Design and Eauation of Netwrk Interfaces for
System Area Netarks

by

Shubhendu Sekhar Mukherjee

A dissertation submitted in partial fulfilment of

the requirements for the gieee of

Doctor of Philosoph

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1998

© Copyright by Shubhendu S. Mukherjee, 1998

All Rights Resered

Abstract

Much of a computes’ communication performance is determined by kell it inter-
acts with netwrks. Such interaction is critical for latgasensitve applications, such as
parallel programs that send frequent, short messagasungtely networks hae
improved dramatically especially System Area Natvks (SANs). SANs pnade sub-
microsecond lateng gigabytes per second bandwidth, amdywhigh reliability to 10-100
hosts. Unfortunatelythis dramatic impneement in netwrk performance is seldom deli
ered to applications. Agg bottleneck is the host netwk interface (NI), which connects a
network to a host computefFor example, comentional Nis are usually accessed via direct
memory access or uncached, memory-mappeteeayisters, which can incur latencies

between ten and hundreds of microseconds.

This thesis imestigates ngel techniques to impx@ interactions between a processor
and a SAN NI. A ky principle underlies these techniquiesat NI access aggular, side-
effect-frre memory access, and not as a disk interface acbesshesis’ first contrildion
shaws that such treatment opens up at least eight opportunities fovimppocesseNI

interactions.

This thesis’ second contrbon is the design andvauation of a neel class of Nlis
called Coheent Network Interface@CNIs). CNIs realize thedy principle enunciated in
this thesis. CNIs appear to their hosts more tdgular, cachable memory than éka disk

interface and xploit all eight opportunities for impxing processoeNI interactions.

The thesis’ third contrilttion is a systematic classification andleation of NI data
transfer and wifering parameters. Ivaluate these parameters in the ceintd several

commercial and research NIs.

Finally, this thesis’ last contriliion is theCosmoscoherence message predictbnis

part difers significantly from the rest of this thesis. Coherence protocol message predic-

1

tion can accelerate the performance of directory protocols, which are used by gest lar
shared-memory multiprocessors teek pefprocessor caches coherent. Cosmos predicts
the source and type of thextieoherence message for a cache block using general predic-
tion logic that is gtension of ¥h and Btt's FAp branch predictofFor five scientific appli-
cations running on 16 processors, Cosmos’ prediction agctaages between 62% and
93%.

Acknowledgments

Many people helped in making this dissertation possible and umppride through
graduate school bearable. In particulamm greatly indebted to twpeople: my advisor
Mark Hill and my wife Mimi. Mark preided \aluable guidance, encouragement, and crit-
icism from the ery first day | came to W&tonsin. Mark liles to teach byxamples. © me
Mark himself vas the gample and a role model. Byatching Mark | learned hoto dis-
cipline and balance my professional and soorakli | am thankful to him for the patience

and the understanding with which he taught me the tricks of our trade.

In every step Mimi supported and encouraged me to complete my dissertation. She not
only celebrated my successest blso endured all my frustrations.itidut her constant
companionship and understandingduld not hae finished this dissertation.

Jim Larus, Guri Sohi, and D@ Wood were great inspirations. Jim andvidawere a
constant source of mel ideas. Gurs insightful comments helped impemy work.

My family helped and encouraged me in snalifferent ways. My father who did a
Ph.D. himself, allays encouraged me to pursue a Ph.D. My mpties founded henen
school, taught me that you can aeiearything in life if you set your mind to it. My
brother (Dipu), sisten-law (Tutu), and Mimis sister (Riki) helped puide a supportie
family ervironment. Mimis parents’ praded advice and support wheree needed.
Finally, both my and Mimg family patiently endured my absence from gpndamily

reunions.

The Wisconsin Whd Tunnel project, colleagues outsidasabnsin, and the Computer
Sciences department at UMadison preided me with tools | needed to complete this
dissertation. In particularSteve Reinhardt, Babak dfsafi, and Mik Litzkow helped
develop and delg the Wsconsin Whd Tunnel Il (WWTII) parallel simulator which 1
used for most of myxperiments in this thesis. Fred Chong and Shamik Sharmalpd
me with one of the benchmarkspéolve | used in this thesis. The Computer Sciences

iv

department pnaded me with a tremendous amount of computing resources | needed for
my simulations. In particulathe sgen Sun Enterprise se&ams—most of them equipped
with 16 250-MHz UltraSRRC processors—and the 40-nodés@énsin COV (Cluster of

Workstations) preided rapid turnaround time for my parallel simulations with WWT

The architecturegiculty at Wsconsin—Mark Hill, Jim Goodman, Jim Smith, Guri Sohi,
and Daid Wood—hare created a congenial atmosphere in which graduate students can
interact freely and openly witha¢ulty The architecture students atisdébnsin were
always willing to listen to my ideas and prde \aluable criticism about them. In particu-
lar, Vijay—presently Prof. Yaykumar at Purdue Uwmersity—patiently listened to and
criticized many of my ideas and pxided \aluable advice garding the mechanics of

graduate school.

Several people praded \aluable feedback and information for this thesis. Mark Hill,
Guri Sohi, and Dad Wood patiently read through this thesis. Nick CarBab Felder-
man, Mike Galles, Leonidasdahthothanassis, Whay LeeeiK Maclenzie, Dshi Shimizu,
and Bob Zak praded \aluable information garding sgeral commercial and research
networks and netark interfaces. ®m Anderson, Babakafsafi, Suresh Chalasani, Satish
Chandra, Erik Hagersten, Rebecca fh@in, Stednos Kaxiras, Larry Landwebedim
Larus, Ken Maclenzie, Rich Martin, SubbaracaRcharla, Larry Peterson, $eRein-
hardt, Arinash Sodani, .N.Vijaykumar Jon Wade, and Bob Zak pvaled \aluable com-

ments on this wrk.

My dissertation researchas supported in part by Wright Laboratoryidnics Director-
ate, Air Force Material Command, USAkinder grant #F33615-94-1-1525 and ARP
order no. B550, National Scienceundation with grants MIP-9225097, MIPS-9625558,
and CDA-9623632, and donations from Sun Microsystems.

Finally, I would like to thankEureka de’s for providing me with a constant supply of

cappucino and a place to sit, think, and relax during my tenure in graduate school.

Table of Contents

ADSHraCt. . . . [
AcKnowledgments.
Table of Contents. 1%
LiSt Of FIQUIES. o X....
Listof Tables Xi....
Chapter 1. IntroduCtion e 1....

1.1 Components of a Network Interface. 5...

1.2 Problems with Conventional Network Interfaces. 7. .

1.3 FUuture Trends e 10...

1.4 Thesis Contributions for Network Interfaces. 11.

1.5 Using Prediction to Accelerate Coherence Protacals. 14
Chapter 2. Treat Network Interface Access as Memory Access. 17

2.1 Use Virtual Memory Hardware to Virtualize the Network Interface. 18

2.2 Place the Network Interface on the Memory Bus. 19.

2.3 Use Virtual Memory to Buffer Network Messages. 24,

2.4 Cache NI Registers in Processor and NI Caches 26.

2.5 Allow Out-of-Order and Speculative Accesses to NI Memory. 30

2.6 Move Data Between a Processor and an NI in Cache Block Units. 31

2.7 Use Memory-Based Queues as Application Programming Interface . . .33

2.8 Use Cache Invalidations as Notification Signals 37.

2.9 ConcCluSION. 39. ...

Vi

Chapter 3. Coherent Network Interfaces Techniques. 4L
3.1 Cachable Device Register (CDR). 42. .
3.1.1 BasicCDRoOperation.uiiiiiiiinnnnean.. 42 . .
3.1.2 Advantagesof aCDR....... 44 . .
3.1.3 DisadvantagesofaCDR 46. .
3.2 Cachable Queues (CQS)....... ... A8 ..
3.2.1 BasicCQ Operation.t 48 . .
3.2.2 CQOptimizations. e 50. ..
3.3 HOME .. 58
3.3.1 Operating System ISSUES it e 59..
3.3.2 Performance ISSUes. 60 . .
3.4 CNITaXONOMY. . .ottt e e e e e 63...
3.5 CNIsonl/Obuses. 64. ..
3.6 Multiprogramming CNIS. e 67. ..
3.6.1 Ensuring Protected Accesstothe Nl 68.
3.6.2 Providing the NI with Physical Addresses of Message Data. 71

3.6.3 Allowing Multiple Processes to Simultaneously Access the NlI. .. .73

3.6.4 Detecting the Generation of New Messages by Different Processess

3.6.5 Multiprogrammed CNQ,, Datapath......................... 76.
3.7 Interfacing CNIs with Standard Networks. 8.
3.8 Related WOrkK. o 78 ...
3.0 UMM . . oo 81. ...
Chapter 4. An Evaluation of Coherent Network Interfaces. 83
4.1 Network Interfaces Simulated., 84..
4.1.1 Nl,, Implementation i, 84 ..
4.1.2 CNIyImplementation. i 85..
4.1.3 CNI3Q and CN§;.Q Implementations. 85.

4.1.4 CNIpQ, Implementation. 86. .

Vi

4.2 Simulation Methodology. 86 ..
4.2.1 Wisconsin Wind Tunnel Il Simulatar. 87.
4.2.2 Simulation Parameters. 87..
4.2.3 Macrobenchmarks. 89 ..

4.3 Microbenchmark Results. 93 ..
4.3.1 Round-TripLatency. 9 ..
4.3.2 Bandwidth. 9%. ..

4.4 Macrobenchmark Results 98 ..

4.4.1 Performance Comparison of five NIs on Memory and I/O Buses. . 99

4.4.2 CNIpQnand CNEQ Speedup. ..o oo oo 108
4.5 Impact of Network Latency 110.
4.6 CONCIUSIONS. . . . 110 ..

Chapter 5. Impact of Data Transfer and Buffering Alternatives. 113
5.1 Data Transfer Parameters. 115.

5.1.1 Sizeof Transfer. i 116. .

5.1.2 Degree of Processor Involvement for Transfer. 117

5.1.3 Source and Destination of Transfer. 120
5.2 Buffering Parameters. 120. .

5.2.1 Locationof NIBuffers. 121.

5.2.2 Degree of Processor Involvement for Buffering 122
5.3 Network Interface Implementations. 123,
5.4 ReSURS. 125. ..

5.4.1 Microbenchmarks. 126 .

5.4.2 Macrobenchmarks. 131.

5.4.3 Single-Cycle Nj, vs. CNbQu 135,
55 Related Work. 137 ..

5.6 CoONCIUSIONS. 137 ..

viii

Chapter 6. Using Prediction to Accelerate Coherence Protocols 139
6.1 Background. 142 ..

6.1.1 Structure of a Directory Protocal. 142

6.1.2 Two-Level Adaptive Branch Predictor. 144

6.2 Predicting Coherence Protocol Messages 144

6.2.1 Signature Generated by Producer-Consumer Sharing Pattern. . .145

6.2.2 Basic Structure of COSmMOS. 146.
6.2.3 Obtaining Predictions from Cosmos. 149
6.2.4 Updating CoSMOS . . .o i vttt ettt 149, .

6.2.5 How Cosmos Adapts to Complex Coherence Message Streams?149

6.2.6 Filtering Noise from Coherence Message Stream 150
6.2.7 Implementation Issues for Cosmos. 151
6.3 Using Coherence Protocol Message Predictors. 153
6.3.1 Mapping predictionstoactions 153
6.3.2 Detecting when to performactions. 154
6.3.3 Handling mis-predictions 154.
6.4 Methodology. 156 ..
6.4.1 Wisconsin Stache Protocol. 157.
6.5 ReSUItS. 158. ..
6.5.1 Basic PredictionRate 158 .
6.5.2 Additional Analysis 166 .
6.6 Increasing CoSMOS’ ACCUIACY. . . . v oo v i i e ettt e e 168.
6.7 Comparison with Directed Optimizations 169
6.8 Summary and Conclusions. 170.
Chapter 7. ThesisSummary e 173..

Appendix A. System Area Networks i 189.

Figure 11.
Figure 12.
Figure 13.
Figure 21.
Figure 22.
Figure 23.
Figure 34.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 44.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 51.
Figure 52.
Figure 53.
Figure 64.

List of Figures

Three components of message latency. 2..
High-level views of an NL.. 5...
A shared-memory multiprocessor 14. .
Workstation Nodes with Network Interfaces.. 20.
Trends in peak SAN link bandwidth and I/0 bus bandwidth..22
Three examples of side-effects in existing Nl designs.. 26
CDR Transfer Example. i e 43 ..
Cachable Queues. 49. ..
A Cachable Queue (CQ) with four messages 52.
Dead message elimination.. 61..
lllustration of shadow address with a CNlonthe l/O.bus 66
Logical datapath through multiprogrammed @ device 77
Process-to-process round-trip message latency. 94
Breakdown of round-trip latency for jJand CN,Q,, 95
Process-to-process message bandwidth 97.
CNIs’ performance onthe memoryhbus 100
CNIs’ performanceonthel/Obus.......................... 101
Breakdown of memory bus transactions for five memory bus Nis . 104
CNIiQ,cachesizevariationcco i, 106.
Macrobenchmark speedup. 109.
Impact of Network Latency. 111.
Impact of data transfer and buffering.. 114
Comparison of executiontime of sevenNIs................... 130
Comparison of execution of a single-cycle N\With CNI3,Qpp.. - -« . . . 136

Basic structure of a directory protocol. 143

X

Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.

Message signature generated by a producer-consumer sharing pattsn.
COSMOS’ SITUCKUNE. . . . o et e e e 147. .
Two examples of using prediction to accelerate coherence protocdl83

Dominant (incoming) message signatures for appbt, barnes, and ds80c.
Dominant (incoming) message signatures for moldyn and unstructLédd.
Variation in number of bodies in the root’s children in barnes.163

Cosmos’'timetoadapt. 165.

Signatures for dynamic self-invalidation and migratory protocols. . 171

Xi

List of Tables

Table 2.1: Treat NI access as memory access and not as a disk interface accedsf

Table 2.2: Error model for networks and memory.. 36.
Table 3.1: Steps in the three-cycle handshake. a7. .
Table 3.2: CQ state atsenderandreceiver, 57..
Table 3.3: Summary of CQ optimizations. 58. .
Table 3.4: Coherent Network Interfaceson1/Obuses 65.
Table 3.5: Comparison of CNI with other network interfaces. 79
Table 4.1: Summary of Network Interface Devices. 85.
Table 4.2: System parameters for simulated system. 88.
Table 4.3: Summary of macrobenchmarks. 90. .
Table 4.4: NI,,’'s slowdownonthel/Obus............. 99. .
Table 4.5: Percentage of a cache block space wastedfofCNI 102

Table 4.6: Percentage of messages buffered explicitly for memory bus Nis. . . 103

Table 4.7: Breakdown of memory bus cycles for,Jbnd CN,Q,,

................... 108
Table 5.1: Buffering in commercial networks.. 121
Table 5.2: Classification of memory bus NIs.. 123
Table 5.3: Process-to-process round-trip latency for seven NIs.. 127
Table 6.1: Sample of coherencemessages. 145.
Table 6.2: Examples of prediction-action pairs in existing protocols. 152
Table 6.3: Number of iterations for each benchmark 156
Table 6.4: Cosmos’ prediction rates (expressed in percentage of hits).. 158
Table 6.5: Cosmos’ prediction accuracy with filters.. 164
Table 6.6: Dsmc’s prediction accuracies for specific transitions.. 166
Table 6.7: Memory overhead of Cosmos predictors (with no filter).. 167

Table 6.8: Using processor numbers to improve Cosmos’ accuracy 168

Xii

Xiii

For your dissertation you must think of one thought that no one has thougla befor

— Pasupati Mulerjee, Emeritus Professor

School of Pharmag U. of Wisconsin-Madison

Xiv

Chapter 1

Intr oduction

The term “computer” is perhaps a misnomer todaynodern computer system often
“communicates” with a communication nettk more than it “computésConsequently
much of a computes’value depends on howell it interacts with netarks. 1o enhance
this wvalue, designers must imw® the communication performance detied to users.
The aspect of communication performance that is quoted most commdalgde/idth
Bandwidth is the rate at which data camflthrough the netark and computerHigh
bandwidth is critical when transmitting high-quality video ogéafiles. An undeappre-
ciated aspect of communicationlagency Lateng is the useto-user delay for sending a
message. Lategaetermines performance of applications that send/rsiamall messages,
as can be found in fine-grain parallel computing, nétviile systems, database lock man-

agers, and arld-wide web requests.

