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Abstract
Many parallel languages presume a shared address space in which any portion
of a computation can access any datum. Some parallel computers directly sup-
port this abstraction with hardware shared memory. Other computers provide
distinct (per-processor) address spaces and communication mechanisms on
which software can construct a shared address space. Since programmers have
difficulty explicitly managing address spaces, there is considerable interest in
compiler support for shared address spaces on the widely available message-
passing computers.
At first glance, it might appear that hardware-implemented shared memory is
unquestionably a better base on which to implement a language. This paper
argues, however, that compiler-implemented shared memory, despite its short-
comings, has the potential to exploit more effectively the resources in a parallel
computer. Hardware designers need to find mechanisms to combine the advan-
tages of both approaches in a single system.

Categories and Subject Descriptors: B.3.2: [Memory Structures]: Design
Styles—shared memory; C.1.2: [Processor Architectures]: Multiple Data
Stream Architectures (Multiprocessors)—multiple-instruction-stream, multiple-
data-stream (MIMD), parallel processors; D.1.3: [Programming Techniques]:
Concurrent programming—parallel programming; D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization, run-time environments.

General Terms: Languages, performance.

Additional Key Words and Phrases: Compilers, parallel programming lan-
guages, shared-memory multiprocessors, message-passing multiprocessors,
memory systems, cache coherence, and directory protocols.

1.0  Introduction
This paper examines the implications—for compiler writers and hardware designers—of

implementing a program’s shared address space on computers with and without shared-memory
hardware. The semantics of most programming languages presume ashared address space in
which any portion of a computation can reference any datum. Many parallel computers, how-
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ever, have physically distributed memory divided into distinct, per-processor address spaces. On
thesemessage-passing computers, a programmer or a compiler and run-time system can con-
struct a shared address space by sending data between producers and consumers with explicit
(program controlled) messages. By contrast, the hardware in a shared-memory computer imple-
ments a shared address space by fetching and updating remote data in response to memory reads
and writes.

These two alternatives, which we callcompiler-implemented shared memory (CISM)and
hardware-implemented shared memory(HISM) respectively, differ in many important respects.
HISM exploits hardware’s speed to offer fine-grain, relatively low-latency access to any memory
location without programmer or compiler assistance. On the other hand, hardware complexity
limits systems design, and consequently memory systems provide few functional or perfor-
mance-enhancing primitives and little flexibility. By contrast, CISM software completely con-
trols communication, which enables static programs to use a computer’s network and memories
efficiently. Programs that a compiler cannot analyze or that have statically unpredictable
(dynamic) behavior, can incura large penalty because of the overhead of managing a shared
address space with run-time software. From another perspective, shared-memory hardware pro-
vides fast, high-level semantic operations for a small set of policies. Message passing, on the
other hand, provides hardware-level operations that enable a compiler to build application-spe-
cific policies.

It is important to keep in mind that many HISM systems are built on a message-passing hard-
ware base. The two types of machines are fundamentally similar. The limitations of existing sys-
tems reflect implementation shortcomings rather than intrinsic limits on shared-memory
hardware. These limitations are becoming less severe. For example, directories [4,27] eliminate
the need to broadcast and so free shared memory from the processor limitations of bus-based
Multis [6]. Newer directory systems, such asDir1SW [18,38], reduce the complexity of directo-
ries and provide rudimentary facilities to improve performance by enabling software to inform
the memory system of upcoming program behavior. MIT Alewife goes further and exposes the
underlying message-passing mechanisms [24].

At first glance, it appears that a compiler writer would unquestionably prefer HISM. Compil-
ers for shared-memory computers are simpler and provide a more uniform level of performance
for a wide range of programs. CISM requires complex compilers and complicates applications
programs by requiring programmers to assume the difficult task of partitioning data among pro-
cessors’ memories. This paper argues, however, that CISM has several advantages that enables
it—in the best case—to use a parallel computer’s memory and communication mechanism more
effectively than HISM. The challenge is to identify each approach’s advantages and either incor-
porate comparable performance-enhancing mechanisms into shared memory systems or extend
message passing to work well for programs that cannot be statically analyzed. This paper takes a
first step in this direction by trying to identify these advantages.

