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Abstract

Much of a computer’s communication performance is determined by how well it inter-

acts with networks. Such interaction is critical for latency-sensitive applications, such as

parallel programs that send frequent, short messages. Fortunately, networks have

improved dramatically, especially System Area Networks (SANs). SANs provide sub-

microsecond latency, gigabytes per second bandwidth, and very high reliability to 10-100

hosts. Unfortunately, this dramatic improvement in network performance is seldom deliv-

ered to applications. A key bottleneck is the host network interface (NI), which connects a

network to a host computer. For example, conventional NIs are usually accessed via direct

memory access or uncached, memory-mapped device registers, which can incur latencies

between ten and hundreds of microseconds.

This thesis investigates novel techniques to improve interactions between a processor

and a SAN NI. A key principle underlies these techniques:treat NI access as regular, side-

effect-free memory access, and not as a disk interface access. The thesis’ first contribution

shows that such treatment opens up at least eight opportunities for improving processor-NI

interactions.

This thesis’ second contribution is the design and evaluation of a novel class of NIs

calledCoherent Network Interfaces (CNIs). CNIs realize the key principle enunciated in

this thesis. CNIs appear to their hosts more like regular, cachable memory than like a disk

interface and exploit all eight opportunities for improving processor-NI interactions.

The thesis’ third contribution is a systematic classification and evaluation of NI data

transfer and buffering parameters. I evaluate these parameters in the context of several

commercial and research NIs.

Finally, this thesis’ last contribution is theCosmos coherence message predictor. This

part differs significantly from the rest of this thesis. Coherence protocol message predic-
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tion can accelerate the performance of directory protocols, which are used by most large

shared-memory multiprocessors to keep per-processor caches coherent. Cosmos predicts

the source and type of the next coherence message for a cache block using general predic-

tion logic that is extension of Yeh and Patt’s PAp branch predictor. For five scientific appli-

cations running on 16 processors, Cosmos’ prediction accuracy ranges between 62% and

93%.
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Chapter 1

Intr oduction

The term “computer” is perhaps a misnomer today. A modern computer system often

“communicates” with a communication network more than it “computes.” Consequently,

much of a computer’s value depends on how well it interacts with networks. To enhance

this value, designers must improve the communication performance delivered to users.

The aspect of communication performance that is quoted most commonly isbandwidth.

Bandwidth is the rate at which data can flow through the network and computer. High

bandwidth is critical when transmitting high-quality video or large files. An under-appre-

ciated aspect of communication islatency. Latency is the user-to-user delay for sending a

message. Latency determines performance of applications that send many small messages,

as can be found in fine-grain parallel computing, network file systems, database lock man-

agers, and world-wide web requests.

Latency of communication can be broken into three important components (Figure1-1):

• latency through software protocols that generate and consume messages,

• latency through the network, and
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• latency of processor interactions with anetwork interface (NI)that connects a com-

puter with a network.

The advent of high-performance microprocessors with supercomputer-like clocks, lean

software protocols (e.g., [127, 128]), and high-speed reliable networks with tens of nano-

seconds latency (e.g., [41]) have drastically reduced the impact of software protocols and

networks on the overall latency of communication. Consequently, the third component—

processor interactions with an NI—threatens to become a critical bottleneck, particularly

for a cluster of workstations connected with a high-speed network.

An NI is a device that sends and receives messages from the network on behalf of the

computer. To send or receive a message a processor (and/or memory system) must interact

with the NI by reading and writing messages into the device. Conventional NIs were

designed for slower processors, heavy-weight protocols, and slow and unreliable net-

works. Consequently, processor interactions with conventional NIs incur large compo-
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Figure 1-1. Three components of message latency.
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nents of latency. For example, conventional NIs are usually accessed via low-level

software (e.g., device driver) inside the operating system, located on slower I/O buses, and

accessed via direct memory access (DMA) or uncached, memory-mapped device regis-

ters. Each of the these components can add between ten and hundred microseconds

latency to the total latency seen by a message [5, 127, 11].

The key problem with conventional NIs is that a processor interacts with them in almost

the same way it interacts with disk interfaces. For example, disk-resident files are usually

accessed via the operating system and read into memory using direct memory access

(DMA). However, technological advances have made current networks between four to

five orders of magnitude faster than disks. Consequently, NIs must be redesigned to

accommodate this new generation of high-speed networks.

This thesis proposes and evaluates novel techniques to improve a processor and memory

system’s interactions with an NI. That is, this thesis examines techniques to improve an

NI’s internal interface to a computer andnot its external interface to networks. These tech-

niques reduce the overall message latency to a few microseconds. Other related projects

and designs have proposed using reflective memory techniques to directly deposit data

from a processor’s cache or memory in one node to another node’s memory [44, 12]. The

techniques described in this thesis can further improve the performance of communication

via reflective memory. This is because the techniques proposed in this thesis improves the

important component of latency: processor-NI interactions, which is critical even for

reflective memory (see Chapter 5).

The NI techniques I propose in this thesis are most relevant to a Cluster of Workstations

(COW). A COW is a parallel machine built with commodity workstations and connected

with a high-speed and reliable System Area Network (Appendix A). COWs are attractive

over traditional massively parallel machines (MPPs) because COWs have the potential to

offer performance similar to MPPs, but at a reduced price. The reduced price of COWs
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arise from the commodity nature of its parts—commodity workstations, commodity oper-

ating system, and (perhaps) commodity network.

This thesis makes four contributions:

• The first contribution of this thesis (Chapter2) is the development of a key NI design

principle: treat NI access as regular, side-effect-free memory access, and not as a disk

interface access. I show how treating a processor’s access to an NI as a regular mem-

ory access can significantly improve processor-NI interactions.

• The second contribution of this thesis is the design (Chapter3) and evaluation

(Chapter4) of a novel class of NIs calledCoherent Network Interfaces (CNIs), which

interact with a processor and memory system via cachable, coherent memory opera-

tions. CNIs are the embodiment of the design principle mentioned above.

• The third contribution of this thesis (Chapter5) is a systematic classification, examina-

tion, and evaluation of NI data transfer and buffering parameters, which have signifi-

cant impact on the performance of processor-NI interactions.

• Finally, the fourth contribution (Chapter6) differs significantly from the rest of this

thesis. Techniques discussed in the rest of the thesis can accelerate user-to-user mes-

saging in a parallel machine programmed with a message-passing programming

model. In contrast, Chapter6 examines techniques to accelerate the communication

performance of parallel machines that are programmed with a shared-memory model.

Most large shared-memory machines use a directory protocol to keep per-processor

caches coherent. Unfortunately, these protocols often incur long latencies due to either

long protocol actions or multiple message exchange. This chapter proposes and evalu-

ates theCosmos coherence protocol message predictor, which can help ameliorate this

latency by predicting with high accuracy the next incoming coherence message for a

cache block.

Finally, Chapter7 summarizes this thesis and provides directions for future work.

Appendix A describes the characteristics of a new generation of networks called system

area networks.
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The rest of this chapter is organized as follows. Section1.1 describes the key compo-

nents of an NI. Section1.2 outlines problems with conventional NI designs. Section1.3

argues why these problems will become even more critical in the future. Section1.4 states

my proposed solutions and discusses contributions of this thesis. Section1.5 motivates

and examines the Cosmos coherence message predictor.

1.1  Components of a Network Interface

A network interface (NI) in a host node is a device that allows a processor to send and

receive messages to and from a network that connects these host nodes. The network

accepts messages from an NI and delivers them to one or more NIs connected to the net-

work. An NI consists of two parts, the internal NI and the external NI (Figure1-2a). I

define the internal NI as the NI’s interface to the processor, main memory, and (perhaps)

disks, and external NI as the NI’s interface to the network. The internal NI contains logic

and memory that the processor uses to send and receive messages to and from the NI. For

example, a processor can send a message to the network by writing messages to the data

registers of the internal NI In contrast, an external NI performs network-specific functions,

such as cyclic-redundancy checks, network-specific framing, etc.

External Network Interface
(CRC, framing, etc.)

Internal Network Interface

To SAN From SAN

Internal NI registers

Fromprocessor/memory

Figure 1-2. High-level views of an NI.(a) shows the building blocks of an NI. (b) shows how
a user process can logically access an NI.

To processor/memory

direct user accessoperating
system

user

 process

User-Level Network Interface

(a)
(b)

set up user access

to send and
receive messages

(status, control, data)
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This thesis examines the architecture of an internal NI. An internal NI consists of two

parts: the send interface and the receive interface. Each interface consists of four compo-

nents: status registers, control registers, data registers, and an optional notification mecha-

nism.Here I use the term registers just as an architectural specification; the registers, for

example, may be implemented with DRAM. I will examine alternative implementations of

these registers and notification mechanism later. In this section, I discuss the function of

each of the components.

Status Registers. NI status registers contain NI device status information. A receive

interface status register, for example, can indicate that a new message has arrived from the

network, and a send interface status register can indicate that the NI has successfully

injected a message into the network.

Control Registers. NI control registers allows a user process to pass information and

commands to the NI device. For example, a processor may want NI interrupts disabled in a

critical section. It can do so by writing to a control register in the NI.

Data Registers. NI data registers contain message data sent by a processor or received

by the NI from the network.

Notification mechanism. An NI notification mechanism is a mechanism through which

the NI informs a process of any change in NI device status. For example, the NI can inter-

rupt the process on a change in device status, such as arrival of a message from the net-

work. Such explicit notification may be unnecessary if a process monitors changes in the

NI status registers. Hence, the notification mechanism is optional.

To send a message to the network, a processor first reads the send interface status regis-

ter to ensure there is enough space in the send interface’s data registers. If there is enough

space, the processor writes a new message to the data registers. If there is not enough

space, the processor can either poll the NI periodically or have the NI notify it when free



7

space becomes available. On receiving the new message in its data register the NI hands

the message to the external NI, which injects the message into the network.

When a message arrives at the receiving external NI, the external NI extracts the mes-

sage from the network and hands the message to the receive interface. The receive inter-

face writes the message to its data registers and sets a status register that indicates to the

processor that a message has arrived in the receive interface. Flow control (e.g., return-to-

sender) is typically used to ensure messages are never (or rarely) lost if the data registers

are full. If the control registers have been appropriately set by the processor, the NI can

send a notification to a processor in the receive host node about the arrival of this message

through a processor interrupt. Finally, a processor in the receive host node reads the new

message from the NI data registers.

Many recent research and commercial computers use a microprocessor instead of a

hardware, finite-state machine to run message protocols. The discussion in the rest of this

thesis is independent of the presence or absence of any such protocol processor. An inter-

nal NI must interact with processors and memory system internal to a node to send and

receive messages. Such interaction can use all opportunities for performance improvement

that I discuss in this thesis.

1.2  Problems with Conventional Network Interfaces

Conventional internal NI architectures do not efficiently support low-latency communi-

cation in a COW. Latency is the user-to-user delay for sending a message. Low latency

determines the performance of applications that send small messages frequently. Frequent

small messages underlie many traditional and emerging application domains, such as par-

allel scientific programs [32].

Fortunately, improvements in networks have reduced the impact of the network and soft-

ware protocols (that generate and consume messages) on the overall latency of communi-

cation. In particular, local area network (LAN) bandwidth has improved from 10-100
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megabits/second to one gigabit/second or more. Aggressive LANs, such as the Myricom

Myrinet [15] or the Tandem Servernet [54], have moved so far that some view them as a

new class of networks called asystem area network or SAN [54, 8] (Appendix A). SANs

improve performance in two ways. First, aggressive links and switches provide very high

bandwidth and extremely low latency. Second, reliability properties of SANs allow sys-

tems to use lean communication layers (e.g., Active Messages [128]) instead of heavy-

weight and one-size-fits-all protocols (e.g., TCP/IP). Consequently, SANs help improve

the performance of both network hardware (links and switches) and network software

(communication protocols).

Unfortunately, improvement in network and software protocols have exposed processor-

NI interactions as a major bottleneck, particularly for COWs. Conventional internal NI

architectures can introduce between ten and hundreds of microseconds latency to the over-

all communication latency. There are eight factors that can contribute to such latency:

• Operating system intervention. Conventional NIs are accessed by the processor via the

operating system (e.g., Unix sockets). Such intervention eases protection and address

translation for message buffers. Unfortunately, such intervention also introduces long

latencies to the critical path of message send and receipt [5, 127]. For example, switch-

ing to the operating system from a user process can require execution of between hun-

dreds and thousands of instructions.

• I/O bus. Conventional NIs are located on the I/O bus, and not on the higher perfor-

mance memory bus. This is because I/O buses, unlike proprietary memory buses, offer

standard interfaces to which third-party network vendors can manufacture their NI

cards. Unfortunately, the latency and bandwidth of I/O buses are two to ten times

worse than current memory buses.

• Small message buffers in NI.Most conventional NIs offer small amounts of buffering

(e.g., few kilobytes) in their internal NIs and rely on processors to buffer messages in

main memory. Unfortunately, such processor-controlled buffering can degrade proces-
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sor performance by creating resource contention for processors, memory, and system

buses.

• Uncached access to NI registers. Conventional NIs registers are marked uncachable

primarily because such NI designs have side-effects. For example, a load to an NI

device register both returns a value and deletes it from the device. Unfortunately,

uncached accesses are much slower than memory accesses that hit in processor caches.

• In-order and non-speculative access to NI registers. Conventional NIs do not allow

processors to access NI registers out of order and speculatively, again, because of the

presence of side-effects. For example, if a message send is initiated speculatively, then

it cannot be rolled back if the processor later decides that its speculation was incorrect.

Therefore, NIs will appear relatively slower, as processors continue to improve via

out-of-order and speculative memory accesses.

• Slow data transfer. Conventional NIs transfer data from the NI via either uncached

loads/stores to memory-mapped NI registers or direct memory access (DMA). Both of

these are low-performance solutions. Uncached accesses usually transfer small

amounts of data (e.g., between 4 - 16 bytes), thereby offering low bandwidth. DMA

transfers large amount of data, but require the operating system to initiate the transfer,

which incurs huge latencies.

• Application Programming Interface (API).Conventional NIs either directly expose the

underlying data transfer primitives (e.g., programmed-controlled I/O via uncached

loads/stores to memory-mapped NI registers) or require the operating system to serve

as the API (e.g., Unix sockets) for message sends and receives. The first solution offers

tight coupling between the processor and NI, which often blocks the processor until

the access is complete. The second solution again requires slow operating system

intervention.1

• Notification via interrupts.Conventional NIs usually notify processors of NI events

via heavy-weight interrupts. Unfortunately, current microprocessors are not optimized

1. In reality, this interface is somewhere in between an Application Programming Interface (API)
and an Application Binary Interface (ABI). I use API due to the lack of a better term.
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for interrupts because they treat them as exception conditions. Consequently, interrupt-

driven messaging can significantly deteriorate communication performance.

1.3  Future Trends

Technology trends suggest that the latency to access the internal NI will become even

more critical in the future. The contribution of software protocols and networks on overall

communication latency will continue to reduce. Microprocessors that typically run these

protocols are improving at a tremendous pace. The steady drop in feature sizes and intro-

duction of microarchitectural techniques, such as speculative execution [83, 117], are pro-

jected to improve microprocessor performance by a factor of 80 in the next ten years

[140].

Network performance will keep pace with the improvement in processor performance.

Currently, network bandwidth is improving at 100% per year (Figure2-2), which trans-

lates into a factor 1000 improvement in the next ten years. Such massive improvement in

bandwidth will make the latency of requests (carrying a few bytes) and responses (carry-

ing multi-megabytes of data) similar. Consequently, overall communication latency will

become even more critical. Fortunately, network latencies will also continue to drop in the

future because of the advent of low-cost CMOS processes, novel switch architectures [6],

and high-speed optical switches [95].

The explosive growth in the performance of microprocessors and networks requires

innovative techniques to reduce the latency of processor-NI interactions in a COW. These

techniques must also allow a seamless transition towards effectively using future techno-

logical and architectural advances. I argue that the solution to this problem is to treat pro-

cessor-NI interactions like processor-memory interactions (Section1.4). Since the gap

between processor and DRAM memories is increasing [49], microprocessors will con-

tinue to invent novel techniques to bridge this gap. In a COW, treating an NI access like a

memory access will allow internal NI architectures to take advantage of such future inno-

vations.
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1.4  Thesis Contributions for Network Interfaces

This thesis has four contributions. I discuss the first three contributions in this section.

Section1.5 discusses the fourth contribution.

The first contribution of this thesis (Chapter2) is to show how treating a processor’s

access to a network interface as a regular memory access can tremendously improve pro-

cessor-NI interactions in a COW. Memory is virtualized without requiring operating sys-

tem intervention (in the common case), is on the memory bus, is plentiful in today’s

computers, does not have side-effects, and hence, can be cached and accessed out of order

and speculatively, and is usually transferred in cache block units. I propose to do the same

for NIs. Most of the these opportunities have been explored partially and independently by

other researchers. My contribution is to organize these opportunities in a single framework

that exposes commonality and synergistic interactions.

NIs that use direct memory access (DMA) offer some of these advantages because data

DMA-ed into memory can be treated just like regular memory. Unfortunately, the DMA

initiation itself often uses high-latency solutions, such as initiation via the operating sys-

tem (for traditional DMA) or uncached loads/stores (for Princeton’s User-Level DMA

[11]).

Treating an NI access as a memory access can improve all eight components of latency

listed in Section1.2. Some of these eight opportunities have been partially explored by

others. A principal contribution of this work is to organize these opportunities into a com-

mon framework. These eight opportunities are:

• using virtual memory hardware, and not operating system intervention, to virtualize

the NI (Figure1-2a),

• placing the NI on the higher performance memory bus, and not on the slower I/O bus,
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• using virtual memory as a huge buffer for network messages, instead of small amounts

of dedicated memory on the NI,

• caching messages in processor and NI caches, like regular cachable memory,

• allowing out-of-order accesses and speculative loads on a processor’s accesses to an

NI, like side-effect-free regular memory accesses,

• transferring messages between processor caches, NI cache, and main memory through

cache block transfers, instead of DMA,

• designing the application programming interface (or API) to the NI as memory-based

queues, and not directly exposing the underlying data movement primitives as the API,

and

• notifying processor of NI events through cache invalidations, instead of heavy-weight

interrupts.

The second contribution of this thesis is the design (Chapter3) and evaluation

(Chapter4) of a new class of network interfaces calledCoherent Network Interfaces

(CNIs). CNIs sit on a computer’s memory bus and interact with processors via cachable,

coherent memory operations. The most aggressive CNI—that is, CNIiQm in my nomencla-

ture—exploits all eight opportunities for performance improvement outlined above.

Chapter3 develops and optimizes two mechanisms that CNIs use to communicate with

processors. Acachable device register—derived from cachable control registers [101]—is

a coherent, cachable block of memory used to transfer status, control, or data between a

CNI and a processor. Cachable queuesgeneralize cachable device registers from one

cachable, coherent memory block to a contiguous region of cachable, coherent blocks

managed as a circular queue. An important advantage of CNIs is that they allow cachable

queues to be physically located in processor or CNI caches, but logically allocated in main

memory, which allows plentiful buffering. Chapter3 also explores several critical optimi-

zations—lazy pointer, shadow head, sense reverse, empty entry removal, intra-message

prefetch, dead message elimination, andcache bypass—that improves the performance of
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CNIs. Finally, Chapter3 examines different alternatives for multiprogramming a CNI that

uses cachable queues.

Chapter4 performs a detailed comparison of four CNIs with a more conventional NI—

that is, a Thinking Machines’ CM-5 NI [124]—using a 16-node COW, two microbench-

marks, and seven parallel scientific applications. For small message sizes—between 8 and

256 bytes—CNIs improve the round-trip latency by 87-342% compared to a conventional

NI on a coherent memory bus. For moderately large messages, between 8 and 4096 bytes,

CNIs improved the bandwidth by 109-202%. Results with the seven applications show

that CNIs can improve performance by up to 21-190% compared to a conventional NI.

The third contribution of this thesis (Chapter5) is a systematic classification, examina-

tion, and evaluation of two of the eight opportunities—data transfer and buffering—listed

above. To the best of my knowledge, this is the first work to systematically identify and

explore the data transfer and the buffering parameters that underlie high-performance NIs

designed for fine-grain communication. The data transfer parameters capture how mes-

sages are transferred between internal memory structures (e.g., processor caches, main

memory) of a computer and a memory bus NI. The buffering parameters capture how and

where an NI buffers incoming network messages. I evaluate these parameters by compar-

ing seven memory bus NIs using the same system parameters and benchmarks as in

Chapter4. These seven NIs abstract the data transfer and buffering parameters of the NIs

in TMC CM-5 [68], Fujitsu AP3000 [109], Princeton User-Level DMA [11], Digital

Memory Channel [44], MIT StarT-JR [53], and two Coherent Network Interfaces

(CNI512Q and CNI32Qmdescribed in Chapter4).

My results show that a high-performance NI in a COW should effectively use the block

transfer mechanism of the memory bus, minimize processor involvement for data transfer,

directly transfer messages between an NI and the processor (at least in the common case),

provide plentiful buffering (possibly in main memory), and minimize processor involve-
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ment to buffer incoming network messages. CNI32Qm performs the best among the seven

NIs because it optimizes all five data transfer and buffering parameters.

1.5  Using Prediction to Accelerate Coherence Protocols

This part of the thesis differs significantly from the rest of the thesis. Techniques out-

lined in the rest of the thesis can accelerate user-to-user messaging in a parallel machine

programmed with explicit message-passing. In contrast, this section examines techniques

to improve the communication performance of parallel machines programmed with a

shared-memory programming model.

Shared memory simplifies programming multiprocessors because it provides a single

address space to all processors, even when memory is physically distributed among differ-

ent nodes of the machine (Figure1-3). To reduce the disparity between latency of local

and remote memory accesses, these machines cache both local and remote memory in per-

processor caches. Caches are usually made transparent to software with a cache coherence

protocol implemented in a shared-memory communication interface. A coherence proto-

col usually exchangescoherence messages between shared-memory interfaces of different

nodes to keep per-processor caches coherent. Unlike a message-passing communication

processor

cache

main
memory

memory bus

shared-memory interface

processor

cache

main
memory

memory bus

shared-memory interface

Network

Figure 1-3. A shared-memory multiprocessor.
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interface, a shared-memory interface usually generates these messages directly in hard-

ware or firmware.

Shared-memory interfaces in most large multiprocessors use a form of coherence proto-

col called a directory protocol [4, 71, 66, 25, 130, 69, 2]. Directory protocols maintain a

directory entry per memory block that records which processor(s) currently cache the

block. On a processor cache miss for a remotely cached block, the shared-memory inter-

face sends a coherence message over an interconnect to a directory entry, which often for-

wards message(s) to processor(s) currently caching the block, who then forward data or

acknowledgments to the requesting processor and/or directory.

Regrettably, this cache miss and directory activity can disturb a programmer’s perfor-

mance model of shared memory by making some memory accesses tens to hundreds of

times slower than others. Ameliorating this problem has led to many proposals, including

weaker memory models [1, 43], multithreading [31, 3, 125], non-blocking caches [61,

118], and application-specific coherence protocols [93, 37]. To date, all proposals possess

one or more of the following drawbacks: require a more complex programmer interface or

model, retard uniprocessor performance, or require sophisticated compilers.

Another class of proposals for ameliorating memory latency is to predict future sharing

patterns [9, 46] and take action to overlap coherence message activity with current work.

Predictions can be made by programmers [51, 136], compilers [84, 113], or hardware.

Specialized predictors in hardware include read-modify-write operation prediction in the

SGI Origin protocol [66], pair-wise sharing prediction in SCI [116], dynamic self-invali-

dation [67], and migratory protocols [28, 120]. Existing predictors, however, are directed

at specific sharing patterns known a priori. Furthermore, the protocol implementation is

often made more complex by intertwining one or more predictors with the standard coher-

ence protocol.



16

This thesis seeks a more general predictor to accelerate coherence protocols. Predictors

would (logically) sit beside each standard directory and cache module to monitor coher-

ence activity and request appropriate actions. If a directory predictor, for example, antici-

pates that a processor asking for a block B “shared” will next ask for block B “exclusive,”

the directory can answer the “shared” request with block B “exclusive.”

The fourth contribution of this thesis (Chapter6) is the design and evaluation of theCos-

mos coherence message predictor for accelerating coherence protocols. Cosmos’ design is

inspired by Yeh and Patt’s two-level PAp branch predictor [139]. Cosmos makes a predic-

tion in two steps. First, it uses a cache blockaddress  to index into aMessage History

Table to obtain one or more<processor,message-type>  tuples. These<proces-

sor,message-type>  tuples correspond to sender and message type of the last few coher-

ence messages received for that cache block. Second, it uses these<processor,message-

type>  tuples to index a Pattern History Table to obtain a<processor,message-type>

prediction. Notably, Cosmos faces a greater challenge than branch predictors because the

Cosmos’ prediction is a multi-bit<processor,message-type>  tuple rather than a single

bit branch outcome.

My simulation results with five shared-memory applications running on a 16-node paral-

lel machine show that variations of Cosmos predict the source and type of the next coher-

ence message with surprisingly-high accuracies of 62-69% (barnes), 84-86% (moldyn), 84-

85% (appbt), 74-92% (unstructured), and 84-93% (dsmc). Cosmos’ high prediction accu-

racy results from predictable coherence message patterns orsignatures associated with

specific cache block addresses. Such signatures are generated by sharing patterns [9, 46]

that do not change or change very slowly during the execution of these applications.
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Chapter 2

Treat Network Interface Access as Memory Access

This thesis argues that NIs should be treated as “standard equipment”, like memory or

frame buffer, and not as peripheral add-ons. Today almost every computer is connected to

a network. Consequently, every computer needs an NI. Computers connected to low-per-

formance networks may not place a huge performance demand on the NI device. However,

NIs for network-centric computers, such a Cluster of Workstations (COW) connected via

high-performance networks, such as SANs, must be designed to deliver network perfor-

mance to host user applications.

I argue that a processor access to an NI in a COW should be treated as a regular memory

access, and not as a peripheral I/O operation (e.g., like a disk interface access). Since the

gap between processor and DRAM access performance is increasing rapidly, microproces-

sors will continue to invent novel techniques to bridge this gap. Treating NI accesses as

regular memory accesses will allow NI accesses to take advantage of such future innova-

tions. Such treatment opens up at least eight opportunities to improve the performance of

processor accesses to the NI [87]. These opportunities are listed in Table2.1. An NI that

supports all the eight opportunities behaves just like another processor cache in an SMP
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node. I discuss these opportunities in greater detail in a survey paper [88].

Many of the eight opportunities listed above have been explored partially by others. A

principal contribution of this chapter is to organize these opportunities into a framework

that exposes commonality and synergistic interactions. In particular, this thesis examines

one opportunity in depth: how caching NI registers can significantly improve the perfor-

mance of processor-NI interactions.

2.1  Use Virtual Memory Hard ware to Virtualize the Network Interface

There is a marked difference in how user processes access a peripheral I/O device (e.g.,

a disk) and main memory. Both of these are shared physical resources that must be virtual-

ized across multiple user processes. Virtualizing a physical resource to a user process

requires two mechanisms: protection and address translation. Protection isolates user pro-

cesses from one another. Address translation allows a user process to access a physical

device through virtual addresses. A peripheral I/O device is virtualized by the OS, which

requires all user accesses to I/O devices be initiated through OS traps. Trapping to the OS

Problems Solutions Discussed

Conventional Proposed

Virtualize via operating system virtual memory
hardware

Section2.1

Location I/O bus memory bus Section2.2

Buffer messages dedicated memory (in NI
or main memory)

virtual memory Section2.3

Cache NI registers not allowed allowed Section2.4

Out-of-order and speculative access not allowed allowed Section2.5

Message transfer mechanism DMA or uncached load/
store

cache block transfersSection2.6

Application Programming Interface (API) has side-effects no side-effects
(memory-based

queues)

Section2.7

Notification Interrupts cache invalidations Section2.8

Summary: NI access similar to disk interface access memory access

Table 2.1:Treat NI access as memory access and not as a disk interface access.
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is usually very expensive because modern microprocessors treat traps as exception condi-

tions, rather than a common occurrence, and hence do not support them very efficiently.

Main memory, on the other hand, is virtualized through the virtual memory hardware,

which is supported by all high-performance microprocessors today, and does not involve

OS intervention in the common case. Main memory is divided into physical pages and

mapped to user virtual space on demand. A hardware structure called the Translation

Lookaside Buffer rapidly translates user virtual page addresses to physical page addresses

in main memory. Consequently, main memory accesses are much faster (less than a micro-

second) compared to I/O device accesses (greater than 10 - 100 microseconds).

Accessing NI memory through the virtual memory hardware, and not via the OS, can

therefore dramatically improve performance. The OS simply needs to map the NI memory

pages directly into user space; the virtual memory hardware that already exists translates

these memory-mapped virtual addresses to appropriate physical addresses in the NI mem-

ory and ensures protected access to it.

The TMC CM-5 NI and, more recently, the Myricom Myrinet host interface allow users

to directly access the NI memory using this technique. I call such NIsUser-Level Network

Interfaces (ULNIs) since the NI memory can be directly accessed from user space. Com-

paq Corporation, Intel Corporation, and Microsoft Corporation are jointly developing such

a ULNI specification called the Virtual Interface Architecture [36]. The VI architecture is

a logical specification that will allow a user process to directly access the internal NI

memory and thereby bypass the operating system to send and receive messages from the

network.

2.2  Place the Network Interface on the Memory Bus

In a standard workstation node (Figure2-1a), I/O devices are typically located on the

peripheral I/O bus. The choice of this location is dictated primarily by the availability of a

standard I/O bus interface (e.g., SBus, PCI), which enables independent vendors to manu-

facture NI cards to these standard specifications. Unlike I/O buses, current memory buses
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are usually proprietary, have non-standard interfaces because they often change across

processor generations, and hence, manufacturers of I/O devices do not usually design I/O

devices to memory bus specifications.

processor

cache

network
interface

main
memory

memory bus

I/O bus
I/O bridge

disks

System Area Network

processor

cache

network
interface

main
memory

memory bus

System Area Network

(a) (b)

(c)

processor

cache

network
interface

main
memory

memory bus

System Area Network

cache

Figure 2-1. Workstation Nodes with Network Interfaces.(a) shows the architecture of
standard workstation node with the network interface on the I/O bus. (b) shows the same
workstation node with the network interface on the memory bus. (c) augments the network
interface in (b) with a cache.
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Current memory buses, however, offer three significant performance advantages over I/

O buses. First, memory buses are much faster because they are typically clocked at a

higher frequency compared to I/O buses. For example, current PC memory buses are

clocked between 66-75 MHz, which is more than two times faster than the current genera-

tion of 33 MHz PCI buses. Typically, all I/O bus accesses also additionally traverse the

memory bus and an I/O bridge that connects proprietary memory buses to standard I/O

buses.

Second, memory buses offer significantly higher bandwidth than I/O buses. Current PC

memory buses offer peak bandwidths greater than 400 megabytes/second. This is more

than four times greater than the peak bandwidth offered by the current generation of PCI

buses. Some of the Sun Enterprise servers support an even more aggressive memory bus

called the UltraGigaplane, which offers a sustained bandwidth of 2.6 gigabytes/second.

Memory buses can offer such high bandwidth because these buses are 64- to 256-bits

wide, which is a factor of two to eight greater than current 32-bit wide PCI bus. Addition-

ally, today’s memory buses support split transactions, which improves bandwidth because

a device or a cache no longer has to lock down the memory bus during the entire duration

of a transaction (e.g., cache block read from main memory).

Figure2-2 suggests that the gap between of bandwidths of memory and I/O buses will

continue to exist in future. In fact, I/O bus bandwidth lags behind memory bus bandwidth

by at least five years. In other words, I/O buses will take another five years to achieve the

peak bandwidth offered by today’s PC memory buses. Consequently, NI cards designed to

I/O buses will not be able to harness the full memory bus bandwidth. Figure2-2 also

shows that SAN link bandwidth is growing at a much faster rate than the bandwidth of PC

memory buses. For such SANs we will need more aggressive memory buses, such as the

SUN Ultragigaplane.

Third, memory buses support optimized single-writer coherence protocols, which allows

processor caches to easily cache and share memory. This is because these single-writer
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coherence protocols provide a single and consistent image of physical memory across all

processor caches. Section2.4 shows how and why caching message data in processor and

ULNI caches can help improve performance.

The performance advantages of memory buses strongly suggest that ULNIs should be

placed on memory buses, just like main memory (Figure2-1b). My simulation results in

Chapter4 with several parallel scientific applications confirms the performance advan-

tages of memory bus NIs over I/O bus NIs.

The only disadvantage of current memory buses is that they do not usually export a stan-

dard interface to which independent vendors can design ULNIs to. However, the advent of

Figure 2-2. Trends in peak SAN link bandwidth and I/O bus bandwidth.This figure shows
the crossover point between peak System Area Network (SAN) link bandwidth and “standard” I/
O bus bandwidth. SAN link bandwidth has been increasing by roughly 100% per year, while the
I/O bus bandwidth has been increasing by roughly 32% per year. SAN references: Cray T3E [106,
102], SGI/Cray Craylink [41, 45], Myricom Myrinet [15, 56], and the rest from Figure 7.19 (Page
591) of Hennessy and Patterson’s book [49]. Memory bus references: Polsson’s article on History
of Microcomputers [98]. I/O bus references: 32-bit/20-MHz SBus [55], 64-bit/66-MHz PCI [77],
and rest from Needham’s article on PCI [94].
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ULNIs as “standard equipment”, like memory or frame buffers, emphasizes the need for

memory bus designers to export a standard interface to either systems designers internal to

a company or third-party vendors manufacturing independent ULNI devices. Companies,

such as Intel, IBM, and Sun Microsystems, that manufacture both microprocessors and

network-centric computers can allow system designers to design ULNIs to their internal

memory bus. Intel’s MPP supercomputer called Teraflop [19], for example, attaches the

ULNI device directly on the PentiumPro memory bus. For independent vendors finding a

standard interface on the memory bus may imply coordinating with microprocessor com-

panies to get access to their memory bus specification.1 Alternatively, manufacturers of

proprietary memory buses could provide specialbridgesto other open standard interfaces,

such as the PCI interface.