Lateny of communication can be brek into three important components (Figli+g):
* lateng through softare protocols that generate and consume messages,

* lateng through the netark, and

main main

memory memory
_l — men|10ry s] merr|1ory s
I/O bridge |:'|:| /O bu /O bridge /O bu
S S
Y —]—
network network
interface interface
ISKS < ISKS v

I

N >

-~

\—‘ lateng through software protocols
— lateng of processor interactions with netvi interface
- - lateng through netwrk

Figure 1. Three components of message layenc

* lateny of processor interactions withreetwork interface (Nljhat connects a com-

puter with a netark.

The adent of high-performance microprocessors with superconyilkieerclocks, lean
software protocols (e.g., [127, 128]), and high-speed reliableank$wvith tens of nano-
seconds laternyc(e.g., [41]) hae drastically reduced the impact of sadte protocols and
networks on the werall lateng of communication. Consequentiye third component—
processor interactions with an Nl—threatens to become a critical bottleneck, particularly

for a cluster of wrkstations connected with a high-speed oekw

An NI is a deice that sends and reges messages from the netk on behalf of the
computer To send or recee a message a processor (and/or memory system) must interact
with the NI by reading and writing messages into theicge Comventional NIs were
designed for shwer processors, hegweight protocols, and slo and unreliable net-

works. Consequentlyprocessor interactions with camtional NIs incur laje compo-

3
nents of latenc For example, cowentional NIs are usually accessed viav-level

software (e.g., dace drver) inside the operating system, located owstd/O huses, and
accessed via direct memory access (DMA) or uncached, memory-mapes! ragis-
ters. Each of the these components can add between ten and hundred microseconds

lateng to the total latencseen by a message [5, 127, 11].

The ley problem with comentional Nls is that a processor interacts with them in almost
the same way it interacts with disk intestes. Br example, disk-resident files are usually
accessed via the operating system and read into memory using direct memory access
(DMA). However, technological achnces hae made current netwks between four to
five orders of magnitudeaster than disks. Consequentlyls must be redesigned to

accommodate this megeneration of high-speed netiks.

This thesis proposes andaduates neel techniques to impue a processor and memory
systems interactions with an NI. That is, this theskmmines techniques to imu® an
NI's internal interdice to a computer amt its external interéice to netwrks. These tech-
niques reduce theverall message latepto a fev microseconds. Other related projects
and designs k& proposed using refleeti memory techniques to directly deposit data
from a processos’cache or memory in one node to another sogemory [44, 12]. The
techniques described in this thesis can further ingtioe performance of communication
via reflectve memoryThis is because the techniques proposed in this thesisviesgite
important component of lateyicprocessoNI interactions, which is criticalven for

reflectve memory (see Chapter 5).

The NI techniques | propose in this thesis are mostaetdo a Cluster of Wfkstations
(COW). A COW is a parallel machineulit with commodity workstations and connected
with a high-speed and reliable System Area NekwWAppendix A). CQVs are attracte
over traditional massely parallel machines (MPPs) becauseV@have the potential to

offer performance similar to MPPsytbat a reduced price. The reduced price oiAGO

4
arise from the commodity nature of its parts—commodibykstations, commaodity oper-

ating system, and (perhaps) commodity roeky

This thesis mads four contribtions:

» The first contrilntion of this thesis (Chapt@) is the deelopment of a & NI design
principle:treat NI access aggular, side-efect-frre memory access, and not as a disk
interface accesd shav how treating a processaraccess to an NI as ayutar mem-
ory access can significantly impeprocesseNI interactions.

e The second contrition of this thesis is the design (Cha@@prand e&aluation
(Chapterd) of a nwel class of NIs calle@€oheent Network Interfaces (CNIs)hich
interact with a processor and memory system via cachable, coherent memory opera-
tions. CNIs are the embodiment of the design principle mentione abo

* The third contrilntion of this thesis (Chapté) is a systematic classificatioxaenina-
tion, and galuation of NI data transfer andfiering parameters, which v signifi-
cant impact on the performance of procedgbinteractions.

* Finally, the fourth contribtion (Chapte6) differs significantly from the rest of this
thesis. Bchniques discussed in the rest of the thesis can accelerate-user mes-
saging in a parallel machine programmed with a message-passing programming
model. In contrast, Chaptérexamines techniques to accelerate the communication
performance of parallel machines that are programmed with a shared-memory model.
Most lage shared-memory machines use a directory protocatdp keiprocessor
caches coherent. Unfortunatetlyese protocols often incur long latencies due to either
long protocol actions or multiple messageleange. This chapter proposes avalie
ates theaCosmoscoherence protocol message predjatdrich can help ameliorate this
lateng by predicting with high accurgdhe n&t incoming coherence message for a

cache block.

Finally, Chaptef7 summarizes this thesis and yides directions for future evk.
Appendix A describes the characteristics of & generation of netarks called system

area netwrks.

Fromprocessor/memory To processor/memory

user
process

|
Internal Netvork Interface

Internal NI regyisters
(status, control, data)

vt

set up user acceg
External Netwrk Interface

(CRC, framing, etc.) \

| UserLevel Network Interiace

direct user acces
to se_nd and
receve messages

To SAN From SAN
(b)
(@

Figure 12. High-level views of an Nl.(a) shavs the lnilding blocks of an NI. (b) sives hav
a user process can logically access an NI.

The rest of this chapter isgamized as follavs. Sectiorl.1 describes theelt compo-
nents of an NI. Sectioh.2 outlines problems with ceantional NI designs. Sectidn3
argues wly these problems will becomgan more critical in the future. Secti@¥ states
my proposed solutions and discusses caumiobs of this thesis. Sectidn5 motvates

and examines the Cosmos coherence message predictor

1.1 Components of a Netark Interface

A network interface (NI) in a host node is auiee that allevs a processor to send and
receve messages to and from a netkvthat connects these host nodes. The ortw
accepts messages from an NI andveed them to one or more NIs connected to the net-
work. An NI consists of tw parts, the internal NI and theternal NI (Figurel-2a). |
define the internal NI as the Nlinterfce to the processanain memoryand (perhaps)
disks, and eternal NI as the N§ interfice to the netark. The internal NI contains logic
and memory that the processor uses to send andeguessages to and from the Nér F
example, a processor can send a message to therkdiwwriting messages to the data
registers of the internal NI In contrast, atte¥nal NI performs netark-specific functions,

such as yclic-redundang checks, netark-specific framing, etc.

6
This thesis ®amines the architecture of an internal NI. An internal NI consists @f tw

parts: the send intex€e and the reoas interbice. Each inteaice consists of four compo-
nents: status gasters, control igisters, data ggsters, and an optional notification mecha-
nism.Here | use the termegisters just as an ahitectural specificationthe reisters, for
example, may be implemented with DRAM. | wikamine alternate implementations of
these rgisters and notification mechanism laterthis section, | discuss the function of

each of the components.

Status Registers.NI status rgisters contain NI dece status information. A recs
interface status gaster for example, can indicate that amenessage has ared from the
network, and a send intexfe status gister can indicate that the NI has successfully

injected a message into the netk

Control Registers.NI control raisters allavs a user process to pass information and
commands to the NI g&e. For example, a processor mayant NI interrupts disabled in a

critical section. It can do so by writing to a contr@ister in the NI.

Data Registers.NI data rgisters contain message data sent by a processor orecei

by the NI from the netark.

Notification mechanism.An NI notification mechanism is a mechanism through which
the NI informs a process of ychange in NI déace status. & example, the NI can inter-
rupt the process on a change iwide status, such as asl of a message from the net-
work. Such gplicit notification may be unnecessary if a process monitors changes in the

NI status rgisters. Hence, the notification mechanism is optional.

To send a message to the nartiey a processor first reads the send iaterfstatus gs-
ter to ensure there is enough space in the sendaicgésrtlata rgisters. If there is enough
space, the processor writes avnmessage to the datagigters. If there is not enough

space, the processor can either poll the NI periodicallya tiee NI notify it when free

7
space becomewailable. On rec®ing the n& message in its datagister the NI hands

the message to thaternal NI, which injects the message into the oekw

When a message ares at the receing external NI, the gternal NI tracts the mes-
sage from the newvk and hands the message to the vecmiteraice. The recee inter-
face writes the message to its daggisters and sets a statugister that indicates to the
processor that a message havedin the recee interace. Flav control (e.g., return-to-
sender) is typically used to ensure messages aeg (@ rarely) lost if the datagesters
are full. If the control rgisters hae been appropriately set by the processw NI can
send a notification to a processor in the rec@bst node about the aal of this message
through a processor interrupt. Finallyprocessor in the regeihost node reads thewe

message from the NI datagisters.

Marny recent research and commercial computers use a microprocessor instead of a
hardware, finite-state machine to run message protocols. The discussion in the rest of this
thesis is independent of the presence or absence asluah protocol processadkn inter-
nal NI must interact with processors and memory system internal to a node to send and
receve messages. Such interaction can use all opportunities for performancecimgnd

that | discuss in this thesis.

1.2 Prooblems with Corventional Network Interfaces

Corventional internal NI architectures do nofi@éntly support lav-lateny communi-
cation in a COV. Lateny is the useto-user delay for sending a messagew Lateny
determines the performance of applications that send small messages freguemtkgnt
small messages underlie nyamaditional and emeging application domains, such as par-

allel scientific programs [32].

Fortunately improvements in netarks hae reduced the impact of the netlk and soft-
ware protocols (that generate and consume messages) oetalkk lateny of communi-

cation. In particulgrlocal area netark (LAN) bandwidth has impred from 10-100

8
megabits/second to one g@ifit/second or more. AggregsiLANSs, such as the Myricom

Myrinet [15] or the &ndem Semrnet [54], hae moved so &r that some vie them as a
new class of netarks called assystem aga networkor SAN [54, 8] (Appendix A). SANs
improve performance in tavways. First, aggresa links and switches pvale very high
bandwidth and xremely lawv lateng. Second, reliability properties of SANs allsys-
tems to use lean communication layers (e.g.,vAchilessages [128]) instead of faga
weight and one-size-fits-all protocols (e.g., TCP/IP). Consequ&hlMs help impree
the performance of both netwk hardvware (links and switches) and neik software

(communication protocols).

Unfortunately improvement in netwrk and softvare protocols hae exposed processor
NI interactions as a major bottleneck, particularly forV@® Corwentional internal NI
architectures can introduce between ten and hundreds of microsecondsttatbaaver-

all communication lateryc There are eightttors that can contuie to such lateryc

« Opeimating system interventio@orventional NIs are accessed by the processor via the
operating system (e.g., Unix s@t&). Such inteention eases protection and address
translation for messageitiers. Unfortunatelysuch interention also introduces long
latencies to the critical path of message send and receipt [5, b2 &almple, switch-
ing to the operating system from a user process can regecat®n of between hun-

dreds and thousands of instructions.

* 1/O bus. Corventional NlIs are located on the I/@g) and not on the higher perfor-
mance memoryus. This is because I/Quges, unlike proprietary memoryuses, dier
standard intedces to which third-party netnk vendors can manaéture their NI
cards. Unfortunate)ythe lateng and bandwidth of 1/O Uses are tev to ten times

worse than current memoryses.

* Small mesgge kuffers in NI.Most corventional NiIs dfer small amounts ofuffering
(e.g., fav kilobytes) in their internal NlIs and rely on processorsutiteb messages in

main memoryUnfortunately such processarontrolled luffering can dgrade proces-

9
sor performance by creating resource contention for processors, mamoigystem

buses.

Uncaded access to Niegisters. Corventional NlIs rgisters are maegd uncachable
primarily because such NI designsvéaside-diects. for example, a load to an NI
device register both returns aalue and deletes it from thewiee. Unfortunately

uncached accesses are muclveldhan memory accesses that hit in processor caches.

In-order and non-speculative access to Rjisters. Corventional NIs do not alle
processors to access Nprgers out of order and specwaty, aguin, because of the
presence of sidedfefcts. For exkample, if a message send is initiated spemditithen
it cannot be rolled back if the processor later decides that its speculasanasrrect.
Therefore, NIs will appear relagly slover, as processors continue to impeovia

out-of-order and speculaé memory accesses.

Slow data tansfer Corventional Nlis transfer data from the NI via either uncached
loads/stores to memory-mapped Njisters or direct memory access (DMA). Both of
these are l-performance solutions. Uncached accesses usually transfer small
amounts of data (e.g., between 4 - 16 bytes), therdbyirgf lov bandwidth. DMA
transfers lage amount of dataub require the operating system to initiate the transfer

which incurs huge latencies.

Application Pogramming Interface (APICorventional Nls either directlyxpose the
underlying data transfer primms (e.g., programmed-controlled 1/O via uncached
loads/stores to memory-mapped Ngisters) or require the operating system toeserv

as the API (e.g., Unix soeks) for message sends and nee®i The first solution tdrs

tight coupling between the processor and NI, which often blocks the processor until
the access is complete. The second soluti@nagequires sk operating system

intervention.!

Notification via interruptsCorventional NIs usually notify processors of Nleats

via heay-weight interrupts. Unfortunatelgurrent microprocessors are not optimized

1. In reality, this interce is som&here in between an Application Programming lrateef (API)
and an Application Binary Inteate (ABI). | use API due to the lack of a better term.

10
for interrupts because thé&reat them asxeeption conditions. Consequentigterrupt-

driven messaging can significantly deteriorate communication performance.

1.3 Future Trends

Technology trends suggest that the layetacaccess the internal NI will becomeea
more critical in the future. The contution of software protocols and nebsks on @erall
communication latencwill continue to reduce. Microprocessors that typically run these
protocols are impnang at a tremendous pace. The steady drop in feature sizes and intro-
duction of microarchitectural techniques, such as speeglledcution [83, 117], are pro-
jected to impree microprocessor performance byaetbr of 80 in the ne ten years
[140].

Network performance will &ep pace with the impvement in processor performance.
Currently network bandwidth is imprang at 100% per year (Figug&2), which trans-
lates into adctor 1000 impreement in the nd ten years. Such magsiimprozement in
bandwidth will male the lateng of requests (carrying aviebytes) and responses (carry-
ing multi-megabytes of data) similaConsequentlyoverall communication lategcwill
become een more critical. &rtunately network latencies will also continue to drop in the
future because of the agvt of lav-cost CMOS processes, v switch architectures [6],

and high-speed optical switches [95].