The next section of the paper briefly reviews how compilers and shared-memory hardware
implement a shared address space. Section2.0 investigates the differences between these two
implementations, with an eye towards identifying CISM’s advantages.
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2.0  Shared Address Space Implementation
This section provides background by briefly reviewing how compilers and hardware imple-

ment a shared address space.

2.1  Compiler-Implemented Shared Memory
Compilers for various languages, mainly Fortran dialects, have constructed shared address

spaces on message-passing computers [7,14,21,31,39]. Because this is an active research area,
standard terminology has not yet emerged and the strengths and limitations of techniques are not
yet widely known. The description below summarizes the approach used by many compilers.

The hardware base for these compilers is a message-passing computer (Figure1). Each pro-
cessor is connected to a local memory and network interface. Processors communicate by send-
ing messages across a point-to-point network. Messages typically have a relatively high latency
(100–1000’s of instructions). The network, however, has high bandwidth, so large, infrequent
messages are preferable to small, frequent messages. However, one system—the Thinking
Machines CM-5 [20]—shifts the balance by reducing latency by an order of magnitude, at the
cost of peak bandwidth.

The common approach to compiling for these machines is to distribute data (arrays) among
processors’ local memories according to programmer-supplied directives, and to partition a
computation among processors in a way that reduces communication [8]. High-Performance
Fortran (HPF), for example, provides a programmer withtemplate, align, anddistrib-
ute directives to distribute arrays across processors [29].

Although a programmer usually partitions data, the compiler partitions the computation
among processors. A common approach isowner computes, in which the processor holding a
location (itshome processor) computes and assigns the location’s new values. At each assign-
ment statement, processors send their values to other processors, which receive the values nec-
essary to compute the expression on the right-hand side of the assignment and performs the
computation. In the best case, the compiler uses distribution directives to statically determine
the processor that owns an value, the processors that require the value, and arranges for the
home processor to directly send this value to the other processors. We call this approach (with
the optimizations discussed below)best-case CISM.

Local
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Network
Interface
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Memory

CacheCPU
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Interface
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Figure 1: Message-passing computer. A typical message-passing machine consists of a col-
lection of processors that communicate over a point-to-point network. Each processor has a local
memory that cannot be directly accessed from other processors.
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The compile-time and run-time bookkeeping in CISM arises because of a fundamental char-
acteristic of message-passing: the sender and receiver of a message must know each other’s
identity, at least to the extent of agreeing on a communication channel. Shared memory differs
since memory locations have universally-known and accessible names. In effect, memory loca-
tions in HISM add a level of indirection that hold a value between its production and consump-
tion. Consequently, a producer and consumer need not be aware of each other’s identity.

Data in CISM is distributed by its producer—rather than demanded by its consumers, as in
HISM—but is not delivered until the consumer is ready. A synchronous message send requires
the processors to rendezvous before transferring data, but eliminates buffering. An asynchronous
transfer permits the producer to continue, but may require buffering a message if the consumer is
not ready for it. In both cases, a receive operation blocks until data is available. Message passing
enables a producer to ship data as soon as it is produced, even if the receiver is not ready, which
can help hide message latency. HISM, on the other hand, requires a rendezvous between the pro-
ducer and consumer to ensure that the producer does not update a memory location before the
consumer finishes with its old value and that the consumer does not read a value before it is pro-
duced. From another perspective, message passing effectively combines producer-consumer
synchronization with communication.

The high communication latency of most message-passing machines prevents a fine-grained
approach from being used directly. Compilers must amortize and hide message latency by com-
bining and carefully issuing message sends and receives. Message vectorization collects
requests or responses for one processor in a single message, which incurs less overhead than
separate messages.Message pipeliningoverlaps communication and computation by sending
data early in a computation, before another processor attempts to read it.

The implementation and optimizations outlined above presuppose that a compiler can stati-
cally determine an array reference’s home processor and predict a program’s control flow. When
the home processor mapping is unknown at compile time, it must be computed during program
execution. Run-time techniques are necessary in common and mundane situations, for example
doubly-subscripted array references. Two techniques for computing this mapping are run-time
resolution and inspector-executor systems.