The bridge we need converts proprietary memory bus signals to and from another speci-

fication. A standard bridge might connect to a standard I/O bus, such as PCI. A standard

bridge supports many standard devices. However, it may not provide the performance or

coherence access needed by ULNIs. A more aggressive bridge could convert directly to a

standard I/O bus connector that supports one demanding I/O device without a physical I/O

bus. This bridge can fake the I/O bus signals to offer higher performance (e.g., no arbitra-

tion time) to standard devices. The SGI Power Challenge, for example, uses this type of

bridge (which they call a “personality interface”) to convert between their proprietary I/O

bus and a standard SCSI device. Similarly, Intel’s Accelerated Graphics Port [138] is a

standard bridge that offers graphics accelerators a dedicated high-bandwidth path to main

memory. An even more aggressive bridge can convert to a device-specific interface that is

proprietary, but less demanding and more stable between product generations than a mem-

ory bus. If network connections become “standard equipment” like frame buffers, this

option provides an attractive way to obtain nearly the network performance of a memory-

bus ULNI without some of the cost.

1. Corollary, Inc. obtained access to the PentiumPro memory bus to build a shared-memory system
called Profusion [126].
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Yet another possibility would be to standardize the interface between the internal and

external NIs (Section1.1). Microprocessor vendors can provide the internal interface that

communicates with the processor and third-party vendors can provide the external inter-

face that talks to the network. This would relieve third-party vendors from having to worry

about the details of a particular memory bus’ coherence protocol and allow microproces-

sor vendors to deliver the network’s performance to a user process via its own optimized

internal interface.

2.3  Use Virtual Memory to Buffer Netw ork Messages

Peripheral I/O devices may require large amounts of memory. For I/O devices such as

3D Graphics Accelerators, in particular, the demand for memory is increasing steadily

because high quality images and image transformations require large amounts (e.g., tens

of megabytes) of primary storage. The Accelerated Graphics Port (AGP) [138] was

designed to counter this demand. AGP provides graphics devices with a standardized high

bandwidth path to main memory, which allows graphics devices to use main memory as a

large graphics buffer. This enables low-cost graphics devices because dedicated memory

can incur a prohibitive cost for graphics accelerators. Because 3D Graphics accelerators

can now use portions of system memory through a graphics-specific dedicated path, these

accelerators have become less peripheral in nature.

Like 3D Graphics Accelerators, high-performance ULNI devices can require large

amounts, that is, tens of megabytes, of memory to buffer outgoing and incoming network

messages. This is because of four reasons. First, variation in performance of loosely-cou-

pled microprocessors and SAN switches and advent of a variety user-level communication

protocols often create a temporary mismatch between the rates at which network messages

are generated, transferred, and consumed. Buffering smooths out these rates and helps cre-

ate a balanced system.

Second, with limited buffering and bursts of messages—a common occurrence in

loosely synchronized parallel applications—a processor must constantly monitor ULNI
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status changes and remove messages from the limited ULNI buffers to avoid clogging up

the network. This can significantly degrade performance if the processor must continu-

ously read an uncached status register (Section2.8).

Third, a limited amount of ULNI buffering severely restricts the degree of multipro-

gramming because these ULNI buffers must be divided among different processes. Alter-

natively, the operating system can switch the buffers among processes; but, this can be a

very expensive operation.

Fourth, SANs, such as the Myricom Myrinet, requires ULNIs to perform some form of

flow-control, such as all-to-all buffer reservation or return-to-sender, to guarantee end-to-

end reliable message delivery. To avoid clogging the network, such flow control schemes

may require large amounts of ULNI buffering.

Current commercial ULNIs, such as the Myricom Myrinet’s host interface, provide only

around hundreds of kilobytes of message buffers in the ULNI. This amount is not enough

to support large systems with a large degree of multiprogramming. Fortunately, the Myri-

com Myrinet host interface provides a microprocessor that can be programmed to over-

come this problem, as outlined below.

The problem of limited buffering in the ULNIs can be solved by buffering network mes-

sages in the user’s virtual space [72]. This provides large amounts of buffering limited

only by the size of main memory (and swap space, which backs up the user virtual space).

A ULNI with this capability, however, requires additional support for protection and

address translation, which may require moderate to substantial changes to commodity

operating systems. The problems are similar to those faced by SMP nodes today. Just like

a processor, the ULNI must have access to virtual-to-physical address translations. To

reduce the cost of accessing these translations every time a message is retrieved from or

deposited into main memory, a ULNI can cache these translations in a structure similar to

a processor TLB. ULNIs must, therefore, be prepared to service ULNI TLB misses as well



26

as invalidate or update the TLB entries when the OS remaps a page or swaps it out to disk.

However, servicing TLB misses is a complex operation because it can result in page faults,

is often processor-specific, and may require OS intervention. A ULNI can reduce this

complexity by interrupting and requesting the OS running on the host processor to insert

the appropriate translation in the ULNI TLB. The ULNI TLB can be augmented with pro-

tection bits and process identifiers, similar to those in a modern processor TLB, and

updated along with the translations to ensure protected ULNI access to main memory.

Other researchers have explored these issues in detail [133, 47, 105].

Chapter5 evaluates the impact of alternate buffering strategies on seven parallel scien-

tific applications.

2.4  Cache NI Registers in Processor and NI Caches

Unlike main memory, peripheral I/O device memory, such as ULNI memory, is typically

not cached in processor caches. Instead, ULNI memory is marked uncachable. This is

because of three reasons. First, processor accesses to ULNI device memory often have

side-effects(Figure2-3) that force all such accesses to be visible to the ULNI. Hence, all

processor accesses must be uncached because cached loads or stores may not be visible

outside the processor, unless there is a cache miss.

store X to A
load Y from B

store X to A
store Y to A

store X to A

store Y to B

NI sends message to network

Figure 2-3. Three examples of side-effects in existing NI designs.The instructions shown
in this figure are uncached loads and stores to ULNI registers memory-mapped to virtual
addresses A and B. (a) shows that the store-load pair must be strictly in order for some NIs to
work correctly (e.g., Princeton UDMA initiation), even though the instructions appear unrelated
to the processor. (b) shows two consecutive stores to the same address must occur in order (e.g.,
TMC CM-5 NI). (c) extends (b) to show that the second store (in the general case, the “n”th
store) can trigger an action in the NI, such as sending a message into the network. (a) and (b)
have the side-effects that a previous store determines implicitly the next uncached load or store a
NI expects. (c) has the side-effect of sending a message on a store.

(a) (b) (c)
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Second, a ULNI device must generate coherence signals to invalidate messages in pro-

cessor caches. In this respect, it behaves more like a processor cache, rather than main

memory. When a message arrives and the ULNI writes new data to the message buffers,

the corresponding memory locations for the message buffers in processor caches must be

invalidated. Otherwise, processors can read stale data from these buffers. Unfortunately,

many ULNIs reside on standard I/O buses, which usually do not support such coherence

signals. Hence, ULNIs usually do not allow processors to cache ULNI memory.1

Third, caching ULNI registers in processor caches require extra support for ULNI regis-

ter reuse. Conventional ULNI device registers solve the problem of register reuse using

implicit clear-on-read semantics, where the register is cleared after an uncached load. For

example, the CM-5 NI treats the read of the hardware receive fifo as an implicit “pop”

operation. Clear-on-read works because processors guarantee the atomicity of individual

load instructions; that is, the value returned by the device is guaranteed to be written to a

register. Clear-on-read does not work well for cached ULNI registers, since most proces-

sors do not provide the same atomicity guarantees for cache blocks. Processors guarantee

the load that causes the cache miss to be atomic to ensure forward progress; however,

there are no guarantees for the remaining words in the block. Before subsequent loads

complete, a cache conflict (e.g., resulting from an interrupt) could replace the block. With

clear-on-read semantics, the remainder of the data in the cache block would be lost for-

ever. 2

The first and third problems—the presence of side-effects in ULNI memory accesses

and the absence of clear-on-read semantics on cache blocks—can be eliminated by

designing the application programming interface carefully (Section2.7). The second prob-

lem—keeping ULNI device memory and processor caches coherent—can be solved by

1. This is different from the standard problem of “coherent I/O.” A computer with coherent I/O
allows processors to cache I/O space. Here, I am interested in the inverse problem, that is, cach-
ing memory space in an I/O device.

2. This problem may not arise if only one NI register (that can be accessed via a single load or
store) is allocated per cache block because individual cached loads are usually guaranteed to be
atomic.
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placing the ULNI device on the memory bus, so that a ULNI can directly observe and par-

ticipate in the system’s coherence protocol, just like a processor cache in an SMP.

Caching ULNI registers in processor caches offers two advantages. First, caching status

or control registers in processor caches helps remove unnecessary memory bus traffic. For

example, if a processor were polling on an uncached status register, every processor poll

would go across the memory bus to the ULNI device. In the absence of any message in the

ULNI, unsuccessful polls that do not find a message in the ULNI device waste precious

memory bus bandwidth, which could be used by other processors in an SMP node.

Instead, if the processor polls on a cached memory location, which contains the ULNI sta-

tus information, all unsuccessful polls will hit in the processor’s cache. When a message

arrives finally and the ULNI status changes, the ULNI device invalidates the cached status

register in the processor’s cache. On its next poll attempt, the processor will incur a cache

miss, which can be satisfied directly by the ULNI.

Second, uncached accesses provide very low bandwidth compared to cache block

accesses because they transfer only a few bytes of data (e.g., 1-16 bytes). In contrast,

cache blocks are typically much larger (e.g., 32-128 bytes). Hence, they can exploit the

full transfer bandwidth of today’s memory buses. Section2.6 discusses these issues in

detail. Table4.5 shows that a large fraction of the memory bus bandwidth can be used

effectively for processor accesses to NI registers.

Like processor caches, ULNI caches can cache ULNI registers as well. Instead of allo-

cating ULNI registers in ULNI memory, the registers can be allocated in the user’s virtual

space and backed up by main memory. Section3.6 discusses details of how such registers

can be mapped, accessed, and synchronized among different application processes. Like

processor caches, ULNI caches can simply cache the portion of main memory that con-

tains the ULNI registers. Such ULNI caches help improve performance in three ways.

First, processor cache misses for ULNI registers can be intercepted and satisfied directly

by the ULNI cache through a direct cache-to-cache transfer. Contrast this with data trans-
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fer via DMA in which messages reach the processor cache in two steps (and, consequently

two memory bus crossings): from ULNI device to main memory and from main memory

to the processor cache. This increase in latency may become critical for latency-bound,

request-response protocols.

Second, when bursts of messages arrive at an ULNI, the ULNI cache may overflow; but,

ULNI cache replacements to main memory will automatically buffer these messages with-

out any processor intervention. Contrast this with register-mapped ULNIs in which pro-

cessors must explicitly copy the data from the ULNI registers to the user’s virtual space,

which can severely degrade performance.

Third, communication protocols, such as an update protocol in a software distributed

shared-memory architecture, often package the same data block in different messages and

send them to different host nodes over the network. In the absence of a cache, for each

message sent the processor must explicitly write the data block into the ULNI or the ULNI

must fetch the data block from the processor’s cache or main memory. With a cache, the

data block needs to be transferred from the processor’s cache or main memory only the

first time. Subsequent ULNI accesses to the data block will hit in the ULNI cache. This

advantage may not be reaped, however, if users explicitly copy the data block from user

space to ULNI data structures (e.g., ULNI queues) for each message. To make this scheme

effective, the user application programming interface must allow users to specify the user

virtual address to data blocks residing in user virtual space (see Section2.7). The virtual

address allows the ULNI to determine that the data block is cached in the ULNI, and

therefore, need not be fetched again.

Chapter3 explores the above issues in detail and proposes mechanisms that allow a pro-

cessor and an NI to cache NI registers.
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2.5  Allow Out-of-Order and Speculative Accesses to NI Memory

To tolerate the latency of main memory access, processors allow loads and stores to

bypass earlier loads or stores. This is called out-of-order (OOO) memory access. Four key

system changes have taken place to realize out-of-order accesses to main memory: proces-

sors can issue out-of-order loads and stores, caches are non-blocking so that they do not

stall on consecutive cache misses, memory buses can support several outstanding requests

to main memory, and finally, the memory controller can handle multiple requests to the

memory system.

Speculative execution is more aggressive than OOO accesses in tolerating memory

access latency. Processors speculate on control dependence (e.g., branch prediction), data

dependence, data addresses, and data values, and perform computations based on these

speculated values. If the speculation is successful, idle processor resources can be used

effectively and memory access latencies can be tolerated. However, if the speculation is

incorrect, then all previous computation based on speculatively loaded values must be

squashed and any process-specific state must be rolled back to the point from where the

speculation failed. In the context of messaging, I want processors to speculatively read

from and write messages to ULNI memory, just like regular memory.

Processors do not usually perform OOO and speculative accesses to I/O device memory

because of three reasons. First, many I/O buses do not adequately support multiple out-

standing transactions, which forces processor accesses to I/O device memory to be serial-

ized on the I/O bus. Second, the presence of side-effects (Section2.4) in I/O devices often

force I/O device memory accesses to be performed in order, which prevents OOO accesses

to I/O device memory. Further, current I/O devices do not provide any mechanism to roll-

back any side-effects if the processor’s speculation is incorrect, which prevents speculative

loads to I/O device memory. Third, the most microprocessors today disallow OOO and

speculative accesses on uncached loads or stores, which is the predominant way in which

I/O devices are accessed today.
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The first problem—the absence of support for multiple outstanding transactions on com-

mon I/O buses—can be solved by interfacing the ULNI device to the memory bus, which

usually supports multiple outstanding transactions. The second problem—presence of

side-effects in ULNI memory accesses—can be eliminated by designing the application

programming interface to the ULNI carefully (Section2.7). Finally, the third problem—

absence of OOO and speculative access to uncached I/O space—can be solved be caching

ULNI registers in processor caches, because modern microprocessors can perform OOO

and speculative accesses from regular cachable memory (Section2.4), and not allowing

speculatively stored state and memory to be reflected outside the processor, which most

speculative processors already support.

Chapter6 looks even further into the future and proposes a coherence message predictor

called Cosmos.Cosmos allows processors to speculatively send, receive, and process

coherence messages in a cache-coherent, shared-memory machine.

2.6  Move Data Between a Processor and an NI in Cache Block Units

Processors typically exchange data with peripheral I/O devices via uncached loads or

stores or DMA. In contrast, processor accesses to main memory is typically satisfied

through cache misses; data is transferred in cache block units from main memory to pro-

cessor caches.

Both uncached accesses and DMA are potentially low performance solutions for data

movement between processors and peripheral I/O devices. Uncached loads or stores trans-

fer only a few bytes of data (e.g., 1-16 bytes). This wastes bus bandwidth because most

modern memory buses are wider than 16 bytes (e.g., SUN UltraGigaplane is 32-byte

wide). Uncached accesses can, however, become viable for data movement if processors

provide special support, such as coalescing store buffers to merge multiple uncached

stores to device registers (e.g., MIPS R10000) or special instructions to move chunks of

device data to FP registers (e.g., Sun UltraSPARC). Unfortunately, these mechanisms are
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processor-dependent and limited in scope, so third party vendors cannot always rely on

such support to design their ULNIs.

Unlike uncached accesses, DMA engines can use the full transfer bandwidth of memory

buses. However, transferring data between processors and I/O devices via DMA can still

be expensive because of two reasons. First, traditional DMA is initiated through the OS,

which incurs very high initiation overhead. Second, at the receive end, DMA-ed data

reaches a processor cache through two hops—one hop from the ULNI device to main

memory and the second hop from main memory to the processor cache. Princeton’s

UDMA dramatically reduces the DMA initiation overhead on the send side by allowing

processors to initiate DMA directly through a two-instruction sequence from user space

without OS intervention. Reinhardt, et al. [101] demonstrated that UDMA can be used as

cheaply on the receive side as well. Unfortunately, the UDMA initiation scheme suffers

from side-effects (Section2.4) and, like traditional DMA, transfers data in two hops.

Transferring data between processor caches and ULNIs through cache block transfers,

just like regular memory, combines the benefits of uncached accesses and DMA. Like

uncached accesses, data can be transferred directly from the ULNI memory to the proces-

sor without an extra hop through main memory. Like DMA, cache block transfers can

fully use the memory bus transfer bandwidth, particularly because today’s wide memory

buses are optimized for cache block transfers. In fact, current DMA engines transfer data

over the memory bus using coherent, cache block transfers to avoid having stale data in

processor caches when new data is DMA-ed into main memory.1 Additionally, transfer-

ring data in cache block units does not preclude overlap of computation and communica-

tion (see Section2.7).

Chapter5 explores the impact of alternate data transfer strategies on the performance of

seven parallel scientific applications.

1. Transferring messages from the ULNI to the processor cache may, however, be wasteful if the
application simply intends to transfer data from the network interface to another I/O device (e.g.,
disk or graphics buffer).
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2.7  Use Memory-Based Queues as Application Programming Interface

Typically, a user process accesses a peripheral I/O device via the OS or uses the underly-

ing data movement primitive as its Application Programming Interface (API) to the I/O

device. For example, user APIs based on program-controlled I/O expose uncached loads

and stores—the data movement primitives—to memory-mapped device registers as the

user API to the I/O device. Similarly, Princeton’s UDMA mechanism exposes DMA trans-

fers as the user API to the ULNI device. In this section I argue that instead of exposing the

underlying data movement primitive as the user API, ULNIs should structure the ULNI

date registers asmemory-based queues [35, 127].1 Such memory-based queues can be

classified neither as program-controlled I/O nor as DMA. I believe memory-based queues

are a natural and simple extension to the hardware FIFOs used in many NIs. More compli-

cated memory-based structures can also work as long as they can be structured to avoid

side-effects.

Memory-based queues consist of two parts: a send queue and a receive queue. Each

queue is allocated in virtual memory and managed as a circular buffer with head and tail

pointers. To send a message, the processor enqueues the message at the tail of the send

queue either by explicitly writing the message into the send queue memory or by inserting

a virtual pointer to the message into the send queue. The ULNI dequeues messages from

the head by reading the send queue memory and, if necessary, translating the virtual

pointer to the message to its physical memory address (Section2.3) and subsequently

reading the message from the user virtual space. For the receive queue, the ULNI similarly

enqueues messages at the tail of the receive queue and the processor dequeues messages

from the head. Device commands for such APIs are no longer explicit DMA-initiation

requests; instead, ULNI device commands are simple memory operations, such as incre-

1. Brewer, et al. [16] and Scott [107] have proposed and implemented a different type of memory-
based queue, which can be allocated, controlled, and programmed directly in user space. An NI
may or may not be aware of the presence of such a queueing structure. In contrast, the memory-
based queues I describe here serve as communication channels between a user process and an
NI.



34

menting or decrementing queue head or tail pointers. For example, when a processor

enqueues a message to the send queue and increments the tail pointer, the ULNI interprets

this as a device command to send a message out to the network. If the tail pointer is

uncached, then the ULNI treats the increment as a signalling store; if the tail pointer is

cached, the ULNI must poll on the tail pointer for new messages.Section3.6 discusses

how such queues can be accessed by and synchronized among different processes.

Memory-based queues can be extended to support zero-copy protocols that place data

directly into a user’s data structures. Instead of writing the message to the memory-based

queue, the processor or ULNI could write the virtual address of the message data to the

queue location. This creates additional complexity in the ULNI because it must now trans-

late the virtual address to its corresponding physical address to obtain the message data.

Section3.6.2 discusses how a ULNI can obtain such physical addresses.

There are four advantages to treating ULNI API as memory-based queues. First, unlike

uncached accesses or UDMA, memory-based queues decouple a processor and a ULNI,

which enables both the processor and ULNI to send and receive multiple messages to and

from the queues without blocking. Additionally, unlike uncached accesses, but like DMA

or UDMA, memory-based queues allow overlap of a processor’s computation with data

transfer to and from the NI.

Second, memory-based queues avoid side-effects by treating ULNI queue accesses sim-

ply as side-effect-free regular memory accesses. Thus, ULNI queues do not require in-

order accesses, do not provide a single fixed address for the entire queue, and separate

ULNI queue memory access from ULNI commands, because ULNI commands now are

mostly incrementing or decrementing queue pointers. This allows processors to cache

ULNI queues, perform OOO accesses on queue memory, and speculatively send and

receive messages to and from these queues. Speculative sends work because modern

microprocessors buffer all speculatively-stored memory (in our case, messages) internally
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within the processor. If and when the speculation succeeds, the processor flushes these

buffers into regular cachable memory locations (in our case, memory-based queues).

Third, since memory-based queues are allocated like regular memory and managed as

circular buffers, the reuse handshake is simple: a comparison of the head and tail pointers

reveals whether a queue location can be reused or not. Even the reuse mechanism can be

optimized through techniques, such as lazy pointers, message valid bits, sense reverse, and

empty entry removal (see Chapter3). This simple reuse handshake makes caching ULNI

data registers much easier.

Fourth, memory-based queues simplify the problem of multiprogramming a ULNI for

SMPs. In an SMP multiple processes running on different processors can simultaneously

access the ULNI device. This simultaneous access makes the multiprogramming problem

much harder. This is because simple solutions, such as the one adopted by the CM-5 in

which the ULNI and user process are context switched together, are no longer feasible.

Memory-based queues offer a more elegant solution: each user process negotiates its own

private communication channel with the ULNI device through memory-based ULNI

queues mapped to user virtual address space (see Section3.6 for details). This allows each

user process simultaneous, but protected, access to the ULNI. This method does, however,

involve two complexities. First, the ULNI must now multiplex the internal and external NI

ports among these queues. Second, since ULNIs can only support limited amounts of

memory on the device, ULNIs must be prepared to context-switch the ULNI queue state

(e.g., head and tail pointers) if they reside in dedicated ULNI memory. However, if the

ULNI memory is treated as a cache (Section2.4), then ULNIs do not have to explicitly

manage these queues and context-switch them. This is because the queues are automati-

cally displaced to main memory when the ULNI cache overflows and reinserted into the

ULNI cache through ULNI cache misses.Chapter3.6 explores these issues in more detail.

Using memory-based queues (or, more generally, treating an NI access as regular mem-

ory access) raises an important concern about the error model seen by the user. This is
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because the error model for networks and memory have been different traditionally

(Table2.2).

Networks can incur two important types of errors: link error and end-to-end error. Link

errors can be as high as one corrupted bit in 1012 bits, which translates into one bit error

per 16.67 minutes for a gigabit-per-second network link. System Area Networks (Appen-

dix A) typically cope with this problem using CRC (cyclic redundancy check) and flow

control (to prevent buffer overflows in switches).

Prevention of link-level error also drastically reduces the possibility of end-to-end

errors. Consequently, traditional solutions, such as those used in software protocol stacks

for local area networks, may be overkill. Instead, processors can partially or fully adopt

the error model for memory in which memory corruption in certain situations can force a

reboot of the system. Thus, on detecting an error, an NI can simply signal a error to the

host’s operating system, which can either decide to reboot itself, crash the user process, or

simply flag an error to the user process.

Alternatively, on detecting a network message corruption or loss, a sender could still

retransmit a message. Memory-based queues offer an easy solution for this. The sender

does not have to free up the queue position corresponding to a message until it knows for

Error Network Memory

Corruption

Detection Parity, Checksum,
CRC

Parity, ECC

Recovery
Link-level error
correction

Error
Correction

Retransmit User memory: kill process
Kernel memory: reboot

Loss
Detection Timeout Timeout

Recovery Retransmit Reboot

Table 2.2:Error model for networks and memory.
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sure that the receiver has successfully accepted that message. If the sender detects mes-

sage corruption or loss, it can simply retransmit the message from the queue position allo-

cated for the message.

For my simulations in this I make the following assumptions:

• Transient failures in the network links are rare because of link-level CRC checks and

flow control. If an error is detected by the CRC in the NI, then the NI flags an error to

the operating system signalling a fatal crash and perhaps a system reboot.

• The network switches do not drop packets on congestion. Instead, they back up the

network.

• The NI does not drop messages if its buffers are full. I use a flow control scheme called

return-to-sender in which the receiving NI returns an incoming message to the sender

if it does not enough buffer space. The sender must be able to sink the message and

retransmit it later. The sender sinks the message by preallocating buffer space before it

sent the message. Consequently, when the receiver accepts a message, it must send an

acknowledgment to the sender to free up the buffer space.

2.8  Use Cache Invalidations as Notification Signals

Peripheral I/O devices, such as disks, have typically notified user processes of changes

in I/O device status through two mechanisms. They interrupt the user process when the I/

O device status changes (e.g., in Unix this is done through the signal interface). Alterna-

tively, some I/O devices allow a user process to monitor changes in I/O device status by

polling on an uncached memory-mapped status register. Unfortunately, notification

through either interrupts and or polling on uncached device registers is expensive.

Notification through interrupts is very slow because of three reasons. First, these notifi-

cations must be vectored to the user process through the operating system, which executes

hundreds of instructions before the interrupt is delivered to the user. Second, switching

back and forth between a user process and the operating system pollutes the processor’s

hardware structures, such as the instruction cache, data cache, TLB, and branch prediction
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table. Third, these interrupts force today’s OOO and speculative microprocessors

(Section2.5) to stop their OOO and speculation engines. However, a few modern micro-

processor architectures do provide a few hooks to improve the performance of interrupts.

For example, SPARC Version 9 has added eight scratch registers for interrupt handlers. Of

course, microprocessors can be designed to more efficiently support interrupt handlers.

Nevertheless, vectoring an interrupt through the operating system is and will continue to

be expensive because interrupts are treated both by the processor and operating system as

an exception condition, and not a common occurrence.

Alternatively, processors can poll on uncached memory-mapped device registers to

monitor changes in I/O device status. Polling is cheaper than interrupts because poll

instructions—uncached loads—can be issued directly from user space. However, polling

can be harmful if the frequency of polling is significantly higher than the rate at which

messages arrive. Additionally, polling on uncached status registers can waste precious

memory bus bandwidth (Section2.4).

As described in Section2.4, the cost of polling can be reduced significantly if a proces-

sor treats the ULNI status register as part of regular cachable memory. In the absence of a

message, a processor’s accesses to the status register will repeatedly hit in its cache. A

processor can poll on a status register using two methods. The processor can poll on a reg-

ular cachable memory location, which is updated by an operating system interrupt handler.

The interrupt handler is triggered via a ULNI interrupt. Alternatively, the processor can

poll directly on a ULNI status register.When the ULNI status changes, the ULNI simply

invalidates the status register in the processor’s cache, which serves as a ULNI notification

signal to the processor. The processor simply reads the new status via a cache miss satis-

fied directly by the ULNI. The cost of this cache miss can be further amortized by pulling

in part of the message in the cache block along with the status register itself.
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2.9  Conclusion

A new generation of networks called System Area Networks (SANs) has evolved to sat-

isfy the increasing demand for high-bandwidth, low-latency networks. The benefits of

SANs are realized in applications only if light-weight protocols (not TCP/IP) and efficient

network interfaces are used. The benefits of SANs are squandered, for example, if applica-

tions must invoke the operating system to send and receive messages. In contrast, User-

level Network Interfaces (ULNIs) allow host applications to access the network interface

directly without compromising protection by memory mapping internal interface registers

into user space.

Future trends such as the exponential improvement in microprocessors’ and SANs’ per-

formance and the advent of SMPs indicate that processor accesses to ULNIs will become

a critical bottleneck for computer systems built with SANs. Processor accesses to ULNI

registers is simply reading and writing ULNI memory. Nevertheless, most ULNIs treat

such accesses as peripheral I/O operations that can have side-effects (e.g., a message

send). Such treatment disallows current ULNIs to take advantage of memory access opti-

mization techniques such as traditional caches, out-of-order accesses, and speculation.

I have argued that ULNI memory accesses should be treated as regular side-effect-free

memory accesses and not as peripheral disk I/O operations to improve processor accesses

to ULNI registers. Such treatment allows eight opportunities to improve performance of

ULNI accesses. First, virtual memory hardware should be used to virtualize the NI. Sec-

ond, the ULNI should be placed on the high-performance memory bus. Memory bus inter-

faces often change over processor generations. Consequently, microprocessor vendors are

often reluctant to export their memory bus interfaces to independent vendors. Nevertheless

there are several alternative ways in which an independent vendor can place their ULNI

cards on the memory bus. Third, messages should be cached in processor and ULNI

caches. Fourth, out-of-order accesses and speculation on processor accesses to an ULNI

should be allowed. Fifth, the application programming interface (API) to the ULNI should
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be designed as memory-based queues. Sixth, virtual memory should be used to buffer net-

work messages. Seventh, messages should be transferred between processor caches, ULNI

caches, and main memory through cache block transfers. Finally, the processor should be

notified of ULNI events through cache invalidations.

Many of the eight opportunities discussed in this chapter have been explored partially

and independently by other researchers. A principal contribution of this chapter is to orga-

nize these opportunities in one common framework. Chapter3 and Chapter4 examine one

particular opportunity in detail. That is, how processor accesses to an NI can be improved

significantly by allowing an NI to interact with the rest of the system via coherent, cach-

able memory operations.
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Chapter 3

Coherent Network Interfaces Techniques

This thesis argues that a processor’s accesses to ULNI (User-Level Network Interface)

registers should be treated as regular, side-effect-free, memory accesses. The previous

chapter examined eight opportunities for optimization exposed by such treatment. This

chapter develops and examines specific mechanisms for a class of ULNIs called Coherent

Network Interfaces (CNIs), which interact with the processor via the node’s coherence

protocol. The optimal CNI design effectively uses all eight opportunities for optimization.

Additionally, all CNI mechanisms described in this chapter work with, and require no

change to, standard coherence protocols supported by most high-performance memory

buses today. The next two chapters compare the performance of CNIs against alternative

ULNI designs.1

This chapter begins by describingcachable device registers (CDRs) andcachable

queues (CQs). A CDR is a coherent, cache block used by a processor to communicate

information to or from a CNI device (Section3.1). A CQ generalizes this concept into a

contiguous region of coherent, cache blocks (Section3.2). Because CDRs and CQs can be

1. Available partially in [85, 89].
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cached in processor and CNI caches, they require ahome, which is an I/O device or mem-

ory module that services requests and accepts writebacks for CDR and CQ blocks

(Section3.3).

Section3.4 describes a concise taxonomy of the CNI design space exposed by CDRs,

CQs, and their homes. Section3.5 shows that with adequate support some CNIs can also

be attached to the I/O bus. Section3.6 discusses how to multiprogram CNIs. Section3.7

briefly outlines how CNIs can be interfaced with standard networks. Section3.8 discusses

related work. Finally, Section3.9 summarizes the techniques described in this chapter. 1

3.1  Cachable Device Register (CDR)

A cachable device register (CDR) is a coherent, cachable block of memory shared

between a processor and a CNI device. Reinhardt, et al. [101] first proposedcachable con-

trol registers (CCRs) to communicate status information from a special-purpose hardware

device to a processor. This thesis extends their work to use coherence to efficiently com-

municate control information and data both to and from an ULNI device. I call such regis-

ters CDRs. This section examines how a CDR works (Section3.1.1), its advantages

(Section3.1.2), and its disadvantages (Section3.1.3).

3.1.1  Basic CDR operation

A CDR is a coherent, cachable memory block shared between a processor and a CNI

device. Like the Thinking Machine CM-5’s memory-mapped NI registers, CDRs are

memory-mapped into a user’s virtual space. However, unlike the CM-5 NI registers, CDRs

are cachable. I assume that each process will negotiate its own CDR from a CNI. How-

ever, if multiple processes require access to the same CDR, they must impose some kind

of synchronization (e.g., implemented via shared-memory primitives between the multiple

processes).

1. Thanks to David Wood for suggesting the general approach of caching network interface regis-
ters.
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A CNI sends information to a processor—i.e., to initiate a request or update status—

by writing to thevirtual address of the CDR. However, the CNI must first obtain write

permission to the CDR block. Such write permission can be obtained via the underlying

coherence protocol. That is, the processor will incur a cache miss for the CDR block.

The CNI will observe thephysical address of the CDR block on the bus—just like a reg-

ular cache miss—and respond appropriately.

A processor may receive information from a CNI by polling a CDR block (via its vir-

tual address). Unlike existing polling schemes, the CDR block is cachable, so in the

common case of unchanging information, the processor’s unsuccessful polls normally

hit in the local cache.1 Bus traffic only occurs when a device updates the information.

Figure3-1 illustrates how a CDR is transferred between a CPU, the CPU’s cache, and

1. Cache conflicts can cause replacements, which affect performance but not correctness.

.

.

.

cache miss for CDR

cache miss for CDR
invalidate CDR

process
message

message
arrives

CPU CACHE CNI

block transfer of CDR

tim
e

poll

poll

Figure 3-1. CDR Transfer Example.This figure shows CDR transfers between the CPU,
CPU’s cache, and a CNI, assuming write-allocate caches kept consistent by a MOESI write-
invalidate coherence protocol [123]. Initially, the CPU polls a CDR to check the presence of a
message. Assume this incurs a cache miss. This cache miss is satisfied by the CNI (instead of
main memory), which indicates the absence of any message in the CNI. The CPU’s subsequent
polls to the CDR block (shaded region) is satisfied directly from its cache. Finally, a message
arrives, which prompts the CNI to invalidate the CDR block in the CPU’s cache following the
standard coherence protocol supported by the memory bus. The subsequent cache miss for the
CDR block brings in the new CNI status and the first few words of the message in one block.
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the CNI. Because a CDR consists of a whole cache block and status information is typi-

cally less than a few words, part of a message can be communicated between the CPU

and the CNI in a single bus transaction, amortizing the fixed overheads across multiple

words.

3.1.2  Advantages of a CDR

A CDR improves performance in four ways. First, in the common case of unchanging

information, e.g., polling, a CDR removes unnecessary bus traffic because repeated

accesses hit in the cache. With conventional uncached device registers, each poll by the

processor must go across the bus to the device. In a symmetric multiprocessing node,

repeated polls to uncached device registers can consume bus bandwidth, which could be

used by other processors in the node.

Second, when changes do occur, a CDR uses the underlying coherence protocol to trans-

fer messages a full cache block (e.g., 32-128 bytes) at a time. However, for smaller

amounts of data, e.g., a 4-byte word, CDRs are less efficient. For most processors, fetch-

ing a single word from an uncached device register takes roughly the same time as from a

CDR; this is because the CNI responds with the requested word first which is then

bypassed to the processor. However, the CDR still has higher overhead since it will dis-

place another block from the cache, potentially causing a later miss. CDRs do even less

well for small transfers to a device. Because most modern processors have store buffers, a

single uncached store is more efficient than transferring that word via a CDR. For most

processors and buses the breakeven point typically occurs at two or three double words.

Hence, my CNI implementations (Section4.1) with non-speculative processors use

uncached stores to transfer single words of control information from the processor to the

device. However, with a dynamically-scheduled, speculative processor (not evaluated in

this thesis), uncached loads and stores can stop the processor’s out-of-order and specula-

tive accesses. Consequently, in such processors it may still be advantageous to transfer
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even small amounts of data via CDRs to avoid messing up the processor’s out-of-order

and speculation engine.