The plosive grawvth in the performance of microprocessors and aetsvrequires
innovative techniques to reduce the latgiod processeNI interactions in a C®/. These
techniques must also alloa seamless transitionviards efectively using future techno-
logical and architectural adwuces. | ggue that the solution to this problem is to treat pro-
cessoiNI interactions lile processememory interactions (Sectidn4). Since the ap
between processor and DRAM memories is increasing [49], microprocessors will con-
tinue to irvent navel techniques to bridge thisg. In a COV, treating an NI access éka
memory access will alle internal NI architectures to taladwantage of such future inno-

vations.

11
1.4 Thesis Contrilutions for Network Interfaces

This thesis has four contribons. | discuss the first three contrions in this section.

Sectionl.5 discusses the fourth contriton.

The first contrilntion of this thesis (Chapt@) is to shav how treating a processar’
access to a netwk interface as a gular memory access can tremendously im@noro-
cessoiNI interactions in a C@/. Memory is virtualized without requiring operating sys-
tem intenention (in the common case), is on the memary, bis plentiful in todag
computers, does notvaside-efects, and hence, can be cached and accessed out of order
and speculately, and is usually transferred in cache block units. | propose to do the same
for NIs. Most of the these opportunitiessredeen eplored partially and independently by
other researchers. My contuiiion is to oganize these opportunities in a single frarae

that exposes commonality and sygestic interactions.

NIs that use direct memory access (DMAfjeoflsome of these admatages because data
DMA-ed into memory can be treated justelikggular memory Unfortunately the DMA
initiation itself often uses high-latepsolutions, such as initiation via the operating sys-
tem (for traditional DMA) or uncached loads/stores (for PrincetdiserLevel DMA

[11]).

Treating an NI access as a memory access canvmpibeight components of latgnc
listed in Sectiorl.2. Some of these eight opportunitievéhdeen partially xplored by
others. A principal contriltion of this vork is to oganize these opportunities into a com-

mon framevork. These eight opportunities are:

e using virtual memory hardave, and not operating system intgrtion, to virtualize

the NI (Figurel-2a),

» placing the NI on the higher performance memary, land not on the si@r 1/0 tus,

12
« using virtual memory as a hugefter for network messages, instead of small amounts

of dedicated memory on the NI,
» caching messages in processor and NI cachesidjklar cachable memary

» allowing out-of-order accesses and specutatoads on a process®raccesses to an

NI, like side-efiect-free rgular memory accesses,

» transferring messages between processor caches, NI cache, and main memory through

cache block transfers, instead of DMA,

» designing the application programming inéexé (or API) to the NI as memory-based
gueues, and not directlxgosing the underlying data mement primitves as the API,

and

* notifying processor of Nlwents through cachevalidations, instead of hegweight

interrupts.

The second contrniliion of this thesis is the design (Cha@grand ealuation
(Chapterd) of a nev class of netwrk interiaces calledCoheent Network Interfaces
(CNIs). CNiIs sit on a computer’'memory hs and interact with processors via cachable,
coherent memory operations. The most aggresSNI—that is, CNQ,,, in my nomencla-

ture—eploits all eight opportunities for performance imgement outlined abe.

Chapter3 develops and optimizes twwmechanisms that CNIs use to communicate with
processors. Aactable deice registe—derived from cachable controlgisters [101]—is
a coherent, cachable block of memory used to transfer status, control, or data between a
CNI and a processofCachable queuegeneralize cachable dee reagisters from one
cachable, coherent memory block to a contiguoggoneof cachable, coherent blocks
managed as a circular queue. An importantathge of CNIs is that thellow cachable
queues to be pisically located in processor or CNI cachas, Ibgically allocated in main
memory which allavs plentiful uffering. ChapteB also &plores seeral critical optimi-
zations—azy pointey shadow headsense everse empty entry emoal, intra-messge

prefetd), dead messge elimination andcade bypass-that impraves the performance of

13
CNiIs. Finally Chapte3 examines diferent alternaties for multiprogramming a CNI that

uses cachable queues.

Chapter4 performs a detailed comparison of four CNIs with a moreergional NI—
that is, a Thinking Machines’ CM-5 NI [124]—using a 16-nodeV;@vo microbench-
marks, and sen parallel scientific applicationsoiFsmall message sizes—between 8 and
256 bytes—CNIs impnee the round-trip laterycby 87-342% compared to a e@mtional
NI on a coherent memoryb. For moderately laye messages, between 8 and 4096 bytes,
CNiIs improved the bandwidth by 109-202%. Results with theeseapplications sho

that CNIs can impnee performance by up to 21-190% compared to aexaional NI.

The third contrilntion of this thesis (Chapté)) is a systematic classificatiorxagnina-
tion, and galuation of tvo of the eight opportunities—data transfer anttdsing—Ilisted
above. To the best of my knaledge, this is the first evrk to systematically identify and
explore the data transfer and théffering parameters that underlie high-performance Nls
designed for fine-grain communication. The data transfer parameters captunreeke
sages are transferred between internal memory structures (e.g., processor caches, main
memory) of a computer and a memounstNI. The biffering parameters capturevinand
where an NI bffers incoming netark messages. haluate these parameters by compar-
ing se'en memory bs NIs using the same system parameters and benchmarks as in
Chapterd. These sen Nls abstract the data transfer anffdsing parameters of the Nlis
in TMC CM-5 [68], Fujitsu AP3000 [109], Princeton Udesvel DMA [11], Digital
Memory Channel [44], MIT StarJR [53], and tw Coherent Netark Interiaces
(CNIg51Q and CNg.Qdescribed in Chaptet).

My results shw that a high-performance NI in a @0Oshould efiectively use the block
transfer mechanism of the memomysbminimize processorunlvement for data transfer
directly transfer messages between an NI and the processor (at least in the common case),

provide plentiful luffering (possibly in main memory), and minimize processeolire-

14

« gsor main « gsor main
L memory - memory
I o 0 o I
cache cache
[[[[
memory s | memory s |
shared-memory inteate shared-memory inteate

Figure 13. A shared-memory multiprocessor

ment to luffer incoming netwrk messages. ChNR),, performs the best among thevae

NIs because it optimizes all &wata transfer andiffering parameters.

1.5 Using Pediction to Accelerate Coheence Potocols

This part of the thesis dirs significantly from the rest of the thesigchiniques out-
lined in the rest of the thesis can accelerate-tasaser messaging in a parallel machine
programmed withxglicit message-passing. In contrast, this secti@menes techniques
to improve the communication performance of parallel machines programmed with a

shared-memory programming model.

Shared memory simplifies programming multiprocessors becausevitlgsaa single
address space to all processovenewhen memory is piically distriuted among dfér-
ent nodes of the machine (Figur&). To reduce the disparity between latgrd local
and remote memory accesses, these machines cache both local and remote memory in per
processor caches. Caches are usually made transparent ersovith a cache coherence
protocol implemented in a shared-memory communication aderfA coherence proto-
col usually echangesoheence mesggsbetween shared-memory int&eces of difierent

nodes to kep peiprocessor caches coherent. Ualik message-passing communication

15
interface, a shared-memory intece usually generates these messages directly in hard-

ware or firmvare.

Shared-memory inteaites in most lge multiprocessors use a form of coherence proto-
col called a directory protocol [4, 71, 66, 25, 130, 69, 2]. Directory protocols maintain a
directory entry per memory block that records which processor(s) currently cache the
block. On a processor cache miss for a remotely cached block, the shared-memory inter-
face sends a coherence message an interconnect to a directory entshich often for-
wards message(s) to processor(s) currently caching the block, who thandfolata or

acknavledgments to the requesting processor and/or directory

Regrettably this cache miss and directory aityi can disturb a programmerperfor-
mance model of shared memory by making some memory accesses tens to hundreds of
times slover than others. Ameliorating this problem has led toynpoposals, including
wealer memory models [1, 43], multithreading [31, 3, 125], non-blocking caches [61,
118], and application-specific coherence protocols [93, ®7flate, all proposals possess
one or more of the folleing dravbacks: require a more complprogrammer integce or

model, retard uniprocessor performance, or require sophisticated compilers.

Another class of proposals for ameliorating memory latésto predict future sharing
patterns [9, 46] and takaction to werlap coherence message dttiwith current vork.
Predictions can be made by programmers [51, 136], compilers [84, 113], oralardw
Specialized predictors in hardve include read-modify-write operation prediction in the
SGI Origin protocol [66], paiwise sharing prediction in SCI [116], dynamic seffali-
dation [67], and migratory protocols [28, 120]. Existing predictoraeher, are directed
at specific sharing patterns kmo a priori. Furthermore, the protocol implementation is
often made more compldoy intertwining one or more predictors with the standard coher-

ence protocol.

16
This thesis seeks a more general predictor to accelerate coherence protocols. Predictors

would (logically) sit beside each standard directory and cache module to monitor coher-
ence actiity and request appropriate actions. If a directory predittiorexample, antici-
pates that a processor asking for a block B “shared” wili agk for block B “&clusive;

the directory can answer the “shared” request with blockxBltsive’

The fourth contribtion of this thesis (Chapté) is the design andraluation of theCos-
moscoherence message predictor for accelerating coherence protocols. Cosmos’ design is
inspired by ¥h and Btt's two-level PAp branch predictor [139]. Cosmos neska predic-
tion in two steps. First, it uses a cache bladkress to index into aMessage History
Table to obtain one or moreprocessor,message-type> tuples. These<proces-
sor,message-type> tuples correspond to sender and message type of thewasblier-
ence messages reeai for that cache block. Second, it uses thpaeessor,message-
type> tuples to inde a Pattern History &ble to obtain a<processor,message-type>
prediction. NotablyCosmosdces a greater challenge than branch predictors because the
Cosmos’ prediction is a multi-b#processor,message-type> tuple rather than a single

bit branch outcome.

My simulation results with fie shared-memory applications running on a 16-node paral-
lel machine shw that \ariations of Cosmos predict the source and type of tkieco@er-
ence message with surprisingly-high accuracies of 62-69%d9, 84-86% (noldyr), 84-
85% (@ppb), 74-92% (nstructued), and 84-93%dsmg. Cosmos’ high prediction accu-
ragy results from predictable coherence message pattersigratues associated with
specific cache block addresses. Such signatures are generated by sharing patterns [9, 46]

that do not change or changery slawly during the &ecution of these applications.

17

Chapter 2

Treat Network Interface Access as Memory Access

This thesis ayues that NIs should be treated as “standard equipmem”mémory or
frame luffer, and not as peripheral add-oneddy almostery computer is connected to
a network. Consequentlyevery computer needs an NI. Computers connectedatgéo-
formance netwrks may not place a huge performance demand on theviedelavever,
NIs for network-centric computers, such a Cluster adRétations (C@/) connected via
high-performance netwks, such as SANs, must be designed tovelelhetvork perfor-

mance to host user applications.

| argue that a processor access to an NI in ®&Dould be treated as gudar memory
access, and not as a peripheral 1/0 operation (e.g.alikisk intedice access). Since the
gap between processor and DRAM access performance is increasing racyproces-
sors will continue to ment nael techniques to bridge thisg. Treating NI accesses as
regular memory accesses will alldNI accesses to takadantage of such future inua-
tions. Such treatment opens up at least eight opportunities tovientir® performance of
processor accesses to the NI [87]. These opportunities are listedl@2 L. An NI that

supports all the eight opportunities beés just like another processor cache in an SMP

18

Problems Solutions Discussed
Conventional Proposed
Virtualize via operating system virtual memory | Section2.1
hardware
Location I/O bus memory lus Section2.2
Buffer messages dedicated memory (in NI virtual memory | Section2.3
or main memory)
Cache NI rgisters not allaved allowed Section2.4
Out-of-order and speculaé access not alloved allowed Section2.5
Message transfer mechanism DMA or uncached load/ cache block transfersSection2.6
store
Application Programming Inteate (API has side-décts no side-efiects Section2.7
(memory-based
queues)
Notification Interrupts cache inalidations | Section2.8
Summary: NI access similar to disk interbice access memory access

Table 2.1:Treat NI access as memory access and not as a diskdetedcess.

node. | discuss these opportunities in greater detail in ayspaper [88].

Many of the eight opportunities listed almhae been gplored partially by others. A
principal contrilution of this chapter is to ganize these opportunities into a framoek
that xposes commonality and sygestic interactions. In particulathis thesis xamines
one opportunity in depth: mocaching NI rgisters can significantly impve the perfor-

mance of processdl interactions.

2.1 Use Wtual Memory Hard ware to Mrtualize the Network Interface

There is a mard diference in hav user processes access a peripheral @ede.g.,
a disk) and main memarBoth of these are sharedysital resources that must be virtual-
ized across multiple user processestudlizing a plysical resource to a user process
requires tvo mechanisms: protection and address translation. Protection isolates user pro-
cesses from one anothéyddress translation alles a user process to access gspial
device through virtual addresses. A peripheral I/@iceis virtualized by the OS, which
requires all user accesses to I/@ides be initiated through OS trapsapping to the OS

19
is usually ery expensve because modern microprocessors treat trapscapteon condi-
tions, rather than a common occurrence, and hence do not supportettyeeficiently.
Main memory on the other hand, is virtualized through the virtual memory reaejw
which is supported by all high-performance microprocessors tagiaydoes not volve
OS interention in the common case. Main memory igdkd into plysical pages and
mapped to user virtual space on demand. A harelvetructure called therdnslation
Lookaside Bufer rapidly translates user virtual page addressesysigai page addresses
in main memoryConsequentlymain memory accesses are muastdr (less than a micro-

second) compared to I/Ovdee accesses (greater than 10 - 100 microseconds).

Accessing NI memory through the virtual memory hadky and not via the OS, can
therefore dramatically impve performance. The OS simply needs to map the NI memory
pages directly into user space; the virtual memory harelthat alreadyxésts translates
these memory-mapped virtual addresses to approprigsicphaddresses in the NI mem-

ory and ensures protected access to it.

The TMC CM-5 NI and, more recentlihe Myricom Myrinet host inteace allov users
to directly access the NI memory using this technique. | call sucbi$déisLevel Network
Interfaces (ULNI¥since the NI memory can be directly accessed from user space. Com-
paq Corporation, Intel Corporation, and Microsoft Corporation are jointgldeing such
a ULNI specification called theiNual Interface Architecture [36]. The VI architecture is
a logical specification that will ale a user process to directly access the internal NI
memory and thereby bypass the operating system to send ane meesisages from the

network.

2.2 Place the Netark Interface on the Memory Bus

In a standard wrkstation node (Figurg-1a), 1/0O deices are typically located on the
peripheral I/O bis. The choice of this location is dictated primarily by teglability of a
standard I/O bs interfce (e.g., SBus, PCI), which enables independamaors to manu-

facture NI cards to these standard specifications. &hlix uses, current memorybes

20

« gsor main
L memory
I cache
l merrllory s
I/0 brldge
I/0O bus
|
network
interface

Figure 241.

\/
System Area Netark

(@)

=

g

main
- memory
I cache
I I
memory s
network
interface

A

System Area Netark

(b)
« gsor main
L memory
I cakche\
E;:lwﬁns l\&
— cache |
8 [P
interface

\
System Area Netark

interface in (b) with a cache.

Workstation Nodes with Netwk Interfaces.(a) shavs the architecture
standard wrkstation node with the netsk interiace on the 1/O Us. (b) shws the sam
workstation node with the netnk interface on the memoryus. (c) augments the neivk

are usually proprietayyhave non-standard intex€es because theften change across
processor generations, and hence, matufers of I/O déaces do not usually design I/O

devices to memory ls specifications.

