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Abstract shared address space in which processes uniformly refer-
Future parallel computers musfieiently execute not ~ €nce data. At the lowest level, the machines are ogimger
only hand-coded applications but also programs written inOn Wworkstation-like nodes connected by a point-to-point
high-level, parallel programming languagesoddy’s network..Unfortunatelyno consensus has emed on the
machines limit these programs to a single communicationcOmmunication model—shared memory or message pass-

paradigm, either message-passing or shared-memor;}ng—fOr parallel |anguages.. '

which results in uneven performance. This paper addresses Current parallel machines take an ahrothing

this problem by defining an interfacdempest,that ~ @pproach to providing a shared address space. Message-
exposes low-level communication and memory-systemPassing machines, such as the Thinking Machines CM-5
mechanisms so programmers and compilers can customizgt4] and Intel Paragon [20], have no hardware support, so
policies for a given applicatiorifyphoonis a proposed compilers for the;e machines synthesae a shared address
hardware platform that implements these mechanisms witiSPace by generating code that copies values between pro-
a fully-programmable, usdevel processor in the network CESSOrs in messages. In the best case, this approach per-
interface. V& demonstrate the utility ofempest with two ~ forms well and diciently uses a machirg'memory and
examples. First, th&tacheprotocol uses dmpess fine- ~ communications network. Unfortunatelyhe approach
grain access control mechanisms to manage part of a prd€lies on static program analysis and performance degrades
cessors local memory as a Ige, fully-associative cache ~dramatically when a compiler (or programmer) cannot
for remote data. W simulated Jphoon on the \consin  fully analyze a program. .

wind Tunnel and found that Stache running orpffoon On the other hand, shared-memory machines, such as
performs Comparab|yu_|-eo%) to an all-hardware D\|NB the Kendall Square KSR-1 [21] and Stanford DASH [27],
cache-coherence protocol for five shared-memory pro-mplement cache-coherent shared-memory policies and
grams. Second, we illustrate how programmers or compil-méchanisms entirely in hardware. ~Although these
ers can useémpest flexibility to exploit an applicatios’ ~ Machines share a common hardware base with message-
sharing patterns with a custom protocol. For the EM3D Passing machines (workstation-like nodes and point-to-

application, the custom protocol improves performance upPCint message passing), compilers for shared-memory
to 35% over the all-hardware protocol. machines have been constrained to use memory loads and

stores for communication, even when static analysis could
identify better approaches [24].
This paper describeEempestand Typhoon Tempest is
Consensus is enging on two aspects of massively- an interface that permits programmers and compilers to use
parallel supercomputing. At the application level, these hardware communication facilities directly and to modify
systems increasingly will be programmed in high-level the semantics and performance of shared-memory opera-
parallel languages—such as HPF [17]—that support ations. It enables an applicatisniseflevel code to support
shared memory and message passifigjexitly, along with
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1 Introduction



dynamic behavior can rely entirely on transparent sharednetwork interface device (dubbed the NP), which contains
memory using th&tacheprotocol constructed orempest  a fully-programmable, uséevel processorThis processor
(see Sectio®). Stache employs part of each processor is invoked either upon receipt of a message or by a local,
local DRAM memory as a lge, fully-associative “level  fine-grain memory access fault. In either case, the NP pro-
three cache,” similar to the caches in cache-only memorycessor uses a hardware-assisted dispatch mechanism to
architecture (COMA) machines. Unlike the extensive, cus-invoke a usetevel procedure to handle the event. Protec-
tom hardware in a COMA machine, Stache runs in-user tion is maintained by running the network interface proces-
level software using theempest interface. sor in user mode and translating all addresses through a
However the real benefits ofémpest lie between these standard translation lookaside fauf(TLB).
extremes, where programmers and compilers implement We have implemented a virtual prototype gfpfioon
hybrid protocols that exploit an applicatisrsemantics to  using a modified version of thei¥¢onsin Whd Tunnel
improve performance. For example, computing on [36]. Existing shared-memory programs only need to be
dynamic, irregular grids requires run-time support, since alinked with the Stache library to run ogphoon. Measure-
grid’s structure is unknown at compile time. Software ments of five benchmarks indicate that Stache performs
inspectorexecutor schemes incur d¢gr overheads to deter- comparably £30%) to a conventional, all-hardware
mine communication patternstahsparent shared memory DiryNB shared-memory system, despiigfioons greater
incurs lage overheads to communicate modified values byflexibility. Furthermore, we show how customizing shared
invalidating and re-requesting them. In a hybrid protocol, amemory semantics to exploit sharing patterns can improve
programmer or compiler could userfipest mechanisms performance significantlyrhe EM3D application [7] runs
to detect remote accesses dynamic#tigreby eliminating  up to 35% faster with a customized ulmrel protocol than
most of the inspectoFurthermore, a delayed update proto- on the all-hardware shared-memory system.

col, similar to the one implemented for EM3D (Sectn In the next section, we present the tsgel communi-
can eliminate non-essential communication by transmittingcation and memory management mechanisms that com-
only modified values. prise the €mpest interface. Secti@ shows how these

The Tempest interface defines afi@ént set ofimecha- mechanisms support transparent shared memory in the
nisms that compilers and run-time systems can use toStache protocol. Sectighuses the EM3D application to
implement shared-memongolicies Userlevel access to illustrate the potential of useustomized memory seman-
these building blocks is essential because the range dfics. Sectiorb presents the detailed design ofpfioon,
future applications, algorithms, data structures, and optimi-which illustrates the hardware necessary to implement the
zations is impossible to anticipate.itiV the useilevel userlevel mechanisms fifiently. Sectioné presents simu-
facilities provided by &mpest, a programmer or compiler lation results comparingyphoon, using both Stache and a
can tailor memory semantics to fit a particular program orcustomized protocol, to an all-hardware shared-memory
data structure, much as RISC processors enable compileisnplementation. Finally Section7 surveys related work
to tailor instruction sequences for a particular function call and Sectior8 presents our conclusions.
or data reference [46].