Third, a CDR can transfer information both from the device to the processor as well as

from the processor to the device in a logically symmetric way. Thus, a CNI device can poll

a CDR and directly read messages from the processor’s cache using the standard coher-

ence mechanisms. CNIs can further optimize these polls through a technique calledvirtual

polling. Because a CNI device observes the coherence protocol directly, it knows when the

processor requests write permissions to the block. Hence, it need not poll periodically, but

can read the block back soon after the processor requests permission. The CNI device can

provide a system programmable back-off interval to reduce the likelihood of “stealing” the

block back before the processor competes its writes to the CDR. This technique, called

virtual polling, is useful for processors that cannot efficiently “push” data out of their

caches. For processors (e.g., PowerPC [132]) that do support user-level cache flush

instructions, a CDR can be directly flushed out of the cache.

Fourth, processors can efficiently communicate control information, e.g., interrupt

masks, to an NI through CDRs. Changing control information, such as masking NI inter-

rupts, can be expensive in modern processors this may require an uncached store, a write

buffer flush, and a trip through the operating system. To avoid these costs, Stodolsky, et al.

[121] proposed theoptimistic interrupt protection scheme based on the assumption that

interrupts are rare events for short critical sections. A derivative of this scheme is imple-

mented in the CM-5 version of the Wisconsin Blizzard system [104]. In Blizzard, the soft-

ware assigns a global processor register to hold a software copy of the hardware NI

interrupt mask register. When a processor enters or leaves a critical section, instead of

turning interrupts off before and on after the critical section, it simply changes the NI

interrupt level in the global register only. If an NI interrupt does occur during the critical

section, the operating system checks the global register and sets a status bit in the register.

The processor checks this status bit when it exits the critical section and executes the cor-

responding interrupt handler. 1
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CDRs provide an alternative and perhaps a more elegant solution to the optimistic inter-

rupt protection scheme. In a CDR-based optimistic interrupt protection scheme, the inter-

rupt mask register is put in a CDR and cached by the processor. In the common case of no

interrupts within a short critical section, the processor simply writes to the CDR that con-

tains the interrupt mask register in its cache before and after the critical section. When an

interrupt does occur, the NI reads and invalidates the CDR in the processor’s cache and

sets a separate status bit in the same CDR. On exiting the critical section the processor

checks the CDR status bit, incurs a cache miss for it, reads the new status when the cache

miss is satisfied by the CNI, and executes the interrupt handler. This scheme has two

advantages over Stodolsky, et al.’s scheme. First, it removes the operating system from the

communication path between the processor and CNI. Second, it does not reserve a register

from the global register pool, which can be a precious resource (particularly for x86

machines).

3.1.3  Disadvantages of a CDR

The main disadvantage of CDRs is that they require some method for reuse. This makes

them work less well when a processor reads multiple cache blocks of the same message or

different messages using the same CDR. For example, after the processor has read the first

block of a message, it may want to read the second block using the same CDR. Conven-

tional device registers often solve this problem using an implicitclear-on-read semantics,

where the register is cleared after an uncached read. For example, the CM-5 network inter-

face treats the read of the hardware receive queue as an implicit “pop” operation. Clear-

on-read works because processors guarantee the atomicity of individual load instructions;

that is, the value returned by the device is guaranteed to be written to a register.

Clear-on-read does not work well for CDRs, since most processors do not provide the

same atomicity guarantees for cache blocks. The load that causes the cache miss should be

1. If the processor checks the status bit first and then resets the interrupt mask when it exits a criti-
cal section, then it may lose an interrupt. Resetting the interrupt mask first and then checking
status bit guarantees that no interrupt is lost.
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atomic (to close the “window of vulnerability” [63]); however, there are no guarantees for

the remaining words in the block. Before subsequent loads complete, a cache conflict

(e.g., resulting from an interrupt) could replace the block. With clear-on-read semantics,

the remainder of the data in the CDR would be lost forever. Consequently, for CDRs to

work correctly, they must have an explicit clear operation by the receiver to enable reuse

of the block.

Under a MOESI protocol even this clear operation requires a slow three-cycle hand-

shake between the processor and CNI to make sure that the processor sees new data when

it re-reads the CDR (Table3.1). In the first step of this handshake, the processor issues an

explicit clear operation by performing an uncached store to a traditional device register. In

the second step, the processor must ensure that the CNI has seen the clear request. Since

most modern processors employ store buffers, this step may incur additional stalls while a

memory barrier instruction flushes the store out to the bus. When the CNI observes the

explicit clear operation, it invalidates the CDR by arbitrating for and acquiring the mem-

ory bus. The third step of the handshake is for the processor to ensure that the invalidation

has completed. It does this by reading, potentially repeatedly, a traditional uncached

device status register.1 Consequently, while CDRs efficiently transfer a single block of

information, they perform much less well for multiple blocks. CQs, described next, solve

this problem by amortizing the cost of the handshake over several cache blocks.

1. A somewhat more efficient handshake is possible if the processor provides a user-accessible
cache-invalidate operation. Issue clear operation, flush store buffer, and invalidate cache entry.

Steps Processor

One Uncached store to NI

Two Flush store buffer

Three Poll uncached NI register

Table 3.1:Steps in the three-cycle handshake
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3.2  Cachable Queues (CQs)

Cachable Queues (CQs) generalize the concept of CDRs from one coherent memory

block to a contiguous region of coherent memory blocks managed as a queue. CQs are a

general mechanism that can be used to communicate messages between two processor

caches or a processor cache and a device cache. For the purpose of this thesis, I will design

CQs to communicate messages between a CNI and a processor cache. I expect that each

user process will negotiate at least two CQs—one to send messages and the other to

receive messages from the CNI—with the CNI.

A key advantage of CQs is that they simplify the reuse handshake and amortize its over-

head over the entire queue of blocks. Liu and Culler [70] used cachable queues to commu-

nicate small messages and control information between the compute processor and

message processor in the Intel Paragon.

This section focuses on how a single user processor can use CQs to communicate mes-

sages directly from a network interface device. I first describe the basic queue operation

(Section3.2.1) and then introduce five important performance optimizations

(Section3.2.2). Section3.6 will discuss how CQs can be used by multiple processes.

3.2.1  Basic CQ Operation

Cachable queues follow the familiar enqueue-dequeue abstraction and employ the usual

array implementation, illustrated in Figurea. The head pointer (head ) identifies the next

queue entry to be dequeued, and the tail pointer (tail ) identifies the next free queue

entry. The queue is empty ifhead  andtail  are equal, and full iftail  is one entry less

than head  (modulo queue size). If there is a single sender and single receiver for this

queue, the case I consider in this thesis, then no locking is required since only the sender

updatestail  and only the receiver updateshead 1.

1. Memory barrier operations may be necessary to preserve ordering under weaker memory mod-
els.
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A processor sends a message by simply enqueuing it in the appropriate out-bound mes-

sage queue. In particular, it first checks for overflow, writes the message to the next free

queue location, and incrementstail . A processor receives a message by checking for an

empty queue and reading the queue entry pointed to by thehead . The message remains in

the queue until the receiver explicitly incrementshead . Thehead  and tail  reside in

separate cache blocks.

Because CQs are simply memory, they have the property that the message sender and

receiver have the same interface abstraction whether the other end is local or remote. A

local CQ, illustrated in Figure3-2a, is simply a conventional circular queue between two

processors. A remote CQ consists of two local CQs, each between a processor and CNI

Send
Process

Receive
Process

tail head

Send
Process

Receive
Process

CNI

Network

tail

head

CNI

tail

head

Figure 3-2. Cachable Queues.(a) Local Cachable Queue(b) Remote Cachable Queue. m1,
m2, m3, and m4 denote valid messages sent by the Send Process to the Receive Process.

(a)

(b)

m1m2m3m4

m4 m1m2m3
send queue receive queue
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device, as illustrated in Figure3-2b. Thehead  andtail  are also managed as cachable

memory. A CNI that uses CQs simply acts like another processor manipulating the queue.

The head and tail pointers of the CQs are a much simpler way to manage reuse than the

complex handshake required by CDRs. If there is room in the CQ, then the tail entry can

be reused; if the CQ is non-empty, then the head entry is valid. However, even though no

locking is required to access thehead  and tail , a straight-forward implementation

induces significant communication between sender and receiver. This occurs because the

sender must check (i.e., read) thehead , to detect a full queue, and the receiver must check

tail , to detect an empty queue. Because the queue pointers are kept in coherent memory,

cache blocks may ping-pong with each check. This overhead can be greatly reduced using

five techniques described in the next subsection.

3.2.2  CQ Optimizations

This section describes five optimizations—lazy pointer, message valid bit, sense reverse,

empty entry removal, andintra-message prefetch—that can greatly reduce the overhead to

access CQ entries. I describe the CQ optimizations assuming fixed-size CQ entries. How-

ever, the message valid bit optimization, and consequently sense reverse that depend on

the message valid bit, require slight modifications to work with variable-size queue

entries. I will point out the changes in appropriate places.1

To explain these optimizations I examine the steps involved in enqueuing and dequeue-

ing messages to and from a CQ. Each CQ has a sender and a receiver. For the send queue

(Figure3-2), the processor is the sender and CNI the receiver. For the receive queue

(Figure3-2), the CNI is the sender and the processor is the receiver. For a regular circular

1. Optimizations described in this section will also work for a CQ set up as a linked list of fixed-
size or variable-size entries. The only difference would be that the sender and receiver would
have to do an extra pointer dereference to get to the next CQ entry.
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queue the pseudo-code for enqueuing and dequeueing are as follows:

⊕ denotes addition modulo CQ size. In the pseudo-code above and the ones to follow, I

assume that if the queue is full, then the sender will either stall or return an error condition

on an enqueue operation. The receiver behaves similarly on a dequeue operation.

As the pseudo-code above shows, on every enqueue operation, the sender must read the

head  shared between the sender and the receiver. Unfortunately, in the worst case, this

may cause a cache miss for thehead  on every enqueue operation, because the receiver

may concurrently dequeue the queue entries and increment thehead .

Lazy Pointer. The lazy pointer optimization allows the sender to avoid reading the

sharedhead  on every enqueue operation. Lazy pointers exploit the observation that the

sender need not know exactly how much room is left in the queue, but only whether there

is enough room. The sender maintains a (potentially stale) copy of the head ,

shadow_head , which it checks before each send.Shadow_head  is conservative, so if

it indicates there is enough room, then there is. Only whenshadow_head  indicates a

full queue does the sender readhead  and updateshadow_head . Thus, the pseudo-code

for enqueue with the lazy pointer optimization looks as follows:

Note that the above pseudo-code assumes C language semantics for the “||” operator in

which the second condition is not evaluated if the first condition is true. Additionally, if

the first condition is false,shadow_head  acquires the value ofhead , even if the second

condition is false.

if (tail ⊕ 1 != head)
{

enqueue message at tail
tail = tail ⊕ 1

}

if (tail != head)
{

dequeue message from head
head = head ⊕ 1

}
Regular enqueue Regular dequeue

if (tail ⊕ 1 != shadow_head || tail ⊕ 1 != (shadow_head = head))
{

enqueue message at tail
tail = tail ⊕ 1

}
Enqueue with lazy pointer
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The lazy pointer optimization works well when, on average, there exists several empty

CQ entries. For example, if the CQ is no more than half full on average, then the sender

needs to checkhead —and incur a cache miss—only twice each time around the array.

Message Valid Bit . For tail , however, amessage valid bit provides a better optimiza-

tion than a lazy tail pointer. Tail pointer works poorly if messages arrive one at a time. In

contrast, a message valid bit allows the receiver to detect message arrivals without ever

checkingtail , thereby eliminating the need for a sharedtail .

The message valid bit can be stored either as a single bit or a separate word in the mes-

sage header. For my implementation of CQs, the message follows the message header

(Figure3-3). For all subsequent pseudo code, I will assume that the message valid bit is

the first word of the message header.

The sender sets the valid bit when it writes a new message to a CQ entry. This may

involve invalidating the receiver’s cached copy of the CQ block containing the message

(and the message valid bit). When the receiver reads the same CQ location again, this

invalidation will force the receiver to obtain the new cache block from the sender via a

cache miss. The receiver will first check if the message valid bit is set to ensure the pres-

ence of a new message. Subsequently, when the receiver is done reading the message, it

must reset the valid bit before it advanceshead . No explicit synchronization (e.g., a lock)

is required to update the valid bit because the sender updates the bit only when it is not set,

while the receive updates it when it is set.

Figure 3-3. A Cachable Queue (CQ) with four messages.

Message One Message Two Message Three Message Four

Header for Message One Header for Message Four

cache blocks
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The pseudo-code for enqueue and dequeue with the message valid bit would be as fol-

lows:

Message valid bits are not new. The *T-NG network interface [22] supports uncached

message valid bits. Liu and Culler [70] used cached message valid bits in their Paragon

Active Message implementation.1 The Scalable Coherent Interface [116] optionally sup-

ports a primitive called QOLB (queue on lock bit) directly in the coherence protocol. This

lock bit (per cache block) could be used as a cached message valid bit. A message valid bit

differs from QOLB’s lock bit because a message valid bit can be implemented on top of a

coherence protocol; it does not have to be integrated with a coherence protocol, as is done

for QOLB.

Cached message valid bits, as offered by CQs, improve performance in two ways. First,

in the absence of any message processor polls to a message valid bit will hit in the proces-

sor cache. Second, when a message does arrive and a processor incurs a cache miss for the

message valid bit, it obtains the first cache block worth of the message (minus the valid bit

1. An alternative optimization to message valid bits is possible for CQs for which the processor is
the receiver and the CNI is the sender. If the processor can selectively invalidate cache blocks,
then after reading a message, it can invalidate the CQ cache blocks that contained the message.
Subsequent accesses to these CQ blocks will result in cache misses. The CNI can respond to
such cache misses only when a valid message is available. However, this scheme has three dis-
advantages. First, few processors support such invalidate instructions. Second, the processor will
be blocked on the cache miss. Third, memory buses that do not support split-transactions would
require the CNI to repeatedly send negative acknowledgments to the cache miss request and the
processor cache to repeatedly send the cache miss request until it is satisfied. This would unnec-
essarily waste bus bandwidth. Even some split-transaction buses may time out if the response
does not arrive within a certain interval [135].

if (*head == VALIDBIT)
{

dequeue message from head
*head = ~VALIDBIT;
head = head ⊕ 1

}

if (tail ⊕ 1 != shadow_head ||
 tail ⊕ 1 != (shadow_head =

head))
{

enqueue message at tail
*tail = VALIDBIT
tail = tail ⊕ 1

}
Enqueue with message valid bit Dequeue with message valid bit
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or word) from the CNI. This amortizes the overhead of cache miss incurred due to a mes-

sage valid bit.

The message valid bit optimization requires slight changes for variable-size CQ entries.

The receiver for a CQ must be able to locate the message valid bit for the next message in

a CQ to check for the presence of a new message. The location of a new message for

fixed-size CQ entries is fixed. For example, for a CQ that starts at address X and has

entries of size 256 bytes, message valid bits will be located at X, X+256, X+512, and so

on. These addresses are fixed across all passes through the CQ. Consequently, the message

valid corresponding to a particular location, say X+256, remains the same in the next pass

through the CQ, unless a new message has been written by the sender into that CQ loca-

tion. For variable-size CQ entries, however, a new message starts where a previous mes-

sage ends. Consequently, message valid bits can be located at different offsets in different

passes through the CQ because messages themselves can be of different sizes. This also

implies that the message valid bits from a previous pass can be overwritten by the body of

new messages in the current pass through the CQ. Therefore, when the receiver checks the

next word following a freshly-read message, it may incorrectly see the body of an old

message, instead of a message valid bit. To prevent this the sender must also write the

message valid bit of the next message when it writes a new message (and its valid bit) into

the CQ.

Sense reverse. Clearing the message valid bit requires the receiver to write the queue

entry; thus under a MOESI protocol, the receiver becomes owner of the queue entry’s

cache block, rather than simply having a shared copy. This normally requires an additional

bus transaction. This transaction (and clearing of the valid bit) can be avoided using a

technique calledsense reverse. The key idea is to alternate the encoding of the valid bit on

each pass through the queue. Valid is encoded as 1 on odd passes, and encoded as 0 on

even passes. The sender and receiver both have an additional state bit, stored in the same

cache blocks as their respective pointers, indicating the sense of their current pass.
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Below I show the pseudo-code for the simple case where the valid bit is stored in a sepa-

rate word in the header. The sender first checks if the CQ has space and then writes the

message followed by its current sense as the message valid bit. The receiver compares its

current sense to the valid bit in the message, with a match indicating a valid message.

Sense reverse has been previously used for barriers [79] and asynchronous logic, but to the

best of my knowledge has never been used for messaging.

The sense reverse optimization requires changes similar to the message valid bit optimi-

zations for variable-size CQ entries. On each enqueue operation, the sender must first

write the sense bit of the next message in the CQ array, before it writes the current mes-

sage.

Empty entry r emoval. Valid bits (and, hence, the sense bits) provide a fourth opportu-

nity for optimization. I call thisempty entry removal. Conventional circular queue imple-

mentations often use an empty queue entry to help distinguish between queue full and

queue empty conditions. For example, the queue empty condition would be (tail  ==

head ), while the queue full condition would be (tail ⊕ 1 == head ). However, given

the valid bits, the empty queue entry can be removed. With valid bits the queue empty and

full conditions would translate into (tail  == head  && v alid bit not set) and (tail  ==

head  && v alid bit set) respectively. With sense bits, the queue empty and full conditions

if (tail ⊕ 1 != shadow_head ||
 tail ⊕ 1 != (shadow_head =

head))
{

enqueue message at tail
*tail = sender’s sense;
tail = tail ⊕ 1
if (tail == 0)
{

sender’s sense =
sender’s sense xor 1

}
}

if (*head == receiver’s sense)
{

dequeue message from head
head = head ⊕ 1
if (head == 0)
{

receiver’s sense =
receiver’s sense xor 1

}
}

Enqueue with sense reverse Dequeue with sense reverse
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are somewhat subtle. The conditions are (tail  == head  && sender’s sense == receiver’s

sense) and (tail  == head  && sender’s sense != receiver’s sense) respectively. Updates

to the receiver’s sense andhead  must, however, be atomic, because they jointly comprise

the receiver’s view of the CQ. Thus, the pseudo-code for CQ enqueue and dequeue with

all the optimizations look as follows:

If a processor is the receiver andhead  and receiver’s sense are allocated in separate

words, then atomic updates tohead  and receiver’s sense can be achieved by allocating

head  and receiver’s sense in a single double-word variable and performing a single dou-

ble-word store to this variable. This ensures atomicity because processors guarantee atom-

icity of individual store operations. If a hardware finite state machine mimics the receiver

(e.g., in a CNI), then it can guarantee atomicity by simultaneously updating bothhead

and the sense.

The empty entry removal optimization is worthwhile only for small CQs. Large CQs

may afford to waste an entry because it consumes a small fraction of the total CQ space.

Also, this optimization does not help much for variable-size CQ entries becausehead  and

if (tail != shadow_head ||
 tail != (shadow_head = head)||
 sender’s sense == receiver’s

sense)
{

enqueue message at tail
*tail = sender’s sense;
tail = tail ⊕ 1
if (tail == 0)
{

sender’s sense =
sender’s sense xor 1;

}
}

if (*head == receiver’s sense)
{

dequeue message from head
tmp_head = head ⊕ 1
if (tmp_head == 0)
{

tmp_sense =
receiver’s sense xor 1

atomically update head
and receiver’s sense
with tmp_head and
tmp_sense resp.

}
else

head = tmp_head
}

Enqueue with empty entry removal Dequeue with empty entry removal
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tail  would be incremented in 4-byte word intervals. Consequently, using one 4-byte

word to distinguish between CQ empty and full conditions is not that wasteful.

Intra-message prefetch. The fifth optimization—intra-message prefetch—is a variant

of virtual polling (Section3.1.2) that minimizes the number of bus transactions on the crit-

ical path for the send CQs (i.e., a CQ where the processor is the sender and a CNI is the

receiver). Specifically, under the bus’s write-invalidation based MOESI protocol, the pro-

cessor must generate an invalidation signal to acquire ownership of a cache block before it

can write to it. Since our CQs are filled in FIFO order, an invalidation signal for all blocks

other than the first block of a multi-block message implies that the processor is done writ-

ing the previous cache block. When the CNI device detects an invalidation signal it issues

a coherent read on the previous cache block of the same message. Thus part of the mes-

sage is transferred to the CNI cache before the processor has completed writing all the

cache blocks of the message.

Combining all five CQ optimizations—lazy pointer, message valid bit, sense reverse,

empty entry removal, and intra-message prefetch—minimizes bus traffic and space

required by CQs. Table3.2 shows that a CQ incurs very little overhead at the sender and

receiver. Table3.3 summarizes the benefits of the five CQ optimizations. In the common

case, these optimizations reduce both the number of invalidation and read misses from

CQ state at sender CQ state at receiver

Sharedhead Sharedhead

Privateshadow_head Private sense bit

Privatetail Translations (Section3.6.2)

Private sense bit Process identifier (Section3.6.4)

Translations (Section3.6.2)

Process identifier (Section3.6.4)

Table 3.2:CQ state at sender and receiver
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three (forhead , tail , and message) to one (for message). This result holds for a write-

invalidation based MOESI protocol and cache-block sized messages. The reduction can be

even greater for update protocols and messages larger than a cache block.

3.3  Home

In most computer systems, all legal physical addresses map to ahome device or memory

module. If a block is cachable, for example, then the home is where data are written on

cache replacement. Should the home for CDRs or CQ entries be at the CNI, as with a reg-

ular device register, or in main memory?

Since CDRs are each a single block and most devices will employ only a few, the logical

choice is to provide the home within the device itself. This can also simplify the imple-

mentation for some memory buses, because the device may not have to implement all

cases in the coherence protocol [97]. For example, cache replacement for CDR blocks

need not be implemented because the CNI itself is the home for the CDR block.

CQs, on the other hand, will benefit from being large. For example, Brewer, et al., have

demonstrated that remote queues can significantly improve performance by preventing

contention on the network fabric [16]. If the CQ’s home is main memory—a less precious

Optimization Benefit

Lazy pointer sender does not read head pointer (in common case) to write
a new message into the CQ

Message valid bit receiver does not read tail pointer to read a new message
from CQ

Sense reverse receiver does not write the CQ

Empty entry removal saves space in CQ

Intra-message prefetch receiver overlaps the consumption of previous blocks a mes-
sage with generation of new blocks

Table 3.3:Summary of CQ optimizations.
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resource than hardware FIFOs—then its capacity can be very large (e.g. megabytes).

Large queues help simplify protocol deadlock avoidance and flow control, at least for

moderate-scale parallel machines. Having the CQ home in memory also helps tolerate

unreliable network fabrics, since messages need not be removed from the send queue until

delivery is confirmed.

Mapping the home of CQs to main memory raises several operating system and perfor-

mance issues. I discuss these in the next two subsections.

3.3.1  Operating System Issues

To place the CQ home in main memory, we must address three operating system issues.

First, a CNI needs a translation scheme to translate the CQ virtual addresses to physical

addresses in main memory. If the operating system allocates CQ pages contiguously, then

CNIs can use a simple base-and-bounds virtual-to-physical address translation. If the

operating system cannot guarantee this, then a more complicated translation mechanism

may be necessary. Section3.6.2 discusses several alternate translation mechanisms.

Second, a CNI must ensure that CQ pages always reside in main memory, or be prepared

to fetch them from the swap device. For the CNI implementations in this thesis, I assume

that CQ pages are “pinned,” so that the operating system does not attempt to page them

out. Alternatively, more flexible schemes are possible (see Section3.6.1).

Finally, there must be some mechanism for the rare case in which even the large amount

of memory allocated for a CQ fills up. Three options exist. The first and the simplest

option is to block the sender; however, this may lead to deadlock. Second, as proposed for

MIT Fugu [72], the CNI device can interrupt the processor, causing it to allocate free vir-

tual memory frames and drain the CQ. Third, the CQs themselves could grow dynami-

cally. An easy way to achieve this would be organize the CQs as a linked-list of fixed-size

buffers. If a CNI finds that the receive CQ is full when it tries to write new messages to the

CQ, it can interrupt the OS. The OS can make an upcall to the user process, causing it to
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allocate virtual memory for the buffers. After obtaining the virtual memory frames for the

buffers, the OS must allocate backing physical memory and insert these buffers in the CQ.

A similar approach could be taken for the send CQ. This approach has the disadvantages

of requiring a pointer dereference for every message access and a more elaborate scheme

to manage the translations of the buffers.

3.3.2  Performance Issues

Treating CNI memory as a CQ cache requires the CNI to handle cache replacements of

modified cache blocks from the CNI cache. Modified cache blocks result in a CNI’s cache

from messages that arrive from the network. For a FIFO-style CQ, flushes are unnecessary

in two cases:

• A message may have been consumed by a processor (i.e. adead message), but is

flushed to main memory because cache blocks it resides in are marked modified.

• New messages arriving from the network continuously replace fresh messages from

the CNI cache to main memory. This can happen when the CNI cache overflows due to

a burst of messages arriving from the network. This may cause the processor to pick

up all messages from main memory, instead of the smaller and faster CNI cache. The

negative impact of this problem can be reduced if new messages arriving from the net-

work bypass the cache and write them directly to main memory.

Below I describe two optimizations—dead message elimination andcache bypass—that

help remove these two unnecessary cache flushes.

Dead Message Elimination. A dead message is a message received by a CNI and

already consumed by the processor. Dead messages from the receiving CNI’s cache need

not be flushed to main memory. Figure3-4 shows that dead messages can be determined

easily by comparing thehead  andtail  of the CQ.

The dead message elimination optimization changes the contract between the CNI and a

processor. After a processor incrementshead  of the receive CQ, the CNI does not guar-
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antee the validity of data for the dead message in the previous CQ entry. However, the CNI

must still guarantee the validity of the sense bit in that CQ entry to prevent the processor

from incorrectly interpreting the presence of a valid message in the CQ entry. Conse-

quently, even with dead message elimination CNIs must still flush the sense bit of a dead

message to main memory.1 This may be accomplished using an uncached store from the

CNI to main memory.

The lazy pointer optimization (Section3.2.2) creates a problem in determining dead

messages in the receiving CNI’s cache. This is because the lazy pointer optimization,

when successful, allows theshadow_head  andhead  to drift apart. Consequently, mes-

sages may be dead, even though indicated otherwise by theshadow_head . To solve this

problem, I force the CNI to update theshadow_head  after every N cache block flushes

from the CNI. I call N the dead message elimination threshold. This allows the CNI to

have a more precise view of dead messages in the CQ and allows a better elimination of

cache flushes for dead messages.

My experiments in Chapter4 suggest that one is a reasonable value for N. N = 1 sug-

gests that not only do messages arrive in batches, which allows shadow_head  to

improve performance, but also messages are consumed by the processor in batches. Con-

1. A writeback buffer may help improve the performance of writeback of sense bits to main mem-
ory. However, my experiments (not shown in this thesis) indicate that such a writeback buffer
has negligible effect on the performance of CNIs.

head

tail

Dead Messages Dead MessagesValid Messages

Cachable
Queue

Figure 3-4. Dead message elimination.A simple comparison of the head and tail pointer
shows messages that are already consumed by the receiver.
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sequently, if the CNI encounters one dead message, the probability of encountering con-

secutive dead messages is high.

Of the seven macrobenchmarks evaluated in this thesis (Table4.3), dead message elimi-

nation only helps spsolve significantly. For this benchmark a dead message elimination

threshold of one improves the performance of CNI32Qm by 12%. The improvement is

greater for CNIiQm with i > 32. See Section3.4 for an explanation of the CNI taxonomy.

Cache Bypass. If messages arrive from the network at a CNI faster than the processor

can consume them, then the CNI cache will overflow. This may cause the processor to

pick up all messages from main memory. However, because CNI caches are smaller, we

expect them to be faster. Therefore, allowing the processor to read messages from the CNI

cache, instead of main memory, should improve performance. Consequently, writing new

messages to main memory directly and bypassing a full CNI cache should improve perfor-

mance.

I use a heuristic to determine if the CNI should bypass its cache when a new message

arrives from the network. In this heuristic each CNI cache block is augmented with one

state bit, which indicates if the cache block has been directly read by the processor at least

once from the CNI’s cache. Before writing a block from a new message (arriving from the

network) into the CNI cache, the CNI must check if the state bit of the old cache block

indicates whether the processor has read the block at least once. If so, then the CNI can

safely replace the old block, write a block from the new message into the same location in

the cache, and reset the state bit.1 However, if the state bit is not set, implying that the pro-

cessor has not read it even once, then the CNI bypasses its cache and writes the block

directly to main memory.

1. Of course, cache replacements in the processor cache can cause the processor to request the
block again. Nevertheless, I expect such cache replacements from the processor’s cache to be
rare, and, therefore, replacing the corresponding block from the CNI’s cache is worthwhile.
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Chapter4 shows that this optimization improves performance of two macrobench-

marks—em3d and spsolve (Table4.3)—by 4% and 8% respectively.

3.4  CNI Taxonomy

This section proposes a taxonomy of network interfaces (NIs). I use the NI queue struc-

ture as the main component to enumerate a taxonomy of network interfaces. NI queues are

the primary carriers of messages between a processor and its NI. A processor sends mes-

sages to the NI through thesend queue and receives messages from the NI through the

receive queue. For our taxonomy of CNIs, I assume that both the NI queues have the same

structure.

This taxonomy is modeled after Agarwal et al.’s classification of directory protocols [4].

I use the notation NIiX for traditional FIFO-based NIs and CNIiX for coherent network

interfaces that cache the NI queues. The subscripti denotes the size of the NI FIFO queue

exposed to the processor. The default unit of i is memory/cache blocks, but can also be

specified in 4-byte words by adding the suffix ‘w’. The placeholder X could either be

empty, Q, or Qm. X empty represents the simple case where a network interface exposes

only part or whole of one network message. For CNIs a network message is exposed via

CDRs. CDR reuse is managed by the explicit handshake described in Section3.1.3. X = Q

represents the more complex case where the exposed portion of the NI queue is managed

as a memory queue with explicit head and tail pointers. X = Qm denotes that the home of

the explicit memory-based NI queues are in main memory. The absence of an ‘m’ implies

that the device serves as the home for the NI queues.

For example,i = 2w denotes that only two words of the FIFO queue is exposed. A pro-

cessor reads words of a message from an NI2w network interface by issuing uncached

loads to a fixed address, which repeatedly pops the NI2w FIFO. Similarly, a DMA-based

NI that reads or writes up to 64 words of a message at a time via a DMA engine can be

specified as NI64w (see Section5.3). In contrast, for some network interfaces, such as
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NI128Q, the processor must explicitly increment and dereference a head pointer to read dif-

ferent words of a message from different addresses of the queue.

Several existing NIs can be classified with this taxonomy. The Thinking Machines’ CM-

5 [124] NI is NI2w since it exposes two words of a message to the receiver. Similarly, the

Alewife [2] NI is NI16w [62]. The network interface in *T-NG [22], which devotes 8 KB

for an NI queue and consists of 64-byte cache blocks, is NI128Q. The *T-Jr NI [53] can be

classified as CNI0Qm because it does not have a cache (hence ‘0’). I call the *T-Jr NI a

CNI, even though it does not have a cache, because it allocates its queues in main memory.

If the *T-NI were on the memory bus, it would have to issue coherence signals to keep

these queues coherent between main memory and the processor caches.

Chapter4 compares the performance of NI2w, CNI4, CNI32Q, CNI512Q, and CNI32Qm

with two microbenchmarks and seven macrobenchmarks.

3.5  CNIs on I/O buses

Although coherent memory buses allow processors and CNIs to coherently cache CQs,

the same may not be possible with CNIs on all I/O buses (Table3.4). Two key mecha-

nisms are necessary in the interconnect between the processor, the CNI, and the home to

coherently cache CQs in a processor or CNI cache. First,if a cache contains the most

recent copy of a CQ block, it must be able to intercept a coherent read request for the

block and prevent the home from responding. Second, a cache must be able to invalidate

(or update) stale copies of CQ blocks residing in other caches.

The absence of the first mechanism makes it difficult for I/O bus CNIs to coherently

cache CQs whose home is in main memory. Main memory resides on the memory bus,

while the I/O bus is usually connected to the memory bus through an I/O bridge. Because

I/O buses are usually slower than memory buses and the I/O bridge introduces additional

delay on the memory bus to I/O bus path, it is difficult for I/O bus devices to intercept a

memory bus coherent read request and prevent main memory from responding in a timely
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fashion. Memory bus CNI caches, on the other hand, directly observe the memory bus

coherence protocol and therefore can intercept a coherent read request, inhibit memory

from responding (through the memory inhibit signal on the memory bus), and respond

with the most recent copy of the CQ block. Although I/O bus CNIs cannot cache CQ

blocks that reside in main memory, they could write messages directly to main memory,

just like regular network interfaces that DMA messages to main memory.

The absence of the second mechanism—i.e. the ability to invalidate or update stale CQ

blocks in other caches—in today’s I/O buses makes it difficult for processor caches to

coherently cache data from an I/O bus CNI device when the home is in main memory.

This is because when a CNI updates main memory the processor cache can still contain

stale data. Invalidations can, however, be synthesized at the software level or at the I/O

bridge. At the software level, a processor could explicitly flush its entire cache (or the CQ

blocks selectively, if selective invalidations are allowed) before a CNI writes new data to

CQs in main memory. However, this solution—adopted in today’s systems that support

only non-coherent I/O—is slow because this requires a cache flush and an explicit hand-

shake between a CNI and processor before the CNI can write new messages to main mem-

ory. Alternatively, many systems supportcoherent I/O by adding functionality at the I/O

bridge. On a I/O device write data to main memory, the I/O bridge invalidates all stale cop-

ies of data residing in memory bus caches. The same mechanism could be used by CNIs to

allow processors to cache CQ blocks.

Home Caching CQs In Non-Coherent
I/O

Coherent
I/O

 Coherent I/O + I/O
Bridge Invalidation

Support

Main Memory
CNI Cache No No No

Processor Cache Slow Yes Yes

CNI Processor Cache Slow Slow Yes

Table 3.4:Coherent Network Interfaces on I/O buses
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I propose a third alternative in which the I/O bridge synthesizes invalidation signals on

an I/O bus, such the Sun SBus or PCI1, using a technique called theshadow address

space. Recall invalidation signals are necessary to allow a processor to avoid having stale

copies of CQ blocks in the CNI’s cache or memory when the processor writes new mes-

sages to the CQ. Similarly, invalidation signals help a CNI to avoid having stale copies of

CQ blocks in the processor cache when the CNI writes new messages arriving from the

network into the CQ.