21
Current memory lises, havever, offer three significant performance amvages er |/

O huses. First, memoryuges are muchaster because theare typically clockd at a
higher frequeng compared to 1/O Uses. Br example, current PC memoryuges are
clocked between 66-75 MHz, which is more thao times &ster than the current genera-
tion of 33 MHz PCI bises. Ypically, all /O kus accesses also additionally&ese the
memory lus and an I/O bridge that connects proprietary memosgsto standard 1/0

buses.

Second, memoryuses deer significantly higher bandwidth than I/@iges. Current PC
memory luses dier peak bandwidths greater than 400gaig/tes/second. This is more
than four times greater than the peak bandwidired by the current generation of PCI
buses. Some of the Sun Enterprise se\support anven more aggress memory hs
called the UltraGigplane, which dérs a sustained bandwidth of 2.6 ajigtes/second.
Memory huses can &r such high bandwidth because thesses are 64- to 256-bits
wide, which is adctor of tw to eight greater than current 32-bit wide PQ4.bAddition-
ally, todays memory hses support split transactions, which invebandwidth because
a device or a cache no longer has to lockvddhe memory bs during the entire duration

of a transaction (e.g., cache block read from main memory).

Figure2-2 suggests that theag between of bandwidths of memory and 1/3ds will
continue to rist in future. In &ct, I/O lus bandwidth lags behind memonystbandwidth
by at least fie years. In other ards, I/O luses will tale another fig years to achwe the
peak bandwidth ééred by todays PC memory ses. ConsequentlMl cards designed to
I/O buses will not be able to harness the full memang bandwidth. Figurg-2 also
shows that SAN link bandwidth is gnong at a muchdster rate than the bandwidth of PC
memory luses. Br such SANs we will need more aggresesmemory hses, such as the

SUN Ultragigaplane.

Third, memory bises support optimized single-writer coherence protocols, whiaisallo

processor caches to easily cache and share mefifusyis because these single-writer

22

80000 E T
- | ® SAN link bandwidth
- | O Memory bus bandwidth (PCs)
U Standard I/O bus bandwidth SGI/Cray Crayli
8000 4 =
N “bit/66-MHz PCH
800 2-bit/33-MHz PCI

® Myricom Myrinet

IBM SP2

Bandwidth (megabits/second)

[0}
o

|
8 TMC CM=2
O N~ 00 OO O 04 AN M < IO O 0 00 O d N MO & I O~ 0 OO0 O -«
N~ I I I 00 00 00 O 0 W 0 W W W OO O O O OO O OO O OO O O O
O OO OO OO O OO OO OO O OO OO OO O OO OO OO OO OO O OO OO oo o oo O O
I 4 A4 4 4 4 4 4 4 4 4 4 A4 4 4 4 A4 A A d +d +d +4 <4 N «

Year of Introduction

Figure 22. Trends in peak SAN link bandwidth and I/@sbbandwidthThis figure shars
the crosseer point between peak System Area Ne&SAN) link bandwidth and “standard”
O hus bandwidth. SAN link bandwidth has been increasing by roughly 100% pemydarthe
I/0O bus bandwidth has been increasing by roughly 32% per $8&t references: Cray T3E [1(
102], SGI/Cray Craylink [41, 45], Myricom Myrinet [15, 56], and the rest from Figure 7dde
591) of Hennessy andchRersons book [49]. Memory bs references: Polsssrarticle on Histor
of Microcomputers [98]. I/O ts references: 32-bit/20-MHz SBus [55], 64-bit/66-MHz PCI [
and rest from Needhamarticle on PCI [94].

coherence protocols pride a single and consistent image oygibal memory across all
processor caches. Sectidd shavs hav and wly caching message data in processor and

ULNI caches can help impve performance.

The performance adwtages of memoryuses strongly suggest that ULNIs should be
placed on memoryuses, just lik main memory (Figur2-1b). My simulation results in
Chapterd with several parallel scientific applications confirms the performancaradv

tages of memoryus Nlis wer I/O tus Nls.

The only disadantage of current memoryses is that thyedo not usually xport a stan-

dard interfice to which independengéndors can design ULNIs to. Wever, the adent of

23
ULNIs as “standard equipment”, gkmemory or frameuffers, emphasizes the need for

memory lus designers taxport a standard inte€e to either systems designers internal to
a compaw or third-party endors manuwicturing independent ULNI giees. Companies,
such as Intel, IBM, and Sun Microsystems, that mactufe both microprocessors and
network-centric computers can alosystem designers to design ULNIs to their internal
memory lus. Intels MPP supercomputer calle@r@flop [19], for gample, attaches the
ULNI device directly on the PentiumPro memonysb For independentendors finding a
standard intedce on the memoryus may imply coordinating with microprocessor com-
panies to get access to their memoug lspecificatior}. Alternatively, manuécturers of
proprietary memoryuses could pnade speciabridgesto other open standard intacks,
such as the PCl intexte.

The bridge we need coeerts proprietary memoryuls signals to and from another speci-
fication. A standard bridge might connect to a standard U&) $uch as PCI. A standard
bridge supports mgnstandard deces. Havever, it may not preide the performance or
coherence access needed by ULNIs. A more aggeelsige could corert directly to a
standard I/O bs connector that supports one demanding IA@cdevithout a plisical 1/0
bus. This bridge carake the I/O lns signals to &&r higher performance (e.g., no arbitra-
tion time) to standard g&es. The SGI Reer Challenge, forxample, uses this type of
bridge (which thg call a “personality intedce”) to comert between their proprietary 1/0
bus and a standard SCSivam. Similarly Intel's Accelerated Graphics Port [138] is a
standard bridge thatfefs graphics accelerators a dedicated high-bandwidth path to main
memory An even more aggress? bridge can coert to a deice-specific intedce that is
proprietary but less demanding and more stable between product generations than a mem-
ory hus. If network connections become “standard equipment® likame kiffers, this
option praides an attracte way to obtain nearly the netnk performance of a memory-

bus ULNI without some of the cost.

1. Corollary; Inc. obtained access to the PentiumPro memasytd uild a shared-memory system
called Profusion [126].

24

Yet another possibility auld be to standardize the intecé between the internal and
external NIs (Sectioid.1). Microprocessorendors can prade the internal integice that
communicates with the processor and third-paetydeors can prade the &ternal inter-
face that talks to the netwk. This would relieve third-party endors from hang to worry
about the details of a particular memonsbcoherence protocol and allonicroproces-
sor \endors to delier the netwrk’s performance to a user process via s optimized

internal interfce.

2.3 Use Vftual Memory to Buffer Netw ork Messages

Peripheral 1/0 daces may require Ilge amounts of memaryor I/O devices such as
3D Graphics Accelerators, in particyldhe demand for memory is increasing steadily
because high quality images and image transformations req@eedarounts (e.g., tens
of megabytes) of primary storage. The Accelerated Graphics P@PJA138] was
designed to counter this demand R pravides graphics deces with a standardized high
bandwidth path to main memeonyhich allavs graphics deces to use main memory as a
large graphics wifer. This enables l@-cost graphics deces because dedicated memory
can incur a prohibie cost for graphics accelerators. Because 3D Graphics accelerators
can naev use portions of system memory through a graphics-specific dedicated path, these

accelerators @ become less peripheral in nature.

Like 3D Graphics Accelerators, high-performance ULNVicks can require lge
amounts, that is, tens of gabytes, of memory touffer outgoing and incoming nebsk
messages. This is because of four reasons. Farsation in performance of loosely-cou-
pled microprocessors and SAN switches ancatef a ariety usedlevel communication
protocols often create a temporary mismatch between the rates at whiorkmatgsages
are generated, transferred, and consumedeiuf) smooths out these rates and helps cre-

ate a balanced system.

Second, with limited Wffering and lhrsts of messages—a common occurrence in

loosely synchronized parallel applications—a processor must constantly monitor ULNI

25
status changes and remeomessages from the limited ULNufers to &oid clogging up

the netvork. This can significantly dgade performance if the processor must continu-

ously read an uncached statugister (Sectior2.8).

Third, a limited amount of ULNI wffering severely restricts the dgee of multipro-
gramming because these ULNIffers must be gdided among dferent processes. Alter-
natively, the operating system can switch thdférs among processeqjtbthis can be a

very expensve operation.

Fourth, SANs, such as the Myricom Myrinet, requires ULNIs to perform some form of
flow-control, such as all-to-alluffer reseration or return-to-sendeto guarantee end-to-
end reliable message dary. To avoid clogging the netark, such flav control schemes

may require lage amounts of ULNI wffering.

Current commercial ULNIs, such as the Myricom Myriadtost interdice, proide only
around hundreds of kilobytes of messagé#drs in the ULNI. This amount is not enough
to support lage systems with a lge dgree of multiprogramming.dftunately the Myri-
com Myrinet host intedce preides a microprocessor that can be programmedeéo o

come this problem, as outlined belo

The problem of limited Wffering in the ULNIs can be sad by luffering netvork mes-
sages in the uservirtual space [72]. This pvales lage amounts of uffering limited
only by the size of main memory (andagspace, which backs up the user virtual space).
A ULNI with this capability however, requires additional support for protection and
address translation, which may require moderate to substantial changes to commodity
operating systems. The problems are similar to thexsedfby SMP nodes todajust lile
a processorthe ULNI must hee access to virtual-to-ghical address translationso T
reduce the cost of accessing these translatiosry éime a message is retrggl from or
deposited into main memqrg ULNI can cache these translations in a structure similar to

a processor TLB. ULNIs must, therefore, be prepared to service ULNI TLB misses as well

26

store Xto A store X to A store Xto A
load Y from B store Yto A store Y to B
(@) (b) © NI sends message to nerk

Figure 23. Three gamples of side-&dcts in aisting NI designsThe instructions shen
in this figure are uncached loads and stores to ULNisters memory-mapped to virtt
addresses A and B. (a) st®that the store-load pair must be strictly in order for some |
work correctly (e.g., Princeton UDMA initiation)yen though the instructions appear unrel
to the processofb) shavs two consecutie stores to the same address must occur in ordel
TMC CM-5 NI). (c) etends (b) to she that the second store (in the general case, the
store) can trigger an action in the NI, such as sending a message into thik.n@tvand (b
have the side-d&cts that a prgous store determines implicitly thexteincached load or store
NI expects. (c) has the sidefett of sending a message on a store.

as irvalidate or update the TLB entries when the OS remaps a pagems gwut to disk.
However, servicing TLB misses is a compleperation because it can result in pagets,

is often processespecific, and may require OS intention. A ULNI can reduce this
complity by interrupting and requesting the OS running on the host processor to insert
the appropriate translation in the ULNI TLB. The ULNI TLB can be augmented with pro-
tection bits and process identifiers, similar to those in a modern processor TLB, and
updated along with the translations to ensure protected ULNI access to main memory

Other researchers V@aexplored these issues in detail [133, 47, 105].

Chapters evaluates the impact of alternatefiering stratgies on seen parallel scien-

tific applications.

2.4 Cache NI Registers in Rycessor and NI Caches

Unlike main memoryperipheral I/O ddce memorysuch as ULNI memorys typically
not cached in processor caches. Instead, ULNI memory isethankcachable. This is
because of three reasons. First, processor accesses to Ulidd oeemory often hae
side-efects(Figure2-3) that force all such accesses to be visible to the ULNI. Hence, all
processor accesses must be uncached because cached loads or stores may not be visible

outside the processarnless there is a cache miss.

27
Second, a ULNI dece must generate coherence signals Yalidate messages in pro-

cessor caches. In this respect, it lvelsamore lile a processor cache, rather than main
memory When a message aes and the ULNI writes medata to the messagefters,

the corresponding memory locations for the messaderb in processor caches must be
invalidated. Otherwise, processors can read stale data from thféss.bUnfortunately
mary ULNIs reside on standard I/Ques, which usually do not support such coherence

signals. Hence, ULNIs usually do not aliprocessors to cache ULNI mem&ry

Third, caching ULNI rgisters in processor caches requixgasupport for ULNI rgis-
ter reuse. Corentional ULNI deice ragisters sole the problem of gister reuse using
implicit clearon-readsemantics, where thegister is cleared after an uncached load. F
example, the CM-5 NI treats the read of the hamwreceie fifo as an implicit “pop”
operation. Cleaon-read wrks because processors guarantee the atomicity efduodl
load instructions; that is, thele returned by the diee is guaranteed to be written to a
register Clearon-read does notavk well for cached ULNI rgisters, since most proces-
sors do not pnade the same atomicity guarantees for cache blocks. Processors guarantee
the load that causes the cache miss to be atomic to ensusrdqmmogress; weever,
there are no guarantees for the remainirmgd® in the block. Before subsequent loads
complete, a cache conflict (e.g., resulting from an interrupt) could replace the bldtk. W
clearon-read semantics, the remainder of the data in the cache bbodd ke lost for-
ever. 2

The first and third problems—the presence of siflectf in ULNI memory accesses
and the absence of clean-read semantics on cache blocks—can be eliminated by
designing the application programming inéed carefully (Sectiof.7). The second prob-

lem—keeping ULNI dgice memory and processor caches coherent—can bedsbiv

1. This is diferent from the standard problem of “coherent”l/®.computer with coherent 1/0
allows processors to cache I/O space. Here, | am interested ivéhgeiproblem, that is, cach-
ing memory space in an |/Oyee.

2. This problem may not arise if only one Nigigter (that can be accessed via a single load or
store) is allocated per cache block becauseinhatil cached loads are usually guaranteed to be
atomic.

28
placing the ULNI deice on the memoryus, so that a ULNI can directly obserand par-

ticipate in the systera’coherence protocol, justdila processor cache in an SMP

Caching ULNI rgisters in processor cacheen two adantages. First, caching status
or control rgisters in processor caches helps reenannecessary memorystrafic. For
example, if a processor were polling on an uncached stajistereevery processor poll
would go across the memorysto the ULNI deice. In the absence ofamessage in the
ULNI, unsuccessful polls that do not find a message in the ULNt&leaste precious
memory lus bandwidth, which could be used by other processors in an SMP node.
Instead, if the processor polls on a cached memory location, which contains the ULNI sta-
tus information, all unsuccessful polls will hit in the processodache. When a message
arrives finally and the ULNI status changes, the ULN/iceinvalidates the cached status
register in the processartache. On its mepoll attempt, the processor will incur a cache

miss, which can be satisfied directly by the ULNI.

Second, uncached accessesvigi® \ery lov bandwidth compared to cache block
accesses because ytheansfer only a f@ bytes of data (e.g., 1-16 bytes). In contrast,
cache blocks are typically much dar (e.g., 32-128 bytes). Hence,thean eploit the
full transfer bandwidth of today’memory bses. SectioB.6 discusses these issues in
detail. Table4.5 shaevs that a lage fraction of the memoryus bandwidth can be used

effectively for processor accesses to Njisters.

Like processor caches, ULNI caches can cache Uldters as well. Instead of allo-
cating ULNI ragisters in ULNI memorythe r@gisters can be allocated in the usesittual
space and baekl up by main memorpection3.6 discusses details ofwasuch registers
can be mapped, accessed, and synchronized amdeiguiifapplication processes. ik
processor caches, ULNI caches can simply cache the portion of main memory that con-
tains the ULNI rgisters. Such ULNI caches help impeoperformance in threeays.
First, processor cache misses for ULNJis¢ers can be intercepted and satisfied directly

by the ULNI cache through a direct cache-to-cache trarGéatrast this with data trans-

29
fer via DMA in which messages reach the processor cacheistéps (and, consequently

two memory s crossings): from ULNI dece to main memory and from main memory
to the processor cache. This increase in |gtenay become critical for latepdound,

request-response protocols.