Tempest contains the following four types of tiesel 2 Tempest: An Interface for User-L evel
mechanisms: Shared Memory

* Low-overhead messaging, which permits the fast com-
munication fundamental to the performance of many ;.
parallel programs.

This section describesempest, a parallel machine
erface that consists of four types of ukel mecha-
nisms—Ilow-overhead messages, bulk node-to-node data
* Bulk data transferwhich allows lage data transfers to transfers, virtual memory management, and fine-grain
overlap computation. access control—that we believe are both necessary and suf-
ficient to implement the full range of shared-memory
semantics in usdevel software' Fine-grain access con-
trol is an unusual mechanism, but is essential for transpar-
ent shared memanAll mechanisms are accessible from a
userlevel program.
* Fine-grained memory access control, which permits Tempest can be realized in a variety of wayghbon
efficient run-time detection of memory access patternsimplements these mechanisms with a custom network
and enforcement of memory consistency interface processoOther hardware implementations are,

Typhoon is a proposed implementation efmpest that

provides hardware support for these mechanisms using & We are investigating adding a set of synchronization primitives, to
allow aggressive hardware implementations of common operations.

¢ Virtual memory management, which enables a compiler
or run-time system to manage a progmmaddress
space diciently and to migrate and replicate data with-
out renaming.




however possible. @mpest can also be implemented in 2.3 Virtual Memory Management
software for existing machines.efare currently investi- Data replication and migration is required to eliminate
gating a “native” version for the CM-5. By abstracting unnecessary remote memory accesses. For dynamic and
from the implementation details, theerfipest interface  pointerbased data structures—for example, the tree used
provides portability between thesefdient systems. in the Barnes-Hut N-body simulations [4]—this replication
Section3 shows how software can use these mecha-and migration must be managed transparently at runtime.
nisms to support transparent shared-memory semanticgJserlevel memory management has two components: vir-
using the Stache protocol. Sectibpresents an example tual address space management and access control. The
hybrid protocol, which exploits the sharing patterns of the mechanisms in this section enable degel code to man-
EM3D application to improve performance. Sec#on age its address space. The next section describes mecha-
describes yphoon, an implementation of these mecha- nisms for access control.
nisms under current technical and economic constraints. Our memory model is a conventional flat, paged address
space for each processing node. The operating system can
2.1 Low-Overhead Messages _ _ _ reserve regions for conventional logical segments. A paral-
Parallel machines typically communicate with point-to- || process consists of a single address space per node, each
point messages. Low overhead messages are fundamentghy, 5 private copy of the text segm%and private stack
to 'Fhe performance of most programming mO(_j_eIs. Thegng heap segments (a single-program multiple-data
Active Messages model, where a message specifies-a usg,oqel). A separate shared heap segment consists gea lar
level handler to be invoked on its reception, provides an carreserved address rangeerpest relies on ustsvel
efficient building block for many paradigms, including cqqe 1 provide semantics for accesses to this segment. The
shared memory [45]. Wh userlevel access to fast mes- compiler or run-time library explicitly allocates physical
sages, compilers can exploit the staﬂcally-determmablememOry pages at specified virtual addresses in this seg-
properties of data structures and program communication,ant. Once allocated, these pages can be remapped or
by explicity communicating values. In addition, low- unmapped and freed. An access to an unmapped page or a
latency message handling is critical for transparent shareq iie to a read-only page suspends the current computa-
memory performance. tional thread and invokes a udevel handlerThis mecha-

In Tempest, a processor sends a message by specifyingism provides a coarse-grain method for managirgglar
the destination node, handler address, and data. The a”“’%lieces of the shared address space.

of the message at its destination creates a thread that exe-
cutes the handleusing the remainder of the message as2.4 Fine-Grain Access Control
arguments. Each handler executes atomically with respect Memory access control is fundamental to transparent
to other message handlers, reducing synchronizatiordata replication. A runtime system must be able to track
requirements. multiple copies of a datum to prevent unintentional inco-
Our message model tbfs from similar systems herence. The access-control mechanisms must permit reads
[8,9,34] in that our message threads logically run concur-and writes to a local datum, permit reads but not writes,
rently with the primary computation thread. As in systems prevent both reads and writes, and transfer control te user
in which message handlers interrupt the main threadlevel code on an access violationrti¥al memory systems
shared resources must be protected; howevitical sec-  typically provide this form of access control [2]. The
tions are siicient since truly concurrent threads do not coarse granularity of their page-based mechanisms, how-
suffer from a “priority inversion” problem [41]. ever is a poor match for many applications. In addition,
access to page tables is typically an operating system privi-
lege, so uselevel changes incur a system call. Ussel

~ When compilers can fully analyze a programOmmu-  ghared memory requires access control that is both fine
nication pattern, they can improve performance by eXplo't'grained and fast.

ing hardware mechanisms to overlap communication with™ | our model, fine-grain access control is provided by

com_pl_Jtation. Furt.hermor(_e, transferrin_g bulk data via tagged memory blocks. Every memory block—an aligned,
explicit messages is mordiefent than using shared mem- powerof-two-sized region of memanytypically 32-128
ory [23]. In Tempest, a processor initiates a bulk data trans'bytes long—has anaccess tag of ReadWite,

fer much like it would start a conventional DMA ReadOnly, or I nval i d that specifies which types of

transaction, by specifying virtual addresses on both source,.-esses are permitteciriipest defines nine operations on
and destination nodes. The transfer executes asynchroﬁ1emory blocks. listed inable 1.

nously with the computation thread. Completion of a trans-
fer can be detected either by polling or with an interrupt.