The shadow address space technique has been used before to communicate special sig-

nals from a processor to an I/O device [11, 47], but not in an I/O bridge. In this technique,

the I/O bridge creates a shadow space for the regular I/O space by some invertible function

1. PCI supports only two coherent transactions: memory read line and memory write and invali-
date. The invalidate command. Consequently, we need to fake an invalidation signal even on
PCI.

burst read for 0xxx CR for 0xxx I/O
Bridge

processor

memory bus I/O bus

CNI

burst read for 1xxx CI for 0xxx I/O
Bridge

processor

memory bus I/O bus

CNI

(a)

(b)
Figure 3-5. Illustration of shadow address with a CNI on the I/O bus.(a) a processor read
miss (CR = coherent read) for the address 0xxx is translated by the bridge to a burst read for
0xxx on the I/O bus. (b) shows that a CI (coherent invalidate) signal for 0xxx is translated to a
burst read for the shadow address 1xxx. The CNI interprets a read for 1xxx as a invalidation
signal for 0xxx.
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such as flipping a bit. Thus, if 0xxx represents an I/O space physical address, 1xxx will

represent its shadow physical address. Reads from the processor to 0xxx will proceed nor-

mally, but reads to 1xxx will be interpreted by the I/O device as a special control opera-

tion, which in our case is an invalidation on the physical address 0xxx (Figure3-5). Thus,

when the I/O bridge observes an invalidation signal for address 0xxx on the memory bus,

it will convert it to a read signal on the address 1xxx. Conversely, when the I/O bridge

observes an I/O bus read signal on 1xxx, it will convert it to a memory bus invalidation

signal on the address 0xxx. These enable an I/O device to observe all memory bus invali-

dation signals for CQ blocks and send invalidation signals for CQ blocks to memory bus

caches. In this thesis, for all experiments with I/O bus CNIs, I assume that the I/O bridge

supports the shadow address space technique. I will refer to an I/O bus augmented with I/

O bridge invalidation support as acoherent I/O bus.

If the home of the CQs is in the CNI device itself, then the first mechanism is not neces-

sary. However, if processors cache CQ blocks, then a CNI must invalidate the processor’s

stale CQ blocks when new messages arrive from the network. The invalidation schemes

discussed in the preceding paragraph applies in this situation too.

There are other alternative designs for CNIs on I/O buses. For example, although I/O

buses may not allow main memory requests to be intercepted by I/O bus devices, they

could allow I/O bus devices to intercept requests to memory residing on the I/O bus itself.

This would enable us to place the home in memory on the I/O bus. Another option is to

design the CNI to a standard I/O bus (e.g., PCI) specification, but provide special bridges

(such as the personality interfaces on the SGI Power Challenge I/O bus [42]) through

which the CNI can talk to a variety of memory buses (Section2.2).

3.6  Multipr ogramming CNIs

Emerging server applications, traditional parallel programs, and the advent of symmetric

multiprocessing nodes (SMPs) make it critical to multiprogram network interfaces (NIs)

of high-end servers and parallel machine nodes. World-wide web, database, and network
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computer query servers constitute new classes of emerging server applications that must

rapidly respond to incoming message requests. High-end server machines that run multi-

ple such server applications must be multiprogrammed to allow maximum overlap of CPU

and I/O operations from these servers. Throughput-oriented production runs of traditional

parallel applications, such as scientific codes, may not necessarily require a multipro-

grammed parallel machine. Nevertheless, parallel machines must be multiprogrammed to

allow fast response times for program development workloads. Finally, the advent of

SMPs as high-end servers and parallel machine nodes allow the opportunity to run multi-

ple processes in parallel within the SMP node itself. Multiprogramming processor and

memory for communication-intensive server and parallel applications is, however, almost

useless unless we multiprogram the NI itself.

I see four key design challenges to multiprogramming an NI. These are:

• Ensuring protected access to the NI (Section3.6.1),

• Providing the NI with physical addresses of message data buffers (Section3.6.2),

• Allowing multiple processes to simultaneously access the NI (Section3.6.3), and

• Detecting generation of new messages from different processes (Section3.6.4).

Below I discuss each of these design challenges. For each design problem I first examine

the alternatives that exist in today’s commercial and research NIs and explain which solu-

tions are most suitable for CNIs. Section3.6.5 discusses an example send and receive

datapath through a multiprogrammed CNIiQm device.

3.6.1  Ensuring Protected Access to the NI

Protected user access to status, control, and data registers of an NI isolates user pro-

cesses from one another and prevents one process from clobbering another process’s mes-

sages. There are two standard ways to ensure protected, user access to NI registers. The

first, and the traditional method, is to access the NI through the operating system (OS).

User applications send messages to and receive messages from the OS through the con-

ventional system call interface. In Unix for example, users can send and receive messages
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to and from the network via the socket interface. This scheme ensures protection because

only the OS directly talks to the NI. Unfortunately, as discussed in Section2.8, routing

messages through the operating system can incur high latency (tens of microseconds),

because of the need to cross a protection boundary. 1

In the second approach followed by CNIs, NI registers are memory-mapped directly into

user virtual space, which allows direct, protected, and rapid access to the NI registers. In

this approach conventional virtual memory hardware guarantees protection on a per page

basis. To the best of my knowledge, the Thinking Machines’ CM-5 NI was the first to

adopt this mechanism. Several recent NI designs, such as the Princeton SHRIMP NI [12],

Mitsubishi DART [96], etc. have adopted a similar strategy for protection. All CNI

designs adopt this approach. CDRs and CQs are memory-mapped into user virtual space;

the virtual memory hardware guarantees protection for these data structures shared

between the NI and a user process.

Memory-mapping NI registers to user space introduces a complexity for systems with

NIs that directly read and write messages to and from the processor’s memory space. Pro-

tection will be violated if the operating system remaps a physical page to another process

or swaps a physical page to disk when an NI is reading from or writing to that page.

DMA-based NIs and CNIs fall in this category of NIs. For DMA-based NIs, this situation

can arise while DMA is in progress. For CNIs this situation arises during cache block

writebacks from a CNI cache to main memory.

Researchers have proposed two solutions to this problem of protection violation caused

by page remapping and swapping. CNIs can use either. First, all pages that an NI reads

from or writes to can be pre-allocated and pinned to main memory. This ensures that all

physical pages to or from which an NI transfers data are never remapped or swapped. The

1. Even extensible operating systems, such as SPIN [10] or VINO [108], cannot eliminate the over-
head of trapping into the operating system. Extensible operating systems can, however, reduce
the overhead of heavy-weight protocols, such as UDP/IP, by customizing them for specific
applications.
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Arizona Application Device Channels [35] and the Cornell U-Net architecture [127] have

taken this approach. This scheme is simple to implement and requires no or very little

change to commodity operating systems and NIs. However, this limits the amount of user

virtual memory space that an NI can address because only limited amounts of physical

memory can be pinned throughout the execution of a program. This prevents NIs from

directly depositing data into any place in user virtual space.

Second, instead of pinning all pages that the NI can potentially write data to or read data

from throughout the entire duration of a program, the OS and the NI can cooperate to tem-

porarily “pin” only those pages that are involved in data transfer between the processor’s

memory space and the NI (e.g., SHRIMP I[11], U-Net/MM [133]).1 This allows the NI to

address the entire user virtual space. However, the OS must be careful not to remap pages

that have data transfers in progress. Both SHRIMP and U-Net/MM disallow the OS

remapping such pages. In SHRIMP the OS is disallowed from remapping pages that are

actively involved in message transfers. The SHRIMP NI hardware posts addresses of such

pages in its registers. The OS simply reads these registers before remapping or swapping

any page; if a page’s address is currently in an NI register, then the OS avoids remapping

or swapping that page until the NI clears that address from the registers. U-Net/MM is

more coarse-grained. It disallows any further remapping of a page that has been mapped

by a translation cache (Section3.6.2) located in the NI. The OS can only remap pages

whose translations have been replaced from or do not appear in the NI’s translation cache.

CNIs with caches impose an additional requirement on the OS and NI. Before a page

remap or page swap, modified CNI cache blocks corresponding to a page must be flushed

to main memory. The OS can use the same technique it uses to flush cache blocks from

processor caches. The OS running on a processor simply reads the entire page into the

processor cache and then writes the page to main memory. The same protection mecha-

1. Alternatively, the OS itself could dynamically pin the pages before initiating data transfer
between main memory and the NI. But this has higher overhead because the OS must be invoked
on every message send and reception to update the page table data structures that typically con-
tain this information.
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nisms described earlier in this subsection can be used to prevent the CNI to re-read the

same blocks. Alternatively, the CNI can coordinate with the OS to flush all cache blocks

directly from the CNI cache to main memory.

3.6.2  Providing the NI with Physical Addresses of Message Data

NIs that read data from or write data to processor caches, NI caches, or main memory

must know the physical address of the message data buffers. NIs that transfer data to or

from main memory using DMA provide a classic example of this kind of NIs. CNIs face a

similar challenge because CNIs must be prepared to retrieve data from processor caches

and write data to main memory or CNI caches themselves. Coherent memory buses sim-

plify the solution for NIs because NIs need not worry about where exactly the data is

located; the data can either be in main memory or processor caches. The NI simply speci-

fies the physical address of the message data buffer and the memory bus returns an up-to-

date copy of the message data to the NI. As discussed in Section3.5, this is known as

coherent I/O.

There are two standard ways in which an NI can acquire physical addresses of data buff-

ers: either the processor can provide the NI with the physical address of the data buffers

just before the message send or receive or the user application can directly send the virtual

address of the message data buffers to the NI device. In the latter case, the NI must have a

mechanism to translate the user virtual address to the physical address in the system. CNIs

can adopt either method; nevertheless, for performance reasons, I would recommend the

second approach.

In the first and the more traditional method, the OS supplies NI devices with physical

addresses because user applications do not have access to and cannot be trusted with phys-

ical addresses of NI devices or main memory. This requires OS intervention on every mes-

sage send and receive. Recently, the Princeton UDMA mechanism relaxed this constraint

by showing how DMA can be initiated directly from user-level through theshadow

address space technique [11] using simple uncached loads and stores to the NI device.1
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The shadow address space technique allows a user process to transfer physical addresses

for the source and destination of DMA to the NI without violating protection. This strat-

egy works well for processor-initiated sends and processor-initiated message receives.

However, for asynchronous message reception such as the one offered by the Active Mes-

sage model, this may hinder performance because the NI cannot directly deposit data into

user space without processor intervention. Alternatively, as in the Princeton SHRIMP

approach [12], the sending NI can negotiate ahead of time the physical addresses to which

messages would be deposited in the receiving node. On a message send, the sending NI

appends to the message the appropriate physical address in the receiving node. This

approach allows asynchronous message reception without processor intervention. The

drawback of this approach is that any local change in translation (e.g., page remap or

swap) requires the system to reflect this change globally, which can be an expensive oper-

ation. This can be avoided by pinning the destination pages for the entire duration of a par-

allel program.

In the second method, the NI holds the user virtual-to-physical translations so that it can

directly interpret user space virtual addresses provided by the user. There are several alter-

natives for this—from storing the entire page table in the NI [107], to caching the transla-

tions in NI data structures, either in software [47] or in hardware [96]. There are two

problems associated with caching the translations in the NI: how to fill the NI translation

buffer and how to avoid stale copies of translations when the operating system has

remapped a page or swapped a page to disk. The NI translation buffer can be filled in two

ways. First, on a translation buffer miss, the NI can interrupt the operating system, which

can insert the requested translation into the NI translation buffer. Second, translations can

be inserted into the NI translation buffer directly by the user through the shadow address

space technique [11, 47, 101] using simple uncached loads or stores to the ULNI device.

1. See Chapter5 for details on User-Level DMA
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The translation table in the NI must be updated if the operating system either remaps a

page or swaps a page out to disk. If the operating system decides to remap a page, it can

simply invalidate the corresponding translation in the NI. The operating system may have

to wait for an access is in progress from the NI on that particular page to complete. Alter-

natively, the operating system can ensure that pages mapped by the NI’s TLB are always

pinned in memory and never reclaimed unless the NI explicitly gives them up [133].

Page swaps can be handled in two ways. First, all physical pages may be pinned in main

memory for the duration of the program. For long-running programs, this solution may be

infeasible. Second, the operating system can again invalidate the translation in the NI

translation buffer when it swaps a page out to disk. When the NI accesses the page again,

it will incur an NI translation buffer miss and request the host processor to remap the page.

The host processor will swap the page back into physical memory and reinsert the transla-

tion into the NI translation buffer. 1

3.6.3  Allowing Multiple Pr ocesses to Simultaneously Access the NI

The advent of SMPs as high-end servers and parallel computer nodes has made it critical

to allow multiple processes to access the NI registers simultaneously. Traditionally, NIs

have provided only one set of registers (status, control, and data) that are accessed and

controlled only by the OS. This solution works for SMPs if all message sends and receives

are routed through the OS. However, User-Level NIs (ULNIs) do not have this privilege

because they must allow user applications to directly access the NI registers. ULNIs such

the TMC CM-5 NI [124] and the Princeton SHRIMP NI [13] suffer from a similar prob-

lem; although these NIs allow multiple processes to access the NI registers, they do not

allow more than one user process to simultaneously access the NI registers.

A common approach to allowing multiple processes to access the NI registers simulta-

neously is to provide multiple sets of NI registers and memory-map a different set into dif-

1. For more detailed discussions on protection and address translation issues in the network inter-
face, please see Heinlein, et al. [47], Blumrich, et al. [11], and Schoinas and Hill [105].
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ferent user virtual spaces. The Arizona Application Device Channels (ADCs) [35], the

Cornell U-Net [127], and Fujitsu AP-Net [111] have all taken this approach. The key

interface abstraction for these approaches is amemory-based queue (Section2.7). CNIs

take a similar approach; additionally, CNIiQm’s (i > 0), which are CNIs with caches whose

home is in main memory, provide greater flexibility in multiprogramming. Processes com-

municate with CNIs through CQs, which are memory-based queues with the additional

property that these queues can be cached in the processor and CNI caches.

Memory-based queues are allocated by either dividing up the fixed amount of memory

in the NI among multiple queues or using main memory as a repository for these queues.

The first method limits the number of queues that can be allocated because NI memory is

usually a small and precious resource and for each process the queues must be allocated in

multiples of page sizes (e.g., 4 - 16 kilobytes) because the standard virtual memory hard-

ware guarantees protection only at the page granularity. Consequently, AP-Net supports

only two user-level queues, while the ADC implementation described in [35] supports 16

user-level queues. Alternatively, these NIs can support a larger number of queues if the OS

is prepared to save and restore the queues and queue state when the number of queues allo-

cated exceeds the total amount of memory on the NI. However, since message queues can

be quite large (tens of kilobytes), saving and restoring these queues and queue state can be

an expensive operation. The CNIiQ designs—CNIs with no caches—suffer from this

problem. The second method, adopted by the U-Net architecture alleviates this problem

somewhat by allocating the queues in main memory and queue state in the NI memory.

Since the queues are in main memory and managed through regular virtual memory hard-

ware and software, they need not be saved and restored. However, the disadvantage of this

method is that messages cannot be transferred directly between the NI and processor; all

messages must be routed through main memory.

CNIiQm‘s (i > 0) simplify the multiprogramming problem because they allow a system

to support a large number of queues with very little memory in the NI. The key observa-

tion is that they separate the logical allocation of CQs from their physical location. Logi-
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cally, CQs are allocated in virtual address space of each process at page granularity.

Physically, however, they can be located in the CNI caches, processor caches, or main

memory, as need be. Like the ADC implementation, they allow messages to be directly

transferred between the NI and the processor; like U-Net the number of CQs supported is

only restricted by the number and amount of CQ state that can be allocated in the NI mem-

ory. Since the amount of CQ state per CQ is typically small (Table3.2)—that is, tens of

bytes—the number of CQs that can be supported is very large.

The number of CQs supported by a CNI can be made even larger, if need be so, by mak-

ing main memory the home of the CQ state and caching the CQ state in the CNI. The Ber-

keley Active Messages implementation on a Network of Workstations running the Solaris

operating system and connected with Myricom Myrinet switches [74], caches state spe-

cific to network connections (called endpoints) in the NI memory. However, the Myrinet

host interface does not interact with the host system through coherent operations. Conse-

quently, the Berkeley implementation must keep such state coherent in software. Alterna-

tively, because CNIs interact with the host system through coherent memory operations,

the CQ state itself can be allocated in coherent memory and treated exactly like CQs them-

selves.

3.6.4  Detecting the Generation of New Messages by Different Processes

CNIs must have efficient mechanisms to detect the generation of new messages by dif-

ferent processes, both during message send and reception. Message detection has two

parts: detection of message creation and association of a message with a specific process.

On the send side, in almost all current NI designs, processes inform the NI of the cre-

ation of a new message through an uncached signalling store to the NI. This approach is

appealing because of its simplicity. Nevertheless, as discussed in Chapter2, uncached

loads and stores can be slow and often stop the speculation engine of modern micropro-

cessors. In the absence of uncached signalling stores, CNIs must be prepared to monitor

the state of each CQ to detect the presence of a new message—either by monitoring
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changes in the tail pointer or by detecting changes in the message valid bits. Monitoring a

large number of CQs can be an expensive operation because the CNI has to check the sta-

tus of each CQ for new messages. Virtual polling (Section3.1.2) can be a viable alterna-

tive here, particularly in the presence of a large number of CQs. A CNI device can be

mostly passive; it needs to poll a CQ only when an invalidate coherence signal appears at

the CNI’s bus interface. Associating a message with a specific process is simple for CQ-

based CNIs because different processes will write messages to different physical

addresses.

On the receive side, a CNI logically detects the presence of a new message either by

polling the external network interface or through an external network interface interrupt.

The actual state machine can be implemented either in firmware or as a finite-state

machine. To associate an incoming message with a receiving process, the message pro-

vides the CNI with some identifier. Examples of such identifiers include global process

identifiers and CQ identifiers. However, such identifiers must be added to the message by

the sending CNI, and not the user, because CNIs cannot trust users to provide correct iden-

tifiers. Such identifiers can be obtained from the operating system and maintained along

with the CQ state (Table3.2).

3.6.5  Multiprogrammed CNIiQm Datapath

Figure3-6 shows the logical path followed by a message through a multiprogrammed

CNIiQm device. Figure3-6a shows the logical path followed on a message send. The mes-

sage arrives from coherent memory bus. The CNIiQm device examines the queue identifier

and looks up the queue state in the queue state table. It translates the virtual queue pointer

addresses and any other virtual address specified in the message to the corresponding

physical addresses through the TLB (translation lookaside buffer). In parallel the device

fetches the corresponding cache blocks from the cache to which the message must be writ-

ten. When the translation completes and the message is written to the cache, the device

signals the external network interface of the presence of a new message. When the net-
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work is ready to receive messages, the external network interface reads the message from

the CNIiQm cache and injects it into the network.

Figure3-6b shows the logical receive datapath through a CNIiQm device. When the

message comes in from the network and through the external network interface, the CNI-

iQm device examines the queue identifier from the message, looks up the queue state table,

extracts the virtual addresses from the queue state and the incoming message, consults the

translation table for the corresponding physical addresses and fetches the corresponding

cache block in parallel, and finally inserts the message into the CNIiQm cache. At some

later time, the corresponding user process will read the message from the CNIiQm cache.

For both send and receive the CNIiQm device may have to postpone writing new mes-

sages into the cache, if the corresponding cache blocks in the device cache are marked

modified and must be flushed to main memory.

Bus Interface

External Network Interface

Queue
State Cache

To Network From Network

From Coherent Memory Bus To Coherent Memory Bus

(a) (b)

CNI iQm CNI iQm

Figure 3-6. Logical datapath through multiprogrammed CNIiQm device.This figure shows
the logical path through followed by a message for a message send (a) and message receive (b)
for a multiprogrammed CNIiQm device.

TLB

Bus Interface

External Network Interface

Queue
State
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TLB
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3.7  Interfacing CNIs with Standard Networks

Although CNIs are a novel class of network interfaces, they can be interfaced with stan-

dard networks in three ways:

• A user process can communicate with anagent using CQs. This agent is a user process

that runs on the same processor (or different processor in a Symmetric Multiprocess-

ing node) and communicates with the nodes standard network interface on behalf of

user process.

• A user process can communicate directly with a standard network interface using CQs.

For example, the Myrinet host interface [15] could allow CQs if it could interface to a

memory bus and reflect coherence signals to its on-board microprocessor.

• Another alternative is to standardize the interface between the internal and external

network interfaces (Section2.2), so that each memory bus vendor can provide its own

internal interface. Such an internal interface could implement CNI techniques to opti-

mize data transfers between a processor cache and the network interface.

3.8  Related Work

Coherent Network Interfaces differ from most previous work on program-controlled net-

work I/O in three important respects. First, unlike other NIs, CNIs interact with processor

caches and main memory primarily through the node’s coherence protocol. Second, CNIs

separate the logical and physical locations of NI registers and queues allowing processors

to cache them like memory. Third, CNIs provide a uniform memory-based interface for

both local and remote communication. Table3.5 compares network interfaces of different

machines with respect to these three issues. The Thinking Machines’ CM-5 [124], the

Wisconsin Typhoon [100], the Stanford FLASH [64], and the Meiko CS2 [78] multipro-

cessors provide high latency uncached access to their NIs on the memory bus. Since both

Typhoon and FLASH have a coherent cache in their network interfaces, they could both

support CQs. The Meiko CS2 network interface supports the memory bus’s coherence

protocol, but does not contain a cache. The MIT Alewife [2] and FUGU [72] machines
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provide uncached access to their NIs under control of a custom CMMU unit. The StarT-

NG NI [22] is not coherent because it is a slave device on the non-coherent L2 coprocessor

interface. StarT-NG NI queues can be cached in the L1 cache, but the processor must

explicitly self-invalidate or flush stale copies of the NI queues. Wisconsin T-Zero [103]

caches device registers, but not queues, and only uses them to send information from the

device to the processor. AP1000 [110] directly DMA’s messages from the processor’s

cache to the NI, but does not receive messages directly into the cache.Princeton

SHRIMP’s memory bus NI [12] allows coherent caching on the processor, but requires

processors to use the higher traffic write-through mode. The DI multicomputer’s on-chip

NI [23] neither supports coherence nor allows its registers or queues to be cached. The

processor chip interfaces with the rest of the system through the NI. Unlike other

machines, the DI-multicomputer supports a uniform message-based interface for both

memory and the network, whereas CNI uses the samememory interface for both memory

and network.

Unlike many other NIs, myimplementation of CNIs does not require changes to an SMP

board or other standard components. Yet they enable processors and network interfaces to

Network Interface Coherence Caching Uniform Interface

CNI Yes Yes Memory Interface

TMC CM-5 [124] No No No

Typhoon [100] Possible Possible Possible

FLASH [64] Possible Possible Possible

Meiko CS2 [78] Possible No Possible

Alewife [2] No No No

FUGU [72] No No No

StarT-NG [22] No Maybe No

AP1000 [110] No Sender No

T-Zero [103] Partial Partial No

SHRIMP [12] Yes  Write Through No

DI Multicomputer[23] No No Network Interface

Table 3.5:Comparison of CNI with other network interfaces
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communicate through the cachable memory accesses, for which most processors and

buses are optimized. Henry and Joerg [50] and Dally, et al. [34] advocate changes to a pro-

cessor’s registers. MIT Alewife [2] and Fugu [72] rely on a custom cache controller. MIT

StarT-NG [22] requires a co-processor interface at the same level as the L2 cache. AP1000

[110] requires integrated cache and DMA controllers. Stanford FLASH [64, 48] uses a

custom memory controller with an embedded processor. Other efforts, such as the TMC

CM-5 or SHRIMP, use standards components, but settle for lower performance by using

loads and stores to either uncachable or write-through memory, instead of using the full

functionality of write-back caches.

Five efforts that appear very similar to this work are FLASH messaging [47], UDMA/

SHRIMP-II [11], Remote Queues [16], Cray T3E messaging [107], and SCI/QOLB [116].

CNIs differ from FLASH, because they do not require a processor core in the network

interface, they allow commands to use cachable loads and stores, and they can notify the

receiving process without an interrupt.

CNIs differ from the UDMA/SHRIMP-II, because CNIs use the same mechanisms when

the destination is local and remote (whereas SHRIMP-II’s UDMA does not handle local

memory to local memory copies), CNIs use only virtual addresses (where SHRIMP-II

requires that the sender knows the receiver’s physical addresses), they allow device regis-

ters to use writeback caching, and they focus on fine-grain user-to-user communication in

which the receiving process may be notified without an interrupt.

CNIs differ from Remote Queues by being at a lower-level of abstraction. Remote

Queues provide a communication model similar to Active Messages [128], except extract-

ing a message from the network and invoking the receive handler can be decoupled.

Implementing Remote Queues with CNIs is straightforward and offers advantages over

CM-5, Intel Paragon, MIT Alewife, and Cray T3D network interfaces. CNIs support cach-

able device registers for low-overhead polling (unlike the others), allow network buffers to

gracefully overflow to memory (unlike the CM-5), and do not require a second processor
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(Paragon), custom cache controller (Alewife), or hardware support for globally shared

memory (T3D).

Like Remote Queues, the Cray T3E queues are at a higher level of abstraction. CQs dif-

fer from T3E queues because they are allocated by operating system, whereas T3E queues

are allocated by the user itself. CQs are communication structures between a local proces-

sor and a local CNI. Consequently, there exist separate send and receive CQs, which

together make a remote CQ. In contrast, in T3E the NI is unaware of any such queue struc-

ture. CQs can automatically wrap around for reuse without user intervention, whereas the

T3E queues require the user to explicitly manage the queues. Finally, because a CNI is

aware of a CQ’s structure optimizations, such as intra-message prefetch (Section3.2.2),

are possible.

A CNI differs from the SCI coherence protocol, because a CNI isnot a coherence proto-

col itself; instead, a CNI interfaces to a coherence protocol. A CNI can be designed to a

memory interconnect that supports most standard coherence protocols, including SCI’s

coherence protocol. However, QOLB (queue on lock bit)—a feature optionally supported

by SCI—can help improve the performance of a CNI. QOLB allows efficient implementa-

tion of the producer-consumer sharing pattern by allowing direct transfer of a single cache

block from the producer to the consumer. By queueing the consumer’s request for a pro-

ducer’s cache block, QOLB prevents the consumer from repeatedly stealing the cache

block that the producer is writing to. Because a processor cache and a CNI constitute a

producer-consumer pair, CNIs can effectively use the QOLB primitive of SCI. However,

for send CQs in which the CNI is the consumer, the virtual polling technique can poten-

tially achieve the same effect as QOLB.

3.9  Summary

This chapter explored a novel class of network interfaces calledcoherent network inter-

faces (CNIs)that use snooping cache coherence to improve communication performance

between processors and network interfaces. CNIs use two mechanisms that CNIs use to
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communicate with processors. Acachable device register (CDR)allows information to be

exchanged in whole cache blocks and permits efficient polling where cache misses (and

bus transfers) occur only when status changes.Cachable queues (CQ)reduce re-use over-

head by using array of cachable, coherent blocks managed as a circular queue and (option-

ally) optimized with lazy pointers, message valid bits, sense-reverse, empty slot removal,

and intra-message prefetch. Because CDRs and CQs can be cached in processor and CNI

caches, they require ahome, which is an I/O device or memory module that services

requests and accepts writebacks for CDR and CQ blocks. Either the CNI itself or main

memory can serve as the home for CDRs and CQs. For CQs whose home is in main mem-

ory and that are cached in CNI caches, I developed two mechanisms—dead message elim-

ination and cache bypass—to minimize cache flushes from the CNI cache to main

memory. Based on CDRs, CQs, and home for CDRs and CQs, I developed a CNI taxon-

omy that captures a wide range of traditional NIs and CNIs. Finally, I examined how to

interface CNIs to I/O buses and the operating system support needed to multiprogram

CNIs.
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Chapter 4

An Evaluation of Coherent Network Interfaces

Coherent Network Interfaces (CNIs) constitute a new class of user-level network inter-

faces (ULNI) that interact with the processor via the node’s coherence protocol. The opti-

mal CNI design effectively exploits all eight opportunities for optimization described in

Chapter2. The previous chapter examined specific techniques for interfacing CNIs with a

node’s coherence protocol. It also exposed a spectrum of alternative CNI designs, each

with different performance characteristics.

This chapter evaluates the performance of four CNIs from the CNI design space and

compares them against a more traditional ULNI, like the TMC CM-5 NI. Section4.1

describes the implementation of these five NIs I evaluated in this chapter. Section4.2

describes the evaluation methodology I used in this chapter and the rest of the thesis.

Section4.3 and Section4.4 present detailed results from this evaluation with two

microbenchmarks and seven macrobenchmarks, respectively. Finally, Section4.6 presents

my conclusions.
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The next chapter focuses on data transfer and buffering—two of the eight optimizations

described in Chapter2—and compares and evaluates CNI techniques for data transfer and

buffering against alternative ULNI designs.

4.1  Network Interfaces Simulated

This section describes the implementation of five network interfaces (NIs)—NI2w

(Section4.1.1), CNI4 (Section4.1.2), CNI32Q (Section4.1.3), CNI512Q (Section4.1.3),

and CNI32Qm (Section4.1.4)—for 256-byte network messages. These NIs are summa-

rized in Table4.1. In Section4.3 and Section4.4, I will evaluate and compare the perfor-

mance of these NIs.

4.1.1  NI2w Implementation

NI2w is a conventional network interface modeled after the Thinking Machines CM-5

NI. Messages are sent by first checking an uncachable status register, to ensure there is

room to inject the message, then the message is written to an uncachable device register

backed by a hardware queue.1 Similarly, receives check an uncached status register to see

if a message is available, then read the message from an uncachable device register.

Because all accesses to the NI queues are non-cachable, and two four-byte words of the

message are exposed, I classify this device as NI2w.

1. In the TMC CM-5, a user process (or, software message library) first writes all words of a mes-
sage to the NI, and then checks the send status register to make sure that the NI has accepted the
message. If not, it writes the message again to the NI. Avoiding the status register check before
sending the message is an optimization that saves an uncached load on the critical path of the
message send. I avoid this optimization because of three reasons. First, I assume a network mes-
sage size of 256 bytes. Consequently, the relative overhead of status check is lower than the CM-
5, which has a network message size of only 20 bytes. Second, this makes my comparison uni-
form with the CNIs, which cannot blindly write messages without checking the status register.
This is because the message queues reside in memory shared between the processor and the
CNI. Third, writing a message directly to the NI without knowing if the NI will accept the mes-
sage requires the messaging software to buffer these messages in certain cases. This can incur
extra overhead and reduce overall performance.
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4.1.2  CNI4 Implementation

CNI4 extends NI2w—my baseline NI device—by using four 64-byte CDRs to expose a

256-byte network message. CNI4 exploits the memory bus’s block transfer capability to

move a message between the processor and the device. However, the status and control

registers are uncached. When a message arrives at the CNI4 device, the device checks if

the CDRs are free. If so, it writes the message to the CDRs and sets a status register indi-

cating the presence of a message. The processor checks this status register, finds a new

message, and incurs cache misses for the CDRs to read the message. Finally, after the pro-

cessor is done reading the message, it issues an uncached store to the CNI4 device that sig-

nals that the CDRs can be reused. Unfortunately, these checks introduce a three-cycle

handshake and reduces the effective bandwidth between the processor and the NI (see

Section3.1.3).

4.1.3  CNI32Q and CNI512Q Implementations

CNI32Q and CNI512Q amortize the cost of CNI4’s three-cycle handshake by employing

CQs (Section3.2) for message data and regular memory for control and status information

(head and tail pointers). CNI32Q and CNI512Q cache up to 32 and 512 blocks, respec-

tively. The memory that backs up the caches resides on the devices themselves. The larger

capacity of CNI512Q reduces the number of flow control stalls, increasing performance for

applications with many messages in flight.

NI/CNI Exposed Queue SizeQueue Pointers Home

NI2w 2 words

CNI4 4 cache blocks device

CNI32Q 32 cache blocks explicit device

CNI512Q 512 cache blocks explicit device

CNI32Qm 32 cache blocks explicit main memory
Table 4.1:Summary of Network Interface Devices.
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Sending messages to a CNIiQ device involves three steps: checking for space in the CQ,

writing the message, and incrementing the tail pointer. The send is further optimized by

sending a message ready signal to the CNI device through an uncached store. As discussed

in Section3.1.2, with a non-speculative, in-order processor, which I use for all my evalua-

tions in this thesis, uncached stores are more efficient than cache block operations for

small control operations. Hence, for the send queue, the CNI device does not use virtual

polling. Instead, the CNIiQ uses the message ready signal to keep a count of pending mes-

sages. This count is incremented on each message ready signal and decremented when the

device injects a message into the network. As long as this counter is greater than zero, the

CNIiQ device pulls messages out of the processor cache (unless the blocks have already

been flushed to their home in the device) and increments the head pointer. On the receive

side, the processor polls the head of the queue, reads the message when valid, then incre-

ments the head pointer. Both sender and receiver toggle their sense bits when they wrap-

around the end of the CQ.

4.1.4  CNI32Qm Implementation

The CNI32Qm device caches up to 32 cache blocks for each CQ on the network interface

device, and overflows to main memory as necessary. The total size of the memory-based

queue is 512 cache/memory blocks. Having main memory as home for the CQ simplifies

software flow control. Specifically, for the other NIs, whenever the sender cannot inject a

message it must explicitly extract any incoming messages and buffer them in memory

[16]. Conversely, CNI32Qm does this buffering automatically when the CNI cache cannot

contain all the messages.

4.2  Simulation Methodology

This section describes the Wisconsin Wind TunnelII simulator (Section4.2.1), the sim-

ulation parameters (Section4.2.2), and the macrobenchmarks (Section4.2.3) I used to

evaluate the five NIs described in Section4.1. Section4.3 and Section4.4 present results

from the evaluation.
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4.2.1  Wisconsin Wind Tunnel II Simulator

I use the Wisconsin Wind Tunnel II (WWTII) [92]1 simulator for all my simulations in

this thesis. WWTII is a fast and portable simulator for parallel architectures. I developed

WWT II jointly with Babak Falsafi, Mike Litzkow, and Steve Reinhardt. WWTII inherits

many features of the original Wisconsin Wind Tunnel (WWT) [99, 91], including distrib-

uted, discrete-event simulation techniques [40], direct-execution [27], and accurate calcu-

lation of a simulated architecture’s execution time via executable editing [65]. However,

unlike WWT, which only runs on the TMC CM-5, we designed WWTII to be easily por-

table. Consequently, WWT II runs on several uniprocessor and multiprocessor SPARC

platforms, including sparcstations, SUN SMP enterprise servers, and a cluster of sparcsta-

tions connected via Myrinet Myricom switches. This ability to run WWTII on several

platforms offers simulation cycles that is orders of magnitude greater than that available

from WWT.