Second, whenursts of messages agiat an ULNI, the ULNI cache mayerflow; but,
ULNI cache replacements to main memory will automaticalljel these messages with-
out ary processor inteention. Contrast this with gestermapped ULNIs in which pro-
cessors mustxplicitly copy the data from the ULNI gasters to the uses’virtual space,

which can seerely dgrade performance.

Third, communication protocols, such as an update protocol in aaseftlistriluted
shared-memory architecture, often package the same data blodkierdimessages and
send them to diérent host nodesver the netwrk. In the absence of a cache, for each
message sent the processor mupgtietly write the data block into the ULNI or the ULNI
must fetch the data block from the processceche or main memorWwith a cache, the
data block needs to be transferred from the procassache or main memory only the
first time. Subsequent ULNI accesses to the data block will hit in the ULNI cache. This
advantage may not be reapedwmwer, if users &plicitly copy the data block from user
space to ULNI data structures (e.g., ULNI queues) for each messageld this scheme
effective, the user application programming inded must allw users to specify the user
virtual address to data blocks residing in user virtual space (see Seédomhe virtual
address alls the ULNI to determine that the data block is cached in the ULNI, and

therefore, need not be fetchedhag

Chapter3 explores the abee issues in detail and proposes mechanisms that alfwo-

cessor and an NI to cache Ngisters.

30
2.5 Allow Out-of-Order and Speculatve Accesses to NI Memory

To tolerate the lateycof main memory access, processorsvalloads and stores to
bypass earlier loads or stores. This is called out-of-order (OOO) memory aceadeyF
system changes ¥xatalen place to realize out-of-order accesses to main memory: proces-
sors can issue out-of-order loads and stores, caches are non-blocking sg ttatrtoe
stall on consecute cache misses, memornydes can supportweal outstanding requests
to main memoryand finally the memory controller can handle multiple requests to the

memory system.

Speculatrte execution is more aggressi than OOO accesses in tolerating memory
access lateryc Processors speculate on control dependence (e.g., branch prediction), data
dependence, data addresses, and ddtees, and perform computations based on these
speculated alues. If the speculation is successful, idle processor resources can be used
effectively and memory access latencies can be toleratededdq if the speculation is
incorrect, then all preous computation based on specuigy loaded alues must be
squashed and wgrprocess-specific state must be rolled back to the point from where the
speculation diled. In the contd of messaging, | ant processors to specwally read

from and write messages to ULNI memguost like regular memory

Processors do not usually perform OOO and speeealaticesses to 1/0dee memory
because of three reasons. First, mA® buses do not adequately support multiple out-
standing transactions, which forces processor accesses tov/ié® demory to be serial-
ized on the 1/0 bs. Second, the presence of sideetf (Sectior2.4) in I/0O deices often
force I/O deice memory accesses to be performed in ordleich preents OOO accesses
to I/0O device memory Further current I/O deices do not prade ary mechanism to roll-
back an side-efects if the process@’speculation is incorrect, which peats speculate
loads to I/O deice memory Third, the most microprocessors today disal@OO and
speculatre accesses on uncached loads or stores, which is the predormagantwhich

I/O devices are accessed today

31

The first problem—the absence of support for multiple outstanding transactions on com-
mon 1/0O luses—can be sad by intercing the ULNI deice to the memoryus, which
usually supports multiple outstanding transactions. The second problem—presence of
side-efects in ULNI memory accesses—can be eliminated by designing the application
programming intedce to the ULNI carefully (Sectigh7). Finally the third problem—
absence of OOO and speculataccess to uncached I/O space—can beddde caching
ULNI registers in processor caches, because modern microprocessors can perform OO0
and speculate accesses fromgelar cachable memory (Sectigrt), and not alling
speculatrely stored state and memory to be reflected outside the prqosbksdr most

speculatie processors already support.

Chapter6 looks &en further into the future and proposes a coherence message predictor
called Cosmos.Cosmos allaws processors to speculagly send, recge, and process

coherence messages in a cache-coherent, shared-memory machine.

2.6 Move Data Between a Rycessor and an NI in Cache Block Units

Processors typicallyxehange data with peripheral I/Owilges via uncached loads or
stores or DMA. In contrast, processor accesses to main memory is typically satisfied
through cache misses; data is transferred in cache block units from main memory to pro-

cessor caches.

Both uncached accesses and DMA are potentiallyderformance solutions for data
movement between processors and peripheral @ e& Uncached loads or stores trans-
fer only a fev bytes of data (e.g., 1-16 bytes). Thiastes bs bandwidth because most
modern memory Uses are wider than 16 bytes (e.g., SUN Ultra@i@ne is 32-byte
wide). Uncached accesses canyécer, become viable for data mement if processors
provide special support, such as coalescing stofeels to mege multiple uncached
stores to déce ragisters (e.g., MIPS R10000) or special instructions tgemahunks of

device data to FP gisters (e.g., Sun UltraBRC). Unfortunatelythese mechanisms are

32
processcdependent and limited in scope, so third padgdors cannot ays rely on

such support to design their ULNIs.

Unlike uncached accesses, DMA engines can use the full transfer bandwidth of memory
buses. Hwever, transferring data between processors and Iiiree via DMA can still
be pensve because of twreasons. First, traditional DMA is initiated through the OS,
which incurs ery high initiation @erhead. Second, at the raeseiend, DMA-ed data
reaches a processor cache through heps—one hop from the ULNI dee to main
memory and the second hop from main memory to the processor cache. Psnceton’
UDMA dramatically reduces the DMA initiatiorverhead on the send side by walilog
processors to initiate DMA directly through achwstruction sequence from user space
without OS interention. Reinhardt, et al. [101] demonstrated that UDMA can be used as
cheaply on the reces side as well. Unfortunatelthe UDMA initiation scheme sigrs

from side-eflects (Sectior2.4) and, lile traditional DMA, transfers data in awops.

Transferring data between processor caches and ULNIs through cache block transfers,
just like regular memory combines the benefits of uncached accesses and DMA. Lik
uncached accesses, data can be transferred directly from the ULNI memory to the proces-
sor without an xtra hop through main memorkike DMA, cache block transfers can
fully use the memoryus transfer bandwidth, particularly because toslayte memory
buses are optimized for cache block transfersatm, fcurrent DMA engines transfer data
over the memory s using coherent, cache block transfersvimdahaving stale data in
processor caches whenvnéata is DMA-ed into main memotyAdditionally, transfer-
ring data in cache block units does not precluglap of computation and communica-

tion (see Sectiol.7).

Chapters explores the impact of alternate data transfer gjr@seon the performance of

seven parallel scientific applications.

1. Transferring messages from the ULNI to the processor cachehaesver, be wasteful if the
application simply intends to transfer data from the oétinterface to another I/O d&e (e.g.,
disk or graphics tifer).

33
2.7 Use Memory-Based Queues agplication Programming Interface

Typically, a user process accesses a peripheral Moedeia the OS or uses the underly-
ing data m@ement primitve as its Application Programming Intece (API) to the I/O
device. For example, user APIs based on program-controlled K@ose uncached loads
and stores—the data meEment primitves—to memory-mapped dee rgjisters as the
user API to the I/0O dece. Similarly Princetonrs UDMA mechanism»poses DMA trans-
fers as the user API to the ULNIdee. In this section | gue that instead okposing the
underlying data meement primitve as the user API, ULNIs should structure the ULNI
date rgisters agnemory-basedjueues [35, 127]].Such memory-based queues can be
classified neither as program-controlled 1/0 nor as DMA. | bellreemory-based queues
are a natural and simpl&tension to the hardave FIFOs used in maNIs. More compli-
cated memory-based structures can aledkvas long as tlyecan be structured tovaid

side-efects.

Memory-based queues consist obtwarts: a send queue and a reeejueue. Each
queue is allocated in virtual memory and managed as a ciraudfer with head and tail
pointers. © send a message, the processor enqueues the message at the tail of the send
queue either byxplicitly writing the message into the send queue memory or by inserting
a virtual pointer to the message into the send queue. The ULNI dequeues messages from
the head by reading the send queue memory and, if negesaastating the virtual
pointer to the message to itsygital memory address (Secti@r8) and subsequently
reading the message from the user virtual spawehE recaie queue, the ULNI similarly
engqueues messages at the tail of the veapieue and the processor dequeues messages
from the head. Dece commands for such APIs are no longeplieit DMA-initiation

requests; instead, ULNI diee commands are simple memory operations, such as incre-

1. Brewer, et al. [16] and Scott [107] tx@ proposed and implemented datiént type of memory-
based queue, which can be allocated, controlled, and programmed directly in user space. An NI
may or may not beveare of the presence of such a queueing structure. In contrast, the memory-
based queues | describe here saas communication channels between a user process and an
NI.

34
menting or decrementing queue head or tail pointess.ekample, when a processor

engqueues a message to the send queue and increments the tajltheitteNI interprets
this as a dace command to send a message out to theamkivif the tail pointer is
uncached, then the ULNI treats the increment as a signalling store; if the tail pointer is
cached, the ULNI must poll on the tail pointer fomnmessagesSection3.6 discusses

how such queues can be accessed by and synchronized anierentijfrocesses.

Memory-based queues can beemded to support zero-gpprotocols that place data
directly into a uses data structures. Instead of writing the message to the memory-based
gueue, the processor or ULNI could write the virtual address of the message data to the
queue location. This creates additional coipfan the ULNI because it must notrans-
late the virtual address to its correspondingsptal address to obtain the message data.

Section3.6.2 discusses toa ULNI can obtain such ghkical addresses.

There are four acintages to treating ULNI APl as memory-based queues. Firsteunlik
uncached accesses or UDMA, memory-based queues decouple a processor and a ULNI,
which enables both the processor and ULNI to send and/eeceiltiple messages to and
from the queues without blocking. Additionallynlike uncached accessest bke DMA
or UDMA, memory-based queues allmverlap of a processa’computation with data

transfer to and from the NI.

Second, memory-based queuesid side-efects by treating ULNI queue accesses sim-
ply as side-déct-free rgular memory accesses. Thus, ULNI queues do not require in-
order accesses, do not pigte a single fird address for the entire queue, and separate
ULNI queue memory access from ULNI commands, because ULNI commawdareo
mostly incrementing or decrementing queue pointers. Thisvalfrocessors to cache
ULNI queues, perform OOO accesses on queue memaad/ speculately send and
receve messages to and from these queues. Speeukdnds wrk because modern

microprocessorsuffer all speculatiely-stored memory (in our case, messages) internally

35
within the processoif and when the speculation succeeds, the processor flushes these

buffers into rgular cachable memory locations (in our case, memory-based queues).

Third, since memory-based queues are allocatedréiular memory and managed as
circular luffers, the reuse handsteais simple: a comparison of the head and tail pointers
reveals whether a queue location can be reused or nen e reuse mechanism can be
optimized through techniques, such as lazy pointers, messkdbits, sense verse, and
empty entry remwal (see Chapte8). This simple reuse handsleatalkes caching ULNI

data rgisters much easier

Fourth, memory-based queues simplify the problem of multiprogramming a ULNI for
SMPs. In an SMP multiple processes running ofewifit processors can simultaneously
access the ULNI déce. This simultaneous access msithe multiprogramming problem
much harderThis is because simple solutions, such as the one adopted by the CM-5 in
which the ULNI and user process are cahtwitched togetherare no longer feasible.
Memory-based queuesfef a more elgant solution: each user procesgottes its wn
private communication channel with the ULNIvam through memory-based ULNI
queues mapped to user virtual address space (see Sk6tiondetails). This alles each
user process simultaneoust protected, access to the ULNI. This method doeseve,
involve two compleities. First, the ULNI must ne multiplex the internal andx¢ernal NI
ports among these queues. Second, since ULNIs can only support limited amounts of
memory on the dece, ULNIs must be prepared to coxttswitch the ULNI queue state
(e.g., head and tail pointers) if theeside in dedicated ULNI memorliowever, if the
ULNI memory is treated as a cache (Secfigf), then ULNIs do not va to eplicitly
manage these queues and cessvitch them. This is because the queues are automati-
cally displaced to main memory when the ULNI caclierfbovs and reinserted into the

ULNI cache through ULNI cache misses.Chatérexplores these issues in more detail.

Using memory-based queues, (more generallytreating an NI access agudar mem-

ory access) raises an important concern about the error model seen by .tAdiaser

36

Error Network Memory
Detection Parity, Checksum, Parity, ECC
CRC
Corruption Llnk-IeyeI error Error _
Recwery correction Correction
Retransmit User memory: kill process
Kernel memory: reboot
Detection | Timeout Timeout
Loss .
Recoery Retransmit Reboot

Table 2.2:Error model for netwrks and memory

because the error model for netks and memory & been dierent traditionally
(Table2.2).

Networks can incur tw important types of errors: link error and end-to-end eLiak
errors can be as high as one corrupted bit irf s, which translates into one bit error
per 16.67 minutes for a gigit-persecond netark link. System Area Netwrks (Appen-
dix A) typically cope with this problem using CRCyétic redundang check) and flow

control (to preent uffer overflows in switches).

Prevention of link-level error also drastically reduces the possibility of end-to-end
errors. Consequentlyraditional solutions, such as those used in so#vprotocol stacks
for local area netarks, may be werkill. Instead, processors can partially or fully adopt
the error model for memory in which memory corruption in certain situations can force a
reboot of the system. Thus, on detecting an gamwMI can simply signal a error to the
hosts operating system, which can either decide to reboot itself, crash the user process, or

simply flag an error to the user process.

Alternatively, on detecting a netwk message corruption or loss, a sender could still
retransmit a message. Memory-based queues af easy solution for this. The sender

does not hee to free up the queue position corresponding to a message untivi koo

37
sure that the reoeer has successfully accepted that message. If the sender detects mes-

sage corruption or loss, it can simply retransmit the message from the queue position allo-

cated for the message.

For my simulations in this | ma&kthe follaving assumptions:

» Transient &ilures in the netark links are rare because of linki#¢ CRC checks and
flow control. If an error is detected by the CRC in the NI, then the NI flags an error to
the operating system signallingatdl crash and perhaps a system reboot.

* The netvork switches do not drop pastls on congestion. Instead, yheack up the
network.

* The NI does not drop messages if iférs are full. | use a fl control scheme called
return-to-sender in which the regigig NI returns an incoming message to the sender
if it does not enoughuifer space. The sender must be able to sink the message and
retransmit it laterThe sender sinks the message by preallocatifigrispace before it
sent the message. Consequentiiyen the receer accepts a message, it must send an

acknavledgment to the sender to free up thédr space.

2.8 Use Cache Ivalidations as Notification Signals

Peripheral 1/0 déces, such as disks, \yetypically notified user processes of changes
in I/O device status through twmechanisms. Tlganterrupt the user process when the I/
O device status changes (e.g., in Unix this is done through the signahaggrAlterna-
tively, some 1/O deices allav a user process to monitor changes in l/@adestatus by
polling on an uncached memory-mapped statugstex Unfortunately notification

through either interrupts and or polling on uncachedceaaisters is gpensve.

Notification through interrupts isevy slav because of three reasons. First, these notifi-
cations must beectored to the user process through the operating system, whazhes
hundreds of instructions before the interrupt isvdeéd to the useSecond, switching
back and forth between a user process and the operating system pollutes the mocessor’

hardware structures, such as the instruction cache, data cache, TLB, and branch prediction

38
table. Third, these interrupts force todayOOO and speculsag@ microprocessors

(Section2.5) to stop their OO0 and speculation enginesvéder, a fav modern micro-
processor architectures do piate a fav hooks to impree the performance of interrupts.