2.2 Bulk Node-to-Node Data Transfers

1. The system could provide transparent shared-memory semantics for
text, but we ignore that here.



TABLE 1. Operations on tagged memory blocks. memory machines, which return a cache block to its home

i e node on cache replacement [42]. COMA systems share this
Operation Description advantage, but require complex hardware support.
read Load with tag check; if access fault, sys- Stache is a uséevel library that exploits theémpest
pend thread and invoke handler mechanisms. This library contains a page-fault handler
write Store with tag check; if access fault, sis- message handlers, block-access-fault handlers, and shared-
pend thread and invoke handler memory allocation functions. It maps virtual addresses of
force-read Load without tag check shared data to local physical memory at page granularity
force-write Store without tag check but maintains coherence at the block level.
read-tag Return value of tag To create a shared page, the home nqde processor allo-
cates peblock directory structures (described below) and
set-RV Set tag value teadWi t e maps the physical page to the desired virtual address. It
set-RO Set tag value tReadnl y also initializes the block access tagsReadW it e and
invalidate Set tag value tonval i d and invali- associates the home nogléD with the virtual page in a
date any local copies distributed mapping table. As long as data on this page is
resume Resume suspended thread(s) not cached by another node, the home node can access it

(and cache it in its hardware cache(s)) without software
A processos loads and stores translatertead and intervention.

Wr i t e operations on the corresponding memory block. A When a node first accesses a shared page on a remote

read or write on @ReadWite block or a read on a (non-home) node, the reference invokes a-leserl page

ReadOnl y block completes normallyHoweveran access ~ fault handlerThis handler allocates a new physical page (a

to anl nval i d block or a write on &eadOnly block stache page)maps it at the shared virtual address, and ini-

causes &lock access faultvhich is similar to a page fault. tializes the block access tags ftaval i d. The home

The faulting thread is suspended and a-lesesl handler ~ nodes ID is found in the distributed table and cached in a

invoked. The handler takes whatever actions are necessafpcal table. The handler then restarts the application at the

to make the access permissible; it then updates the tag arf@ulting access. The restarted instruction now causes a

restarts the access usingsure. block access fault because of the referenced Idock’
I nval i d tag. The thread is again suspended and a block
3 User-Level Transparent Shared Memory access fault handler runs. The handler retrieves the home

nodes ID from the local table, sends a request for the

Efficient transparent shared memory involves replicat- plock, and terminatesAt the home node, the request mes-
ing remote data to ensure that subsequent accesses are logalye invokes a handler that performs the appropriate coher-
and maintaining coherence between the multiple copiesence actions and returns the data. (If invalidations are
Traditionally the replication and coherence policies are required, the handler for the final invalidation acknowledg-
both implemented in hardware, sometimes assisted by sysment actually sends the data.) When the response arrives
tem software. This section descrilzesiserlevel transpar-  from the home node, the message handler writes the data
ent shared memory implementation that uses a newnto the allocated page (withfaor ce-wri t e to bypass
replication policy calledStachetogether with a conven-  the tag check), changes the bleckiccess tag (tRea-
tional invalidation coherence protocol. The next sectiondonly or ReadWite), and restarts the suspended
uses an application-specific coherence protocol, in conthread. This time, the access completes and fetches the data
junction with Stache, to improve the performance of anjnto the CPUS cache.
application. Sectio6 presents performance results for  Future accesses to the “stached” block complete at hard-
these protocols running on thgphoon system (described \vare speed. Since the page is mapped, but all other blocks

in Sectionb). _ are tagged nval i d, an access to another block on the
Stache uses part of each processing isodeal mem-  page directly invokes a block access fault handler
ory to replicate remote data. Irfedt, Stache uses this local ~ The scenario is similar on the home node, except that all

memory as a lge second- (or third-) level, fully-associa- blocks are initiallyReadW i t e and are downgraded to
tive data Cache, which eliminates much of the network traf-ReadO’” y or | nval i d as remote nodes request read-
fic caused by capacity and conflict misses in smalleronly or exclusive copies. Home block access fault handlers
hardware caches [19]. For applications in which a proceshypass sending requests and directly access directory data.
sor manipulates data too d@rto fit in the hardware cache,

but small enoth to fit in Iocgl memo@taChe ders a 1. The remote request could be sent from the page fault hamatl¢his
large advantage over conventional directory-based sharedwould require duplicating code from the block access fault haridier
performance gain does not justify the software maintenance overhead.




The Stache replication policy is independent of the typedef struct e_node {

coherence protocol. Our default coherence protocol is sim- idf]’:‘b' € ‘ég'g:e;coum,
ilar to the LimitLESS protocol [5], except that it is imple- doubl e “wei ghts:
mented entirely in software rather than partially in doubl e *(*h_nodes);

struct e_node *next;

hardware. Specificallyhe protocol preallocates 64 bits per } e node t:

cache block—to minimize bitfield operations, it allocates

two bytes for state and six one-byte pointers. If more thanvoi d conpute_E()

six pointers are required, the current implementation used e node t e
the first four pointers as a bit vectdtor systems lger int i
than 32 nodes, the four node pointers contain the address «

a lager auxiliary data structure. for f( gr =( ie_gog.esi; 2 r!1-=>§éjg|;t;c (r;un=t -n'in)Xt)
When the Stache page fault handler cannot allocate ¢ n->val ue -= n.>h_noaes[i]_’>va| ue
page, it must replace an existing stache page. In this cas bart i er () * n->wei ghts[i];
arrier )

the handler invalidates all blocks within the page, sending
modified data back to its home, and remaps the page at th

new virtual address. Stache currently implements a simple Program 1: Shared Memory EM3D.