4.2.2  Simulation Parameters

All my simulations use system parameters specified in Table4.2, unless specified other-

wise. I use an aggressive one-GHz, dual-issue HyperSPARC-like processor. Although my

simulations do not model a dynamically-scheduled processor, which is likely to dominate

in the future, I believe that both my quantitative comparisons and qualitative trends can be

extrapolated to these processors. This is because my primary focus is onrelative perfor-

mance of different NIs using the same base processor model, and not on the absolute per-

formance of a particular processor architecture. Additionally, my relative performance

results are conservative for CNIs. This is because out-of-order and speculative processors

hide memory latencies better than in-order processors. Because CNIs are memory-based

NIs, they can make better use of such latency-hiding techniques compared to NI2w.

1.  WWT II’ s release information is available fromhttp://www.cs.wisc.edu/~wwt/wwt2.
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All my simulations ignore network topology. I assume messages take 40 ns1 to traverse

the network from injection of the last byte at the source to arrival of the first at the destina-

tion. Recently, Dai and Panda [33] have shown that network contention can significantly

degrade the performance of some shared-memory applications. However, because I focus

on relative performance using the same base network model, I believe my quantitative

results and qualitative trends can be extrapolated to more realistic networks. Additionally,

1. The SGI Spider switch, for example, offers a port-to-port latency of 40ns [41].

System Parameters

Number of parallel machine nodes 16

Processor speed 1 GHz

Cache block size 64 bytes

Cache size one megabyte

Cache associativity direct-mapped

Main memory access time 120 ns

Memory bus coherence protocol MOESI

Memory bus width 256 bits

Memory bus clock frequency 250 MHz

I/O bus width 64 bits

I/O bus clock frequency 125 MHz

Network message size 256 bytes

Network latency 40 ns

NI memory access time 60 ns
Table 4.2:System parameters for simulated system.All simulations in
this chapter use the above parameters, unless specified otherwise. The NI
memory access time is 60 ns for all NIs except CNIiQ. Because CNIiQ’s
home resides in the CNI itself, the CNI memory must be large to support a
large degree of multiprogramming. Hence, I expect it to be built with
commodity DRAM with access time characteristics similar to main
memory (i.e., 120 ns). Note that a CNIiQm device interface with a 120ns
access time would perform similar to a CNIiQ device when the CNIiQm

cache overflows rarely. Thus, sensitivity to this parameter on CNIiQm’s
performance can be interpreted indirectly from my results in Section4.4.1.
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an abstract network model frees the evaluation from the idiosyncrasies of a particular net-

work implementation and allows me to focus my attention purely on the NI. In

Section4.5, I study the impact of network latency on the overall performance of bench-

marks.

I model hardware flow-control at the NIs using a scalable end-to-end flow control

scheme calledreturn-to-sender [39]. In this scheme, the sending NI allocates an empty

buffer for a message and injects the message into the network. If the receiving NI has a

free buffer to accept the message, it sends an acknowledgment to the sender to free up the

sender’s buffer. However, if the receiving NI cannot accept the incoming message due to

lack of buffers, it returns the message to the sender. The sender must eject the returning

message from the network into the previously allocated buffer and retry the send later. To

prevent deadlock (or message loss), these returning messages must have a guaranteed path

back to the sender. This can be achieved through a second network (either virtual or phys-

ical). The return-to-sender flow control strategy is scalable (unlike, for example, all-to-all

buffer reservation [76]) because the number of network message buffers allocated in the

NI is independent of the number of nodes in the parallel machine. In all simulations in this

chapter, I assume that the number of network message buffers allocated at the sender and

receiver respectively is fixed at eight. Chapter5 examines the effect of varying this param-

eter on several NIs.

I ran all my benchmarks on the Tempest parallel programming interface [52]. Message-

passing benchmarks use only Tempest’s active messages. Shared-memory codes on Tem-

pest also use active messages, but assume hardware support for fine-grain access control

[103]. Codes with custom protocols use a combination of the two.

4.2.3  Macrobenchmarks

I use seven macrobenchmarks for evaluating the five NIs. Table4.3 summarizes these

seven macrobenchmarks—appbt, barnes, dsmc, em3d, moldyn, spsolve, and unstruc-
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Benchmark Source Input Data
Set

Iters Key Comm.
Pattern

Msg.
Size

(bytes)

Dyn.
% of

msgs.

Dyn.
% of
bytes

appbt NASA Ames
[7, 18]

24x24x24
cubes

4 Near
neighbor

12
140

67%
32%

15%
85%

barnes Stanford
SPLASH-2
[134]

16K parti-
cles

4 Irregular 12
16

140

67%
4%

29%

16%
1%

82%

dsmc U. of Mary-
land & Wis-
consin [93]

48600 ini-
tial particles,
9720 cells

20 Fine-grain
messages,
producer-
consumer

12
44

140

45%
25%
26%

10%
21%
68%

em3d U. of Berke-
ley & Wiscon-
sin [29, 37]

16K nodes,
degree 5,
10%
remote,
span 2

10 Fine-grain
messages

12
20

2%
98%

1%
99%

moldyn U. of Mary-
land & Wis-
consin [93]

2048 parti-
cles

30 Bulk
reduction

8
12

140
3084

5%
65%
27%
2%

0%
7%

35%
58%

spsolve U. of Mary-
land & MIT
[24]

3720 ele-
ments

1 Fine-grain
messages

8
12
20

6%
3%

91%

3%
2%

95%

unstructuredU. of Mary-
land & Wis-
consin [93]

9428 nodes,
59863 edges,
5864 faces

10 Single-
producer,
multiple
consumers

8

351
(avg.)

35%

64%
(avg.)

1%

98%
(avg.)

Table 4.3:Summary of macrobenchmarks.Message size includes both header and payload.
Iters = number of iterations for which I simulate the macrobenchmark. Comm. =
communication. Msg. = message. Dyn. = Dynamic. Avg. = average. Percentage of each
benchmark may not sum to 100% due to rounding and the presence of a trivial fraction of
messages of other sizes. The first six macrobenchmarks have distinct peaks at the message sizes
described above. However, unstructured shows only one distinct peak at 8 bytes. Beyond that it
shows a range of message sizes varying between 12-1812 bytes. Here I report the average
message size for this range.
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tured—and their input data sets, key communication pattern, and message size distribu-

tion. Below I describe the communication pattern of each of the seven macrobenchmarks.

Appbt is a parallel three-dimensional computational fluid dynamics application [18]

from the NAS benchmark suite. It consists of a cube divided into subcubes among proces-

sors. The code is spatially parallelized in three dimensions. The main data structures are a

number of 3D arrays, each of which is divided up among different processors as 3D sub-

blocks. Each processor is responsible for updating the sub-block it owns. Sharing occurs

between neighboring processors in 3D along the boundaries of these sub-blocks. Commu-

nication induced by sharing occurs between neighboring processors along the boundaries

of the subcubes through the Wisconsin Stache protocol, which is Tempest’s default invali-

dation-based shared memory protocol [100].

Barnes simulates the interaction of a system of bodies in three dimensions using the

Barnes-Hut hierarchical N-body method [134]. The main data structure is an octree. The

octree’s leaves contain information about each body and internal nodes represent space

cells. In each iteration the octree is rebuilt and traversed once per body to compute the

forces on individual bodies. The communication pattern induced by such traversals is

quite irregular.

Dsmc studies the properties of a gas by simulating the movement and collision of a large

number of particles in a three-dimensional domain with discrete simulation Monte Carlo

method [93].Dsmc divides domains into cells in a static Cartesian grid. Each cell contains

particles, which collide only with other particles in the cell. The cells are spatially divided

up among processors. At the end of each iteration, particles move from one cell to another.

The primary communication occurs during this movement. This chapter and Chapter5

uses a version of dsmc that performs this communication using Tempest’s active mes-

sages. Chapter6 uses a version of dsmc that performs this communication using Stache.



92

Em3d models three-dimensional electromagnetic wave propagation [29]. It iterates over

a bipartite graph consisting of directed edges between nodes. Each node sends two inte-

gers to its neighboring nodes through a custom update protocol [37].Several update mes-

sages (with 12 byte payload) can be in flight, which like spsolve, can create bursty traffic

patterns.

Moldyn  is a molecular dynamics application, whose computational structure resembles

the non-bonded force calculation in CHARMM [17]. Molecules inmoldyn are uniformly

distributed over a cuboidal region with a Maxwellian distribution of initial velocities. A

molecule’s velocity and force exerted by other particles determine the molecule’s position.

Force computation limits interactions to molecules within a cut-off radius. An interaction

list—rebuilt every 20 iterations—records pairs of interacting molecules. The arrays that

record the force exerted on molecules and molecules’ coordinates induce the maximum

communication. Updates to the coordinates occur through Stache. Updates to the force

array is done through a bulk reduction of the shared force array. The bulk reduction is

done differently in two different versions. This chapter and Chapter5 use a version of

moldyn that perform the reduction using Tempest’s virtual channels. One execution of this

reduction protocol iterates as many times as there are processors. In each of these itera-

tions, a processor sends 3.1 kilobytes of data to the same neighboring processor through

Tempest’s virtual channels. In contrast, the version used in Chapter6 performs the bulk

reduction entirely via transparent shared memory (using the Stache protocol). This reduc-

tion phase results in the migratory sharing pattern for moldyn reported in Section6.5.

Spsolve [24] is a very fine-grained iterative sparse-matrix solver in which active mes-

sages propagate down the edges of a directed acyclic graph (DAG). All computation hap-

pen at nodes of the DAG within active message handlers. The messaging overhead is

critical because each active message carries only a 12 byte payload and the total computa-

tion per message is only one double-word addition. Several active messages can be in

flight, which can create bursty traffic patterns.
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Unstructur ed is a computational fluid dynamics application that uses an unstructured

mesh to model a physical structure, such as an airplane wing or body [93]. The mesh is

represented by nodes, edges that connect two nodes, and faces that connect three or four

nodes. The mesh is static, so its connectivity does not change. The mesh is partitioned spa-

tially among different processors using a recursive coordinate bisection partitioner. The

computation contains a series of loops that iterate over nodes, edges, and faces. Updates to

nodes require a reduction phase like the one used in moldyn. Updated values of nodes are

communicated along edges and faces of the mesh (in a single-producer, multiple-con-

sumer fashion). In the version of the unstructured used in this chapter and Chapter5, I

implemented both reductions and updated using Tempest’s bulk messages. However, the

version of unstructured used in Chapter6 implements both reductions and updates using

Stache. Reductions result in migratory sharing and updates result in single-producer multi-

ple-consumers sharing pattern.

4.3  Microbenchmark Results

This section examines the performance of two microbenchmarks for my five NI imple-

mentations. I simulated all four CNIs and NI2w on the memory bus. However, on a coher-

ent I/O bus1 I simulated all but CNI32Qm, since CNI32Qm cannot be implemented with

current coherent I/O buses (Section3.5). In Section4.4 I will examine the performance of

these NIs for the seven macrobenchmarks described in Section4.2.3.

The microbenchmark numbers in this section include the messaging layer overhead for

copying a message from the network interface to a user-level buffer, and vice versa. Thus,

data begins in the sending processor’s cache and ends in the receiving processor’s cache,

rather than simply moving from memory to memory.

1. See Section3.5 for my definition of a coherent I/O bus.
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4.3.1  Round-Trip Latency

Figure4-1 shows the round-trip latency of a message for each of NI2w and the four

CNIs. It shows two important results. First, CNIs reduce messaging overheads signifi-

cantly. For small messages, between 8 and 256 bytes, CNI32Qm is 87-342% better than

NI2w on the memory bus (Figure4-1a) and CNI512Q is 100-377% better than NI2w on the

I/O bus (Figure4-1b). Second, on the memory bus CNI32Qm consistently outperforms the

other three CNIs. CNI32Qm outperforms CNI4 by 20-60% because, unlike CNI4,

CNI32Qm polls on a cached message valid bit and amortizes the expensive three-cycle

handshake over an entire queue of messages. CNI32Qm outperforms CNI32Q and

CNI512Q, which perform similarly, by 21-25% because CNI32Qm organizes its memory as

a small cache, which can be built with fast SRAMs. In contrast, I expect CNI32Q and

CNI512Q to be built with slower DRAMs because of their large buffer requirements

(Section2.3).
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Figure 4-1. Process-to-process round-trip message latency. This figure shows the process-to-
process round-trip message latency in microseconds (vertical axis) for different message sizes
(horizontal axis). (a) shows the round-trip message latency for NI2w, CNI4, CNI32Q, CNI512Q,
and CNI32Qm on the memory bus. (b) shows the same (except CNI32Qm) on the I/O bus.
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Figure4-2 further shows the contribution of three components—NI-independent, mini-

(a)

(b)

NI2w

CNI32Qm

Figure 4-2. Breakdown of round-trip latency for NI2w and CNI32Qm . This figure breaks
down the round-trip message latency of NI2w and CNI32Qm (attached to the memory bus) into
three components—ideal software latency, network interface latency, and network. The ideal
software latency is the NI-independent, minimum message protocol latency incurred with a NI2w
device attached directly to the processor and accessed in one cycle. The network interface latency
includes both the hardware and software overhead of the specific network interface. Finally,
network latency represents just the time to traverse the network. The absolute latency numbers
corresponding to the percentages are available from Figure4-2.
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mum software protocol latency, latency to access the NI (both software and hardware),

and network latency—to the total round-trip latency for NI2w and CNI32Qm. For this

experiment both NI2w and CNI32Qm are attached to the memory bus. I chose only NI2w

and CNI32Qm because these are the worst- and best-performing NIs on the memory bus. I

calculated the NI-independent, minimum software protocol latency by subtracting two

times the network latency from the total round-trip latency for an ideal NI2w device

attached directly to the processor and accessed in a single cycle.

Figure4-2 shows that CNI32Qm significantly reduces the contribution of the NI access

latency to the total round-trip latency. Additionally, the contribution of CNI32Qm’s access

latency to the overall round-trip latency is almost same or lower than the NI-independent,

minimum software protocol latency. This suggests that significant performance gains in

latency cannot be achieved without similar reductions in the software protocol latency

itself.

4.3.2  Bandwidth

Figure4-3 graphs the bandwidth provided by the five network interfaces. This figure

shows that CNIs improve the bandwidth over NI2w significantly, even for very small mes-

sages. On the coherent memory bus, CNI32Qm is 109-202% better than NI2w for 8-4096

byte messages (Figure4-3a). For the same message sizes, CNI512Q is 113-402% better

than NI2w on the coherent I/O bus (Figure4-3b).

All four CNIs offer significantly greater bandwidth than NI2w. Among the CNIs, CNI4

performs worst of the four CNIs because of its high overhead for polling uncached regis-

ters and the three-cycle handshake in the critical path of message reception. CNI32Q and

CNI512Q perform the best due to their low poll overhead and ability to cache multiple

messages (a network message fits in four cache blocks).
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CNI4 shows two different knees on the coherent memory and I/O buses respectively. The

knee on the I/O bus appears when CNI4 saturates the I/O bus. However, the cause of the

knee on the memory bus is slightly more subtle.

CNI4’s knee on the memory bus appears when the message size exceeds one cache

block. This is because before the CNI4 device can write a new message, it must invalidate

the corresponding CDR in the processor’s cache. Each CDR requires a separate invalida-

tion signal on current memory buses. However, before the CNI4 device completes invali-

dating all the CDRs, the processor’s uncached poll for the receive status register completes

and reports no pending message in the CNI4 device. This forces the processor to exit the

optimized inner loop that extracts messages from the NI and processes them. When the

CNI4 device completes writing new messages to the CDRs, the processor re-enters the

inner message processing loop, which incurs additional overhead, such as checking and

setting interrupt masks. This effect does not occur for messages less than a cache block,
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because the CNI4 device manages to grab the memory bus and invalidate the single CDR

block before the processor’s uncached poll appears on the memory bus. Interestingly, this

knee does not appear on the I/O bus, because the processor’s uncached load for the status

register is repeatedly nack-ed by the I/O bridge until all the coherent invalidates issued by

CNI4 have been satisfied. By the time the processor’s pending uncached load acquires the

I/O bus and completes the transaction, the CNI4 device has already successfully written a

new message to the corresponding CDRs. Consequently, the processor does not exit the

inner message processing loop in this case.

CNI32Qm achieves slightly lower bandwidth than CNI512Q. This is because the message

send rate is significantly greater than the message reception rate, causing the receiving

CNI32Qm’s cache to overflow. The resulting writebacks to main memory induce heavy bus

contention, which decreases the maximum communication bandwidth. Unfortunately,

because the problem is bandwidth not latency, a writeback buffer will not help with this

microbenchmark as it would for the round-trip microbenchmark. However, throttling the

sender appropriately, can significantly increasing the bandwidth. Figure4-3a shows, throt-

tling the CNI32Qm sender can increase the bandwidth for 4096-byte messages from

209MB/s to around 351 MB/s.

4.4  Macrobenchmark Results

This section evaluates the performance of the NIs described in Section4.1 with seven

macrobenchmarks. The next chapter (Chapter5) delves deeper into two key parameters—

data transfer and buffering—that impact the design of high-performance NIs and com-

pares the performance of CNI32Qm and CNI512Q with five other network interfaces

(including NI2w).

Section4.4.1 compares the performance of the five NIs on coherent memory and I/O

buses. Section4.4.2 shows the speedup achieved by the seven macrobenchmarks with

CNI32Qm, which performs the best on the coherent memory bus, and CNI512Q, which per-

forms the best on the coherent I/O bus.
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4.4.1  Performance Comparison of five NIs on Memory and I/O Buses

Figures4-4 and 4-5 show the performance gains from CNIs on coherent memory and I/

O buses respectively for the seven macrobenchmarks. Both these figures are normalized to

the execution time of NI2w on the respective buses. Table4.4 provides the normalizing

factors that must be used for each macrobenchmark to compare these figures. On the

memory bus, I examine all five NIs described in Section4.1. On the coherent I/O bus, I

examine all, but CNI32Qm, because CNI32Qm cannot be implemented with current I/O

buses.

CNI4, CNI32Q, CNI512Q, and CNI32Qm offer a progression of incremental benefits over

NI2w. Unlike NI2w, which can only be accessed through uncached loads and stores, CNI4

effectively exploits the memory bus’s high-bandwidth block transfer mechanism by trans-

ferring messages in full cache block units. CNI32Q and CNI512Q further improve perfor-

mance by polling for incoming messages on a cachable memory location, amortizing the

three-cycle handshake over an entire queue of messages, and providing a larger capacity

for messages that helps prevent bursty traffic from backing up the network. CNI32Qm fur-

ther simplifies software flow control in the messaging layer by allowing messages to

smoothly overflow to main memory when the device cache fills. This avoids processor

intervention for message buffering, which, otherwise, can significantly degrade perfor-

mance.

Block Transfer. The increase in bandwidth obtained by transferring messages in whole

cache block units has a major impact on performance. Moldyn and unstructured primarily

Macrobenchmark appbt barnes dsmc em3d moldyn unstuctured spsolve

I/O Bus Slowdown 0.62 0.71 0.79 0.60 0.67 0.58 0.74

Table 4.4:NI2w’s slowdown on the I/O bus.This table shows NI2w’s execution time on the
memory bus divided by NI2w’s execution time on the I/O bus for the seven macrobenchmarks.
These normalizing factors should be used to compare Figures4-4 and 4-5, which compare the
performance of these macrobenchmarks on the memory and I/O buses respectively.
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do bulk transfers and appbt and barnes communicate with moderately large (128-byte)

shared-memory blocks. Moldyn’s reduction protocol transfers 3.1 KB of data between

neighboring processors, while two processors in unstructured, on average, exchange 351

bytes between them in the main communication phases (see Table4.3 for message size

distributions). Consequently, on average, the portion of a CDR block that does not carry

useful information is moderately low—30% for moldyn and 14% for unstructured

(Table4.5). For appbt and barnes, roughly half a cache block space is wasted on average.1

However, the time wasted by this under-utilization is low because today’s memory buses

are often as wide as half a cache block (e.g., SUN Ultragigaplane [112]), which can be

transferred over the memory bus in only two memory bus cycles.

1. This problem may not arise with variable-sized message entries in which a new message starts
immediately after the end of the previous message. However, this may introduce new problems,
such as false sharing.

Figure 4-4. CNIs’ performance on the memory bus.This figure compares the performance of
NI2w, CNI4, CNI32Q, CNI512Q, and CNI32Qm on the memory bus for seven macrobenchmarks.
The vertical axis shows the speedup of each of the NIs over NI2w.
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With respect to actual execution time, CNI4 improves moldyn, unstructured, appbt, and

barnes’ performance by 28%, 24%, 38%, and 16% respectively on the memory bus. For

the I/O bus, the improvements for these macrobenchmarks are 30%, 32%, 25%, and 15%

respectively. Even for em3d and spsolve that send small messages (12-byte payload) and

dsmc that communicates with relatively small (44-byte) messages and moderately large

(128-byte) shared-memory blocks, CNI4’s performance improvement over NI2w is signifi-

cant—that is, between 7-38%—except for spsolve on the I/O bus, which shows only a 1%

improvement of NI2w.

CNI4’s performance improvement for spsolve on the coherent I/O bus is not as high as

on the memory bus because of contention at the I/O bridge. The NI2w device never tries to

acquire the memory or I/O bus because it is always a bus slave. However, CNI4 competes

Figure 4-5. CNIs’ performance on the I/O bus.This figure compares the performance of
NI2w, CNI4, CNI32Q, and CNI512Q on the I/O bus for seven macrobenchmarks. The vertical axis
shows the speedup of each of the NIs over NI2w.
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with the processor cache to acquire the memory and I/O buses. Simultaneous bus acquisi-

tion requests at the I/O bridge from the processor cache and CNI4 cache creates conten-

tion. This effect appears to be severe in spsolve. For example, the memory bus occupancy

(Table4.7) for a system with CNI4 on the I/O bus compared to a system with NI2w on the

I/O bus decreases between 10-44% for all macrobenchmarks, except spsolve for which the

occupancy increases by 3%.

Overall, for the seven macrobenchmarks, CNI4 improves the performance over NI2w

between 16-38% on the coherent memory bus and 1-32% on the coherent I/O bus. Intra-

message prefetching (Section3.2.2) accounts for between 0-8% of this improvement on

the memory bus. In one case—em3d on the memory bus—intra-message prefetching actu-

ally deteriorates performance by 2%. Intra-message prefetching does not help on the I/O

bus.

On the memory bus CNI4’s performance improvement accounts for 58% (averaged

across all macrobenchmarks) of the total gain achieved by CNI32Qm, which performs the

best on the memory bus. On the I/O bus CNI4’s performance improvement accounts for

Macrobenchmarks Percentage of cache block wasted

appbt 45.70

barnes 47.50

dsmc 41.20

em3d 63.61

moldyn 29.54

spsolve 63.85

unstructured 13.57

Table 4.5:Percentage of a cache block space wasted for CNI4. This
table shows the percentage of a CDR block that does not carry useful
information when transferring data between CNI4 and a processor’s
cache. The CQ-based CNIs—CNI32Q, CNI512Q, and CNI32Qm—show
similar utilization for the CQ blocks.
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26% (averaged across all macrobenchmarks) of the total gain achieved CNI512Q, which

performs the best on the I/O bus. The amount of buffering plays a more important role on

the I/O bus because of its longer latencies, and hence block transfers (as in CNI4) account

for a lesser fraction of the total improvement on the I/O bus.

Impact of CQs. My implementations of the CQ-based CNIs improve performance over

CNI4 in three ways. First, they poll for incoming messages on a cached message valid bit.

Second, they amortize the expensive three-cycle handshake over an entire queue of mes-

sages. Third, they provide extra buffering that helps smooth out bursts in message traffic.

Below I examine the effect of each of these optimizations.

The cached message valid bit offered by CQs improves performance in two ways. First,

in the absence of any message a processor’s polls for incoming messages are satisfied

directly from the processor’s cache. Second, when a message does arrive, the processor’s

cache miss for the message valid bit brings in the first cache block of the message along

with the message status. Figure4-6, which breaks down the different NI-related memory

bus transactions for the five NIs, shows that the CQ-based CNIs reduces the processor’s

poll transactions by a factor of 14 or more. This does not directly translate into perfor-

mance for my evaluation because I have only one processor per node of the parallel

machine. However, for parallel machines built with SMP nodes, this reduction can have a

significant impact on performance.

Figure4-6 also shows that the CQ-based CNIs successfully amortize the overhead of the

three-cycle handshake. This is because CNI32Q and CNI512Q’s non-poll transactions

between the CPU and NI are consistently less than that of CNI4. For example, CNI32Q

Macrobenchmark NI2w CNI4 CNI32Q CNI512Q CNI32Qm

em3d 29% 14% 21% 0% 0%

spsolve 55% 53% 32% 0% 0%

Table 4.6:Percentage of messages buffered explicitly for memory bus NIs.
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reduces the number of non-poll memory bus transactions between 8-45% over CNI4 on

the memory bus.

The extra buffering provided by CNI32Q and CNI512Q helps smooth out bursty traffic

patterns and avoids clogging up the network. In my simulated system, if a processor

blocks on a send due to the absence of adequate buffering in the message path, then the

processor explicitly removes messages from the NI and stores them in buffers allocated in

the user’s virtual memory. This is necessary to avoid deadlock in the software message

library [68]. The reduction in number of messages buffered explicitly in user’s virtual

memory is an indirect and approximate measure of the potential improvement offered by

CQ’s extra buffering capability.

Table4.6 lists the percentage of messages buffered by the five NIs on the memory bus

for em3d and spsolve. For the other macrobenchmarks, the extra buffering has a small

impact on performance (less than 10%). As Table4.6 shows, the extra buffering provided

by CNI32Q and CNI512Q does indeed help reduce the number of messages buffered

explicitly for em3d and spsolve. Table4.6, however, shows the same anomalous situation

for CNI4 with em3d, as was shown in Figure4-6. Em3d sends almost twice as many mes-

sages for CNI4 compared to NI2w, even though the number of messages buffered explicitly

is almost same. This effect reduces the overall percentage of messages buffered from 29%

in NI2w to 14% in CNI4.

Overall, for em3d on the memory bus, CNI32Q and CNI512Q improves performance

over CNI4 by 18% and 40% respectively. For spsolve, the corresponding numbers are 34%

and 78% respectively. The long latencies due to the I/O bus, however, reduce the rate at

which messages can be removed from an I/O bus NI. Consequently, extra buffering has a

greater impact on performance. Across the seven macrobenchmarks, CNI32Q and

CNI512Q improve performance over CNI4 between 13-57% and 21-77% respectively.
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Overflow to Memory. CNI32Qm allows messages to smoothly overflow to memory

when the device cache fills up. Figure4-4 shows that CNI32Qm performs similarly to

CNI512Q, except for spsolve. For spsolve, CNI32Qm outperforms CNI512Q by 18%

because of its faster memory (Table4.2). However, if the CNI512Q memory can offer the

same latency as in CNI32Qm, then the performance of both NIs are almost similar for all

the seven macrobenchmarks (not shown). Thus, CNI32Qm performs similarly or better

than CNI512Q even with significantly less memory (i.e., cache) on the device.

Figure4-7 studies the effect of varying the cache size, i.e. “i”, for CNIiQm. The variation

in cache size has a major impact only on the performance of em3d and spsolve—the two

macrobenchmarks for which buffering plays an important role. For other macrobench-

marks the effect of cache size variation is less prominent and the variation in performance

is within at most a 6% range of CNI32Qm.

As Figure4-7 shows, the dead message elimination threshold (see Section3.3.2) inter-

acts with the variation in CNIiQm cache size. With an infinite threshold—that is, the

receive CQ’s head is always read lazily—CNIiQm is most of the time unsuccessful in

determining if messages are already dead, and consequently it ends up flushing dead mes-
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Figure 4-7. CNIiQm cache size variation.This figure shows the effect of varying CNIiQm’s
cache size, i.e. “i”, and the dead message elimination threshold described in Section3.3.2. Each
graph is normalized to the execution time of CNI128Qm with threshold = 1. An infinite threshold
indicates no dead message elimination optimization.
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sages to main memory. This effect is particularly severe in spsolve, where performance is

affected heavily. However, when the cache size equals the memory allocated for the

queue—512 memory blocks in this case—the entire queue fits in the cache, and CNIiQm

does not have to flush any message to memory.1

The flush threshold for which CNIiQm offers the best performance varies with the cache

size. For cache sizes greater than 64 blocks, a flush threshold of one offers the best perfor-

mance for both em3d and spsolve. For cache sizes of 32 cache blocks or less, the best flush

threshold varies, but in a very narrow range. Hence, for all my experiments (except

Figure4-7) with CNIiQm, I have assumed a flush threshold of one.

Section3.3.2, which describes the dead message elimination optimization, also proposes

a second optimization called cache bypass for the case when messages are not dead and

the receive cache overflows. For CNI32Qm, this optimization improves em3d and spsolve’s

performance by 4% and 8%, respectively. The fraction of messages that bypass the

CNI32Qm cache are 66% and 33% for em3d and spsolve respectively. All graphs in this

and the next chapters assume cache bypass optimization for CNIiQm.

Overall, CNI32Qm shows the best performance improvement over NI2w (between 21-

190%) on the coherent memory bus, and CNI512Q shows the best performance improve-

ment over NI2w (between 42-228%) on the coherent I/O bus.

Finally, CNIs significantly reduce the memory bus occupancy. Table4.7 shows the

memory bus occupancy for NI2w and CNI32Qm, both attached to the memory bus.

CNI32Qm reduces the occupancy of a non-split-transaction memory bus, as I have

assumed for this evaluation, by 58-78%. Because this may overestimate the bus occupancy

reduction for a split-transaction bus, Table4.7 characterizes the bus occupancy reduction

for bus arbitration and data transfer, which cannot be avoided even in a split-transaction

bus. Table4.7 shows the CNI32Qm reduces the arbitration cycles between 38-67% and

1. CNIiQm still flushes the sense bits, even though it is unnecessary.
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data transfer cycles between 39-62%. Thus, CNI32Qm frees up at least a third of NI2w’s

memory bus bandwidth for use by other processors.

4.4.2  CNI32Qm and CNI512Q Speedup

Figure4-8 plots the speedup curves of the seven macrobenchmarks with CNI32Qm on

the coherent memory bus and CNI512Q on the coherent I/O bus. These NIs perform the

best on the respective buses.

CNI32Qm on the coherent memory bus and CNI512Q on the coherent I/O bus show mod-

erate to good speedup for all macrobenchmarks, except spsolve. For 16 nodes, CNI32Qm’s

speedup on the memory bus ranges between 4.5 and 13.9, while CNI512Q’s speedup on

the I/O bus ranges between 3.87 and 10.91.

With 16 nodes, spsolve’s speedup is only 1.2 for CNI32Qm on the coherent memory bus.

For 16 nodes, spsolve shows no speedup for CNI512Q on the coherent I/O bus. However,

Macrobenchmark
NI2w CNI32Qm

Total Arb Data Total Arb Data

appbt 15.20 1.00 0.99 4.27 0.56 0.52

barnes 17.56 1.00 1.10 7.29 0.60 0.67

dsmc 18.81 1.00 1.06 6.17 0.44 0.48

em3d 20.21 1.00 1.06 7.70 0.62 0.62

moldyn 16.12 1.00 1.00 3.53 0.50 0.46

spsolve 18.88 1.00 1.05 4.50 0.61 0.52

unstructured 19.63 1.00 1.08 6.60 0.33 0.41

Table 4.7:Breakdown of memory bus cycles for NI2w and CNI32Qm. This table
shows the breakdown of the memory bus cycles for the non-split-transaction
memory bus I used for all my simulations. Total denotes the total bus
occupancy, arb denotes the cycles required for bus arbitration, and data denotes
the cycles required for data transfer. The table is normalized to NI2w’s
arbitration cycles.
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for CNI512Q on the I/O bus, spsolve achieves a speedup of 1.29 for 32 nodes (not shown in

graph). Although parallel spsolve does not show spectacular speedup, it can still be useful.

This is because of two reasons. First, spsolve is primarily used as an embedded kernel in

parallel applications [24]. Consequently, according to Amdahl’s Law, any speedup

obtained from spsolve is beneficial. Second, data required by different processors in

spsolve may already be distributed across different nodes of the parallel machine. This

may make it difficult and/or expensive to run the sequential version of spsolve, instead of

the parallel version.

A speedup of four or more—as shown by most of my macrobenchmarks—is actually

cost-effective on today’s cluster of workstations. Wood and Hill argue [137] that parallel

computing is cost-effective, when speedups of applications exceed the costup of the paral-

lel machine. Wood and Hill define costup as the ratio of the cost of the parallel machine

vs. cost of a uniprocessor machine. For an older generation of SGI machines, Wood and

Hill showed that for parallel applications with large memory requirements, parallel com-

puting can be cost-effective with speedups much less than linear.

Figure 4-8. Macrobenchmark speedup.This figure shows the speedup of the seven
macrobenchmarks with CNI32Qm on the memory bus and CNI512Q on the I/O bus. These NIs
perform the best on the respective buses.
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An examination of the cost of Sun Enterprise E3000 servers, Ultra1 workstations, and

Myricom Myrinet network reveals that parallel applications need achieve only a speedup

of two to make a 16-node parallel machine cost-effective. A uniprocessor Sun E3000

enterprise server—with 4 GB of memory and a 167 MHz UltraSPARC processor—costs

$232,500 [82]. In comparison, a 16-node parallel machine—built with 16 Ultra1 worksta-

tions, each equipped with 512 MB of memory and a 167 MHz UltraSPARC processor, and

connected with a Myricom Myrinet network—costs $452,960. This is because each Ultra1

workstation costs $26,495 [81] and a 16-node Myricom Myrinet network costs $29,040

[26]. The total memory on the 16-node parallel machine is 8 GB—twice that of the uni-

processor E3000 machine—to allow for any extra memory that parallel applications may

require. I cannot use a uniprocessor Ultra1 workstation as the uniprocessor machine,

because an Ultra1 can only support upto 2 GB of memory. Thus, the costup of the parallel

machine is slightly less than two ($452,960 / $232,500), and probably even less because

the cost of each Ultra1 workstations above includes the cost of a color monitor. Conse-

quently, for such a system, parallel applications need achieve a speedup of only two to

make parallel computing cost-effective. In contrast, most of my macrobenchmarks achieve

a speedup of four or more on a 16-node parallel machine.