For example, SRRC Version 9 has added eight scratayisters for interrupt handlers. Of
course, microprocessors can be designed to méoseerfly support interrupt handlers.
Nevertheless, &ctoring an interrupt through the operating system is and will continue to

be xpensve because interrupts are treated both by the processor and operating system as

an ception condition, and not a common occurrence.

Alternatiely, processors can poll on uncached memory-mappetedeqisters to
monitor changes in I/O di&e status. Polling is cheaper than interrupts because poll
instructions—uncached loads—can be issued directly from user spagevdiqolling
can be harmful if the frequeypof polling is significantly higher than the rate at which
messages aue. Additionally polling on uncached statusgrsters can aste precious
memory lus bandwidth (Sectiod.4).

As described in Sectidh4, the cost of polling can be reduced significantly if a proces-
sor treats the ULNI statusgister as part of gular cachable memarin the absence of a
message, a processodccesses to the statugiseer will repeatedly hit in its cache. A
processor can poll on a statugister using tw methods. The processor can poll onga re
ular cachable memory location, which is updated by an operating system interrupt handler
The interrupt handler is triggered via a ULNI interrupt. Altenredyi the processor can
poll directly on a ULNI status gesterWhen the ULNI status changes, the ULNI simply
invalidates the statusgister in the processartache, which seeg as a ULNI notification
signal to the processorhe processor simply reads thevrsatus via a cache miss satis-
fied directly by the ULNI. The cost of this cache miss can be further amortized by pulling

in part of the message in the cache block along with the stgisteratself.

39
2.9 Conclusion

A new generation of netarks called System Area Netwks (SANs) haswolved to sat-
isfy the increasing demand for high-bandwidthydateny networks. The benefits of
SANSs are realized in applications only if light-weight protocols (not TCP/IP) dicteat
network interfaces are used. The benefits of SANs are squandererafople, if applica-
tions must imoke the operating system to send and xeceiessages. In contrast, User
level Network Interfaces (ULNIs) allev host applications to access the ratwinterface
directly without compromising protection by memory mapping internal exterfgisters

into user space.

Future trends such as thepenential impreement in microprocessors’ and SANS’ per-
formance and the adwut of SMPs indicate that processor accesses to ULNIs will become
a critical bottleneck for computer systemsltwith SANs. Processor accesses to ULNI
registers is simply reading and writing ULNI memofyevertheless, most ULNIs treat
such accesses as peripheral 1/0 operations that candide-efiects (e.g., a message
send). Such treatment disall® current ULNIs to ta& adwantage of memory access opti-

mization techniques such as traditional caches, out-of-order accesses, and speculation.

| have agued that ULNI memory accesses should be treatedjakareside-dect-free
memory accesses and not as peripheral disk 1/0 operations to/@nporessor accesses
to ULNI registers. Such treatment alle eight opportunities to impve performance of
ULNI accesses. First, virtual memory haate should be used to virtualize the NI. Sec-
ond, the ULNI should be placed on the high-performance menustyMeemory s inter-
faces often changever processor generations. Consequentigroprocessorendors are
often reluctant tox@ort their memory bs interfices to independenérndors. Neertheless
there are seeral alternatie ways in which an independenéndor can place their ULNI
cards on the memoryub. Third, messages should be cached in processor and ULNI
caches. Burth, out-of-order accesses and speculation on processor accesses to an ULNI

should be allved. Fifth, the application programming intezé (API) to the ULNI should

40

be designed as memory-based queues. Sixth, virtual memory should be ugtst teeb

work messages. 8enth, messages should be transferred between processor caches, ULNI
caches, and main memory through cache block transfers. Fihallgrocessor should be

notified of ULNI events through cachevialidations.

Many of the eight opportunities discussed in this chaptee lieeen eplored partially
and independently by other researchers. A principal comioii of this chapter is to ga-
nize these opportunities in one common frevork. Chapte3 and Chapte4 examine one
particular opportunity in detail. That is,Ww@rocessor accesses to an NI can be ingato
significantly by alleving an NI to interact with the rest of the system via coherent, cach-

able memory operations.

41

Chapter 3

Coherent Network Interfaces Techniques

This thesis gyues that a processsraccesses to ULNI (Useevel Network Interface)
registers should be treated agutar, side-efect-free, memory accesses. Thevppas
chapter gamined eight opportunities for optimizatiorpesed by such treatment. This
chapter deelops andxamines specific mechanisms for a class of ULNIs called Coherent
Network Interfaces (CNIs), which interact with the processor via the sodgherence
protocol. The optimal CNI designfettively uses all eight opportunities for optimization.
Additionally, all CNI mechanisms described in this chapterkwvith, and require no
change to, standard coherence protocols supported by most high-performance memory
buses todayThe net two chapters compare the performance of CN® alternatie
ULNI designs®

This chapter bgins by describingcachable deice rgisters (CDRs) andcadable
queues(CQs). A CDR is a coherent, cache block used by a processor to communicate
information to or from a CNI déce (Sectior8.1). A CQ generalizes this concept into a

contiguous rgion of coherent, cache blocks (Sect®g). Because CDRs and CQs can be

1. Available patrtially in [85, 89].

42
cached in processor and CNI cachesy tleguire home which is an 1/0O dé@ce or mem-

ory module that services requests and accepts writebacks for CDR and CQ blocks
(Section3.3).

Section3.4 describes a concise taxonomy of the CNI design spacsed by CDRs,
CQs, and their homes. Secti®rd shavs that with adequate support some CNIs can also
be attached to the I/Qub. Sectior8.6 discusses moto multiprogram CNIs. SectioB.7
briefly outlines hav CNIs can be inteaiced with standard nebrks. SectiorB8.8 discusses

related vork. Finally, Sectior3.9 summarizes the techniques described in this chapter

3.1 Cachable Deice Register (CDR)

A cachable déce raister (CDR) is a coherent, cachable block of memory shared
between a processor and a CN¥ide. Reinhardt, et al. [101] first propossathable con-
trol registers (CCRs) to communicate status information from a special-purpose drardw
device to a processor his thesis xtends their wrk to use coherence tdfiefently com-
municate control information and data both to and from an ULNtédel call such rgis-
ters CDRs. This sectionxamines hav a CDR works (Sectior8.1.1), its adantages
(Section3.1.2), and its disa@wtages (Sectiod.1.3).

3.1.1 Basic CDR operation

A CDR is a coherent, cachable memory block shared between a processor and a CNI
device. Like the Thinking Machine CM-5 memory-mapped NI gisters, CDRs are
memory-mapped into a usewirtual space. Heever, unlike the CM-5 NI rgisters, CDRs
are cachable. | assume that each process vgbtiae its avn CDR from a CNI. Ha-
ever, if multiple processes require access to the same CDRrthst impose some kind
of synchronization (e.g., implemented via shared-memory pvesitbetween the multiple

processes).

1. Thanks to Deid Wood for suggesting the general approach of cachingonktwterface rgis-
ters.

43

CPU CACHE CNI
poll] cache miss for CDR
tz
——
-
=~ message
.« —

arrives
[~ — invalidate CDR
< cache miss for CDR
|

block transfer of CDR

time

\ proces
messagk

Figure 3. CDR Transfer ExampleThis figure shavs CDR transfers between the ClI
CPU's cache, and a CNI, assuming write-allocate cachkps d¢onsistent by a MOESI writ
invalidate coherence protocol [123]. Initigliyne CPU polls a CDR to check the presence
message. Assume this incurs a cache miss. This cache miss is satisfied by the CNI (i
main memory), which indicates the absence gf message in the CNI. The CRUBubsequel
polls to the CDR block (shadedgien) is satisfied directly from its cache. Finaldy messac
arrives, which prompts the CNI tovalidate the CDR block in the CP&tache follwing the
standard coherence protocol supported by the memayThe subsequent cache miss foi
CDR block brings in the me CNI status and the firstéewords of the message in one block.

A CNI sends information to a processor—i.e., to initiate a request or update status—
by writing to thevirtual addressof the CDR. Havever, the CNI must first obtain write
permission to the CDR block. Such write permission can be obtained via the underlying
coherence protocol. That is, the processor will incur a cache miss for the CDR block.
The CNI will obsere thephysical addessof the CDR block on theus—ijust like a re-

ular cache miss—and respond appropriately

A processor may reog information from a CNI by polling a CDR block (via its vir-
tual address). Unlik existing polling schemes, the CDR block is cachable, so in the
common case of unchanging information, the processorsuccessful polls normally
hit in the local caché.Bus trafic only occurs when a gize updates the information.

Figure3-1 illustrates ha a CDR is transferred between a CPU, the GRta’che, and

1. Cache conflicts can cause replacements, whfelstgferformanceut not correctness.

44
the CNI. Because a CDR consists of a whole cache block and status information is typi-

cally less than a ¥ words, part of a message can be communicated between the CPU
and the CNI in a singleus transaction, amortizing the dick overheads across multiple

words.

3.1.2 Adwantages of a CDR

A CDR improves performance in fourays. First, in the common case of unchanging
information, e.g., polling, a CDR remes unnecessaryub trafic because repeated
accesses hit in the cacheithcorventional uncached diee reagisters, each poll by the
processor must go across theslio the déce. In a symmetric multiprocessing node,
repeated polls to uncachedvabe registers can consumeip bandwidth, which could be

used by other processors in the node.

Second, when changes do o¢@€DR uses the underlying coherence protocol to trans-
fer messages a full cache block (e.g., 32-128 bytes) at a tinveevelp for smaller
amounts of data, e.g., a 4-byterd, CDRs are lessfeafient. For most processors, fetch-
ing a single wrd from an uncached dee register tales roughly the same time as from a
CDR; this is because the CNI responds with the requested first which is then
bypassed to the processbiowever, the CDR still has higherverhead since it will dis-
place another block from the cache, potentially causing a later miss. CDRsrdtess
well for small transfers to a diee. Because most modern processove Istore hffers, a
single uncached store is mordi@ént than transferring thatokd via a CDR. Br most
processors andules the breaen point typically occurs at twor three double ards.
Hence, my CNI implementations (Sectibri) with non-speculate processors use
uncached stores to transfer singlerds of control information from the processor to the
device. Havever, with a dynamically-scheduled, speculatiprocessor (notvaluated in
this thesis), uncached loads and stores can stop the prosesgenf-order and specula-

tive accesses. Consequentty such processors it may still be adtageous to transfer

45
even small amounts of data via CDRs tmid messing up the processodut-of-order

and speculation engine.

Third, a CDR can transfer information both from theice to the processor as well as
from the processor to thevdee in a logically symmetric ay. Thus, a CNI dace can poll
a CDR and directly read messages from the processache using the standard coher-
ence mechanisms. CNIs can further optimize these polls through a techniqueidakbéd
polling. Because a CNI d&e obseres the coherence protocol directtknows when the
processor requests write permissions to the block. Hence, it need not poll peridaditally
can read the block back soon after the processor requests permission. TheicN\tate
provide a system programmable backioferval to reduce the lédihood of “stealing” the
block back before the processor competes its writes to the CDR. This technique, called
virtual polling, is useful for processors that canndicieintly “push” data out of their
caches. &r processors (e.g., WerPC [132]) that do support udevel cache flush

instructions, a CDR can be directly flushed out of the cache.

Fourth, processors canfiefently communicate control information, e.g., interrupt
masks, to an NI through CDRs. Changing control information, such as masking NI inter-
rupts, can bexgensve in modern processors this may require an uncached store, a write
buffer flush, and a trip through the operating systemra/did these costs, Stodoiglet al.

[121] proposed theptimistic interrupt potectionscheme based on the assumption that
interrupts are rarevents for short critical sections. A detive of this scheme is imple-
mented in the CM-5arsion of the Wsconsin Blizzard system [104]. In Blizzard, the soft-
ware assigns a global processagister to hold a softare coy of the hardwre NI
interrupt mask rgister When a processor enters orvies a critical section, instead of
turning interrupts dfbefore and on after the critical section, it simply changes the NI
interrupt level in the global rgister only If an NI interrupt does occur during the critical
section, the operating system checks the glolggdter and sets a status bit in thgiseer

The processor checks this status bit wheriisehe critical section andecutes the cor-

responding interrupt handlér

46
CDRs prwide an alternatie and perhaps a more gdat solution to the optimistic inter-

rupt protection scheme. In a CDR-based optimistic interrupt protection scheme, the inter-
rupt mask rgister is put in a CDR and cached by the processdihe common case of no
interrupts within a short critical section, the processor simply writes to the CDR that con-
tains the interrupt maskggster in its cache before and after the critical section. When an
interrupt does occuthe NI reads and validates the CDR in the processocache and

sets a separate status bit in the same CDR.x@lingethe critical section the processor
checks the CDR status bit, incurs a cache miss for it, readsvih&tates when the cache
miss is satisfied by the CNI, andegeutes the interrupt handléFhis scheme has tw
adwantages er Stodolsl, et al's scheme. First, it remes the operating system from the
communication path between the processor and CNI. Second, it does n& sesggster

from the global rgister pool, which can be a precious resource (particularly for x86

machines).

3.1.3 Disadwantages of a CDR

The main disadantage of CDRs is that theequire some method for reuse. This sk
them work less well when a processor reads multiple cache blocks of the same message or
different messages using the same COR ekample, after the processor has read the first
block of a message, it mayawt to read the second block using the same CDRveben
tional device registers often soky this problem using an impligtearon-readsemantics,
where the rgister is cleared after an uncached read.ekample, the CIVb network inter-
face treats the read of the haedlevreceie queue as an implicit “pop” operation. Clear
on-read wrks because processors guarantee the atomicity gfdodl load instructions;

that is, the &lue returned by the diee is guaranteed to be written to gister

Clearon-read does notavk well for CDRs, since most processors do novide the

same atomicity guarantees for cache blocks. The load that causes the cache miss should be

1. If the processor checks the status bit first and then resets the interrupt mask witen itréi-
cal section, then it may lose an interrupt. Resetting the interrupt mask first and then checking
status bit guarantees that no interrupt is lost.

47

Steps Processof
One Uncached store to NI
Two Flush store bffer
Three Poll uncached NI gster

Table 3.1:Steps in the threeycle handshadk

atomic (to close the “windw of vulnerability” [63]); havever, there are no guarantees for
the remaining wrds in the block. Before subsequent loads complete, a cache conflict
(e.g., resulting from an interrupt) could replace the blocikh\dlearon-read semantics,

the remainder of the data in the CDRuAM be lost foreer. Consequent|yfor CDRs to

work correctly they must hae an &plicit clear operation by the recver to enable reuse

of the block.

Under a MOESI protocolven this clear operation requires avslthree-gcle hand-
shale between the processor and CNI to ensidre that the processor sees data when
it re-reads the CDR @ble3.1). In the first step of this handskakhe processor issues an
explicit clear operation by performing an uncached store to a traditionakedegister In
the second step, the processor must ensure that the CNI has seen the clear request. Since
most modern processors empkiore liffers, this step may incur additional stalls while a
memory barrier instruction flushes the store out to thee When the CNI obsess the
explicit clear operation, it walidates the CDR by arbitrating for and acquiring the mem-
ory bus. The third step of the handskagk for the processor to ensure that tivalidation
has completed. It does this by reading, potentially repeatadtyaditional uncached
device status r@ister1 Consequentlywhile CDRs diciently transfer a single block of
information, thg perform much less well for multiple blocks. CQs, described, sehe

this problem by amortizing the cost of the handshaker seeral cache blocks.