FIFO replacement poli¢gince replacements are rare. Ideally, at the end of a step, each processor would send
its updatede_nodes (h_nodes) to the processors that
4 Custom User-level Shared Memory need them. Using émpest, we customized the Stache

coherence protocol for EM3D. &use a delayed update
eprotocol in which cache blocks become inconsistent within

a step and are explicitly updated at the stepd. V& intro-

duce two new page types—a custom home page and a cus-
tom Stache page—and allocate graph nodes on the custom
home pages. The customized Stache handlers are similar to

datetl stlructt_ur?_ ISI da bllpartlte n%rapz, n whEhnO(tjesrepre:[_ the default handlers, except that they keep count of the
sent electric Tield values ard nodesrepresent magnetic o, o of stached_nodes (h_nodes). The new home

e e e s e 1% *ode handies maiiai a s of al outstandngode
their nei hborinp H nodes; then the H nodes %re update _node) copies. Because the program employs the own-
9 9 ’ P rs compute rule, we can replace the barrier in Progtam

based on the new E node values. with a function that traverses tlee node (h_node) list

Forlrgg(;atg Ialng:lrJ]St:lrfgstJhn?ir::i?n(jigetgolégriiﬁctgt?of Qgg:and sends modified values. Because the handler is specific
9 ' to EM3D, only theval ue field is sent, rather than the

are allocated evenly across the processors and each proces-,.
y P P entire cache block.

23::;1”);3)&(1:22 'tf](l)%(;al gog?c?c(elzfs.;)?V}Igtiﬁegomzufalrﬂg.(I):for In addition, this protocol does not require acknowledg-
neighboringﬁ nodés which may be either local or ments of update messages. Every processor_knows how
remote - ' many remote graph nodes_lt has stache_d, and simply counts
Undér transparent shared memdhyis program incurs th_e updates and w:_;uts until they all arrive. The processors
still must synchronize to ensure that graph nodes are not

unnecessary communication. Each time eamode is updated earlybut this constraint is easily implemented as a

upd_ated, th(_a coherence protocol invalidates OUtStandmgruzzy barrier in the handlers. By eliminating most synchro-
copies. But in the next step, each processor refetches thﬁization and all invalidation tré. the usetevel coher-

invalidated e_nodes to compute values for its local . L N
— P ence code attains ne@inimum communication. In ffct,

h_nodes. Thus in each iteration, a rematenode (or this approach combines the communicatidficieihcy of

h_m_)de) will be fetched, cached, af‘d invalidated, which message passing with the low overhead and programming
requires at least four messages (i.e., request, responsgi,mpIicity of shared memory [24]

ﬁvil.'g;t.i’n a;gfe:l(:kn?V\ggggegétprfée?gl%% anigszfee (j;?;]f_' Of course, the simple EM3D application could also be
unicati Gybu u 9 implemented diciently with pure message passing, by a

f'féccsqsigg—éagthi'gt'%n?’c\c’)vnrl';h nf'lgzi?oi :rl]%c:;tgﬁ? Z software inspection step that explicitly allocates space for
P [18], cu uhicatl Y DY remote nodes and builds an update list [7]. This approach is

replacing the_|_nva_l|dat|on/acknowledgment W'th. an asyn- o asible because the graph is static and the inspector over-
chronous notification, but cannot attain the minimum of head can amortized over many iterations. Howeirer

one message. I_n add|t|(_)n, these operations introduce add'dther codes the inspector cannot be moved out of the main
tional computation that increases program overhead.

To illustrate the benefits of a udewel, application-spe-
cific memory system, we implemented a new coherenc
protocol for the irregularly-structured EM3D application.
EM3D models electromagnetic wave propagation through
three-dimensional objects [7]. This progranprinciple
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FIGURE 1. Typhoon system architecture. Level 2 caches Network I/F Unit || Ctrl
are optional and not present in simulation.

. FIGURE 2. NP Block Diagram. RTLB denotes the revers
loop. Furthermore, inspectexecutor schemes are com- TLB; BXB is the block transfer bier; the BAF bufer holds
plex to implement [22,38,37]. FinaJlg custom coherence information on block access faults.

protocol does not require extensive program modifications face pocessoi(NP)—that connects to the shared bus to the
unlike the software caching and updating in the messagenetwork, as illustrated in Figug
passing version [7]. Typhoons network architecture is based on that of the

Although any protocol could be implemented in hard- Thinking Machines CM-5 [26], but with a ger maximum
ware (or system software [23]), system designers cannopacket payload (twenty 32-bit words rather than the CM-
anticipate the full range of protocols that programmers ands's five). The only aspects of the network that are signifi-
compilers will devise. System-level protocols face &-dif cant in this context are that it provides two independent vir-
cult choice between generality and specificity: a protocoltyal networks for deadlock avoidance and that it can be
general enough for many sharing patterns may not be opticontext-switched between user processes.
mal for any of them, but a protocol tailored to a specific  The following subsections describe howypfioon
pattern may not support others. Instruction set designersmplements the message support, bulk data tramsfemn-
have learned to implement primitives, rather than SOlUtionSOry management, and fine_grain access control ofehe T
[46]. Memory systems should also provide mechanismspest interface described in Sectin
that compilers can compose intdigént solutions.