4.5  Impact of Network Latency

Finally, Figure4-9 shows the impact of network latency on CNI techniques. On the

memory bus, CNI32Qm consistently outperforms NI2w below a network latency of 10

microseconds. Beyond 10 microseconds the relative importance of CNI techniques

decreases because the network becomes the dominant bottleneck.

4.6  Conclusions

This chapter evaluates the performance of four alternate CNI designs—CNI4, CNI32Q,

CNI512Q, and CNI32Qm—with a CM-5-like NI. Microbenchmark results showed that

CNIs significantly improved the round-trip latency and bandwidth of small and moder-

ately large messages. For small message sizes, between 8 and 256 bytes, CNIs improved
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the round-trip latency by 87-342% compared to NI2w on a coherent memory bus and 100-

377% on a coherent I/O. For moderately large messages, between 8 and 4096 bytes, CNIs

improved bandwidth by 109-202% over NI2w on a coherent memory bus and 113-402%

on an I/O bus.

Macrobenchmark results showed that CNI32Qm performed the best on the coherent

memory bus and CNI512Q on the coherent I/O bus. CNI32Qm was 21-190% better than

NI2w on the memory bus, while CNI512Q was better than NI2w by 42-228% on the I/O

bus. This performance boost from CNI32Qm and CNI512Q come from their ability to rap-

idly transfer data in cache block units over the memory bus, provide low-overhead cach-

able queues, and plentiful buffering either in main memory or in the NI itself. The next

chapter examines the data transfer and buffering parameters more carefully, and compares

CNI32Qm and CNI512Q with five alternative NIs, all attached to the memory bus.
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Chapter 5

Impact of Data Transfer and Buffering Alternatives

This thesis examines how processor accesses to a network interface (NI) can be signifi-

cantly accelerated by treating accesses to the network interface as memory accesses.

Chapter2 argued that such treatment opens up at eight opportunities for performance

improvement. Chapter3 proposed and Chapter4 evaluated a novel class of NIs called

Coherent Network Interfaces that exploit all the eight opportunities. This chapter system-

atically examines and evaluates two of the eight parameters—data transfer and buffer-

ing—in greater detail.

The data transfer parameters capture how messages are transferred between a processor

and an NI. The buffering parameters capture where and how an NI buffers incoming net-

work messages. Figure5-1 shows the impact of data transfer and buffering parameters on

the performance of seven parallel scientific applications studied in this chapter. This figure

shows that data transfer and buffering can respectively account for up to 42% and 58% of

the total execution time of these parallel programs. In other words, proper choices of the

data transfer and buffering parameters can have a dramatic impact on performance.
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The data transfer and buffering parameters expose an enormous NI design space. This is

because these parameters can be implemented in several different ways. In this chapter I

evaluate seven memory bus NIs that I believe capture the essential components of this

design space. These seven memory bus NIs abstract the key data transfer and buffering

parameters of the NIs for the TMC CM-5 [68], Fujitsu AP3000 [111], Princeton User-

Level DMA [11], Digital Memory Channel [44], MIT StarT-JR [53], and two CNIs—

NI512Q and CNI32Qm—described in Chapter3.

I evaluate these NIs using the same two microbenchmarks and seven macrobenchmarks

described in Section4.2. My results indicate that a high-performance NI design must:

• effectively use the block transfer mechanism of current memory buses,

• minimize processor involvement for data transfer,

• directly transfer messages between an NI and a processor, at least in the common case,

• provide plentiful buffering, possibly in main memory, and

• minimize processor involvement to buffer incoming network messages.
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Figure 5-1. Impact of data transfer and buffering. This figure demonstrates the impact
of data transfer and buffering on the performance of a memory bus NI for seven parallel
scientific applications. For these measurements, I use a CM-5-like network interface and
number of flow control buffers equal to 1. See Section5.3 and Section5.4 for a description
of my CM-5-like NI, my flow control scheme, and the applications.
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The relative importance of these parameters depends on both the specific NI design and

the characteristics of the application.

These observations are, however, applicable primarily to user-level NIs [88] targeted for

fine-grain communication. NIs that require operating system intervention for message

send and receipt or must transfer multi-megabytes of data directly from a graphics device

or a disk (e.g. in a video server) may require optimizations that are different from those

discussed in this chapter.

I have two main contributions in this chapter. First, I identify and examine the key data

transfer and buffering parameters that underlie high-performance, user-level NI designs

for fine-grain communication. Second, I undertake the first systematic simulation study

that compares seven NIs representative of the design space exposed by these parameters.

As a corollary of this study, I find that, contrary to conventional wisdom, mapping an NI to

the processor registers may not be the ideal choice. This is because processor register

memory is a precious resource, which may not provide adequate buffering for some appli-

cations.

The rest of the chapter is organized as follows. Section5.1 and Section5.2 discuss the

different data transfer and buffering parameters. Section5.3 describes the seven memory

bus NIs I studied in this chapter. Section5.4 describes my evaluation methodology.

Section5.4 discusses my results. Section5.5 describes related work. Finally, Section5.6

presents my conclusions.

5.1  Data Transfer Parameters

An NI is a device that sends and receives messages to and from an external network on

behalf of the processor. Consequently, the most important data sent and received by an NI

are network messages. For high performance, NIs must transfer these messages rapidly

between the internal memory structures (e.g. processor registers, main memory) of a node
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and the NI. For memory bus NIs (Figure2-1), such data transfer occurs over the memory

bus.

I have identified and will discuss three key parameters that influence the speed of such

data transfer:

• size of transfer

• degree of processor involvement for transfer, and

• source and destination of transfer.

5.1.1  Size of Transfer

Today most high-performance memory buses allow at least two data transfer sizes: small

chunks (between one to eight bytes) and medium-sized blocks (between 16-64 bytes). The

latter is more efficient than the former mechanism because block transfers can effectively

use the bandwidth available from wide memory buses and amortize control overheads,

such as bus arbitration, grant, and turnaround time.

Several recent studies show that applications can effectively use such block transfers

over the memory bus. Clearly, if the typical message size in fine-grain communication

were a few bytes, block transfers over the memory bus would be useless. However,

Cypher, et al. [32] found that in seven parallel scientific applications 30% of the messages

were between 16 bytes and a kilobyte. Kay and Pasquale [59] found that the median mes-

sage sizes for TCP and UDP (mostly generated by the Network File System) traffic in a

departmental network were 32 and 128 bytes respectively. They also found that 99% of

TCP and 86% of the UDP traffic was less than 200 bytes. Keeton, et al. [60] analyzed a

debitcredit benchmark on a commercial database and found that all messages were less

than 200 bytes. In the seven parallel scientific applications I studied in this chapter, I found

that the average message size ranges between 19-230 bytes (Table4.3).

Current microprocessors offer three mechanisms to effectively use the block transfer

mechanism of memory buses. These are coalescing load/store buffers, block loads/stores,
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and cache blocks. A coalescing load/store buffer coalesces a processor’s accesses to con-

secutive addresses (and, in some cases, the same address) and transfers them as a single

block over the memory bus. Therefore, a processor’s accesses to NI registers can be coa-

lesced in the coalescing buffers and transferred as a single block.

Block load/store instructions—recently introduced in the Sun UltraSparc processor

[119]—allows a processor to move a block of data between a device, such as main mem-

ory or NI, and the UltraSparc floating point registers. The Fujitsu AP3000 machine uses

UltraSparc block load and store instructions to access the memory on the NI [109].

Finally, block transfer over the memory bus can be achieved by transferring data as

cache blocks. However, this requires the NI to interact with the cache coherence signals,

which are supported by most high-performance memory buses today. This is necessary to

avoid having stale data in the processor’s cache. Currently, most DMA-based NIs transfer

data in coherent, cache block units over the memory bus to avoid this problem. Recently,

Mukherjee, et al. [85] developed techniques using which processors and NIs can commu-

nicate more effectively via coherent, cache block transfers.

5.1.2  Degree of Processor Involvement for Transfer

Performance of data transfer depends not only on the size of the transfer, but also on

how much the processor is involved in the transfer. Two design alternatives exist. The pro-

cessor can initiate the transfer and allow the NI to manage the rest of the transfer. Alterna-

tively, the processor itself can actively manage the transfer.1 Each of these options have

different design and performance implications. I discuss these options below.

5.1.2.1  NI manages transfer. If the NI manages the transfer, then the processor is usually

required to only initiate the data transfer between the NI and the internal memory struc-

tures of a node. Currently, a processor can use one of three mechanisms to initiate rapid

1. A third option is possible in which a separate device or DMA engine manages the data transfer. I
do not consider this option here.
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data transfer to or from an NI: uncached load/store, User-Level DMA (UDMA), and

cached store. An uncached load or store from the processor to a memory-mapped NI reg-

ister can rapidly initiate data transfer from user space. However, an NI also needs physical

memory addresses of data buffers from which it can obtain the data that must be trans-

ferred. Unfortunately, users cannot provide authenticated physical addresses of data buff-

ers without violating most operating systems’ protection model. Consequently, NIs must

be prepared to fetch authentic physical addresses from the operating system [105, 47,

133].

To avoid the complexity of building an NI that fetches and manages authentic physical

addresses, Blumrich, et al. [11, 88] proposed a low-overhead data transfer initiation

scheme called User-Level DMA (UDMA). In this scheme users provide authentic physical

addresses to the NI via a sequence of two user-level instructions: an uncached store and an

uncached load. Additionally, UDMA allows users to directly deposit data into user data

structures.

Unfortunately, the a key limitation of UDMA is that there is no known technique to

extend UDMA in a general way to a multiprogrammed symmetric multiprocessing (SMP)

node. The UDMA mechanism requires the two-instruction sequence to be atomic. How-

ever, in an SMP node, multiple such store-load sequences issued by multiple processors

simultaneously can be overlapped leading to erroneous results. Markatos and Katevenis

[75] showed the UDMA initiation sequence can be made atomic, but only under restricted

conditions.

The multiprogramming problem faced by UDMA can be overcome using the third

scheme in which processors and NIs communicate via cachable, shared memory. To send

a message a processor simply writes to a location shared between the processor and the NI

(e.g. increment the shared tail pointer of a shared queue). The NI polls the shared location

to determine the presence of a message. Similarly, when a message arrives at the NI, the

NI sets a shared location that the processor monitors. This scheme does not face the same
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multiprogramming problem of UDMA. This is because such an NI can directly read and

write data to a portion of the user’s address space, which is protected by the normal virtual

memory mechanisms. However, like the first mechanism, this scheme does require the NI

to fetch and manage authentic physical addresses to which the shared locations are

mapped. Another drawback of this approach is that the NI must remember to poll the

cached, shared locations to check for new messages. This is because, unlike uncached

accesses, cached accesses by the processor is usually not visible outside the processor

cache.

Cached stores additionally allow speculative processors to generate messages specula-

tively [87]. A processor’s speculative stores are usually buffered locally inside the proces-

sor and committed only when the speculation succeeds. Consequently, a processor can

speculatively issue a store to the cachable memory location shared between the processor

and the NI. The store will, however, be visible (and the message committed) to the proces-

sor only after the speculation succeeds and commits.

5.1.2.2  Processor manages transfer. The previous subsection discusses solutions in

which the processor initiates and the NI manages the data transfer. An alternative solution

is to allow the processor to both initiate and manage the data transfer. For example, tradi-

tional program-controlled I/O requires direct processor involvement to transfer data

between the processor and the NI. In this scheme a processor directly reads and writes

data (instead of addresses) to memory-mapped NI registers via uncached loads and stores.

Even the Ultrasparc block load and store instructions require processor involvement

because these instructions block the processor until the data transfer is complete.

Processor-managed transfers usually simplify the NI design because an NI does not

require authentic physical addresses to access a message. A processor’s involvement for

every data transfer, however, uses up precious processor resources, which can be used for

other purposes (e.g. computation). Both UDMA and cache block transfers avoid processor
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involvement for data transfer, which reduces processor occupancy and allows overlap of

computation with data transfer.

5.1.3  Source and Destination of Transfer

For both message send and reception data must be transferred between source and desti-

nation memories located in the processor, NI, or main memory. The source and destination

of data transfer impact performance in two ways: determining what technology is used for

the source and destination memories and whether or not data travels from the source to the

destination directly.

Memory technology influences performance because the performance of current memo-

ries vary widely. DRAMs—the dominant technology used for main memory—is usually

much slower than SRAMs, which are used to build processor memories, such as registers

and caches. Consequently, transferring messages between the processor and NI via main

memory, and not directly between the NI and processor, can hurt performance. Addition-

ally, transferring messages between the processor and NI via main memory adds an extra

hop over the memory bus, which adds extra latency. Nevertheless, if the NI memory over-

flows, it may be more useful to buffer messages in main memory rather than blocking the

network or dropping the message. I discuss these issues in the next section.

5.2  Buffering Parameters

The amount of buffering available for an NI can have significant impact on an NI’s per-

formance (Section2.3). Unfortunately, NIs cannot rely on network switches/routers to

provide this level of buffering. Current commercial network switches/routers usually pro-

vide only a few hundred bytes of buffering (Table), which is usually sufficient to maintain

the full bandwidth through the switch/router. However, if the receiving NI fails to remove

messages from the network, the switches will block and send backpressure to the sender,

thereby clogging up the network. Alternatively, switches, such as the Myricom Myrinet,

simply drop messages if the receiving NI fails to eject the message from the network. For
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such networks either the NI must have sufficient buffering to rapidly remove messages

from the network or software must guarantee reliable delivery, which incurs substantial

overhead.

The rest of this section discusses two parameters that influence the amount of buffering

available to an NI: where the NI buffers are located (Section5.2.1) and how much the pro-

cessor is involved to buffer messages. (Section5.2.2).

5.2.1  Location of NI Buffers

The location of NI buffers is influenced by two goals that may often be conflicting. I

want NI buffers to be located such that the processor can access them rapidly. However, I

also want the NI buffers to be plentiful.

Allocating NI buffers in the NI itself allows direct and rapid data transfer between the NI

and processor. Unfortunately, supporting large amounts of dedicated memory on the NI to

buffer messages may not be economically feasible. In contrast, main memory can support

large amounts of buffering, but may not allow rapid data transfers (Section5.1.3). Tradi-

tionally, NIs have either allocated message buffers in dedicated NI memory, main mem-

ory, or a hybrid combination of the two. I discuss the implications of hybrid designs in the

next subsection.

Network Switch/Router Maximum Buffering

Cray T3E router 105 bytes per non-adaptive virtual channel
[106]

IBM Vulcan switch (SP2) 31 bytes + 1 Kbyte buffer pool shared
between four ports [122]

Myricom M2M switch 20 bytes [38]

SGI Spider/Craylink switch 256 bytes per virtual channel [41]

TMC CM-5 network router 100 bytes [141]

Table 5.1:Buffering in commercial networks.This table shows the amount of
buffering available between an input port and an output port in five commercial network
switches/routers.
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One compromise that allows the best of both is to distinguish between the logical and

physical location of NI buffers. Logically, I can allocate the message buffers in coherent,

shared memory, which is plentiful. Physically, however, such NI buffers can be located in

processor caches, main memory, or NI memory. A host node’s coherence protocol ensures

that the different physical copies of the same (logical) message buffers are consistent

across the node. In such a design, the NI memory behaves like another processor cache in

an SMP node. Thus, in the common case, the processor can transfer data directly from the

NI memory to the processor cache. However, if the NI memory overflows, the messages

will be automatically replaced from NI memory to main memory, which allows plentiful

buffering.

5.2.2  Degree of Processor Involvement for Buffering

If NI buffers are allocated both in dedicated NI memory and main memory, then either

the processor or the NI must transfer messages from the dedicated NI memory to main

memory. In the absence of such transfers, the network can fill up slowing down the entire

system. More critically, in some situations, this can cause the system to deadlock. This is

because the unavailability of message buffers can cause a cyclic dependence in which

multiple processors are blocked (e.g. on a message send) waiting for other blocked proces-

sors to process incoming messages [68].

Transfer of messages from dedicated buffers to main memory can be managed by either

the processor or the NI. Who (processor or NI) manages such transfers depends on how

often such buffering is required. For NIs that always store message data to a node’s main

memory, processor involvement for buffering can seriously degrade performance. In con-

trast, NIs that are designed with the assumption that network “traffic jams” are rare occur-

rences may use processor-managed buffering as a fallback mechanism.
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5.3  Network Interface Implementations

This section describes the seven NIs I evaluate in this chapter. Given the enormity of the

design space exposed in Section5.1 and Section5.2, it would be hard to evaluate each and

every component individually. Hence, I have selected seven NIs that, I believe, capture the

essential components of the data transfer and buffering parameters. For all of my NIs, I

assume a uniform network and flow control mechanism described in Section5.4.

Table5.2 lists the seven NIs I evaluate in this chapter. Column one uses the taxonomy I

developed in Section3.4 to describe the NIs. Column two gives a simple description of

Network
Interfaces

Simple
description

Data Transfer Parameters Buffering
ParametersSend Receive

Size Who
man-
ages

trans-
fer?

Source Size Who
man-
ages

trans-
fer?

Destina-
tion

Location Proc.
Involved?

NI2w TMC CM-5 NI-
like [124]

Uncached Proc. Proc.
Registers

Uncached Proc. Proc.
Registers

NI / VM Yes

NI64w+Udma Princeton
Udma-based
[11]

Block NI Cache/
Memory

Block NI Memory NI / VM /
Memory

Yes

NI16w+Blkbuf Fujitsu
AP3000-like
[109]

Block Proc. Block
Buffer

Block Proc. Block
Buffer

NI / VM Yes

CNI0Qm MIT StarT-JR-
like [53]

Block NI Cache /
Memory

Block NI Memory Memory No

(NI16w+Blkbuf)S
(CNI0Qm)R

DEC Memory
Channel NI-like
[44]

Block Proc. Block
Buffer

Block NI Memory Memory No

CNI512Q Wisconsin CNI
with no cache
[85]

Block NI Cache /
Memory

Block NI Proc.
Cache

NI / VM Yes

CNI32Qm Wisconsin CNI
with cache [85]

Block NI Cache /
Memory

Block NI Proc.
Cache

NI Cache /
Memory

No

Table 5.2:Classification of memory bus NIs. This table classifies the seven memory bus
NIs I evaluated in this chapter. Block denotes block transfer, Memory denotes main
memory, Proc. denotes Processor, and VM denotes virtual memory. See Section5.3 for an
explanation of the taxonomy I use for NIs. NIs that involve the processor to manage data
transfer between the NI and the processor have higher processor occupancy compared to
the NIs that use NI-managed data transfers.
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these NIs to aid readers in remembering which NI is which. I will use both descriptions

(column one and two) interchangeably in the rest of the chapter.

NI2w is aCM-5-like NI in which the processor can access only the first two words of the

NI fifo. I study two variants of NI2w. Section5.4.2 compares a memory bus NI2w with

other memory bus NIs. Section5.4.3 uses an NI2w, which can be accessed in a single

cycle, to approximate a processor-register-mapped NI. To distinguish this NI2w from the

memory bus NI2w, I call it the single-cycle NI2w.

NI64w+Udma (Udma-based NI) allows the processor to examine the first 64 words of the

NI fifo (256 bytes) and optionally transfer them to memory via the UDMA mechanism at

both send and receive nodes (Section5.1.2.1). Although the Udma-based NI implementa-

tion allows overlap of computation and data transfer, the messaging software waits until

each UDMA transfer is complete. This reduces the complexity in the messaging software

and avoids changes to the macrobenchmarks. This allows a uniform comparison across all

seven NIs.

NI16w+Blkbuf is anAP3000-like NI, which allows the processor to load and store 16

words (64 bytes) from the head of the fifo to a 64-byte send or receive block buffer located

in the processor.1 The processor accesses the block buffer via a load/store interface. These

block buffers approximate the UltraSparc block load and store mechanism.

CNI0Qm is aStart-JR-like NI for which message queues reside in main memory. The ‘0’

in CNI0Qm indicates that CNI0Qm does not cache any message in the NI. CNI0Qm

approximates the data transfer and buffering characteristics of the MIT StarT-JR NI [53].

However, unlike CNI0Qm, the StarT-JR NI resides on the I/O bus and does not use the lazy

pointer and sense reverse optimizations.

1. The Fujitsu AP3000 NI has another mechanism to access the NI. For simplicity, I limit my dis-
cussion only to the way it accesses the NI via the processor’s block load/store instructions.
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(NI16w+Blkbuf)S(CNI0Qm)R approximates theMemory Channel NI [44]. It denotes a

hybrid NI in which the send interface resembles NI16w+Blkbuf (AP3000-like NI) and the

receive interface resembles CNI0Qm (the Start-JR-like NI). However, unlike the Digital

Memory Channel NI, which attaches itself to the PCI I/O bus, I attach my Memory Chan-

nel-like NI directly to the memory bus to perform a uniform comparison with other NIs.

Additionally, I do not use the multicast feature of the Memory Channel network because I

focus specifically on its NI’s data transfer and buffering parameters.

CNI512Q denotes aCNI with no cache. Its send and receive queues contain 512 64-byte

blocks.CNI32Qm is aCNI with a cache. That is, memory on the NI for both the send and

receive queues is treated as 32-entry caches (with 64 byte cache blocks). See Section4.1

for more details on these CNIs.

5.4  Results

This section examines the seven NIs’ performance with respect to the data transfer and

buffering parameters. All simulations in this section use the same methodology described

in Section4.2. Section5.4.1 and Section5.4.2 examine the performance of the sevens NIs

with two microbenchmarks and seven macrobenchmarks respectively. Then, Section5.4.3

compares the performance of the single-cycle NI2w with CNI32Qm (CNI with a cache),

which performs the best for six of my seven macrobenchmarks and slightly worse than the

AP3000-like NI for unstructured.

Throughout the rest of this section I will uniformly vary the number of network message

buffers allocated at the sender and receiver. I call this parameterflow control buffers. So,

for example, if the number of flow control buffers = 4 that implies that each NI has four

outgoing buffers and four incoming network message buffers allocated for flow control.
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5.4.1  Microbenchmarks

In this section I characterize the performance of seven NIs using two microbenchmarks:

round-trip latency and bandwidth. These microbenchmarks capture the baseline perfor-

mance of these NIs.

An alternative approach would be to characterize the NIs using the Berkeley LogP

model [30]. The LogP model characterizes NI accesses with three parameters: latency (L),

overhead or processor occupancy (o), and bandwidth (g). However, I refrain from using

this model because the latency and overhead components of this model do not uniformly

capture the same metrics for all of my NIs. For example, for coherent network interfaces,

the latency component includes both the latency to transfer a message from the processor’s

cache to the NI and the network latency. In contrast, for CM-5-like NIs, the latency com-

ponent captures only the network latency, while the actual data transfer is included in the

overhead/occupancy component of the model. Nevertheless, the LogP model does help us

understand qualitatively the performance of these NIs. For example, NIs that require pro-

cessor involvement for data transfer have a higher processor occupancy compared to NIs

that themselves manage the data transfer (Section5.1.2.2).

5.4.1.1  Round-Trip Latency. Table5.3 shows theprocess-to-process round-trip latency

and bandwidth for my seven NIs. These numbers include the messaging layer overhead for

copying a message from the NI to a user-level buffer and vice versa. Thus, for all NIs,

except the Udma-based NI, data begins in the sending processor’s cache and ends in the

receiving processor’s cache, rather than simply moving from memory to memory. Only for

the Udma-based NI data begins in the sending processor’s cache, but ends in the receiving

processor’s memory.

The round-trip latency numbers in Table5.3 shows three important results. First, each of

the three data transfer parameters—size of transfer, degree of processor involvement for

transfer, and source/destination of transfer—have significant impact on the round-trip

latency of each NI. Carefully choosing these parameters can improve the round-trip



127

latency by more than a factor of three. Second, the relative importance of these parameters

depend on the specific NI design. Third, among the seven NIs, CNI32Qm—the CNI with a

cache—offers the best round-trip latency because it optimizes the three data transfer

parameters.

Below I examine five interesting comparisons revealed by Table5.3:

The Udma-based NI performs better than CM-5-like NI only for messages greater than 96
bytes

The Udma-based NI’s round-trip latency is worse than CM-5-like NI for messages with

payload less than 96 bytes (the exact breakeven point is not shown in the table), but sub-

stantially better as the message payload increases beyond this size. This is because for

small messages, the Udma-based NI’s high initiation overhead (one uncached store + one

uncached load + switch bus master from processor to NI) offsets its two advantages: abil-

ity to transfer messages in blocks and ability to directly deposit data in user space without

Network
Interface

Round-Trip Latency Bandwidth

8 64 256 8 64 256 4096

CM-5-like NI 2.41 5.25 15.11 17 54 63 69

Udma-based NI 4.48 5.83 10.10 7 42 78 109

AP3000-like NI 1.95 2.48 4.47 26 154 234 298

Start-JR-like NI 1.54 2.38 5.04 29 119 191 221

Memory Channel-like NI 1.55 2.42 4.89 27 119 191 221

CNI512Q 1.56 2.22 4.17 28 134 209 259

CNI32Qm 1.29 1.78 3.42 36 120 189 209

CNI32Qm+Throttle n/a n/a n/a 36 158 272 351

Table 5.3:Process-to-process round-trip latency for seven NIs. This table shows the
process-to-process round-trip latency (in microseconds) for 8-, 64-, and 256-byte
message payload and process-to-process bandwidth (megabytes per second) for 8-, 64-,
256-, and 4096-byte message payload. Each message contains an eight-byte header.
CNI32Qm+Throttle throttles the sender to match the maximum message consumption rate
of the receiving NI. Send throttling does not significantly change the bandwidth attained
by any other NI. For all these numbers, I set the number of flow control buffers = 8.
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processor involvement. Hence, for my macrobenchmarks the Udma-based NI attempts to

use the UDMA mechanism only for messages with payload greater than 96 bytes.

The AP3000-like performs substantially better than the Udma-based NI

The AP3000-like NI performs substantially better (more than a factor of two) than the

Udma-based NI, even though all transfers are managed by processor for the AP3000-like

NI. This is because like the Udma-based NI, it transfers messages in blocks, but unlike the

Udma-based NI, it has a low initiation overhead (an uncached store) andit transfers data

directly to the fast receive block buffer residing on the processor chip (and not into slower

main memory).

The Start-JR-like NI and AP3000-like NI have a crossover point

The Start-JR-like NI outperforms the AP3000-like NI for messages less than 64 bytes

(size of the block buffer) because the AP3000-like NI has higher overhead (12 processor

cycles) to flush and load the send and receive block buffers respectively. Beyond a 64-byte

message payload, the AP3000-like NI’s overhead is amortized and consequently it outper-

forms the Start-JR-like NI. The Memory Channel-like NI’s round-trip latency is almost

similar to that of the Start-JR-like NI, which indicates that the send side of the Start-JR-

like NI and the Memory Channel-like NI exhibit almost similar performance.

CNI512Q outperforms the Start-JR-like NI

CNI512Q—the CNI with no cache and queues allocated in dedicated CNI memory—out-

performs Start-JR-like NI, even though the memory on CNI512Q is as slow as main mem-

ory. The difference arises because of two reasons. First, on the receive side messages are

steered to processor caches directly from the NI and not via main memory, which adds

additional latency for the Start-JR-like NI. Second, on the send side, for messages larger

than a cache block (i.e., 64 bytes), CNI512Q prefetches cache blocks as the processor com-

poses them in its cache. For example, while a processor is composing a cache block of a

message, CNI512Q fetches the previous block of the same message. This fetch is initiated
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by CNI512Q when it observes the processor’s request for exclusive access for a subsequent

cache block of a message. If a cache block is fetched too early even before entire cache

block is written, then CNI512Q can re-fetch it when the message is ready for delivery.

Thus, avoiding processor involvement for data transfer allows simultaneous transfer and

creation of a message. Unlike CNI512Q, the Start-JR-like NI cannot prefetch cache blocks

of a message because it does respond to the memory coherence signals (e.g. coherent

invalidations).

CNI32Qm shows the best round-trip latency

CNI32Qm—the CNI with a cache—shows the best round-trip latency among my seven

NIs because it provides all the benefits of CNI512Q, but with smaller and faster cache

memories compared to CNI512Q. Therefore, overall it outperforms all other NIs by

roughly 20%-342% for message payload between 8-256 bytes.

In summary, I find that low latency transfer can be achieved for small messages via

block transfers, minimal processor involvement, and direct processor-to-NI transfers. The

relative importance of these parameters depend on the specific NI designs.

5.4.1.2  Bandwidth. The bandwidth numbers in Table5.3 show trends similar to the

round-trip latency numbers with two key exceptions that I discuss below.

The AP3000-like NI offers significantly greater bandwidth compared to the Start-JR-like
NI and CNI512Q

This is because at the receive side the AP3000-like NI transfers messages directly from

the small and fast NI memory to the receive block buffer located next to the processor.

This is significantly faster than reading messages from the slower main memory for the

Start-JR-like NI and slower NI memory for CNI512Q.
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appbt barnes dsmc em3d moldyn spsolve unstructured
(a)

(b)

Figure 5-2. Comparison of execution time of seven NIs. Both (a) and (b) are normalized to
the AP3000-like NI with number of flow control buffers = 8. # buffers denotes the number of flow
control buffers. (a) compares the performance of my three fifo-based NIs for different levels of
flow control buffering. The black shade represents the execution time with infinite flow control
buffering. Lighter shades represent the incremental execution time penalty for three flow control
buffering levels (8, 2, and 1). (b) compares the performance of four coherent network interfaces
with number of flow control buffers = 2. I However, because these NIs themselves provide
plentiful buffering, their performance is largely insensitive to the number of flow control buffers.
MC-like NI denotes the Memory Channel-like NI.
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Without throttling CNI32Qm’s bandwidth is worse than the AP3000-like NI, even though
CNI32Qm’s latency is significantly better.

This is becauseCNI32Qm’s send bandwidth is significantly greater than its receive band-

width. This causes CNI32Qm’s receive cache to overflow, which forces the receiving pro-

cessor to pick up most messages from main memory, like the Start-JR-like NI. However,

appropriately throttling the sending processor after every send can help improve

CNI32Qm’s bandwidth by preventing the receive cache from overflowing. This allows the

receiving processor to pick up messages from the fast CNI32Qm memory, instead of

slower main memory. However, I do not see this effect in my macrobenchmarks.

Overall, with send throttling, CNI32Qm achieves a bandwidth of 351 megabytes/second,

which is significantly greater than the bandwidth offered by any other NI.

5.4.2  Macrobenchmarks

This section discusses the performance of my seven NIs with seven macrobenchmarks

(Section4.2.3). Overall, I can draw two conclusions. First, the data transfer parameters

have significant impact on the performance of all seven macrobenchmarks. Second, buff-

ering only affects two of the macrobenchmarks: em3d and spsolve. This is because both

these benchmarks generate small messages more rapidly than the receiving processor can

consume. Consequently, for em3d and spsolve, buffering is more important than data

transfer.

I do not, however, attempt to quantify the relative importance of each of the three data

transfer and two buffering parameters. This is because the extent to which each parameter

affects a macrobenchmark depends on the specific NI design and the macrobenchmark

itself. Nevertheless, it should be noted that each of these parameters directly affects per-

formance. This is because for pure shared-memory applications, such as appbt and barnes,

which communicate using a request-response protocol, all the parameters adds latency to

the requests and responses. For pure message-passing applications, such as em3d and

spsolve, the receive side is the bottleneck. Consequently, all the parameters on the receive
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side is on the critical path. The rest of the applications that use hybrid protocols—that is,

both message passing and shared memory—consequently have the same behavior.

I divide my discussion into two parts and examine the results in detail. First, I discuss

the performance of the CM-5-like NI, the Udma-based NI, and the AP3000-like NI

(Section5.4.2.1). These NIs rely on NI memory to buffer network messages (via the flow

control buffers). These three NIs are fifo-based NIs, but differ in the way they pop/push

data to the fifos. For such push and pop the CM-5-like NI uses uncached loads/stores, the

Udma-based NI uses User-Level DMA (or UDMA), and AP3000-like uses block loads/

stores.

Second, I discuss the Memory Channel-like NI, the Start-JR-like NI, CNI512Q, and

CNI32Qm, (Section5.4.2.2). These NIs provide plentiful buffering in main memory with-

out requiring a processor’s involvement. All these four NIs are either fully coherent or par-

tially coherent. They differ primarily in the way the NI queues are allocated. The Memory

Channel-like NI allocates receive queues in main memory. The Start-JR-like NI allocates

both send and receive queues in main memory. CNI512Q allocates the queues in dedicated

CNI memory. Finally, CNI32Qm allocates queues in main memory, but caches them in a

CNI cache.

5.4.2.1  Comparison of Three Fifo-based NIs.Figure5-2a compares the execution time

for the three fifo-based NIs. The black bars, which show the execution time for the three

NIs for infinite flow control buffering, allow us to isolate the impact of the data transfer

parameters on the macrobenchmarks. With infinite flow control buffering, the Udma-

based NI outperforms the CM-5-like NI by 0-15% and the AP3000-like NI outperforms

the Udma-based NI by 11-44%. The Udma-based NI performs similar to or better than the

CM-5-like NI because it uses the UDMA mechanism only for large payloads and falls

back on uncached loads and stores, like the CM-5-like NI, for smaller messages. The

AP3000-like NI’s lower latency and greater bandwidth (Section5.4.1) clearly help

improve the macrobenchmarks’ performance.
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The lighter bars in Figure5-2a show the increase in execution time as I reduce the num-

ber of flow control buffers. Clearly, the number of flow control buffers have a significant

impact on performance. Figure5-2a shows two interesting results about flow control buff-

ering. First, for all three NIs and all of our seven applications, increasing the number of

flow control buffers from one to two significantly improves performance (between 6-

40%). However, increasing the number of flow control buffers beyond two buys only mod-

est performance gains (less than 19%) for most applications, except em3d and spsolve.

Second, the number of flow control buffers has significant impact on em3d and spsolve.

This is because both em3d and spsolve generate bursts of small messages (less than 20

bytes) more rapidly than the receiving NI can consume. Consequently, the lack of flow

control buffers has a dramatic impact on performance. For em3d and spsolve increasing

the number of flow control buffers from two to infinity improves performance by 29-40%

and 78-101% respectively for the three NIs. Actually, increasing the number of flow con-

trol buffers to 128 for em3d and 33 for spsolve captures most of the performance gains

that can be achieved from an infinite number of flow control buffers.

5.4.2.2  Comparison of Four Coherent Network Interfaces. Figure5-2b compares the

execution time (normalized to the AP3000-like NI for flow control buffers = 8) of four NIs

that are either partially or fully coherent. These NIs provide NI-managed, plentiful buffer-

ing in main memory on the receive side. Consequently, these NIs are largely insensitive to

the number of flow control buffers.