With run-time resolution [34], every processor at referenceA[B[i]] computesB[i],
examines the resulting valuex to determine if it ownsA[x], and if so, finds the processor to
which to send the value. Run-time resolution is costly because it requires fine-grain message
passing, performs an expensive location-to-processor mapping in software, prevents program
optimizations such as message vectorization and pipelining, and serializes a program’s execu-
tion.

 Many important problems, such as sparse matrix and unstructured mesh codes, have static
communication patterns that are unknown at compile-time.Inspector-executors[23,35] exploit
the static pattern by making an initial pass over a program’s data to find the communication pat-
tern and build an explicit map, which the program subsequently uses to communicate values.
The map eliminates much of the run-time overhead to compute a location’s owner and where to
send values. However, communication optimizations, such as message vectorization and pipelin-
ing, are difficult to perform since the compiler is unaware of the communication pattern.
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Preliminary measurements suggest that widespread use of run-time resolution is impractical.
Hall et al. [17] implemented a parallel version of DAXPY in the DGEFA (Gaussian Elimina-
tion) routine from the Linpack Benchmarks. On a 32 processor Intel iPSC/860 computer, the
run-time resolution version ran 130–180 times slower than the sequential code. By contrast, the
best-case CISM version ran up to 8 times faster. Admittedly, these numbers represent a single
datapoint from an immature system, but the magnitude of the improvement necessary to come
close to breaking even with the sequential code is striking. Inspector-executor overheads are
much smaller and the speedups for programs that fit the model are close to linear [23].

2.2  Hardware-Implemented Shared Memory
The other approach to constructing a shared address space is to support it with hardware.

Machines have implemented shared memory in many different ways. Non-uniform access
machines (NUMA), such as the BBN Butterfly [33], partition memory among processors and
fetch a remote location at each reference, which results in sharply higher costs for remote
accesses. Most shared-memory computers, however, use caches to keep copies of a memory
location close to the processors that are actively accessing it. Caches can reduce effective mem-
ory access time and communication network bandwidth since interprocessor communication
occurs when a block is brought in and flushed from a cache. Cache coherence protocols keep
cached copies consistent as processors modify memory locations. Hardware for coherence dis-
tinguish classes of parallel computers. Multis [6] are bus-based multiprocessors in which all
processors watch memory accesses over a shared bus and modify their caches appropriately.
Directory-based computers—such as Stanford DASH [27] and MIT Alewife [3]—eliminate the
non-scalable bus by having hardware, and sometimes software, maintain a directory that records
which processors have copies of a cache block. A cache-coherence protocol uses the directory to
serialize conflicting updates and to invalidate copies at updates. COMA machines, such as the
KSR-1 [22], organize all of their memory as a cache. It is unclear how the complex COMA
hardware performs or scales [36], so this paper concentrates on the more proven directory tech-
nology. This section briefly describes cache-coherent memory systems based on directories.

Processor N-1Processor 0
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Figure 2: Directory-based shared-memory computer. The hardware base of a shared-memory
computer is similar to a message-passing computer. The directory hardware helps keep the memory
consistent by tracking which processors have cached copies of a memory location, so they can be
invalidated when the location’s contents change.
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The primary logical difference between these systems and message-passing computers is that
the memory, which is physically distributed in both, is referenced in a single address space in
shared-memory computers (see Figure2). The principal hardware change is the addition of
directories [4]. The directory on nodei maintains information on which nodes have copies of
memory locations whose home is nodei. When nodeA accesses a memory location that is not in
its cache, shared-memory hardware uses a simple, static mapping from the location’s address to
its home node to determine where to request the location’s current value. nodeA’s hardware
sends a message to this node requesting a copy of the cache block containing the location.
Depending on the type of request (read or write) and the state of the cache block, the home
node’s hardware may need to reclaim outstanding copies of the block by sending invalidate mes-
sages to other nodes’ caches. The home node then updates its directory and sends the block to
nodeA, which puts this block in its cache, where it can be repeatedly and quickly accessed until
removed by cache replacement or invalidation.