5.1 Low-Overhead M essages
5 Typhoon: A User-Level Shared-Memory The network interface processor (NP) is not simply a
System passive network dfawce, as illustrated in FigRirdt con-
tains a full SRRC integer processptaken from a previ-

This section describesyphoon, a system designed to ous-generation $RC design, with instruction and data
implement Bmpest useilevel memory mechanisms. caches to enhance performance and a TLB to allow virtual
This implementation has the following goals: addressing. The processor is closely coupled to the net-

* to demonstrate the feasibility of implementing the work interface, which enables rapid handling of incoming

mechanisms within current technological and practical M€SSages. _ _ _ _
constraints: Although coupling a network interface tightly to the pri-

. ) mary processor can decrease end-to-end message latencies
¢ to illustrate the hqrdwar_e _support needed to |mplement[16’9], any advantage is outweighed by the cost of chang-
userlevel mechanisms ffiently and to accelerate the ing the processpwhich precludes leveragingfahe tre-

common cases; and mendous investments in commodity components. On the
* to provide a detailed design that can be simulated toother hand, decreasing message latency and reducing pri-
obtain concrete performance results. mary-processor interrupts justifies the investment in some-

thing lager and more complex than a passive network
device. As commodity microprocessors become more
aggressively superscaldne overhead of interrupts or poll-
ing increases to unacceptable levels. Separating message
Gﬁandling on a distinct processor frees the primary proces-
sor for computation. Because the NP does not require state-
of-the-art computation, a previous-generation integer core
with a network interface on its cache bus idisignt. A
custom processor with tightly integrated messaging would
1. Howeverthe basic design should work with any coherent bus using an provide even better performance, but it is not clear that the
ownership protocol and cache-to-cache transfers. benefit justifies the additional design time and complexity

Typhoon consists of homogeneous, workstation-like
processor/memory nodes connected by a high-bandwidth
low-latency point-to-point network (see Figure For eco-
nomic reasons, commodity components are used for th
processqgrbus, memory controlleand DRAM. Specifi-
cally, each yphoon node has a SupeAHT processor
connected to a level-2 MBus [34]The one custom com-
ponent is the network interface device—ttework inter-




Typhoons send and receive queues are memory-in the page. However higheilevel protocol must resend
mapped on the cache bus, so single-cycle loads and storeése message after the page-in completes. a¥pect to
can transfer 32 bits between a queue and a general purposperiment with a combination of these schemes.
NP register A block transfer unit, also on the cache bus, Userlevel handlers also complicate deadlock avoid-
can asynchronously transfer 32 bytes between a queue arahce. There are two separate issues. First, the system can-
an aligned address. The processor initiates a block transfamot guarantee that every user protocol is deadlock-free, but
by storing the address to a control regjstdrere the regis- must ensure that deadlock in one user application does not
ter address also encodes the transfer direction. A blockmpact other users or the operating system. This is dealt
transfer that misses in the data cache uses a separate 3&ith by context-switching the bigrs in the network, as in
byte block transfer btdr to take advantage of MBus block the CM-5 [26]. Second, the system must providéceant
transfers and maintain coherence with the local CPU cachasupport that users can writefiefent deadlock-free proto-
without polluting the NP data cache. cols. Typhoon addresses this through a combination of

The NP initiates a message send by storing the destinamechanisms. First, the two independent virtual networks
tion node ID to a memory-mapped regist@ata words are  allow a pure request/response protocol to be deadlock-free
moved to the send queue using stores or block transfersf requests are sent only on one net and responses can
The end of the message is signaled by a low-order bit in thelways be processed. The scheduler gives lower priority to
register address. On the recejvélre first data word is one of the networks, so using this net for requests guaran-
interpreted as the receive handler PC, as in Active Mes+tees that request handlers cannot starve response handlers.
sages [45]. The receive handler must pull the remainder oSecond, the user must provide aféuflage enough to
the message from the receive queue. hold the message output of any single handfes send

Scheduling on the NP is performed by a hardware-queue fills, the hardware will redirect further stores to this
assisted dispatch loop [16]. The dispatch hardware conbuffer transparentlyThis guarantees that any handterce
structs a handler PC in a dedicated register either by takingtarted, can run to completion without waiting for a send
the first word of an incoming message or by using statusqueue to emptyThe user bdér is drained into the network
bits as an déet from a usespecified base. Handlers can be by software as queue space becomes available. Finally
prioritized or disabled via a usaccessible control register when either send queue is full, the scheduler invokes a
The software dispatch loop simply reads the value in thisuserlevel status handler instead of directly scheduling
register and jumps to it. If no action is required, the desti-message handlers. The status handler implements a sec-
nation PC is the top of the loop itself. A handler terminatesond-level dispatch, and can examine the PCs of incoming
by jumping to the dispatch loopoEliminate the need for messages to decide whether they should be nackdd, buf
synchronization between &Bfent handlers, scheduling ered, or processed (befing any resulting sends).
among user handlersngt preemptive. Once a message or
block access fault handler begins, it is run to completion. -2 Bulk Node-to-Node Data Transfers

The primary CPU can also send messages with mem- Bulk data transfers are performed on the a8ynchro-
ory-mapped stores across the MBus to a separate serfa@usly with respect to the primary CPU. Data must be
queue. As on the NRhe destination node and final data packeti_zed before being injected into the ne_twork. A maxi-
word are distinguished by stores to distinct addresses. ThEUm-size twenty-word packet holds a receive handler PC,
CPU and NP send queues share a single network port. Tha 32-bit address, and 64 bytes of data with two words to
primary CPU can send messages directly to its local NpsSpare for status or extended addressingavoid tying up
short-circuiting the network. the NP the data transfer thread suspends itself at regular

The ability to run user code on the NP processor is criti-intervals or when a message is received. The scheduler
cal to providing performance and flexibilityut it does not ~ May be configured to invoke a status handler when either
come for free. The primary hardware cost is in the NP TLB of the send queues is empty and this handler will resched-
(and RTLB, discussed below). Howevehe real cost is the gle any waiting data transfe_r threads. The prima_ry CPU ini-
design complexity of providing protected uémvel access.  tiates a transfer by sending a message to its own NP
For example, an NP handler could encounter a page faul€ontaining either the transfer parameters or a pointer to the
We avoid this problem by providing operating system calls parameters. Because both the s_end an(_JI receive handl_ers are
that permit an application to specify part or all of its mem- USer code, they can be customized to implement arbitrary
ory as swapped, rather than paged, so it is guaranteed to @Pplication-dependent scatgather operations.
in memory whenever the process is running. Thus an NP5