1. A somavhat more dfcient handshak is possible if the processor pides a useaccessible
cache-imvalidate operation. Issue clear operation, flush stafferband ivalidate cache entry

48
3.2 Cachable Queues (CQs)

Cachable Queues (CQs) generalize the concept of CDRs from one coherent memory
block to a contiguous ggon of coherent memory blocks managed as a queue. CQs are a
general mechanism that can be used to communicate messages betwpencessor
caches or a processor cache andvecdeache. &+ the purpose of this thesis, | will design
CQs to communicate messages between a CNI and a processor capket that each
user process will mpotiate at least taw CQs—one to send messages and the other to

receve messages from the CNI—with the CNI.

A key adwantage of CQs is that thaeimplify the reuse handshaknd amortize itsver-
head oer the entire queue of blocks. Liu and Culler [70] used cachable queues to commu-
nicate small messages and control information between the compute processor and

message processor in the Intat&yon.

This section focuses onWWwa single user processor can use CQs to communicate mes-
sages directly from a nebtsk interface deice. | first describe the basic queue operation
(Section3.2.1) and then introduce @&v important performance optimizations

(Section3.2.2). Sectior8.6 will discuss har CQs can be used by multiple processes.

3.2.1 Basic CQ Operation

Cachable queues follothe amiliar enqueue-dequeue abstraction and eyriple usual
array implementation, illustrated in FiguaeThe head pointeh¢ad) identifies the ne
queue entry to be dequeued, and the tail poinddr () identifies the nd free queue
entry The queue is emptylifead andtail are equal, and full ifail is one entry less
thanhead (modulo queue size). If there is a single sender and singleveeder this
queue, the case | consider in this thesis, then no locking is required since only the sender

updatedail and only the receér updatesead .

1. Memory barrier operations may be necessary to presedering under weak memory mod-
els.

49

Send Receve
Process Process
\tail ‘ head

| | [m4m3mami | |
Receve
l

F\:> L[im3mqmi—
head F tail receize queue
CNI CNI

(b)
Figure 32. Cachable Queue&) Local Cachable Queugb) Remote Cachable Queue. r
m2, m3, and m4 denotahd messages sent by the Send Process to thevR&recess.

A processor sends a message by simply enqueuing it in the appropriate out-bound mes-
sage queue. In particulat first checks for werflow, writes the message to thexhé&ee
gueue location, and incrememdd . A processor recees a message by checking for an
empty queue and reading the queue entry pointed to etdte. The message remains in
the queue until the rea@r eplicitly incrementshead. Thehead andtail reside in

separate cache blocks.

Because CQs are simply memottyey have the property that the message sender and
recever have the same inteate abstraction whether the other end is local or remote. A
local CQ, illustrated in Figur8-2a, is simply a carentional circular queue betweenaw

processors. A remote CQ consists ob tiwcal CQs, each between a processor and CNI

50
device, as illustrated in Figui&2b. Thehead andtail are also managed as cachable

memory A CNI that uses CQs simply actsdiknother processor manipulating the queue.

The head and tail pointers of the CQs are a much simplgtavmanage reuse than the
comple handsha& required by CDRs. If there is room in the CQ, then the tail entry can
be reused; if the CQ is non-emptliyen the head entry ishd. Hovever, even though no
locking is required to access thead andtail , a straight-fonard implementation
induces significant communication between sender andveec€his occurs because the
sender must check (i.e., read) tead , to detect a full queue, and the reeeimust check
tail , to detect an empty queue. Because the queue pointeepare &oherent memary
cache blocks may ping-pong with each check. Thslwead can be greatly reduced using

five techniques described in thexnsubsection.

3.2.2 CQ Optimizations

This section describes &wptimizations—+tazy pointeymessge valid bit sense everse
empty entryemoval, andintra-messge prefettr—that can greatly reduce theevhead to
access CQ entries. | describe the CQ optimizations assumanlgsize CQ entries. ko
ever, the messagealid bit optimization, and consequently senseerge that depend on
the messagealid bit, require slight modifications toork with variable-size queue

entries. | will point out the changes in appropriate plakes.

To explain these optimizations kamine the stepswolved in enqueuing and dequeue-
ing messages to and from a CQ. Each CQ has a sender and/er.recethe send queue
(Figure3-2), the processor is the sender and CNI the vecdior the recaie queue

(Figure3-2), the CNI is the sender and the processor is thevezcBor a rgular circular

1. Optimizations described in this section will alsoriwfor a CQ set up as a lied list of fixed-
size or wariable-size entries. The only féifence wuld be that the sender and reegiwould
have to do anra pointer dereference to get to thateQ entry

51
queue the pseudo-code for enqueuing and dequeueing areas:follo

if (tail 0 1 != head) if (tail '= head)
{
enqueue message at tail dequeue message from head
tail = tail 01 head=head [O1
}
Regular enqueue Reyular dequeue

O denotes addition modulo CQ size. In the pseudo-codesadiad the ones to foilg |
assume that if the queue is full, then the sender will either stall or return an error condition

on an enqueue operation. The reeebehaes similarly on a dequeue operation.

As the pseudo-code amshaevs, on @ery enqueue operation, the sender must read the
head shared between the sender and the vecdinfortunately in the worst case, this
may cause a cache miss for titead on e/ery enqueue operation, because the vecei

may concurrently dequeue the queue entries and incremdraate

Lazy Pointer. The lazy pointeroptimization allevs the sender tovaid reading the
sharedhead on esery enqueue operation. Lazy pointexpleit the obseration that the
sender need not kmoexactly hav much room is left in the queuajttonly whether there
is enough room. The sender maintains a (potentially staley obpthe head,
shadow_head , which it checks before each sefthadow head is conserative, so if
it indicates there is enough room, then there is. Only vghedow head indicates a
full queue does the sender rédeehd and updatshadow_head . Thus, the pseudo-code

for enqueue with the lazy pointer optimization looks as ¥eito
if (tail 0 1 I= shadow_head || tail 0 1 I= (shadow_head = head))
{

engueue message at tail
tail = tail 01

Enqueue with lazy pointer

Note that the abe pseudo-code assumes C language semantics for the “||” operator in
which the second condition is notaduated if the first condition is true. Additionally
the first condition isdlse,shadow_head acquires thealue ofhead, even if the second

condition is &lse.

52

cache blocks\
¥ NF

Message One Message Wo Message Thre Message éur
Header for Message One Header for Messageobr

Figure 33. A Cachable Queue (CQ) with four messages.

The lazy pointer optimization evks well when, on\a&rage, therexasts seeral empty
CQ entries. Br example, if the CQ is no more than half full oveeage, then the sender

needs to checkead —and incur a cache miss—only twice each time around the array

Message ¥lid Bit. Fortail , havever, amessge valid bitprovides a better optimiza-
tion than a lazy tail pointeifail pointer works poorly if messages arei one at a time. In
contrast, a messagelid bit allovs the recefer to detect message &ais without ger

checkingtail , thereby eliminating the need for a shatatl

The messagealid bit can be stored either as a single bit or a sepamateinthe mes-
sage headefFor my implementation of CQs, the message Wdldhe message header
(Figure3-3). For all subsequent pseudo code, | will assume that the messadéit/is

the first word of the message header

The sender sets thalid bit when it writes a me message to a CQ entrfhis may
involve invalidating the receer’s cached copof the CQ block containing the message
(and the messageahd bit). When the receer reads the same CQ locatioraiag this
invalidation will force the receer to obtain the v cache block from the sender via a
cache miss. The reeeir will first check if the messagahd bit is set to ensure the pres-
ence of a n@ message. Subsequentiyhen the receer is done reading the message, it
must reset thealid bit before it adanceshead . No explicit synchronization (e.g., a lock)
is required to update thahd bit because the sender updates the bit only when it is not set,

while the recaie updates it when it is set.

53
The pseudo-code for enqueue and dequeue with the mesdageivwould be as fol-

lows:
if (tail 0 1 !'=shadow_head || if (*head == VALIDBIT)

tail 0 1 != (shadow_head =

head)) dequeue message from head

{ *head = ~VALIDBIT,;

engqueue message at tail head=head 01

*tail = VALIDBIT }

tail = tail 01

Enqueue with mesga valid bit Dequeue with mesga valid bit

Message alid bits are not ne The *T-NG network interface [22] supports uncached
message alid bits. Liu and Culler [70] used cached messagil \bits in their Rragon
Active Message implementati&nThe Scalable Coherent Intacke [116] optionally sup-
ports a primitve called QOLB (queue on lock bit) directly in the coherence protocol. This
lock bit (per cache block) could be used as a cached mesdablitv A messagealid bit
differs from QOLBS lock bit because a messagdid/bit can be implemented on top of a
coherence protocol; it does nowbkao be intgrated with a coherence protocol, as is done

for QOLB.

Cadedmessagealid bits, as dered by CQs, impnee performance in tavways. First,
in the absence of gmMessage processor polls to a message kit will hit in the proces-
sor cache. Second, when a message dogs and a processor incurs a cache miss for the

messagealid bit, it obtains the first cache bloclokth of the message (minus thaid bit

1. An alternatve optimization to messagalid bits is possible for CQs for which the processor is
the recerer and the CNI is the sendéfrthe processor can seledly invalidate cache blocks,
then after reading a message, it caralidate the CQ cache blocks that contained the message.
Subsequent accesses to these CQ blocks will result in cache misses. The CNI can respond to
such cache misses only whenaid message isvailable. Havever, this scheme has three dis-
adwantages. First, fe processors support suclvatidate instructions. Second, the processor will
be blocled on the cache miss. Third, memougés that do not support split-transactionsi e
require the CNI to repeatedly sendjative acknavledgments to the cache miss request and the
processor cache to repeatedly send the cache miss request until it is satisfiedulthismec-
essarily vaste s bandwidth. Bsn some split-transactioruges may time out if the response
does not arvie within a certain intead [135].

54
or word) from the CNI. This amortizes theashead of cache miss incurred due to a mes-

sage wlid bit.

The messagealid bit optimization requires slight changes farigble-size CQ entries.
The recarer for a CQ must be able to locate the messalye bit for the ng&t message in
a CQ to check for the presence of avneessage. The location of awnenessage for
fixed-size CQ entries is &x. For example, for a CQ that starts at address X and has
entries of size 256 bytes, messagédvbits will be located at X, X+256, X+512, and so
on. These addresses ar@fhacross all passes through the CQ. Consequtglyjnessage
valid corresponding to a particular location, say X+256, remains the same ixtipase
through the CQ, unless amenessage has been written by the sender into that CQ loca-
tion. For variable-size CQ entries, Wever, a n@v message starts where a\poels mes-
sage ends. Consequentiyessagealid bits can be located at fdifent ofsets in diferent
passes through the CQ because messages themsalv be of dérent sizes. This also
implies that the messagalid bits from a preious pass can beverwritten by the body of
new messages in the current pass through the CQ. Therefore, when ther reloecks the
next word following a freshly-read message, it may incorrectly see the body of an old
message, instead of a messagkdvbit. To present this the sender must also write the
messagealid bit of the ngt message when it writes amenessage (and it@hd bit) into
the CQ.

Sense everse. Clearing the messagald bit requires the recesr to write the queue
entry; thus under a MOESI protocol, the regeeibecomeswner of the queue ents/’
cache block, rather than simplyiag a shared cgp This normally requires an additional
bus transaction. This transaction (and clearing of #d&l \bit) can be wided using a
technique calledenseaverse The ley idea is to alternate the encoding of tiaéd/bit on
each pass through the queuali?is encoded as 1 on odd passes, and encoded as 0 on
even passes. The sender and nemeiboth hge an additional state bit, stored in the same

cache blocks as their respeetpointers, indicating the sense of their current pass.

55
Below | shav the pseudo-code for the simple case wheredlié bit is stored in a sepa-

rate word in the headeiThe sender first checks if the CQ has space and then writes the
message follved by its current sense as the messatjd Bit. The receler compares its

current sense to thehd bit in the message, with a match indicatingbdvmessage.

if (tail 0 1 !=shadow_head |[| if (*head == receiver's sense)

tail 0 1 != (shadow_head = {

head)) dequeue message from head

{ head=head 01

engueue message at tail if (head == 0)

*tail = sender’s sense;

tail = tail 01 receiver’s sense =

i{f (tail == 0) receiver's sense xor 1

sender’s sense = } b
sender’s sense xor 1

}
}

Enqueue with senseverse Dequeue with senseverse

Sense reerse has been ptieusly used for barriers [79] and asynchronous logittdthe

best of my knwledge has neer been used for messaging.

The sense erse optimization requires changes similar to the messdigebit optimi-
zations for wariable-size CQ entries. On each enqueue operation, the sender must first
write the sense bit of the xtemessage in the CQ arrdyefore it writes the current mes-

sage.

Empty entry removal. Valid bits (and, hence, the sense bitsyjate a fourth opportu-
nity for optimization. | call thiempty entry@maoval. Corventional circular queue imple-
mentations often use an empty queue entry to help distinguish between queue full and
gueue empty conditions.oOF example, the queue empty conditiorowmd be faill ==
head), while the queue full conditionauld be fail [1 ==head). However, given
the \alid bits, the empty queue entry can be reedo With valid bits the queue empty and
full conditions would translate intot§il ==head && valid bit not set) andigil ==

head && valid bit set) respeately. With sense bits, the queue empty and full conditions

56
are somehat subtle. The conditions atail ==head && senders sense == rec@r’s

sense) anddil ==head && senders sense !=recer's sense) respeetly. Updates
to the receier’'s sense andead must, havever, be atomic, because thpintly comprise
the recerer’s view of the CQ. Thus, the pseudo-code for CQ enqueue and dequeue with

all the optimizations look as folies:

if (tail I= shadow_head || if (*head == receiver’s sense)
tail '= (shadow_head = head)|| {
sender’s sense == receiver’s dequeue message from head
sense) tmp_head = head 01
{ if (tmp_head == 0)
enqueue message at talil {
*tail = sender’s sense; tmp_sense =
tail = tail 01 receiver’'s sense xor 1
if (tail == 0) atomically update head
{ and receiver’s sense
sender’s sense = with tmp_head and
sender’s sense xor 1; tmp_sense resp.
} }
} else
head = tmp_head
}
Enqueue with empty entrgmoval Dequeue with empty entrgmoal

If a processor is the reser andhead and receier's sense are allocated in separate
words, then atomic updates head and receier’'s sense can be achgel by allocating

head and receier’s sense in a single doubletd variable and performing a single dou-
ble-word store to thisariable. This ensures atomicity because processors guarantee atom-
icity of individual store operations. If a hardwe finite state machine mimics the rgeei

(e.g., in a CNI), then it can guarantee atomicity by simultaneously updatindnéomdh

and the sense.

The empty entry remval optimization is wrthwhile only for small CQs. Lge CQs
may aford to waste an entry because it consumes a small fraction of the total CQ space.

Also, this optimization does not help much fariable-size CQ entries becatlmad and

CQ state at sender

CQ state at recever

Sharechead
Privateshadow_head
Privatetail

Private sense bit

Sharedhead

Private sense bit

Translations (SectioB.6.2)
Process identifier (Sectid6.4)

57

Translations (SectioB.6.2)

Process identifier (Secti¢h6.4)

Table 3.2:CQ state at sender and re®ei

tail would be incremented in 4-byteowd intenals. Consequentlyusing one 4-byte

word to distinguish between CQ empty and full conditions is not tasateful.