Directory systems differ primarily on the data transfer granularity and the hardware protocol
to maintain directory state. At one extreme is Li’s Shared Virtual Memory [28] which uses a pro-
cessor’s virtual memory hardware to detect accesses to non-local locations, transfers pages of
memory, and maintains the directory entirely in software. At the other extreme is Stanford
DASH [27], which implements a complex directory protocol entirely in hardware and transfers
32-byte cache blocks. Cooperative shared memory [18] is an alternative approach that couples a
simple directory protocol (Dir1SW) with a programming model and a collection of performance-
improving memory system directives. Dir1SW implements common directory operations in
hardware and provides mechanisms that enable software to handle the less frequent and more
complex cases efficiently. A recent study shows that a slightly improved version ofDir1SW per-
forms comparably with a more complex protocol similar to the one used in DASH [38].

3.0  Compiler and Hardware Differences
This section discusses the implications of constructing a shared address space in these differ-

ent ways. The two implementations have radically different functional requirements and perfor-
mance characteristics. HISM offers relatively low latency access to any location without
requiring a compiler to identify the accessed location in advance. However, shared-memory
hardware offers few mechanisms for efficiently transferring large volumes of data, few ways to
exploit static program analysis, and limited, unpredictable local data storage. CISM, on the other
hand, requires a complex run-time system and extensive program analysis, but, in the best case,
offers considerable leeway to hide latency and optimize data transfer and storage.

3.1  Logical to Physical Mapping
The two approaches use very different processes to translate a reference to a logical address,

such asA[i], into a physical memory reference. The CISM translation process has two alterna-
tives shown in Figure3. In the best case, when compile-time data-distribution information deter-
mines the home processor, the compiler can produce code that directly references the location.
The code is similar to a sequential array access, except that it must account for the renaming that
results from partitioning an array among the processors. With run-time resolution or inspector-
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executors, the compiler produces code for all processors that computes the logical address and
maps it to a per-processor virtual address. This mapping also identifies the location’s home pro-
cessor, which is the only one that references the physical address.

Figure4 shows the translation process for HISM. A compiler generates code that translates
an array reference to a memory address in the conventional manner. Hardware uses one of two
approaches to map this shared-memory virtual address to a physical address on its home proces-
sor. In some systems—Dally’s J-machine[11] and the Wisconsin Wind Tunnel [18]—shared-
memory hardware maps a virtual address to adistributed virtual address consisting of a home
processor number and virtual address. The shared-memory system sends this address to the
home processor, which uses its virtual memory system to produce a physical address (top
arrow). The other approach—as exemplified by Stanford DASH [27]—uses each processor’s
virtual memory hardware to translate a virtual to a physical address. Shared-memory hardware
converts this address into adistributed physical address consisting of a home processor number
and physical address. In both approaches, the hardware mapping is at the relatively coarse gran-
ularity of a virtual memory page. A program or compiler can mollify this mapping by using the
logical to virtual mapping (i.e., array indexing) to collect related items on a page (see below).

CISM provides software with complete control over the logical to physical translation. This
control exacts a high cost when the bookkeeping is done at run time. HISM is less flexible, but
its dynamic bookkeeping is more efficient than run-time software. This efficiency is particularly
valuable for programs whose behavior cannot be fully analyzed.

Logical
Address

Physical
Address

VM
Hardware

Per-Processor
Virtual
Address

Compile-Time

Run-Time Resolution
Inspector/Executor

Figure 3: Logical to physical address translation in compiler-implemented shared memory (CISM). The map-
ping from a logical address, such asA[I], to a virtual address is performed, in the best case, at compile time using
data distribution information. Otherwise, a technique such as run-time resolution or inspector/executor computes the
mapping during program execution.
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Figure 4: Logical to physical address translation processes in hardware-implemented shared memory
(HISM). Conventional code produces a virtual address from a logical address. The shared-memory hardware can use
either the virtual or physical address to determine the home node.
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3.2  Data Distribution
Compilers for the two forms of shared memory take different approaches to data distribution.