' ' cient to provide the needed udevel functions. The NP

[30], NACKs the message that caused the fault, and brlngsand orimary CPU both implement versions of thABe

3 Virtual Memory M anagement



reference MMU [31]. While the primary processor and the f or ce- wri t e operations. ag reads and writes are per-
NP may use separate page tables, they share a single talflemed in the RLB using memory-mapped operations.
in our current implementation. The operating system inter-Thei nval i dat e operation invalidates any CPU cached

face is similar to that of [35]. copy via the MBus in addition to changing the access tag
) . value. Ther esune operation merely unmasks the CBU’
5.4 Fine-Grain Access Control bus request line so that it can retry any suspended transac-

As described in Sectich4, the fine-grain access-con- tjgn.

trol model provides access tags on memory blocks and Trgnsactions that miss in th@EB cause a‘felinquish
defines nine operations on these blocks. yphdon, the  gnd retry’ nack and are retried after the appropriate entry
read andwrite operations (the tag-checked accesses)is fetched from memoryTo improve the miss rate, an
correspond to primary CPU cacheable loads and storesgy| entry can either tag a 4 KB physical page or indicate
The NP enforces the tag semantics on these accesses agdage region of physical memory that does not require

implements the remaining operations. block tags, e.g. text or kernel areas.
Tag semantics are enforced by monitoring the GPU’

MBus trar!sact?ons. Read an_d write misse_s are seen as re@ Perfor mance of User-L evel Shared Memory

and read-invalidate transactions, respectiv&lyrite to a

cached but unowned block results in an invalidate transac- In this section we compare the performanceyutibon
tion. Transactions involvindReadW i t e blocks require  running the default invalidation-based Stache protocol
no NP intervention since the memory controller responds(denotedlyphoon/Stacheagainst a conventional, all-hard-
with the data and the CPU acquires an owned cached copyvare, directory-based JNB cache-coherence protocol.
A read on aReadOnl y block is similay except that the  Both systems are modeled using thsadnsin Whd Tun-

NP asserts the “shared” line to prevent the CPU from own-nel, a parallel simulation system that runs on a Thinking
ing its cached copyAll other accesses are block access Machines CM-5 [36].] Both tget systems have 32 pro-
faults. The access is suspended by asserting the “inhibit”

line to prevent the memory controller from responding, ter- TABLE 2. Simulation parameters.

minating the transaction with a “relinquish and retry” nack, | Common

and masking the CPB’bus request line to keep it from CPU cache 4-way assoc., random repl.
retrying the access. Information about the fault is placed in

a bufer, where it is used by the NP dispatch hardware to Block size 32 bytes
schedule the appropriate block access fault handler and is| CPU TLB 64 ent., fully assoc., FIFO repl.
accessible from the executing handler as well. Page size 4 Kbytes

Because the NP monitors the node bus, it only observes| | .al cache miss | 29 cycles
the physical addresses of primary CPU references. T

determine which, if anyaction to take, the NP uses a Local writeback 0 (assume perfect write Bef)
reverse TLB (FLB), indexed by physical page numptr TLB miss 25 cycles
determine the accessed blackag state quicklyEach Network latency 11 cycles
RTLB entry contains two bits for each 32-byte block in the [ g5 ier latency 11 cycles
page which encode four stat®adW it e, ReadOnl y, .
DiryNB Only

I nval i d, andBusy. The first three correspond ten-
pests tag values.Busy has the same semantics as | Remote cache miss| 23 +5-16 if replacemehit

I nval i d, but is useful for higher levels to distinguish | (¢Y¢les) network/directory cost + 34
blocks that require special handling, e.g. because they have| Remote cache inval; 8 + 5-16 if replacement
been prefetched. TheTRB entry also contains several idate (cycles)

fields used to accelerate the invocation of a -leses Directory op 16 + 1L if block rcvd + 5 per msg
block access fault handler: the virtual page numtier (cycles) sent + 1 if block sent
page mode, and 48 bits of uninterpreted state. The page| Typhoon Only
mode is a foubit value that_ is used, in conjunction with NP TLB, RTLB 64 ent., fully assoc., FIFO repl.
the access type (read or write) and access tag, to select thg RITLE mi 25 cval
fault handler PC. The additional state bits are typically ®) 1SS cycles
used for a 16-bit home node ID and a 32-bit pointer to an | NP D-cache 16 Kbytes, 2-way assoc
arbitrary user data structure (e.g., for Stache home pages, 8 NP I-cache 8 Kbytes, direct-mapped
vector of petblock directory structures). .

. a. A replacement costs 5 or 16 cycles for shared or exclusive

All NP memory accesses bypas$LB tag checking, blocks, respectively

implementing the @mpest moded f or ce-read and



cessing nodes and use latency parameters, listexblaZ 15 CIsmall/4K

[ small/16K
B small/64K
Ismall/256K
I |arge/256K

loosely based on the DASH prototype [28]. The network
latency is probably optimistic for future systems, but the
low value will tend to favor DjgNB by making fphoons
overhead relatively lger

Our simulation of ¥phoon is accurate enough to run
SRARC binaries for both the primary CPU and the Wie
Stache message and fault handlers are all written in C++
and compiled usingicc Unaltered shared-memory pro-
grams are simply re-linked with the Stache runtime library
We use a version of Fast-Cache [25] to rewrite executables
with instrumentation code that calculates instruction times,
implements the NP special operations, and simulates the