Figure5-2b shows three interesting results. First, the performance of the Memory Chan-

nel-like NI varies widely for the seven macrobenchmarks. It performs significantly better

than the AP3000-like NI, with the number of flow control buffers = 8, for em3d and

spsolve because it provides plentiful buffering in main memory without direct processor

involvement. It performs almost similar to the AP3000-like NI for appbt, barnes, dsmc,

and moldyn because these macrobenchmarks do not gain significantly from plentiful buff-

ering. It performs worse than the AP3000-like NI for unstructured because unstructured’s
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large messages effectively use the greater bandwidth provided by the AP3000-like NI

(Table5.3).

Second, among the four NIs shown in Figure5-2b, the Memory Channel-like NI per-

forms the worst and CNI32Qm performs the best. CNI32Qm—the CNI with a cache—out-

performs the Memory Channel-like NI by 2-26% for the seven macrobenchmarks due to

its lower latency and higher bandwidth (Table5.3). CNI32Qm also outperforms The

AP3000-like NI—the best fifo-based NI—and CNI512Q—the CNI with queues allocated

in main memory—for all applications, except unstructured. It appears that the most impor-

tant feature of unstructured’s communication is to stream data from the sender to the

receiver. Both the AP3000-like NI and CNI512Q has less overhead for this data streaming

compared to CNI32Qm, which incurs extra overhead due to its cache management (e.g.

cache replacement). Consequently, CNI32Qm performs marginally worse than the

AP3000-like NI and CNI512Q for unstructured. Like Mukherjee, et al. [85], I find that

CNI32Qm is competitive with CNI512Q with much less memory.

Third, a comparison of the Start-JR-like NI and CNI32Qm shows that caching messages

in a CNI cache, as in CNI32Qm, provides a performance boost of 2-13% for the seven

macrobenchmarks. An examination of NI-related memory bus transactions reveals that

CNI32Qm reduces the number of main memory to processor cache transactions by 54%

(averaged across the seven macrobenchmarks). This is because CNI32Qm provides mes-

sages to the processor via direct CNI-cache-to-processor-cache transfers. Further, as the

performance gap between microprocessors and main memory widens, I expect CNI32Qm

to provide significantly better performance than the Start-JR-like NI because of two rea-

sons. First, because CNI32Qm caches are small, they can be built with faster SRAMs,

thereby providing lower latency to transfer messages. Second, CNI32Qm satisfies more

than 50% of the processor’s accesses to the NI directly from its cache, which avoids mes-

sage steering via main memory.
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Overall, I find that CNI32Qm—the coherent interface with a cache—performs the best

because it optimizes all of the five data transfer and buffering parameters. In summary,

CNI32Qm:

• effectively uses the block transfer mechanism of current memory buses by transferring

messages in cache blocks;

• minimizes processor involvement for data transfer by initiating the transfer using a

cachable store and decoupling the processor and NI via memory-mapped, cachable

queues;

• directly transfers messages from the NI cache to the processor cache in the common

case;

• provides plentiful buffering in main memory; and

• allows the NI to directly deposit messages into main memory, when the NI cache over-

flows.

5.4.3  Single-Cycle NI2w vs. CNI32Qm

Figure5-3 compares the performance of CNI32Qm with an NI2w NI, whose memory can

be accessed by the processor in a single cycle. Thus, my single-cycle NI2w approximates

processor-register-mapped NIs in research machines, such as the MIT M-machine [39].1

Figure5-3 shows two interesting results. First, CNI32Qm—the CNI with a cache—out-

performs my single-cycle NI2w for spsolve and em3d for small number of flow control

buffers. Processor-register-mapped NIs are likely to have a small number of flow control

buffers because of two reasons. First, a processor’s register memory is a precious resource

and its size is severely constrained by its access time. Second, the demands of multipro-

gramming require that the NI2w buffers be either partitioned among multiple processes or

saved and restored across context switches. The first solution limits the number of flow

control buffers allocated per process and the second solution increases the context-switch

1. Unlike my single-cycle NI2w, a processor in the MIT M-machine can compute directly from the
NI registers, which allows zero-cycle access to the NI registers for some cases.
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time. Further, my single-cycle NI2w cannot also rely on commercial NIs for plentiful buff-

ering (see Table). Consequently, CNI32Qm’s ability to buffer messages in NI caches and

main memory without processor involvement makes its performance better or comparable

to the single-cycle NI2w for spsolve and em3d. For example, for flow control buffers = 2,

CNI32Qm’s performance is better than the single-cycle NI2w by 18% for spsolve and com-

parable for em3d. For spsolve and em3d, the breakeven point between CNI32Qm and the

single-cycle NI2w occurs when the number flow control buffers equals 32 and 2 respec-

tively.

Second, for the five macrobenchmarks other than spsolve and em3d, CNI32Qm is within

15% of the performance of the single-cycle NI2w (averaged across the five macrobench-

marks).

Figure 5-3. Comparison of execution of a single-cycle NI2w with CNI32Qm. The vertical
axis is normalized to the CNI32Qm on the memory bus. CNI32Qm is independent of flow control
buffering because it provides plentiful buffering in main memory.
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The above results suggest that in the absence of adequate buffering, mapping an NI

directly to the processor registers may not always be the optimal design point. Perhaps a

two-level register memory hierarchy for NI registers can make such processor-register-

mapped NIs competitive with a memory bus NI, such as CNI32Qm.

5.5  Related Work

To the best of my knowledge, this work is the first to systematically identify, examine,

and explore the data transfer and buffering parameters that underlie the design of high-per-

formance NIs for fine-grain communication. Karamcheti and Chien [58] compared the

messaging support in TMC CM-5 and Cray T3D and concluded that requiring processor

involvement for message reception can significantly degrade performance. I improve upon

their work by exposing and examining the design space of data transfer and buffering

parameters. Blumrich, et al. [14] compared the SHRIMPI and SHRIMPII NIs, but did

not explore alternate data transfer and buffering mechanisms. Mackenzie, et al. [73] stud-

ied the effect of buffering using a synthetic workload and concluded that buffering mes-

sages in virtual memory can occur only rarely for realistic applications. However, in

contrast I found that for two of my seven macrobenchmarks, buffering can play a signifi-

cant role in improving performance. Henry and Joerg [50] compared the performance of

three NIs mapped respectively to the processor registers, L1 cache bus, and an off-chip L2

cache bus. However, unlike my study, they did not examine the impact of buffering on the

performance of these NIs.

5.6  Conclusions

In this chapter I have systematically identified, examined, and explored two key parame-

ters—data transfer and buffering—that affect the design of high-performance NIs targeted

for fine-grain communication. The data transfer parameters capture how messages are

transferred between internal memory structures (e.g. processor caches, main memory) of a

computer and a memory bus NI. The buffering parameters capture where and how an NI

buffers incoming network messages. I found that each of the three data transfer parame-



138

ters—size of transfer, degree of processor involvement for transfer, and source/destination

of transfer—and two buffering parameters—location of buffers and degree of processor

involvement for buffering—can have a significant impact on performance.

Using two microbenchmarks and seven macrobenchmarks I evaluated seven memory

bus NIs that I believe captured the essential components of the design space exposed by

the five data transfer and buffering parameters. These seven NIs abstract the data transfer

and buffering parameters of the NIs in TMC CM-5, Fujitsu AP3000, Princeton User-Level

DMA, Digital Memory Channel, MIT StarT-JR, and two Coherent Network Interfaces—

CNI512Q and CNI32Qm—proposed in this thesis.

Overall, I found that among these seven NIs, CNI32Qm—a coherent network interface

that treats memory on the interface as a cache—performed the best because it optimizes

all five data transfer and buffering parameters. It:

• effectively uses the block transfer mechanism of current memory buses by transferring

messages in cache blocks,

• minimizes processor involvement for data transfer by initiating the transfer using a

cachable store and decoupling the processor and NI via memory-mapped, cachable

queues,

• directly transfers messages from the NI cache to the processor cache in the common

case,

• provides plentiful buffering in main memory, and

• allows the NI to directly deposit messages into main memory, when the NI cache over-

flows.

As a corollary of this study, I found that, contrary to conventional wisdom, mapping an

NI to the processor registers may not always be the ideal choice. This is because processor

register memory is a precious resource, which may not provide adequate buffering for

some applications. Consequently, for two of my seven macrobenchmarks, I found that

CNI32Qm outperformed a processor-register-mapped NI with small amounts of buffering.



139

Chapter 6

Using Prediction to Accelerate Coherence Protocols

Chapters2 - 5 explored techniques to accelerate the performance of network interfaces

for system area networks. These techniques can accelerate user-to-user messaging in a

parallel machine programmed with explicit message-passing. In this chapter I examine

techniques to accelerate the communication performance of parallel machines pro-

grammed with a shared-memory programming model.

Shared-memory communication interfaces differ from network interfaces in at least two

ways. First, shared-memory communication interfaces allow processors to access memory

using a single address space, even though some memories may be located in a remote

computer (Figure1-3).

Second, interaction of processor and shared-memory interfaces is usually much faster

than processor-NI interactions. This is because shared-memory communication interfaces

usually hardwire protocols that prepare messages in hardware or firmware to fetch remote

memory blocks. In contrast, network interfaces typically serve as a conduit for messages

generated by processors.
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Unfortunately, performance problems with shared-memory interfaces arise in the hard-

wired protocol itself. Modern shared-memory interfaces in large, shared-memory multi-

processors allow processors to transparently cache remote memory. Such interfaces use a

form of cache coherence protocol called a directory protocol (Section6.1.1) to keep per-

processor caches coherent. However, a hardwired directory protocol may not match an

application’s shared-memory communication patterns (also known assharing patterns).

Consequently, memory references to remotely-cached blocks that invoke the directory

protocol can suffer long latencies. To ameliorate this latency, researchers have augmented

standard coherence protocols with optimizations for specific sharing patterns, such as

read-modify-write, producer-consumer, and migratory sharing. This chapter seeks to

replace these directed solutions with general prediction logic that monitors coherence

activity and triggers appropriate coherence actions.

The first contribution of this chapter is the design of theCosmos coherence message pre-

dictor for accelerating coherence protocols (Section6.2). Cosmos’ design is inspired by

Yeh and Patt’s two-level PAp branch predictor [139] (Section6.1.2). Cosmos makes a pre-

diction in two steps. First, it uses a cache blockaddress  to index into aMessage History

Table to obtain one or more<processor,message-type>  tuples. These<proces-

sor,message-type>  tuples correspond to sender and message type of the last few coher-

ence messages received for that cache block. Second, it uses these<processor,message-

type>  tuples to index a Pattern History Table to obtain a<processor,message-type>

prediction. Notably, Cosmos faces a greater challenge than branch predictors because the

Cosmos’ prediction is a multi-bit<processor,message-type>  tuple rather than a single

bit branch outcome.

This chapter concentrates on coherence protocol message prediction in isolation (analo-

gous to studying branch prediction in isolation). I do not integrate the Cosmos predictor

into a coherence protocol for two reasons. First and most important, my tools are not ready

to handle a full timing simulation of a protocol that can be accelerated using prediction.

Second, I do not want initial results in this area obscured by implementation idiosyncra-
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sies. Nevertheless, I expect such integration to be successful because the integration of

directed predictions has been successful [66,67,28, 120]. Section6.3 briefly discusses pos-

sibilities for such integration.

The second contribution of this chapter is a detailed evaluation of the Cosmos coherence

message predictor. Section6.4 states methodological assumptions, including the use of

five scientific benchmarks on a target shared-memory machine with 16 processors running

the Stache directory protocol [100]. Section6.5 gives Cosmos’ prediction rates and ana-

lyzes application details. Variations of Cosmos predict the source and type of the next

coherence message with surprisingly-high accuracies of 62-69% (barnes), 84-86% (mol-

dyn), 84-85% (appbt), 74-92% (unstructured), and 84-93% (dsmc). Cosmos’ high prediction

accuracy results from predictable coherence message patterns orsignatures associated

with specific cache block addresses. Such signatures are generated by sharing patterns [9,

46] that do not change or change very slowly during the execution of these applications.

Cosmos’ lower accuracy for barnes occurs becausebarnes periodically re-builds its prin-

cipal data structure (an octree), thereby moving logical nodes (with stable sharing pat-

terns) to different memory addresses (obscuring sharing patterns from Cosmos).

Section6.7 explores the implications of Cosmos. Clearly, coherence message prediction

works, because sharing patterns are often stable. Others have exploited sharing patterns

with directed optimizations, such as dynamic self-invalidation and migratory protocols.

Using Cosmos could be better (or worse) than directed predictors due to performance and

implementation issues. Cosmos can perform better, because it can discover and track

application-specific patterns not known a priori (e.g., as occurs forunstructured). It can

perform worse if it is slower to recognize known patterns. Cosmos’ implementation com-

plexity can be less, because predictor logic is separated from the standard protocol logic

(unlike previous directed predictors that are intertwined with the standard coherence pro-

tocol). Cosmos, however, is likely to require more state than directed optimizations. In

summary (Section6.8), Cosmos’ high prediction accuracies justify more investigation into

using prediction to accelerate coherence protocols.
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6.1 Background

This section describes the structure of a basic directory protocol (Section6.1.1) and

reviews Yeh and Patt’s two-level adaptive branch predictor (Section6.1.2). In the next sec-

tion I discuss how Cosmos—a modified version of Yeh and Patt’s two-level predictor—

can predict a directory protocol’s messages with high accuracy. Throughout the rest of the

chapter I will use the terms “node” and “processor” interchangeably because I consider

only single-processor nodes to simplify my discussion.

6.1.1  Structure of a Directory Protocol

Most large-scale shared-memory multiprocessors use a directory protocol to keep multi-

ple caches coherent. A directory protocol associates state with both caches and memory.

This state is typically maintained at a cache block (e.g. 32-128 bytes) granularity. The

state associated with each memory block is referred to as a directory entry.

The directory entry for each memory block records whether or not a memory block is

idle (that is, no cached copies exist), a writable copy of the block exists, or one or more

readable copies of the block exist. To simplify the discussion I only consider a full-map

and write-invalidate directory protocol, such as the SGI Origin protocol [69]. A directory

entry in such a protocol maintains logical pointers to all caches that hold a valid copy of

the block and invalidates all outstanding copies of the block when one processor wishes to

write to it. Similarly, a block in a cache is usually in one of three quiescent states: invalid,

shared, or exclusive. These states define whether a processor’s load or store can access the

cache block. Processors must involve coherence actions on loads to invalid blocks and on

stores to shared (i.e. read-only) and invalid blocks.

A cache coherence protocol can, therefore, be viewed simply as a finite-state machine

that changes state in response to processor accesses and external messages. For caches

state transitions occur in response to processor accesses and messages from the directory

(and possibly other caches). A directory entry changes state in response to messages from
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caches. Figure6-1 shows an example of message exchange and state transitions in two

caches and a directory.

Unfortunately, the finite-state machine that implements the coherence logic often incurs

multiple long-latency operations. These latencies can become severe if coherence actions

are implemented in software [104, 100, 80] or firmware [71]. Additionally, a directory

may need to exchange messages with other caches before it can respond to a processor’s

request for a memory block. Such message exchange can also introduce substantial delay

in the critical path of a remote access. For example, Figure6-1a shows that a processor’s

store to a block that resides in another node’s cache may require as many as five coherence

protocol actions at different caches and the directory and four message traversals across

Figure 6-1. Basic structure of a directory protocol.(a) shows message exchange
between a directory and two caches and (b) shows the corresponding state transitions.
Table6.1 contains an explanation of the coherence message types. Initially, processor 2
has an exclusive copy of a cache block. Processor 1 issues a store to the block. This
invokes the coherence protocol, which sends a message to the directory. The directory
examines its state and sends a message to processor 2 requesting it to return the block to
the directory and invalidate its copy of the block. When it receives the block from
processor 2, it forwards it to processor 1, which marks the cache block as exclusive in
processor 1. The states “invalid to exclusive” and “exclusive to exclusive” represent
transition states.
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Node 1’s Directory Node 2’s
cachecache

get_rw_request

get_rw_response

inval_rw_response

inval_rw_request

Coherence protocol action
(a) (b)

Protocol State Transitions
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the network that connects these caches and the directory. In some protocols, such as the

SGI Origin and Stanford DASH protocols, node2’s cache can forward the response

directly to node1. However, this only reduces the critical path of a remote access to four

coherence actions and three coherence messages.

6.1.2  Two-Level Adaptive Branch Predictor

A branch predictor predicts whether the branch will be taken or not taken. Correct pre-

diction of branch directions improves the performance of wide-issue, deeply pipelined

microprocessors because it allows them to fetch and execute probable instructions without

waiting for the outcome of previous branches. J. Smith [114] proposed several dynamic

branch predictors that use program feedback to increase the accuracy of branch prediction.

More recently, Yeh and Patt proposed a general dynamic branch predictor calledPAp

[139]. PAp is a two-level adaptive predictor that makes a prediction for a branch based on

the sequence of branches a program executed before it arrived at the particular branch.

PAp makes a prediction in two steps. First, it uses the program counter of a branch to

index into aBranch History Table to obtain k bits, which represent the outcomes of the last

k branches at this program counter. Second, it uses these k bits to index a Per-BranchPat-

tern History Table to obtain a prediction. Each entry in the Pattern History Table is a finite-

state machine, which returns predictions based on the behavior of a finite number of previ-

ous occurrences of this branch (and the k bits from the Branch History Table). In the next

section I will show how PAp can be modified to obtain coherence message predictions.

6.2  Predicting Coherence Protocol Messages

In this section I will study the Cosmos coherence message predictor. In the next section I

will briefly describe how Cosmos can accelerate coherence protocols. This section begins

with an example of a producer-consumer sharing pattern and its corresponding coherence

message signature. The rest of the section uses this example to describe Cosmos in detail.
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6.2.1  Signature Generated by Producer-Consumer Sharing Pattern

Figure6-2 shows an example of a producer-consumer sharing pattern and how it can

lead to predictable message patterns orsignatures for a particular cache block. For exam-

ple, the producer in Figure6-2 observes the following message sequence:

sendget_rw_request  to directory
receive get_rw_response  from directory
receive inval_rw_request  from directory
sendinval_rw_response  to directory

Figure6-2b shows the incoming message signature that results from the above message

sequence. Figure6-2b, however, represents a simple case. Consider a slightly more com-

plex example in which the pseudo code in Figure6-2a is extended to support two consum-

ers instead of one. In this case the producer and the two consumers will still follow the

same predictable signatures as shown in Figure6-2b. However, at the directory the two

get_ro_request  messages can now arrive in any order from the two consumers. But, the

arrival of aget_ro_request  from the first consumer suggests strongly the possibility of

the arrival of anotherget_ro_request  from the second consumer and vice versa. To

achieve high accuracy a predictor must adapt to such variations in the incoming message

Messages Received by Directory from Caches Messages Received by a Cache from a
Dir ectory

Message Description Message Description

get_ro_request get block in read-only
(shared) state

get_ro_response response to get_ro_request

get_rw_request get block in read-write
(exclusive) state

get_rw_response response to get_rw_request

upgrade_request upgrade block from read-
only to read-write

upgrade_responseresponse to
upgrade_request

inval_ro_response response to
inval_ro_request

inval_ro_request invalidate read-only
(shared) copy of block

inval_rw_response response to
inval_rw_request

inval_rw_request invalidate read-write
(exclusive) copy and return
block

Table 6.1:Sample of coherence messages.A sample of coherence messages usually
found in full-map, write-invalidate coherence protocols.
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stream. The rest of this section discusses the design of such an adaptive predictor called

Cosmos.

6.2.2  Basic Structure of Cosmos

The previous subsection suggests that a coherence message predictor must adapt to an

incoming coherence message stream based on two properties:

• address of cache blocks, because sharing patterns of different cache blocks may differ,

and

• history of messages for a cache block, because a stream of incoming coherence mes-

sages correspond to fixed sharing patterns for specific cache blocks.1

1. We will see in Section6.5.1 that a history of three messages achieves most of the prediction
accuracy.

/* private_counter = private variable */

/* shared_counter = shared variable */

repeat

...

if (producer)

private_ counter++

shared_counter = private_counter

barrier

else if (consumer)

barrier

private_counter = shared_counter

else

barrier

endif

...

until done

get_rw_response inval_rw_request

get_ro_response inval_ro_request

get_rw_request inval_ro_response

inval_rw_response get_ro_request

producer

consumer

directory

Figure 6-2. Message signature generated by a producer-consumer sharing pattern.
(a) shows a pseudo code for the producer-consumer sharing pattern. A producer writes
to a shared counter and a consumer reads the shared counter. (b) shows the sequence of
messages received by the producer cache, consumer cache, and directory for the cache
block containing the shared counter (assuming no false sharing). Table6.1 explains the
different message types shown in this figure.

(a) (b)

from producer from consumer

from consumerfrom producer

cache

cache
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Fortunately, a modified version of Yeh and Patt’s two-level adaptive branch predictor

calledPAp [139] satisfies the above requirements! I call such a coherence message predic-

tor Cosmos. Given the address of a cache block and the history of messages received for

that block, Cosmos can predict with high accuracy the sender and type of the next incom-

ing message for the same block. I allocate a Cosmos predictor for every cache or directory

in the machine.

Figure6-3a shows the logical structure of Cosmos. Cosmos is a two-level adaptive pre-

dictor. The first-level table—called theMessage History Table (MHT)—consists of a

series ofMessage History Registers (MHRs). Each MHR corresponds to a different cache

block address. An MHR contains a sequence of<sender, type>  tuples corresponding to

the last few coherence messages that arrived at the node for the specific cache block. I call

the number of tuples maintained in each MHR thedepth of the MHR.

Figure 6-3. Cosmos’ structure.(a) shows the logical structure the Cosmos coherence
message predictor and (b) shows an example of how the message and pattern history
tables for a directory may look like for the shared_counter  in Figure6-2. In this
example, I assume that the last message received by the directory is a get_ro_request
from the consumer (denoted as P2). So, Cosmos will predict the next message to be an
inval_rw_response from the producer (denoted as P1).

Global Address
of cache block

Pattern History Tables
<P1, get_ro_request> <P2, inval_ro_response>

<P2, inval_ro_response> <P2, get_ro_request>

<P2, get_ro_request> <P1, inval_rw_response>

<P1, inval_rw_response><P1, get_rw_request>

Pattern History Table forshared_counter

<P2, get_ro_request>

Global Address of

Message History

(a) (b)

Index Prediction

shared_counter

 Table

Message History Table
(Per Block Address) (Per Block Address)
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The second-level table of Cosmos consists of a sequence ofPattern History Tables

(PHT), one for each MHR. Each PHT contains prediction tuples corresponding to possible

MHR entries. Each PHT is indexed by the entry in the MHR entry. The next two subsec-

tions outline how to obtain predictions from and update entries in Cosmos.

Figure6-3b shows the entries in an MHR and its PHT corresponding to the

shared_counter  variable in Figure6-2. The MHT in Figure6-3b has a depth of one, so

this MHR entry contains only one<sender, type>  tuple. The<P2, get_ro_request>

tuple shown in this figure denotes that the last message received for the cache block con-

taining theshared_counter  is aget_ro_request  message from the processor P2, which

is consumer of theshared_counter  in this case. The corresponding PHT captures pat-

terns of messages received forshared_counter . For example, earlier Cosmos observed a

get_ro_request  message from processor P1 followed by aninval_ro_response  from

processor P2. The first entry of the PHT reflects this relationship. Thus, Cosmos will pre-

dict the arrival of aninval_ro_response message from processor P2, next time it sees a

messageget_ro_request  from processor P1. Because the MHR contains the tuple corre-

sponding to the last message received, to obtain a prediction I simply find the correct

MHR, and use that entry to index into the PHT, which will give us a prediction if an entry

exists for that tuple.

Cosmos borrows its two-level structure from Yeh and Patt’s two-level adaptive branch

predictor called PAp (see Section6.1.2).1 Nevertheless, Cosmos differs from PAp in three

ways. First, the first-level table in Cosmos is indexed by the address of a cache block,

whereas PAp is indexed by the program counter of a branch. Second, Cosmos must choose

one prediction from several alternatives, whereas PAp usually chooses between two alter-

natives—branch taken or branch not taken. Third, the state machine in each PHT entry in

PAp encodes the history of the last few outcomes of the same branch. Instead, a PHT entry

1. Wang and Franklin’s data value predictor [129] uses a similar two-level structure. Unlike Cos-
mos, their first level table is indexed by the instruction address. Like Cosmos their second-level
table is indexed by patterns from the first-level table.
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in Cosmos simply consists of a prediction. Additionally, PHT entries in Cosmos can con-

tain state machines (Section6.2.6), but these are typically used as filters to remove noise

from the incoming message stream.

Below I outline the exact steps involved in obtaining a prediction from and updating

Cosmos.

6.2.3  Obtaining Predictions from Cosmos

Here the steps involved to obtain a prediction from Cosmos:

• index into the MHR table with address of a cache block,

• use the entry in MHR to index into the corresponding PHT, and

• return the prediction entry (if one exists) in the PHT as the predicted tuple, which con-

tains the predicted sender and type of the next incomng message corresponding to that

cache block; otherwise, return no prediction.

6.2.4  Updating Cosmos

Typically, I expect Cosmos to be updated after every message reception when I know for

sure the<sender, type>  tuple of a message. Here are the steps involved in updating Cos-

mos:

• index into the MHR table with the address of a cache block,

• use the entry in MHR to index into the corresponding PHT,

• write new <sender,type>  tuple as new prediction for the index corresponding to the MHR

entry, and

• left shift the<sender,type>  tuple into the MHR for the cache block.

6.2.5  How Cosmos Adapts to Complex Coherence Message Streams?

Cosmos can adapt to complex message streams, such as the one outlined at the end of

Section6.2.1. If two get_ro_request  messages arrive out of order from two different



150

consumers (P1 and P2), the PHT table will contain the following two entries:

Therefore, Cosmos can effectively predict the next incoming coherence message, even

though incoming messages may arrive in a different order in different instances.1

For more complicated sequences of incoming messages, Cosmos may need an MHR

with depth greater than one. For example, if threeget_ro_request  messages come out of

order from three consumers (P1, P2, and P3), then the PHT for a Cosmos predictor with

MHR of depth = 2 may contain the following three entries:

Clearly, this allows Cosmos to predict the third incoming coherence message accurately

based on the history of previous messages. Fortunately, several studies (e.g. [131, 136,

86]) have shown that the average number of sharers of a cache block is usually less than

two. Consequently, I do not expect the depth of the MHR to be very high for most applica-

tions. Specifically, I found that an MHR of depth three is sufficient in most cases for the

five parallel applications I study in this chapter.

6.2.6  Filtering Noise from Coherence Message Stream

When updating Cosmos we can usefilters to reduce noise from the coherence message

stream in the same way Yeh and Patt’s PAp predictor removes noise from a stream of

branches. For example, if 99% of the time, message B follows message A, then on seeing

1. A more aggressive predictor could ignore the senders for theget_ro_request  messages. How-
ever, this may not be possible if there are intervening messages of other types for the same cache
block.

Index Prediction

<P1, get_ro_request> <P2, get_ro_request>

<P2, get_ro_request> <P1, get_ro_request>

Index Prediction

<P1, get_ro_request>, <P2, get_ro_request> <P3, get_ro_request>

<P2, get_ro_request>, <P3, get_ro_request> <P1, get_ro_request>

<P3, get_ro_request>, <P1, get_ro_request> <P2, get_ro_request>
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message A, Cosmos will predict the next message to be B. I do not want the prediction to

change if once in a while messages arrive in the sequence: A, C, and B, instead of the

sequence A, B. Branch predictors have a similar problem when programs exit loops. Fre-

quently, the exit from loops is a taken branch; however, when the loop is executed com-

pletely, the exit is a not-taken branch. Branch predictors typically avoid updating their

prediction on exiting a loop via a two-bit saturating counter proposed by J. Smith [114].

One bit of the two-bit counter represents the direction of the branch and other bit repre-

sents the counter. Because a message needs more than one bit to represent a<sender,

type>  tuple, I simplify the counter and use only a single bit. With this single-bit counter, I

update the prediction for a cache block to a different message only if we see two consecu-

tive message mispredictions for the same block.

My results (Section6.5.2) suggest that filters increase the prediction accuracy for Cos-

mos predictor with MHR depth of one, but they do not help Cosmos predictors with MHR

depth greater than one. This is because both history and filters reduce noise from the mes-

sage stream. However, history information adapts to the noise, while filters simply remove

it.

6.2.7 Implementation Issues for Cosmos

Cosmos is a two-level adaptive predictor with the first level containing message history

registers (MHRs) and the second level containing pattern history tables (PHT). It may be

possible to merge the first-level table with the cache block state maintained at both direc-

tories and caches. However, this may lead to a loss of Cosmos’ history information when

cache blocks are replaced. This problem may not arise for the directory because directory

state is usually persistent during the entire duration of a parallel application.

The second-level table is more challenging to implement because it may require large

amounts of memory to capture pattern histories for each cache block. However, my results

(Section6.5.2) show that Cosmos’ memory overhead for 128 byte cache blocks is less

than 14% for an MHR depth of one. This is because the number of pattern histories corre-
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sponding to a cache block is low, that is, less than four (on average) for an MHR depth of

one for all five applications I studied in this chapter. Consequently, I could preallocate four

pattern history entries corresponding to each cache block. If a cache block needs more pat-

tern histories, then it can allocate them from a common pool of dynamically allocated

memory in the same way LimitLESS [20] directory entries captures the list of sharers for a

particular cache block. Nevertheless, higher prediction accuracies may require greater

MHR depths, which may result in larger amounts of memory.

Clearly, storing, accessing, and updating these tables require moderate amounts of mem-

ory and computing power. However, the availability of tens of millions of on-chip transis-

tors makes hardware implementations of these tables feasible. Additionally, software

implementations of Cosmos is also practical because of the advent of symmetric multipro-

cessing (SMP) nodes in which the incremental cost of adding an extra processor for spec-

ulation is quite low (e.g. less than 5% of the cost of a node).

Prediction Prediction
Location

Static/
Dynamic

Action Protocol

Load/store from
processor

Cache Static Prefetch block in shared or
exclusive state

Stanford DASH protocol
[69]

Read-modify-
write

Directory Static Directory responds with
block in exclusive state on
read miss for an idle block

SGI Origin protocol [66]

Read-modify-
write

Cache Static Cache requests exclusive
copy on read miss

Dir1SW [51], Dir1SW+
[136]

Store from differ-
ent processor

Cache Static Replace block and return to
directory

Dir1SW [51], Dir1SW+
[136]

Store from differ-
ent processor

Directory Dynamic Invalidate block and replace
block to directory if exclu-
sive

Dynamic Self-Invalida-
tion [67]

Block migrates
between different
processors

Directory Dynamic On read miss return block to
requesting processor in
exclusive state

Migratory protocols
[28, 120]

Table 6.2:Examples of prediction-action pairs in existing protocols.
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6.3  Using Coherence Protocol Message Predictors

This section briefly discusses how a coherence protocol message predictor, such as Cos-

mos, can be integrated with a coherence protocol. Predictors would sit beside each stan-

dard directory and cache module and accelerate coherence activity in two steps. First, they

would monitor message activity and make aprediction. Second, based on the prediction,

they will invoke anaction in the standard coherence protocol. The key challenges include

mapping predictions to actions (Section6.3.1), performing actions at the right time (not

too early or late) (Section6.3.2), and dealing with mis-predictions (Section6.3.3).

6.3.1  Mapping predictions to actions

Mapping predictions to actions is straightforward in many cases. Table6.2 lists several

examples of prediction-action pairs. For example, a directory action corresponding to a

read-modify-write prediction for a block would be to return the block to the requesting

cache in “exclusive” state, instead of the “shared” state.1 Figure6-4a shows another exam-

ple where the predictor in node 2’s cache predicts a write miss from another processor. A

Node 1’s Directory Node 2’s

(a)

Figure 6-4. Two examples of using prediction to accelerate coherence protocols.(a)
shows a protocol in which protocol actions are accelerated in anticipation of Node’s 1
write miss. (b) shows a protocol that predicts incoming coherence messages, updates
protocol state, generates (but does not send) messages speculatively, and commits
protocol state and messages only if the predicted message arrives.

Node 1’s Directory Node 2’s
 cachecache cachecache

get_rw_request

Speculative execution of coherence protocol action

(b)

Coherence protocol action

get_rw_response

inval_rw_response

get_rw_request

get_rw_response

inval_rw_request

inval_rw_response
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consequent action—as done by an implementation of Lebeck and Wood’s dynamic self-

invalidation protocol [67]—would be to replace the block from node 2’s cache to the

directory before the directory receives the write miss request from node 1’s cache.

More generally, each directory and cache can predict incoming coherence messages,

execute protocol actions speculatively (which may include sending messages specula-

tively), and take appropriate actions on mis-predictions (Figure6-4b). Speculative execu-

tion of coherence protocol action may also involve executing a sequence of protocol

actions, instead of executing a single action (that is normally done). This allows a direc-

tory and a cache to optimize for sharing patterns not known a priori. For example, a direc-

tory optimizing for a sequence of read-modify-write operations from different processors

can directly capture the migratory protocol optimizations.

6.3.2  Detecting when to perform actions

Detecting when to perform actions is simple in some cases, but can be tricky in others.

An obvious time to trigger actions would be to do so on certain protocol transitions. For

example, the directory can trigger the action corresponding to a read-modify-write predic-

tion when a read miss request arrives for a block. In Figure6-4a, node 2’s cache can trig-

ger the block replacement action when it seesinval_rw_request  messages for other

spatially contiguous blocks. Alternatively, Cosmos predictions can be enhanced with a

program counter that will give directories and caches to a more precise estimate of when

to trigger actions.

6.3.3  Handling mis-predictions

Mis-predictions can leave the processor state, protocol state, or both in an inconsistent

state. Consequently, a protocol must recover from mis-predictions. In general, actions can

1.Cosmos identifies a read-modify-write operation from the signature:<P,get_ro_request>,
<P,upgrade_request> .
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be classified into three categories. Below I outline possible recovery mechanism for each

action.

• Actions that move protocol between two “legal” states require no recovery on mis-pre-

diction. Replacement of a cache block that moves the block from “exclusive” to

“invalid” state is an example of such an action (Figure6-4a).

• Actions that move the protocol state to a “future” state, but do not expose this state to

the processor can recover from mis-predictions transparently. This scheme is analo-

gous to the “future file” scheme to implement precise exceptions [115]. On detecting a

mis-prediction a protocol simply discards the future state. On detecting a prediction

success, however, the coherence protocol state must commit the future state and

expose it to the processor. Mis-predictions corresponding to actions in Figure6-4b can

use such recovery actions.