CISM statically distributes data among the disjoint memories on the basis of programmer-sup-
plied annotations. Compilers for cache-coherent shared-memory machines typically are not con-
cerned with static data distribution. Instead, they concentrate on making good use of caches’
dynamic distribution mechanism.

It is seductive, though unrealistic, to expect caches to dynamically rectify shortcomings in a
static distribution of a program’s data. Caches are relatively small (64KB–2MB) and have lim-
ited associativity (1–4 way). Data brought into a cache can displace other useful data and itself
be replaced before being reused [13,25].

Compilers for cache-coherent systems typically do not attempt to position data among physi-
cally-distributed memories because these systems provide only coarse-grain mechanisms for
placing data on a processor node. Taking into account physical distribution could improve cache
performance. For example, on DASH, a cache miss to local memory takes 8–29 cycles while a
remote miss takes 34–132 cycles [27]. On this machine, data can be distributed by a virtual to
physical mapping that exploits the partitioning of physical pages on high-order address bits.
However, this approach is limited to page granularity (4KB).

Compilers and programs can partially sidestep the granularity limitation by using the logical
to virtual mapping (i.e. array address calculation) to collect logically-related array elements on
the same page [36]. This type of non-contiguous allocation is possible for statically blocked
arrays, which CISM can also distribute and manipulate efficiently. Non-contiguous allocation
complicates array index calculations and can increase the cost of an array access, but standard
compiler optimizations can reduce this problem.

Most current message-passing compilers leave the difficult problem of data distribution to
application programmers by requiring explicit domain decomposition directives. CISM stati-
cally distributes data according to these directives. Data may be explicitly redistributed during a
program’s execution, but the system provides no feedback mechanism to rectify a bad distribu-
tion. As with any abstraction, the performance of distribution directives is heavily dependent on
the quality of a translator and a programmer’s understanding of the translation process. Unfortu-
nately, current compilers cannot recognize or rectify bad partitioning. Automatic (i.e., compiler)
data distribution and alignment is an area of active research [9,16,32]. The generality and appli-
cability of such techniques are still unclear.

3.3  Cache Parameters
A major advantage of CISM is that local storage is entirely under compiler control. A shared-

memory machine’s cache is typically far smaller (e.g., 64KB–2MB) than a processor’s local
memory (e.g., 32MB–256MB) and the cache is managed by hardware whose behavior is difficult
to anticipate because of limited set-associativity. A location brought into a cache by a reference
or prefetch can be evicted before being used or reused, because of either a capacity or conflict
miss caused by a subsequent reference. Acapacity miss is a replacement that would not have
occurred in an infinite cache and aconflict miss is a replacement that would not have occurred in
a fully-associative cache of the same size [19]. The latter misses are particularly difficult to
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anticipate since they depend on the relative addresses of the locations accessed after the original
reference. Even assuming it could anticipate both misses, there is little that a compiler can do to
avoid them except to change the program’s access pattern. Misses adversely affect performance
since an evicted location is returned to its home processor and it must be retrieved at high cost
(8–132 cycles in DASH). COMA machines, such as the KSR-1, organize local memory as a
highly associativity cache, which can alleviate cache constraints.

By contrast, CISM uses local memory to hold data in a position intermediate between a pro-
cessor’s cache and a remote processor’s memory. When a location is evicted from a processor’s
cache because of a conflict or capacity miss, it can be retrieved at much lower cost (8–34 cycles
in DASH). Local memory is much larger than a cache and its contents are fully controlled by a
compiler, which can use it as a large, fully-associative cache (without coherence).

3.4  Bulk Transfer
Many network interconnects have high latency and bandwidth, which heavily favors large

messages over sequences of short ones. Shared-memory hardware, however, demands nearly the
opposite network characteristics. The impedance mismatch between HISM and networks arises
from two factors: transfer granularity and bad buffering. The first difficulty is that memory val-
ues are prefetched or referenced at cache-block granularity and are obtained with asynchronous
request messages. The request is short and only returns a cache block. Moreover, this pair of
messages incurs a round-trip latency. Increasing cache block size increases the data per mes-
sage, but may also increase coherence traffic because of problems such as false sharing [12].
The second difficulty is that limited cache size and associativity makes it impossible to transfer
and buffer large amounts of data. Moving a large quantity of data into a cache can evict useful
data.