Execution time relative to DiryNB

appbt barnes mp3d ocean em3d

data caches and TLBs on both the primary CPU and the Benchmark

NP S ) ] FIGURE 3. Performance of Typhoon/Stache. Shorter
The major limitations of the simulations are that they do bars indicate betteryphoon/Stache performance. Leger

not accurately model network and bus contention, instruc-  indicates data set size/CPU cache size.

tion cache behavipstack references, and thefei&nce in
the execution rate of the superscalar primary processor and TABLE 3. Application Data Sets.

the simpler NP processdyot modeling the NP instruction —

cache has no impact since the sum of the current handlers | Application | Small DataSet | LargeData Set

requires less than its 8 Kbyte capacitye approximated Appbt 12x12x12 24x24x24

the last d'rfer:ance by chaing a sichlIe cycleh.for eachI Barnes 2048 bodies 8192 bodies

instruction (p us memory system elays). T is is nearly MP3D 10,000 mols 50,000 mols

correct for the simple integer core of the, KBt gives the : :

primary CPU a big boost since it executes many floating | ©cean 98x98 grid 386x386 grid

point operations in the applications. EM3D 64,000 nodes, | 192,000 nodes,
We evaluated these two systems using five benchmarks: degree 10 degree 15

Appbt, a locally-parallelized version of the NAS bench- . o

mark [3]; Barnes, MP3D, and Ocean from the SPLASH . Of course, the DiNB results can be significantly
suite [40]; and a transparent shared-memory version ofmproved using careful data placement to ensure that most
EM3D (discussed in Sectiaf). Appbt is a computational misses are satisfied locallgtenstrom, et al., show that a
fluid dynamics program, which solves multiple indepen- “first _touch” page place_ment strategy eliminates much of
dent systems of non-diagonally dominant, block tridiago- th€ diference by allocating pages on the node that accesses
nal equations with a 5x5 block size. Barnes performs athe€m first [42]. Page migration algorithms also help, as
gravitational N-body simulation using the Barnes-Hut does restructuring an algor_|thm _to enhance Iocallty_[39].
algorithm. MP3D solves a rarefied fluid flow simulation HOWever most of these DYNB improvements require
(e.g., a wind tunnel). Ocean is a hydrodynamic simulation@dditional hardware, additional run-time overhead, or sig-
of a two-dimensional cross-section of a cuboidal ocean/ificant efort by the applications programmeiThe
basin. Each application was simulated for two data sets,YPhoon/Stache simulations required no modifications to
one significantly lager than the other (seafle3). The the existing applications.

smaller data sets are scaled for a 4 Kbyte cache, as advo- | € Most important result in Figuseis that the gener-
cated by Gupta, et al. [13], and fit entirely in theyéar ality of Typhoon does not significantly degrade transparent

caches. shared memory performance, even in the worst case for
Figure3 summarizes the simulation results. It shows the these benchmarksyphoon/Stache performs within 30%
relative execution time ofyphoon/Stache versus RXB of DiryNB (excluding Ocean, within 15%) even when the

(application execution time onyfihoon/Stache over its data _sets fit in the primary CPRtJhardware cache. This is
time on DiNB). The results show thatyfihoon/Stache _p053|bI§ because, in the be_st case, the NP _execute_s only 14
outperforms the conventional protocol by as much as 25odnstructions to request a missing block, 30 mstructhns for
for data sets that do not fit in the CBrimary hardware e remote node to respond with the data, and 20 instruc-
cache. Jphoon/Stache can satisfy the resulting capacityf“ons when the data arrives at the requesting node. The crit-
and conflict misses from local mempnyhile DinyNB

ical path is even shortesince most bookkeeping is
must incur the overhead of additional remote accesses.  Performed after a message is sent.



[33]. However Typhoon provides a single, general-pur-
pose message processor per node, not a pair of specialized
co-processors like *T

While the message models of these machines are simi-
lar, the proposed implementations féif The fine-grain

(]
S research machines tightly integrated their network inter-
; faces into the primary processor [34,9]. *T multiplexes its
o logically separate coprocessors on a single RISC-like pro-
2 cessor [33]. Commercial machines typically implement
> T (-6 Typhoon/Stache their network interfaces as a passive memory-mapped
20 - O-E1DiryNB device [26,20]. The Thinking Machines CM-5 reduces
i /57 Typhoon/Update message latency by mapping its interface at-lese,
10F thereby eliminating the need for system calls. The Meiko
L CS-2 is similar to ¥phoon since its tightly integrated net-
0o 10 20 30 40 50 work processor is separate from the primary CPU [30].
Percent non-local edges However the CS-2 is optimized for relatively long mes-
FIGURE 4. EM 3D Update Protocol Perfor mance sages and provides no fine-grain access control support.
using the lage data set (192,000 nodes, degree 15). The Intel Paragon also provides a message progéssor

The real advantage foyphoon comes from its flexibil-  yses a standard i860 CPU and a passive network device
ity, which enables compilers (and application program- rather than tightly integrating the two [20].
mers) to exploit knowledge of program behaviés Tagged memorywhich Typhoon uses for fine-grain
discussed in Sectioh communication in the EM3D appli-  access control, has been implemented in many earlier
cation can be reduced to neainimum using a customized  machines. Machines for symbolic languages, such as Lisp,
delayed-update protocol. The performance of this protocolyse word-granularity tags to support run-time typing
on Typhoon is displayed in Figu@ where it is compared 32 43]. Some parallel machines provide tags for fine-grain
to D|rNNB and the default invalidation-based Stache pI‘OtO- Synchronization [1,5] The Word_granu'arity tags in the J-
col. The performance advantage of the custom protocolmachine support shared-memory semantitk s well as
increases as the fraction of edges that connect remotgther functions, but do not provide tReadOnl y tag nec-
nodes is increased so that at 50% remote edges, the custodsary for replication. The IBM 801 and RS/6000 support

protocol outperforms DiNB by 35%. fine-grain access control by providing a “lock bit” per 128
bytes in their TLB entries. Howeyethe single bit limits
7 Related Work them to two states, much like theisabnsin Wihd Tunnel

[6]. Typhoon is, we believe, unique in using a reverse-TLB
to provide tags for a commodity processor

Tempes® useilevel memory management interface is
similar to Appel and L8 useilevel primitives [2]. Both

rovide mechanisms to support distributed shared memory

9]. The diferences arise from empest fine-grain
access control.