• Actions that allow both processor and protocol states to move to future states need

greater support for recovering from mis-predictions. One possible scheme is analo-

gous to the “history file” scheme used to implement precise exceptions [115]. Before

speculation begins both the processor and the protocol capture their states in a history

file. Then, on detecting a mis-prediction both processor and coherence protocol must

roll back to the state captured in the history file. On detecting a success, the current

protocol and processor states must be committed. Such actions can be created by cou-

pling a speculative processor, such as the MIPS R10000 [83], with a coherence proto-

col accelerated with prediction. This is perhaps the most aggressive form of

speculation with a coherence protocol.

Directories and caches can detect prediction success or failure—as required in the last

two actions—by simply verifying whether the next message for a cache block is indeed

the predicted message or not. Additionally, if any of the last two actions generate mes-

sages that are sent speculatively to other directories or caches, then these directories or

caches must be informed of the mis-prediction. This allows a directory or a cache to

recover from mis-predictions caused by other directories and caches.
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6.4  Methodology

I evaluate Cosmos’ prediction accuracy using traces of coherence messages obtained

from the Wisconsin Stache protocol (Section6.4.1) running five parallel scientific applica-

tions—appbt, barnes, dsmc, moldyn, andunstructured (Section4.2.3).1 Each application

has a start-up phase to initiate the computation (e.g. initiate data structures). My traces do

not contain coherence messages generated in this start-up phase. Also, the applications in

this chapter use a number of iterations (see Table6.3) different from those listed in

Table4.3 to allow Cosmos to adapt to sharing patterns of these applications

(Section6.5.2).

I generated the traces from the Wisconsin Wind Tunnel II simulator [92] simulating a

16-node parallel machine, with each node having one processor, a coherent memory bus,

and a CNI32Qm network interface [85]. The system parameters used to collect these traces

are the same as in Chapter4 and Chapter5 (see Table4.2). Cosmos’ prediction accuracy,

however, is largely insensitive to variations in system parameters, such as network latency.

For example, changing the network latency from 40 nanoseconds to one microsecond

hardly changes Cosmos’ prediction rates for the five applications I study in this chapter.

1. Of the seven applications used in Chapter4 and Chapter5, I excludedem3d because it would
not run with 128-byte Stache blocks (Chapter6.4.1) andspsolve because I did not have access to
a transparent shared-memory version of this program.

Benchmarks Iterations

appbt 30

barnes 19

dsmc 320

moldyn 40

unstructured 10

Table 6.3:Number of iterations for each benchmark..
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6.4.1  Wisconsin Stache Protocol

I obtained my coherence message traces from the Wisconsin Stache protocol [100].

Stache is a software, full-map, and write-invalidate directory protocol that uses part of

local memory as a cache for remote data. Currently, Stache is implemented on the Tem-

pest interface [52], which is a portable interface for writing shared-memory programs.

Table6.1 shows all the types of coherence messages generated by Stache. These coher-

ence messages are also common to most full-map, write-invalidate directory protocols.

For all my simulations with Stache I use a (software) cache block size of 128 bytes.

Stache differs other full-map, write-invalidate coherence protocols in five ways:

• Unlike the DASH protocol, Stache uses thehalf-migratory optimization. In this opti-

mization a directory requests a cache to mark an exclusive block invalid, and not

shared, when it receives a read or write miss request from another cache. This is bene-

ficial if this same cache block is not immediately read from the former cache.

• The Stache implementation I use in this thesis allocates pages in round-robin fashion

across the 16 nodes. The owner of each page functions as the directory for that page.

The directory pages are optimized to function as cache pages for the local node. Con-

sequently, in most cases Stache does not generate local messages between the cache

and directory within a particular node.

• Cache blocks on a cache page in a local node communicate only with one specific

directory page in another node. Consequently, for blocks on a cache page, the sender is

always a fixed node containing the directory page. A directory page can, however,

receive messages from any node caching the page.

• Currently, Stache does not replace pages (and, hence, cache blocks) from the portion

of local memory it designates as a cache for remote memory. This implies that Cos-

mos’ history information for cache blocks persists over time. Protocols that replace

cache blocks may need to preserve the history information even after the block is
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replaced. Alternatively, such protocols can speculate only at the directory, where Cos-

mos’ history information is persistent during the duration of a parallel application.

• Barriers are implemented with point-to-point messages. Consequently, Cosmos’ pre-

diction accuracies do not include prediction rates for barrier variables.

Nevertheless, I see no reason why Cosmos prediction results with Stache should be sig-

nificantly different from what would be obtained with a full-map, write-invalidate direc-

tory protocol.

6.5  Results

In this section I examine Cosmos’ basic prediction accuracy (Section6.5.1) and then

delve into Cosmos’ sensitivity to noise and initialization effects and Cosmos’ memory

requirements (Section6.5.2).

6.5.1  Basic Prediction Rate

Table6.4 shows that Cosmos achieves high prediction accuracy. With an MHR depth of

one, Cosmos’ overall prediction accuracy ranges between 62-86%. Cosmos achieves such

high accuracy because cache blocks in most applications generate predictable coherence

message signatures. These signatures are related directly to sharing patterns of an applica-

tion’s data structures. All the applications, exceptbarnes, have one or more fixed signa-

Depth
of
MHR

appbt barnes dsmc moldyn unstructured

C D O C D O C D O C D O C D O

1 91 77 84 80 42 62 94 73 84 92 79 86 85 65 74

2 90 79 85 81 56 69 95 77 86 91 80 86 90 86 88

3 89 80 85 79 57 69 94 92 93 90 79 85 90 88 89

4 89 80 85 78 56 68 94 92 93 90 77 84 96 88 92

Table 6.4:Cosmos’ prediction rates (expressed in percentage of hits).Depth of
MHR denotes the number of messages used by Cosmos to predict the next incoming
coherence message. C = prediction rate at cache, D = prediction rate at directory, and
O = overall prediction rate.
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tures (see Figures6-5 and 6-6) throughout the entire execution of the parallel application.

Barnes has slightly lower accuracy because shared-memory addresses are reassigned to

different objects across iterations. Below I discuss each application’s prediction accuracy

in detail.

Table6.4 shows that Cosmos has higher accuracy for a cache compared to a directory.

For the Stache protocol, a cache receives messages from a fixed sender—that is, a fixed

directory, which limits the number of<sender,message-type>  tuples Cosmos must

choose its predictions from. In contrast, a directory receives messages from multiple

caches (i.e. senders) for the same cache block. Consequently, Cosmos’ predictions are

more accurate for Stache caches than Stache directories.

Table6.4 also shows that Cosmos’ prediction accuracy usually increases with the

increase in the MHR depth. With MHR depth of two, the accuracy ranges between 69-

88%, while a depth of three results in prediction accuracy that ranges between 69-93%.

Having history information helps because it allows Cosmos to recognize predictable

coherence streams (Section6.2.5). However, most of the applications do not benefit

beyond an MHR depth of three (Table6.4).

Below I examine why Cosmos achieves high prediction rates for each of the five applica-

tions. Surprisingly, variations in simple sharing patterns studied by Bennett, et al. [9] and

Weber and Gupta[46], can lead to sequences of coherence actions (and consequent signa-

tures) that are significantly different from those generated by simple sharing patterns (e.g.

seeunstructured’s sequence of messages below). Consequently, predictors based on sim-

ple sharing patterns may not be able to correctly speculate the sequence of coherence

actions that may be generated. However, Cosmos can capture such variations in sharing

patterns because Cosmos adapts to the incoming message stream, which directly deter-

mines the sequence of coherence actions to follow.
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Figure 6-5. Dominant (incoming) message signatures forappbt, barnes, anddsmc.
Arcs represent the order in which two messages arrived. Each arc is labelled as X/Y,
where X = percentage of correct predictions for that particular arc and Y = percentage of
references to that arc. All X and Y numbers are measured with a Cosmos predictor with
MHR depth of one. The left side shows the transitions for the cache and right side shows
transitions for the directory. All Y for a benchmark do not add up to 100% because I only
present the dominant transitions I observe. The dotted lines represent dominant message
signatures observed in the message stream.
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Appbt’s high prediction accuracy results from its producer-consumer sharing pattern.

Appbt is a three-dimensional stencil-style code in which a cube is divided up into sub-

cubes. Each subcube is assigned to one processor. Communication occurs between neigh-

boring processors along boundaries of the subcubes.

The sharing pattern that results in the sequence of messages shown for appbt in

Figure6-5 is: producer reads, producer writes, and consumer reads. This pattern repeats

for most cache blocks throughout the entire application. Consequently, Cosmos adapts

well to appbt resulting in a prediction accuracy of 85%. Note that the half-migratory opti-

mization discussed in Section6.4 hurts here because the producer first reads a block

before writing to it. In the absence of this optimization, the producer pattern would have

simply cycled through the two messages:inval_rw_request  andupgrade_request .

inval_rw_request get_ro_response

upgrade_response inval_ro_request

97/8
97/8

97/11

97/1198/11
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upgrade_request

62/11 86/9

87/9
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Figure 6-6. Dominant (incoming) message signatures formoldyn andunstructured.
See caption of Figure6-5 for an explanation of the figure. I show unstructured’s second
dominant message signature (at the cache) using bold and dashed lines.
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Figure6-5 shows that all transitions forappbt have high prediction accuracy except the

transition fromupgrade_request  to inval_ro_response  at the directory. The low accu-

racy on this transition results from false sharing in two data structures. It appears that this

false sharing generates multiple signatures that the protocol oscillates between randomly.

This confuses the predictor resulting in lower accuracy. Perhaps a “fuzzy” predictor that

predicts multiple signatures (with different probabilities) simultaneously can track this

false sharing better.

Barnes’s prediction accuracy ranges between 62-69% for different MHR depths. This is

slightly lower than that for the other applications. I suspect this happens inbarnes because

nodes of the octree inbarnes are reassigned to different shared-memory addresses in dif-

ferent iterations. Unfortunately, Cosmos cannot make accurate predictions for the nodes of

the octree because its prediction is based on information it collected on past behavior (e.g.

previous iterations) of a particular shared-memory address (at a cache block granularity).

I suspect thatbarnes’ low prediction accuracy results from such reassignment because

of three reasons. First, bodies, which are not reassigned, exhibit significantly higher pre-

diction accuracy than the nodes. Second, increasing the depth of MHR (Table6.4) or the

number of iterations (see “Time to Adapt” in Section6.5.2) does not increase the predic-

tion accuracy of barnes. If barnes’ low prediction accuracy resulted from other reasons,

such as random traversal of the octree, then increasing the MHR depth or number of itera-

tions would steadily increase Cosmos’ prediction accuracy because Cosmos adapts to new

(and even random) patterns. Finally, Figure6-7 shows that the distribution of number of

bodies inbarnes in different children of the root varies widely across different iterations.

This large variation suggests a large degree of reassignment in the octree, which can

potentially lead to the lower prediction accuracy for the nodes of the octree.

Figure6-5 shows thatbarnes has a variety of sharing patterns, some of which exhibit

dominant signatures throughout the execution of the program. However, the low accura-

cies on most arcs improve with more history information (i.e. greater MHR depth).
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Dsmc shows the highest accuracy among all the five applications.Dsmc’s dominant

sharing pattern is the classical producer-consumer pattern in which the producer writes

and the consumer reads shared cache blocks. This happens because at the end of each iter-

ation dsmc communicates information between two processors via shared buffers. This

leads to the message sequence shown in Figure6-5. Note that the half-migratory optimiza-

tion helpsdsmc because the producer does not read the data before it writes to it. Conse-

quently, invalidating the producer’s cache blocks, instead of converting them to read-only,

avoids an extra handshake with the directory.

Figure6-5 shows that the transition fromget_ro_request  to inval_rw_response  has

a low prediction accuracy. However, this low accuracy disappears with increased MHR

depth. This happens because updates to shared buffers frequently follow deterministic pat-

terns; but, in some cases a processor must lock a shared buffer before writing to it. This

creates somewhat oscillating patterns that confuses Cosmos. Fortunately, Cosmos learns

to isolate these cases using either more history information or via noise filters (see

Section6.5.2).
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Figure 6-7. Variation in number of bodies in the root’s children inbarnes. The root
has eight children because this is an octree.
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Moldyn’s high accuracy results from two dominant sharing patterns: migratory and pro-

ducer-consumer patterns. The migratory sharing pattern results in the message sequence

<get_ro_response, upgrade_response, inval_rw_response>  in both processors a

block is migrating between. The same pattern is exhibited for the producer in the pro-

ducer-consumer pattern. However, the consumer for the producer-consumer pattern sees

the sequence:<get_ro_response, inval_ro_request> . Hence, the number of refer-

ences to the pattern<get_ro_response, upgrade_response, inval_rw_response>  is

greater than the number of references to the pattern<get_ro_response,

inval_ro_request>  (Figure6-6). The sequence seen at the directory results primarily

from the migratory pattern.

Moldyn’s migratory pattern results from the way it reduces a shared array, which con-

tains force calculations for simulated molecules. In each iteration each processor collects

its contribution for different elements of the shared array in a private array. At the end of

the iteration each processor adds its contribution from the private array to the shared array.

Updates to each element in the shared array happens in a critical section, which results in

the migratory pattern.

Moldyn’s producer-consumer sharing pattern results from updates to a shared array that

contains the coordinates of simulated molecules.Moldyn’s producer-consumer pattern

results in message signatures similar to that ofappbt’s at both the producer and consumer

caches. However, the overall number of consumers formoldyn is 4.9, whereas forappbt

D
appbt barnes dsmc moldyn unstructured

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

1 84 85 85 62 66 66 84 86 86 86 86 86 74 78 78

2 85 85 86 69 71 71 86 88 88 86 86 86 88 89 89

Table 6.5: Cosmos’ prediction accuracy with filters.This table shows the prediction
accuracy of Cosmos as I vary the maximum count of the saturating counter from 0 to 2.
The saturating counter filters noise from the coherence message stream (Section6.2.6).
The overall prediction rates in Table6.4 correspond to this table’s column 0 (i.e. no filter).
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the number of consumers is one. Consequently, directory observes back-to-back

get_ro_request  messages arriving with high predictability.

Unstructured is different from the rest of the applications because it has different domi-

nant signatures for the same data structures in different phases of the application. The

same data structures oscillate between migratory and producer-consumer sharing patterns.

The migratory sharing pattern is similar tomoldyn’s and occurs when each processor

updates different elements of the shared arrays in critical sections. The migratory pattern

is followed by the producer-consumer pattern in which a producer is itself a consumer of

the data. The average number of consumers per producer is 2.6. The signature shown in

bold and dashed arrows in Figure6-6 represents the transition from migratory to producer-

consumer pattern. The directory sees corresponding signatures.

Figure6-6 shows thatunstructured’s prediction accuracy for several arcs with MHR

depth of one is low. This is because of the change in sharing pattern. Table6.4 shows,

however, that Cosmos’ accuracy increases from 74% to 92% as the MHR depth increases
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Figure 6-8. Cosmos’ time to adapt.This figure shows how many iterations it takes
Cosmos (with MHR depth of one and no filter) to reach steady-state prediction accuracy.
For each application the black dot indicates the number of iterations I have chosen for
all my other experiments in this chapter. The time to achieve steady-state behavior for
other Cosmos predictors (with different MHR depths and filters) is similar the Cosmos
predictor shown in this figure.
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from one to four. This increase in prediction accuracy from the increase in MHR depth

also results in high prediction accuracies for these arcs.

6.5.2  Additional Analysis

Effect of Filters on Prediction Accuracy. Noise filters can increase the prediction accuracy

of Cosmos. I implement Cosmos’ noise filter as a saturating counter, which counts

upwards from zero and saturates at a maximum count. Table6.5 shows the prediction

accuracy of Cosmos as I vary the maximum count between 0 and 2.

Filters increase prediction accuracy slightly (up to around 6%) only for Cosmos predic-

tors with MHR depth of one. For MHR depth of two or beyond filters do not help much.

This is because both filters and history information remove noise from the message

stream. However, history information allows Cosmos to learn from and adapt to the noise.

Consequently, if the noise repeats, then Cosmos can achieve higher accuracy. In contrast,

filters simply remove noise, but do not let Cosmos adapt to it. Hence, predictors with fil-

ters and MHR depth of one achieve lower accuracy than predictors with greater MHR

depths. Additionally, filters do not help predictors that have MHR depth greater than one.

Time to Adapt. A critical question for predictors, such as Cosmos, is how long it takes

them to achieve the steady-state prediction rates.Cosmos predictors need time to achieve

steady-state behavior because they adapt to the incoming stream. I use number of itera-

Transition
4

iterations
80

iterations
320

iterations

hits refs  hits refs hits refs

<get_ro_response, upgrade_response> 2% 20% 34% 4% 62% 2%

<get_ro_request, inval_rw_response> 2% 25% 18% 13% 30% 12%

<inval_rw_response, upgrade_request> 1% 19% 18% 4% 35% 1%

Table 6.6:Dsmc’s prediction accuracies for specific transitions.This table shows
dsmc’s prediction accuracy for different number of iterations. refs is percentage of total
references to the transition. hits is the percentage of hits to the transition. These
numbers are measured with a filterless Cosmos predictor with MHR depth of one.
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tions of each application as an approximation to time. This is because the five parallel

applications I examined in this chapter iterate over a number of steps or iterations. Cosmos

can predict incoming coherence messages for a cache block fairly accurately because

sharing pattern of a cache block in one iteration is usually similar to its sharing pattern in

the previous iteration.

Figure6-8 shows thatunstructured andbarnes achieve steady-state behavior quickly (in

less than 20 iterations.Appbt and moldyn take slightly longer (around 30 iterations).

Dsmc, however, takes a large number of iterations (around 300) to achieve steady state

prediction rates. This is because specific transitions indsmc take a large number of itera-

tions to achieve reasonable prediction accuracies (Table6.6).

Memory Requirement of Cosmos Predictors. Table6.6 shows that dynamic memory

overhead incurred by Cosmos predictors is acceptable—that is, less than 22%—for most

applications for predictors with MHR depths of three or lower. Additionally, the number

Depth
of
MHR

appbt barnes dsmc moldyn unstructured

Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd

1 1.2 5.4% 3.8 13.5% 0.8 3.9% 0.8 4.0% 1.7 6.8%

2 1.4 9.6% 6.9 35.4% 0.4 5.1% 1.1 8.3% 2.1 12.8%

3 1.9 16.4% 9.3 63.0% 0.3 6.7% 1.6 14.9% 2.8 21.9%

4 2.6 26.5% 10.9 91.8% 0.3 8.9% 2.0 21.6% 3.4 33.0%

Table 6.7:Memory overhead of Cosmos predictors (with no filter).Ratio = total
number of PHT entries / total number of MHR entries. MHR entries correspond to cache
blocks that were referenced at least once in the parallel section of an application. Ovhd
expresses the average memory overhead per 128-byte block as a percentage of the block
size. More precisely, Ovhd = (tuple size * [MHR depth + Ratio * (MHR depth + 1)] *
100 / 128)%. I assume the tuple size of two bytes (12 bits for processors and 4 bits for
coherence message types). Note that some Ratios are less than one. This is because
unless the number of protocol references to a cache block is greater than the MHR depth,
I do not allocate a PHT for that MHR. This makes all ofdsmc’s Ratios less than one
because some ofdsmc’s shared-memory data structures are touched rarely. For the same
reason, unlike other benchmarks,dsmc’s Ratio decrease with increase in MHR depth
because the number of these shared-memory blocks that are touched more times than the
MHR depth is even fewer.
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of PHT entries per cache block (or MHR entry) is less than three in most cases. The low

PHT to MHR ratio suggests that perhaps a scheme that statically allocates three or four

PHT entries per cache block and dynamically allocates the rest from a common pool of

memory may work. Only for barnes the memory overhead is as high as 63% for MHR

depth of three becausebarnes reassigns shared-memory addresses to logically different

objects, which confuses Cosmos and leads to greater number of coherence message pat-

terns

6.6  Increasing Cosmos’ Accuracy

Cosmos’ accuracy can be increased further by combining sender processor numbers

with cache block addresses in the MHR (first-level table). The intuition behind this is that

not only incoming coherence messagesfor a specific cache block are highly correlated

(done so far), but also incoming coherence messagesfrom a specific processor for a spe-

cific cache block are highly correlated.1

In the base model discussed so far, given a cache block address (index for MHRs) and

the history of messages (i.e. <sender processor, message type> tuples), Cosmos can pre-

dict with high accuracy the <sender processor, message type> tuple of the next message

1. Guri Sohi suggested this approach. This improvement does not appear in [90].

Depth
of
MHR

appbt barnes dsmc moldyn unstructured

Base +P Base +P Base +P Base +P Base +P

1 84 -13 62 +5 84 +8 86 +1 74 -1

2 85 +2 69 +8 86 +7 86 +1 88 -3

3 85 +3 69 +7 93 +1 85 +3 89 -2

4 85 +2 68 +10 93 +1 84 +5 92 +0

Table 6.8:Using processor numbers to improve Cosmos’ accuracy. Depth of
MHR denotes the number of messages used by Cosmos to predict the next
incoming coherence message. Base = base overall prediction rates that appear
in Table6.4. +P denotes the increase in the prediction rate when we combine
processor (sender) ids with cache block addresses in the MHRs (Section6.6).
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destined for the cache block. Cosmos’ accuracy increases further if the MHRs are indexed

by both cache block addresses and sender processor numbers. Thus, MHRs will be

indexed by <cache block address, sender processor>, instead of <cache block address>,

and the PHTs will predict <message type>, instead of <sender processor, message-type>.

Table6.8 shows using sender processor numbers along with cache block addresses pro-

vides modest improvement in prediction accuracy, particularly forbarnes anddsmc. The

improvement arises almost entirely from the improvement in prediction accuracy at the

directory.

6.7  Comparison with Directed Optimizations

In this section I compare Cosmos with directed optimizations—that is, optimizations

introduced in a coherence protocol for specific sharing patterns. Dynamic self-invalidation

[67] and migratory protocols [28, 120] are examples of two such protocols. Both can be

thought of as implementing predictors directed at specific optimizations. Cosmos could be

less cost-effective than predictors for directed optimizations because Cosmos requires

more hardware resources to store, access, and update the Message History and the Pattern

History Tables. However, it may be possible to reduce Cosmos’ memory requirements by

grouping predictions for multiple cache blocks together (similar to Johnson and Hwu’s

macroblocks [57]).

Cosmos could be better than directed optimizations for two reasons. First, including the

composition of predictors of several directed optimizations in a single protocol could be

more complex than Cosmos. All the predictors in existing coherence protocols that I am

aware of are integrated with the finite-state machine of the coherence protocol. Such inte-

gration works well when one considers these protocols individually. Unfortunately, com-

bining multiple such predictors into a single protocol can lead to an explosive number of

interactions and states, which can make the resulting protocol bulky and hard to debug

[21]. More critically, extending a bulky protocol with other kinds of speculation becomes

even harder. In contrast, Cosmos captures the predictors for directed optimizations in a
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single predictor. Figure6-9 shows the coherence message signatures that trigger the

dynamic self-invalidation and migratory protocols. Cosmos can capture these signatures

easily. Additionally, protocols accelerated with Cosmos are easier to extend because Cos-

mos separates the predictor from the protocol itself.

Second, Cosmos can discover application-specific patterns not know a priori. For exam-

ple, Section6.5.1 shows that one ofunstructured’s signatures is a complex composition of

migratory and producer-consumer sharing patterns. Predictors directed only at migratory

or producer-consumer pattern will fail to trackunstructured’s transition between migra-

tory and producer-consumer sharing patterns. As Section6.5.1 also shows, Cosmos can

easily capture, filter, and adapt to different message signatures generated by variations in

simple sharing patterns studied by Bennett, et al. [9] and Gupta and Weber [46].

6.8  Summary and Conclusions

This chapter explores using prediction to accelerate coherence protocols. A coherence

protocol can execute faster if it can predict future coherence protocol actions and execute

them speculatively. It shares with branch prediction the need to have a sophisticated pre-

dictor. The first contribution of this chapter is the design of theCosmos coherence mes-

sage predictor. Cosmos predicts the next <processor,message-type>  in two steps

reminiscent of Yeh and Patt’s two-level PAp branch predictor. Cosmos faces a greater

challenge than branch predictors because the Cosmos’ prediction is a multi-bit<proces-

sor,message-type>  tuple rather than a single branch outcome bit.

The second contribution of this chapter is a detailed evaluation of the Cosmos coherence

message predictor. Using five scientific benchmarks on a target shared-memory machine

with 16 processors running the Stache directory protocol, variations of Cosmos predict the

source and type of the next coherence message with surprisingly-high accuracies of 62-

69% (barnes), 84-86% (moldyn), 84-85% (appbt), 74-92% (unstructured), and 84-93%

(dsmc).
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Cosmos’ high prediction accuracy results from predictable coherence message patterns

or signatures associated with specific cache block addresses. Such signatures are gener-

ated by sharing patterns that do not change or change very slowly during the execution of

these applications. Cosmos is more general than directed optimizations, such as dynamic

self-invalidation and migratory protocols. Cosmos could be less cost-effective than the

directed optimizations because it uses more resources (e.g., tables). Cosmos could be bet-

ter than directed optimizations because (1) including the composition of these optimiza-

tions could be more complex than Cosmos and (2) Cosmos can discover and track

application-specific patterns not known a priori.

More work is needed to determine whether the high prediction rates of Cosmos can sig-

nificantly reduce execution time with a coherence protocol. This is work is analogous to

taking a branch predictor with high prediction rates and integrating it into a micro-archi-

tecture to see how much it affects the bottom line. I believe that results in this chapter on

Cosmos’s high prediction rates indicate that work on the next step is justified.

get_rw_request inval_ro_response

inval_rw_response get_ro_request

from producer from consumer

from consumerfrom producer

Figure 6-9. Signatures for dynamic self-invalidation and migratory protocols.The
downgrade_response, not shown in Table6.1, is a response to a downgrade_request sent
by the directory. On receiving a downgrade_request for a block, a cache must change the
block from exclusive to shared state.

A self-invalidation signature(a) (b)

get_ro_request

upgrade_response
from processor X

from processor X
downgrade_response

from processor Y (= X)

A migratory protocol signature
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Chapter 7

Thesis Summary

A modern computer system often “communicates” with a communication network more

than it “computes.” Consequently, today much of a computer’s value depends on how well

it communicates with external networks. As processors and networks continue to improve

rapidly, interactions between a processor and a network interface (NI) becomes a domi-

nant component of the overall communication latency.

An NI is a device that allows a processor to send and receive messages from a network.

Conventional NIs suffer from several sources of high latency because they were designed

with an interface similar to a disk’s interface. For example, conventional NIs are usually

accessed via low-level software (e.g. device driver) inside the operating system, located on

slow I/O buses, and accessed via direct memory access (DMA) or uncached, memory-

mapped device registers. With current technology each of these components can incur

between ten and hundreds of microseconds of latency.

This thesis investigates novel techniques to improve processor-NI interactions in parallel

computer connected via a System Area Network (Appendix A). A key principle underlies



174

these techniques:treat NI access as regular, side-effect-free memory access, and not as a

disk interface access.

This thesis makes four contributions. The first contribution of this thesis is to show that

treating NI access like a regular memory access opens up at least eight opportunities for

improving processor-NI interactions. These opportunities are:

• using virtual memory hardware, and not operating system intervention, to virtualize

the NI,

• placing the NI on the higher performance memory bus, and not on the slower I/O bus,

• using virtual memory as a huge buffer for network messages, instead of small amounts

of dedicated memory on the NI,

• caching messages in processor and NI caches, like regular cachable memory,

• allowing out-of-order accesses and speculative loads on a processor’s accesses to an

NI, like side-effect-free regular memory accesses,

• transferring messages between processor caches, NI cache, and main memory through

cache block transfers, instead of DMA,

• designing the application programming interface (or API) to the NI as memory-based

queues, and not directly exposing the underlying data movement primitives as the API,

and

• notifying processor of NI events through cache invalidations, instead of heavy-weight

interrupts.

The second contribution of this thesis is the design and detailed evaluation of a novel

class of NIs calledCoherent Network Interfaces (CNIs). CNIs are the embodiment of the

fundamental principle enunciated in this thesis. CNIs appear to their hosts more like mem-

ory than like a disk interface and, hence, exploit all eight opportunities for improving pro-

cessor-NI interactions. CNIs use two mechanisms,cachable device registers andcachable

queues, which interact with the host via cachable, coherent memory operations. CNIs use

several optimizations—lazy pointer, shadow head, sense reverse, empty entry removal,
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intra-message prefetch, dead message elimination, andcache bypass—to further optimize

processor-CNI interactions.

I performed a detailed simulation of four CNIs with a more conventional NI—that is, a

Thinking Machines’ CM-5 NI [124]—using a 16-node parallel machine, two microbench-

marks, and seven parallel scientific applications. For small message sizes—between 8 and

256 bytes—CNIs improve the round-trip latency by 87-342% compared to a conventional

NI on a coherent memory bus. For moderately large messages, between 8 and 4096 bytes,

CNIs improved the bandwidth by 109-202%. Results with the seven applications show

that CNIs can improve performance by up to 21-190% compared to a conventional NI.

The third contribution of this thesis is a systematic classification and evaluation of two

of the eight opportunities—data transfer and buffering—that underlie high-performance

NI designs. I evaluate these parameters in the context of seven NIs, which abstract the data

transfer and buffering parameters of the NIs in the Thinking Machines’ CM-5, Fujitsu

AP3000, Princeton User-Level DMA, Digital Memory Channel, MIT StarT-JR, and two

CNIs (CNI512Q and CNI32Qm).

My results show that a high-performance NI design should effectively use the block

transfer mechanism of the memory bus, minimize processor involvement for data transfer,

directly transfer messages between an NI and the processor (at least in the common case),

provide plentiful buffering (possibly in main memory), and minimize processor involve-

ment to buffer incoming network messages. CNI32Qm performs the best among the seven

NIs because it effectively optimizes the data transfer and buffering parameters.

The fourth contribution of this thesis is the design of theCosmos coherence message

predictor. Unlike the rest of the thesis, this part focuses on shared-memory multiproces-

sors. Most large shared-memory multiprocessors use directory protocols to keep per-pro-

cessor caches coherent. Some memory references in such systems, however, suffer long

latencies for misses to remotely-cached blocks. To ameliorate this latency, researchers



176

have augmented standard coherence protocols with optimizations for specific sharing pat-

terns, such as read-modify-write, producer-consumer, and migratory sharing. This paper

seeks to replace these directed solutions with general prediction logic that monitors coher-

ence activity and triggers appropriate coherence actions.

This thesis takes the first step toward using general prediction to accelerate coherence

protocols by developing and evaluating theCosmos coherence message predictor. Cosmos

predicts the source and type of the next coherence message for a cache block using logic

that is an extension of Yeh and Patt’s two-level PAp branch predictor. For five scientific

applications running on 16 processors, I found Cosmos has prediction accuracies of 62%

to 93%. I argue that this result justifies more investigation into using prediction to acceler-

ate coherence protocols.

I believe that challenging work lies ahead in high-performance messaging systems. The

demand for low-latency communication will continue to grow because as latency drops

below certain thresholds new applications are enabled. Unfortunately, latency of commu-

nication faces hard physical limits (e.g. speed of light). Fortunately, in the future plenty of

cheap computing power, transistors, memory, and disk space will be available. The key

question is how these cheap resources can be used effectively to solve the latency problem.

One possibility is to use these resources to aggressively initiatesystem-wide speculation in

messaging systems.
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Appendix A

System Area Networks

There is a new generation of networks that falls somewhere between commercial local

area networks (LANs) and custom memory buses. Some of these networks are simply bet-

ter LANs, some are interconnection networks for massively parallel processors (MPPs),

while others resemble high-performance memory buses. These networks are calledSystem

Area Networks (SANs). To the best of my knowledge, the term “System Area Network”

was first used by Robert Horst to describe the Tandem ServerNet.

Today’s conventional LANs are highly scalable and reusable. They connect hundreds of

host nodes and provide network interfaces that can be attached to standard I/O buses.

However, they do not offer very high performance. Today’s state-of-the-art LANs, such as

100 megabits/second Ethernet or 155 megabits/second switched ATMs, offer very high

latency (100-1000s of microseconds) and relatively low bandwidth (10-200 megabits/sec-

ond). The poor performance of LANs is aggravated by heavy-weight legacy protocol

stacks, such as TCP/IP. Such protocols make the conservative assumption that LANs are

an extension of the internet and therefore are highly unreliable and able to drop, corrupt,
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replay, expose, forge, and delay network messages. These assumptions result in complex

software protocol stacks that ensure reliability in software.

Memory buses are in striking contrast with LANs. Memory buses deliver extremely low

latency (10s of nanoseconds) and very high bandwidth (4 - 20 gigabits/second). Memory

buses can be accessed from processors in a few processor cycles because their high reli-

ability and highly trusted environment avoid software intervention. Nevertheless, unlike

LANs, memory buses are often customized, have non-standard interfaces, and are hard to

extend to hundreds of hosts.

An ideal network would be one that combines the best of memory buses and LANs.

Such a network would combine the performance and reliability of a memory bus and

avoid running TCP/IP. But the scalability and standardized interfaces of LANs are also

desirable so that they can be reused across several generations of machines and/or manu-

factured by third party vendors. Thus, four goals have given rise to a new generation of

networks called System Area Networks (SANs). These goals are:

• Performance (low latency and high bandwidth)

• Reliability

• Scalability and

• Reusability.

Some MPP networks such as the TMC CM-5 network or the Meiko CS2 network can be

classified as SANs. More recent examples of SANs are the Myricom Myrinet switch, the

IBM Vulcan switch used in SP2, the Spider switch used in the SGI/Cray Origin machine,

the Cray T3E network, Dolphin SCI switch, the Fujitsu AP-Net, and the Cray Gigaring.

Tandem’s ServerNet can also be classified as a SAN. However, the Tandem ServerNet is

unique because it replaces the memory bus, the I/O bus, and the LAN with a single inter-

connection network called the ServerNet.
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Most of these SAN switches deliver latencies of less than a few microseconds and link

bandwidth exceeding one gigabit/second. They are highly reliable. They do not drop net-

work messages, provide CRC checks for error detection, and are expected to operate in a

closed, secure, and trusted environment such as a business office or a machine room. As a

result, errors are extremely rare. If the system does detect a SAN error (e.g., cyclic redun-

dancy check error) it can either crash or return the error status to the user application. SAN

switches can be composed to build configurations that connect hundreds of host nodes,

which makes them highly scalable (like switched LANs). Finally, SANs provide internal

network interfaces that can be reused across different machines or across different genera-

tions of the same machine.
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