Best-case CISM alleviates these problems, but new ones arise. CISM does not send request
messages, but rather relies on sender-initiated communication, which potentially reduces the
number of messages by a factor of two. Perhaps more important, it can reduce communication
latency by a factor of two. However, this communication has a hidden cost since asynchronous
messages must be buffered if the receiver is not ready. This buffering requires copying and may
require memory allocations as well. Compiler analysis that collects together messages exacer-
bates the problem by increasing message size. Other approaches, such as Active Messages [10],
eliminate buffering in the message-passing substrate but require application-level buffering to
avoid having values change unexpectedly because of an arriving message.

HISM systems provide few mechanisms for optimizing remote accesses. One of the most
common,non-binding prefetch,asynchronously moves a remote block into a processor’s cache.
This mechanism allows computation to overlap communication. However, the transfer unit is
generally a single cache block so the overhead to produce and send prefetch requests is large. In
addition, prefetched data can displace more immediately useful data or itself be replaced before
being used. These considerations limit how early a prefetch should be issued and consequently,
how much latency it can hide. In addition, large improvements can result from changing a pro-
gram’s reference pattern to ensure cached data is reused before being replaced [13,25]. Unlike
prefetching, these transformations affect semantics and so require extensive compiler analysis to
be applied safely. In addition, the profitability of transformations is difficult to predict [37].
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3.5  Memory Renaming
Another difference between HISM and CISM is that the former uses the memory system to

provide multiple instances of a memory location under the same name. In CISM, local instances
are true copies that have different names. Each copy can be changed independently, while under
HISM, the instances are kept coherent. When an array is partitioned, different processors may
have to reference a location with a different base address and indices. This renaming is a major
hurdle in writing message-passing programs by hand. For compilers, renaming is more than a
bookkeeping chore. For example, overlap analysis in SUPERB [39] and other compilers identi-
fies array sections obtained from other processors, so they can be kept in a contiguous portion of
a local array from which they can be uniformly accessed. Currently, SUPERB only performs this
analysis for specific, regular access patterns.

Array copying also has advantages. Compilers for shared-memory machines sometimes copy
arrays for different reasons. Fortran 90 array operations have a read-before-write semantics that
can be difficult to execute effectively on a MIMD processor without copying input or output
arrays. In addition, array privatization, a transformation that enhances parallelism, requires pro-
cessors to copy data from shared to private arrays on shared-memory machines [30]. In addition,
the copying of values from remote locations into contiguous local memory can improve unipro-
cessor cache performance by reducing both conflict and capacity misses [25].

3.6  Synchronization
Transmitting values in a message-passing system, because it requires explicit actions by both

processors, also transfers synchronization information. A compiler can assume that a value is not
consumed until it is produced and sent. On the other hand, in a shared-memory system, a com-
piler generates code to access a value, but transmission is handled by hardware that executes on
behalf of the consumer. To ensure a producer-consumer relationship, a compiler must insert syn-
chronization.

Techniques exist that combine synchronization with shared memory. One alternative is fine-
grained synchronization such as empty-full bits, such as those in the Tera processor [5]. This fea-
ture complicates the system and memory. In a sense, message passing provides the equivalent of
fine-grained synchronization with little overhead when many values can be packed into a mes-
sage. Another alternative is Queue on Lock Bit (QOLB) [15], which provides a lock for a cache
block, maintains a queue of waiting processors, and ensures that the block is in a processor’s
cache when it acquires the lock. QOLB, though attractive, does not provide adequate mecha-
nisms for multi-block objects or for accessing portions of large objects such as arrays.