The Stache memory-allocation policy bears strong simi-
larities to distributed shared memory systems [29].
Staches default page location algorithm is similar to 1'\8Y’
fixed distributed manager algorithnwhere pages are
assigned round-robin and the home nodes never change.
However Stache also allows pages to be allocated on spe-

The Tempest interface andyphoon implementation
evolved from our previous work on theid&bnsin Whd
Tunnel [36], a parallel simulation system that runs on a
Thinking Machines CM-5. The &tonsin Whd Tunnel
models cache-coherent shared-memory systems with
Stache-like caching scheme that synthesizes fine-grai
access control from the CMsb’errorcorrecting code
(ECC) bits. The &@mpest interface generalizes these mech-
anisms and yiphoon provides first-class hardware support
for them.

Typhoons low-overhead messaging draws heavily on
message-driven systems for fine-grain computations

[8,9,33,34]. The NR message sending interface closely .- . -
cific nodes and provides support to allow explicit page

follows the J-Maching [10], but uses memory-mapped ~ .~ . -
loads and stores instead of integrated instructions, and pror_nlgratlon. Stache dirs from distributed shared memory

vides optimized block transfers. The NReceiving inter- systerlns.tbecause its maintains coherence on a much finer
face is an “active” message model [8], in which the sendedranuianty

explicitly specifies the address of the handRather than i Sta%‘g':j Aals; st|rr]’n|lar t?hC?chel—Only Memory 'At‘rCh'teﬁ'
queuing the message in memory [10] or requiring polling ures ( ). Both use the local main memory to cache

by the primary processor [8], our handlers are directly Lemdote data [32]' Hlf)we\l/ieﬁg)ll\/lA rlnachlnes u'_set complexh
invoked on a separate message processoch like *T ardware and make afl of local memory Into a cache

10



[14,21], while Stache uses much simpler hardware andhis system runs at uskvel, it outperforms a complex
only as much of the local memory as an application hardware directory protocol in the common case in which a
chooses to use. The Swedish Institute of Computer Sciennodes working set exceeds its cache size and performs

cess Data Difusion Machine (DDM) [14] and Kendall

competitively in other cases. In addition, we demonstrated

Square Researcdh’KSR-1 [21] use coherence protocols the benefits of usdevel protocols by customizing the

fixed in hardware. Stache usegpfoons tag mechanisms

coherence protocol for the EM3D application, thereby

to accelerate usdevel software coherence algorithms. improving its performance by 35%.

DDM and KSR-1 are both hierarchical machines, with

hierarchical directory structures. Stache is flat, like Sten-Acknowledgments

strom, et als proposed COMA-F machine [42].

This work is part of the Wconsin Whd Tunnel project,

Recent research has begun focusing on supporting mulwhich is co-led by Mark Hill, James Larus, and Davidod/ and
tiple paradigms in a single computer—by integrating funded by the National Science Foundatioe. &¥pecially would
shared memory and message passing—and allowing éke to thank Mark Hill for numerous discussions and suggestions
compiler to select the model appropriate for a program orand Alvy Lebeck for several key extensions to Fast-Caclee. W
passing mechanisms for shared memory systems [12]. ThéPPlication and J.PSingh for supplying the SPLASH bench-

MIT Alewife system handles some cache coherence eventg1
in software and allows shared-memory progrdmsend
explicit messagesTheir preliminary results show that
some run-time operations, for example, task creation, are
more eficiently implemented with explicit messages than
shared memory [23]. The Stanford FLASH goes further[l]
and replaces a hard-wired directory controller with a pro-
grammable controller that implements shared memory by
explicitly sending messages [15]. Howevaeither Ale-
wife nor FLASH provides protected, udevel interfaces 2l
for these mechanisms, which limits programmers and com-
pilers to a predefined set of system-provided policies.

(3]
8 Conclusions

This paper describes a new approach to designing paral[—4]
lel computers that is based on uleefel software control |5
of the shared address space. Previous systems have imple-
mented shared address space policies in hardware, some-
times assisted by system-level software, which limits
flexibility and performance. Theempest interface pro- g
vides the four primitives—fast messages, bulk data trans-
fer, memory management, and fine-grain access control—
that enable a compiler or run-time library to implement or
customize communication and shared-memory operations
efficiently.

To make these ideas concrete, we describygahdon,
an initial design of a system that implements tempest
primitives at low hardware cost. Processing nodes in
Typhoon are similar to those in existing message-passing
computers, except for an additional Network Interface Pro—[9]
cessor (NP). The NP provides mechanisms that enable
userlevel code to respond quickly to incoming messages
from the network and to cache misses or explicit requests
from the node processor

We demonstrated this approach with a detailed simula-
tion of a new transparent shared-memory protocol based on
a new memory allocation policy called Stache. Although

(8]

11

7] D.E. Culler,

arks. V¢ would also like to thank Doug Ryer, Satish Chandra,
rishul Chilimbi, Rahmat HyderAlvy Lebeck, Shubu Mukher-
jee, Brad Richards, Anne Rogers, and Guri Sohi for their sugges-
tions on drafts of this paper
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