cachablevide registers for lov-
overhead polling (unlig the others), alle network huffers to
gracefully overflov to memory (unlie the CM-5), and do not
require a second processoraffgon), custom cache controller
(Alewife), or hardvare support for globally shared memory
(T3D).

Finally, our results conseatively estimate the rate at which
processors can me data, gien trends tward block meoe
instructions, prefetch support, and non-blocking caches. UltraS-
PARC-I [42], for example, has instructions that goa cache
block (64 bytes) to or from floating-pointgisters, SRRC V9
[46] has four prefetch instructions that indicakpected locality
(e.g., that a block will be written once and not accessathg
and numerous processors do not stall on the first cache miss.
These optimizations can further increase the x&dbenefits of
using CNis.

7 Conclusions

This paper ®plored using snhooping cache coherence to
improve communication performance between processors and
network interfaces (NIs). W call NlIs that use coherenceheent
network interfacegCNIs). We restricted our study to NI/CNIs
that reside on memory or I/Qukes, to NI/CNIs that are much
simpler than processors, and to the performance of fine-grain mes-
saging from user process to user process.

We developed tvo mechanisms that CNIs use to communicate
with processors. &Aadtable deice rgisterallows information to
be exchanged in whole cache blocks and permitsieft polling
where cache misses (andsbtransfers) occur only when status
changesCadable queueseduce re-useverhead by using array

of cachable, coherent blocks managed as a circular queue and

(optionally) optimized with lazy pointers, messagdid/bits, and
sense-reerse.

We then compared four alternagi CNIs—CN},, CNI;6Q,
CNI5; Q, and CN{gQ,,—with a CM-5-like NI. Microbenchmark
results shaved that CNIs significantly impwed the round-trip
lateny and bandwidth of small and moderatelygmessages.
For small message sizes, between 8 and 256 bytes, CNIs
improved the round-trip lategcby 20-84% compared to B} on
a coherent memoryuls and 29-141% on a coherent I/@sbFor
moderately lage messages, between 8 and 4096 bytes, CNIs
improved bandwidth by 59-169%ver Nl,,, on a coherent mem-
ory bus and 51-287% on a coherent I/@sbMacrobenchmark
results shaved that CN{gQ,, performed the best on the coherent
memory lus and CN4;Q on the coherent I/Ous. CNLgQ,,, was
17-53% better than M}, on the memory s, while CNE;Q was
better than NJ,, by 30-88% on the I/Ous. Also, CN{gQy, on the
memory lus came within 17% of NJ,/’s performance on the
cache bs. This indicates that CNJQy, is an attractie alternatre
because it is feasible with most current commodity microproces-
sors and requires no change to the processor core or board.

Our &periments use assumptions that are reasonable for com-
modity parts in the present and near future. In the medium term,
our quantitatre results will lilely be olviated by better memory
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interconnects that pipeline requests,waltmut-of-order responses,
or even abandon prsical huses. Neertheless, wex@ect our qual-
itative results indvor of CNIs to continue to hold as CNIs con-
tinue to &ercise memory interconnects with the operations the
interconnects are optimized faramely coherent block transfers.

In the longer term, caches, memomnyspbNIs, and memory may
move onto processor chips (@n another vie, everything maes
onto memory chips).a’'manage compiity, havever, these super
chips may resemble boards of old systems with die anestetde

to a custom mix of relately-standard, optimized components
(e.g., processors and DRAM) interconnected through well-defined
interfaces. While intgrating an NI into a processor is possible,
CNiIs will be interesting as a lesgpensve (in terms of design
and \erification costs) way to delver competitie performance.
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