3.7  Memory Coherence
Hardware shared-memory systems usually ensure a globally consistent view of memory with

a cache-coherence protocol. To achieve higher performance, proponents of alternative memory
semantics have suggested weakening consistency guarantees so they hold only at defined points
in a program’s execution [2]. Message-passing systems rely on a compiler to ensure that a pro-
gram will not find itself in a situation in which two processors believe that different values are
current. Ensuring this property does not appear to be a major concern of current compilers, per-
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haps because current compilation strategies are simple. For example, the common owner-com-
putes strategy allows only one processor to update a location and consequently avoids
reconciling multiple updates. In best-case CISM, a compiler also knows which processors have
out-of-date copies and can produce code to update these copies. Updating typically requires less
message traffic than invalidation, which is used by directory-systems protocols.

Compilers’ lack of success in software-controlled caching [1] suggests that the sophistication
of message-passing compilation strategies will be limited by static program analysis. Software-
controlled caching requires a compiler to identify interprocessor data dependences and insert
code to invalidate an out-of-date cache block before it is accessed. The program analysis for this
problem is similar to that required for CISM. In both cases, compilers must produce conserva-
tive code that preserves a program’s semantics for all possible executions. Because static pro-
gram analysis is necessarily imprecise, compilers make pessimistic assumptions. With software-
controlled caching, conservative analysis resulted in more memory-system traffic and lower per-
formance than cache hardware [1].

3.8  Cost Modeling
An important difference between the two forms of shared memory is a programmer’s or com-

piler writer’s ability to model the cost of a memory reference. With HISM, a remote memory ref-
erence appears identical to a local reference, so it is easy to forget that they have vastly different
costs (8 cycles best case vs. 132 cycles worst case in DASH). To further complicate matters, on
machines with caches, repeated references to the same location can incur vastly different costs
as the location moves in and out of the cache. Cache models are complex and typically only cap-
ture capacity, not conflict misses [13,26]. By contrast, on a message-passing computer, a remote
reference requires explicit communication, whose high cost is obvious and can be modeled.

3.9  Worst-Case Performance
A significant issue for both CISM and HISM is how well do they perform in the worst case

and how often does the worst case arise? In CISM, the difference between best and worst case is
large because of run-time resolution’s and similar techniques’ low performance. Unfortunately,
this technique is necessary whenever a compiler cannot fully analyze a memory reference. Most
compiler work to-date has focused on dense matrix codes. Even for these programs, the analysis
is complex and must be applied interprocedurally since partial information does not result in a
gradual performance degradation but prevents parallelization [17]. Programs that contain indi-
rect references, dynamic data structures, or pointers cannot be accurately analyzed and so will
perform poorly.

Worst case HISM behavior arises because of ineffective cache usage, bad data distribution,
and false sharing. It is unclear what is the difference between best and worst case behavior, but it
is unlikely to approach the factor of 1,000 between best-case and run-time resolution CISM [17].
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4.0  Conclusion
We can briefly summarize the main advantages of compiler-implemented shared memory

over hardware. In the best case, CISM statically distributes data on processors that access it and
can use each processor’s local memory as a large, software-controlled cache to hold data. A
compiler can arrange to efficiently transfer large quantities of data directly from a producer to
consumers, without requiring explicit requests for each packet and without being constrained by
a hardware coherence protocol. In addition, message passing effectively combines synchroniza-
tion with communication. Message passing, in general, offers a compiler greater control and the
potential of achieving higher performance when the compiler can accurately analyze a program.

In praising compiler-implemented shared address spaces, it is important not to lose sight of
hardware’s advantages. Hardware enables programmers and compilers to quickly and easily run
a program on a parallel computer and it effectively services memory requests in programs whose
sharing patterns are not analyzable. Caches provide an efficient, dynamic mechanism to improve
locality. These advantages cannot be duplicated effectively by software on a message-passing
computer.

These two approaches are, in many ways, complementary. The challenge for shared-memory
designers is to provide new primitives and mechanisms that enable compilers to efficiently trans-
fer large quantities of data  (for example [24]), make better use of the local memory on each pro-
cessing node, and integrate communication and synchronization in a shared address space. The
challenge for message-passing system designers is to provide mechanisms that enable programs
to rapidly respond to dynamic memory accesses and to quickly transfer small quantities of data.
The goal in both case can be the same: direct control of low-level hardware mechanisms when
static analysis suffices and effective hardware support to fall back on when it does not.
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