Intra-message pefetch. The fifth optimization—ntra-messge prefetdr—is a \ariant
of virtual polling (Sectior8.1.2) that minimizes the number afdtransactions on the crit-
ical path for the send CQs (i.e., a CQ where the processor is the sender and a CNI is the
recever). Specificallyunder the bs’s write-invalidation based MOESI protocol, the pro-
cessor must generate amahdation signal to acquirenmership of a cache block before it
can write to it. Since our CQs are filled in FIFO or@er irvalidation signal for all blocks
other than the first block of a multi-block message implies that the processor is done writ-
ing the preious cache block. When the CNIMilge detects an vlidation signal it issues
a coherent read on the pieus cache block of the same message. Thus part of the mes-
sage is transferred to the CNI cache before the processor has completed writing all the

cache blocks of the message.

Combining all fie CQ optimizations—Ilazy pointemessage alid bit, sense rerse,
empty entry remaal, and intra-message prefetch—minimizass lrafic and space
required by CQs. dble3.2 shavs that a CQ incursevy little overhead at the sender and
recever. Table3.3 summarizes the benefits of theef@Q optimizations. In the common

case, these optimizations reduce both the numbervalidation and read misses from

58

Optimization Benefit

Lazy pointer sender does not read head pointer (in common case) to v
a nev message into the CQ

Message alid bit recever does not read tail pointer to read & meessage
from CQ

Sense reerse recever does not write the CQ

Empty entry remeal saves space in CQ

Intra-message prefetch recever overlaps the consumption of preus blocks a mes
sage with generation of weblocks

Table 3.3:Summary of CQ optimizations.

three (forhead, tail , and message) to one (for message). This result holds for a write-
invalidation based MOESI protocol and cache-block sized messages. The reduction can be

even greater for update protocols and messaggsrlétan a cache block.

3.3 Home

In most computer systems, algse physical addresses map tthamedevice or memory
module. If a block is cachable, foxample, then the home is where data are written on
cache replacement. Should the home for CDRs or CQ entries be at the CNI, as gvith a re

ular device register or in main memory?

Since CDRs are each a single block and mostes will emplgy only a fav, the logical
choice is to preide the home within the giee itself. This can also simplify the imple-
mentation for some memoryuges, because theuvitee may not hee to implement all
cases in the coherence protocol [974r Example, cache replacement for CDR blocks

need not be implemented because the CNI itself is the home for the CDR block.

CQs, on the other hand, will benefit from beingyéarfor example, Brever, et al., hae
demonstrated that remote queues can significantly wepperformance by pventing

contention on the netwk fabric [16]. If the CQ home is main memory—a less precious

59
resource than hardwe FIFOs—then its capacity can bery lage (e.g. mgabytes).

Large queues help simplify protocol deadloaloidance and fl@ control, at least for
moderate-scale parallel machinesvidg the CQ home in memory also helps tolerate
unreliable netwrk fabrics, since messages need not be vethrom the send queue until

delivery is confirmed.

Mapping the home of CQs to main memory raiseerse operating system and perfor-

mance issues. | discuss these in thd tveo subsections.

3.3.1 Operating System Issues

To place the CQ home in main memome must address three operating system issues.
First, a CNI needs a translation scheme to translate the CQ virtual addressgsdal ph
addresses in main memoff/the operating system allocates CQ pages contigudhsiy
CNIs can use a simple base-and-bounds virtual-ysipal address translation. If the
operating system cannot guarantee this, then a more complicated translation mechanism

may be necessar$ection3.6.2 discusses geral alternate translation mechanisms.

Second, a CNI must ensure that CQ pageay reside in main memaomyr be prepared
to fetch them from the sap deice. For the CNI implementations in this thesis, | assume
that CQ pages are “pinnédo that the operating system does not attempt to page them

out. Alternatvely, more fleible schemes are possible (see Se@i6nl).

Finally, there must be some mechanism for the rare case in whanlttee lage amount
of memory allocated for a CQ fills up. Three optionsste The first and the simplest
option is to block the sender;Wwever, this may lead to deadlock. Second, as proposed for
MIT Fugu [72], the CNI deice can interrupt the processoausing it to allocate free vir-
tual memory frames and drain the CQ. Third, the CQs thersebuld grav dynami-
cally. An easy way to achige this would be oganize the CQs as a liaé-list of fixed-size
buffers. If a CNI finds that the resei CQ is full when it tries to write memessages to the

CQ, it can interrupt the OS. The OS can mak upcall to the user process, causing it to

60
allocate virtual memory for theulfers. After obtaining the virtual memory frames for the

buffers, the OS must allocate backing/pical memory and insert thesafiers in the CQ.
A similar approach could be tak for the send CQ. This approach has the dasddges
of requiring a pointer dereference fateey message access and a more elaborate scheme

to manage the translations of thefbrs.

3.3.2 Rerformance Issues

Treating CNI memory as a CQ cache requires the CNI to handle cache replacements of
modified cache blocks from the CNI cache. Modified cache blocks result in s €2idlie
from messages that arei from the netwrk. For a FIFO-style CQ, flushes are unnecessary
in two cases:

* A message may ke been consumed by a processor (i.€ead message), Ui is
flushed to main memory because cache blocks it resides in aredmaoklified.

« New messages auing from the netwrk continuously replace fresh messages from
the CNI cache to main memofkhis can happen when the CNI cacherfiows due to
a lurst of messages armg from the netwrk. This may cause the processor to pick
up all messages from main memanstead of the smaller andster CNI cache. The
negative impact of this problem can be reduced WWmeessages auing from the net-

work bypass the cache and write them directly to main memory

Below | describe tw optimizations—dead mesgge eliminationandcade bypass-that

help remeoe these tw unnecessary cache flushes.

Dead Message Elimination.A dead messg is a message reged by a CNI and
already consumed by the procesfd@ad messages from the reamyj CNI's cache need
not be flushed to main memofyigure3-4 shavs that dead messages can be determined

easily by comparing thieead andtail of the CQ.

The dead message elimination optimization changes the contract between the CNI and a

processarAfter a processor incremertisad of the recaie CQ, the CNI does not guar-

61

#head

Cachable
Queue

Ttail

- > > >
Dead Messages ' Valid Messages ' Dead Messages

Figure 34. Dead message eliminatioA simple comparison of the head and tail poil
shavs messages that are already consumed by theeecei

antee the alidity of data for the dead message in theipies CQ entryHowever, the CNI

must still guarantee thealdity of the sense bit in that CQ entry toy@et the processor

from incorrectly interpreting the presence of aidh message in the CQ enti@onse-
quently even with dead message elimination CNIs must still flush the sense bit of a dead
message to main memoryThis may be accomplished using an uncached store from the

CNI to main memory

The lazy pointer optimization (Secti@x2.2) creates a problem in determining dead
messages in the reegig CNI's cache. This is because the lazy pointer optimization,
when successful, alles theshadow _head andhead to drift apart. Consequentlynes-
sages may be deadiem though indicated otherwise by steadow_head . To sole this
problem, | force the CNI to update teeadow_head after ery N cache block flushes
from the CNI. | call N the dead message elimination threshold. Thissatltee CNI to
have a more precise weof dead messages in the CQ andvedl@ better elimination of

cache flushes for dead messages.

My experiments in Chapte¥ suggest that one is a reasonalaleie for N. N = 1 sug-
gests that not only do messagesvarrin batches, which alles shadow _head to

improve performance,ui also messages are consumed by the processor in batches. Con-

1. A writeback luffer may help impree the performance of writeback of sense bits to main mem-
ory. However, my experiments (not shvan in this thesis) indicate that such a writebaokdy
has ngligible efect on the performance of CNils.

62
sequentlyif the CNI encounters one dead message, the probability of encountering con-

secutve dead messages is high.

Of the seen macrobenchmarksauated in this thesis éble4.3), dead message elimi-
nation only helps spsavsignificantly For this benchmark a dead message elimination
threshold of one impres the performance of CNQ,, by 12%. The impreement is

greater for CNR,,, with i > 32. See SectioB.4 for an gplanation of the CNI taxonomy

Cache BypasslIf messages ame from the netwrk at a CNI &ster than the processor
can consume them, then the CNI cache wirion. This may cause the processor to
pick up all messages from main memddpwever, because CNI caches are smabieg
expect them to beakter Therefore, allwing the processor to read messages from the CNI
cache, instead of main mempspould imprge performance. Consequentlyriting nev
messages to main memory directly and bypassing a full CNI cache shoulgerppréor-

mance.

| use a heuristic to determine if the CNI should bypass its cache when message
arrives from the netark. In this heuristic each CNI cache block is augmented with one
state bit, which indicates if the cache block has been directly read by the processor at least
once from the CN§ cache. Before writing a block from annmessage (awing from the
network) into the CNI cache, the CNI must check if the state bit of the old cache block
indicates whether the processor has read the block at least once. If so, then the CNI can
safely replace the old block, write a block from themeessage into the same location in
the cache, and reset the state' iowever, if the state bit is not set, implying that the pro-
cessor has not read wen once, then the CNI bypasses its cache and writes the block

directly to main memory

1. Of course, cache replacements in the processor cache can cause the processor to request the
block agin. Nevertheless, |xpect such cache replacements from the processache to be
rare, and, therefore, replacing the corresponding block from thes Catthe is wrthwhile.

63
Chapted shavs that this optimization impwes performance of v macrobench-

marks—em3d and sps@\{Table4.3)—by 4% and 8% respeatiy.

3.4 CNI Taxonomy

This section proposes a taxonomy of ratwninterfaces (NIs). | use the NI queue struc-
ture as the main component to enumerate a taxonomy obmkeitwerfaces. NI queues are
the primary carriers of messages between a processor and its NI. A processor sends mes-
sages to the NI through tlsend queuand recaies messages from the NI through the
receive queudor our taxonomy of CNIs, | assume that both the NI queuestha same

structure.

This taxonomy is modeled after Agnal et al's classification of directory protocols [4].
| use the notation NX for traditional FIFO-based NIs and GNXIfor coherent netark
interfaces that cache the NI queues. The subsadignotes the size of the NI FIFO queue
exposed to the processdrhe deéult unit ofi is memory/cache blocksubcan also be
specified in 4-byte wrds by adding the s ‘w’. The placeholder X could either be
empty Q, or Q,. X empty represents the simple case where aanktinterface eposes
only part or whole of one netwk message.df CNIs a netwrk message isxposed via
CDRs. CDR reuse is managed by tkplieit handsha& described in Sectidh1.3. X = Q
represents the more complease where thexposed portion of the NI queue is managed
as a memory queue witlx@icit head and tail pointers. X = denotes that the home of
the eplicit memory-based NI queues are in main memohge absence of am’ implies

that the deice seres as the home for the NI queues.

For example,i = 2w denotes that only ttwords of the FIFO queue iggosed. A pro-
cessor reads ovds of a message from an,NInetwork interface by issuing uncached
loads to a fird address, which repeatedly pops thg,MIFO. Similarly a DMA-based
NI that reads or writes up to 64ovds of a message at a time via a DMA engine can be

specified as Nk, (see Sectiob.3). In contrast, for some neaivk interfaces, such as

64
NI,,4Q, the processor mustgicitly increment and dereference a head pointer to read dif-

ferent words of a message from féifent addresses of the queue.

Several «isting NIs can be classified with this taxonorie Thinking Machines’ CM-
5 [124] NI is Nb,, since it &poses tw words of a message to the reeei Similarly, the
Alewife [2] NI is Nlqg,, [62]. The netwrk interface in *FNG [22], which deotes 8 KB
for an NI queue and consists of 64-byte cache blocks,;ig®ll The *FJr NI [53] can be
classified as CNQ,, because it does not\Vea cache (hence ‘0’). | call the-JF NI a
CNI, even though it does not @ a cache, because it allocates its queues in main memory
If the *T-NI were on the memoryus, it would have to issue coherence signals eef

these queues coherent between main memory and the processor caches.

Chapterd compares the performance of,)ICNI,, CNI;,Q, CNE,Q, and CNLQ,,

with two microbenchmarks andwan macrobenchmarks.

3.5 CNIs on I/O luses

Although coherent memoryubes alla processors and CNIs to coherently cache CQs,
the same may not be possible with CNIs on all 1I@ds (able3.4). o key mecha-
nisms are necessary in the interconnect between the prqoabssGNI, and the home to
coherently cache CQs in a processor or CNI cache. Hiratcache contains the most
recent cop of a CQ block, it must be able to intercept a coherent read request for the
block and preent the home from responding. Second, a cache must be ablalidaite

(or update) stale copies of CQ blocks residing in other caches.

The absence of the first mechanism esak dificult for I/0O bus CNIs to coherently
cache CQs whose home is in main memdtgin memory resides on the memornysh
while the 1/O lus is usually connected to the memoug through an 1/O bridge. Because
I/O buses are usually sker than memoryuses and the I/O bridge introduces additional
delay on the memoryus to I/O lus path, it is dffcult for I/O bus deices to intercept a

memory lus coherent read request andvprg main memory from responding in a timely

65

Coherent I/O + 1/O

Home Caching CQs In | Non-Coherent | Coherent | Bridge Invalidation
/0 /0 Support
CNI Cache No No No
Main Memory
Processor Cachg Slow Yes Yes
CNI Processor Cachg Slow Slow Yes

Table 3.4:Coherent Netwrk Interfaces on /O bses

fashion. Memory bis CNI caches, on the other hand, directly olesé¢ine memory s
coherence protocol and therefore can intercept a coherent read request, inhibit memory
from responding (through the memory inhibit signal on the memaosy, land respond

with the most recent cgpof the CQ block. Although 1/OuUs CNIs cannot cache CQ
blocks that reside in main memotiey could write messages directly to main memory

just like regular netvork interfaces that DMA messages to main memory

The absence of the second mechanism—i.e. the abilityatidate or update stale CQ
blocks in other caches—in todayl/O huses maéks it dificult for processor caches to
coherently cache data from an I/@QsbCNI deice when the home is in main memory
This is because when a CNI updates main memory the processor cache can still contain
stale data. ialidations can, heever, be synthesized at the soétwe level or at the 1/0O
bridge. At the softare level, a processor coulkplicitly flush its entire cache (or the CQ
blocks selectiely, if selectve invalidations are allwed) before a CNI writes medata to
CQs in main memoryHowever, this solution—adopted in todaysystems that support
only non-coheent 1/0—is slowv because this requires a cache flush andkplicg hand-
shale between a CNI and processor before the CNI can witemessages to main mem-
ory. Alternatively, mary systems suppodoheent I/O by adding functionality at the 1/O
bridge. On a I/O dace write data to main memaqre I/O bridge imalidates all stale cop-
ies of data residing in memoru®caches. The same mechanism could be used by CNis to

allow processors to cache CQ blocks.

66

processor
CR for Oxxx e burst read for Oxxx
1
memory s Bridge /0 bus +
CNI
(a)
processor
Cl for Oxxx o) burst read for 1xxx
I |
memory s Bridge /0 bus +
CNI
(b)
Figure 35. lllustration of shadw address with a CNI on the /@& (a) a processor ree

miss (CR = coherent read) for the address Oxxx is translated by the bridgersi eead fol
Oxxx on the I/O bs. (b) shws that a Cl (coherentvalidate) signal for Oxxx is translated tc
burst read for the shadoaddress 1xxx. The CNI interprets a read for 1xxx asaidation
signal for Oxxx.

| propose a third alterna in which the 1/0O bridge synthesizesafidation signals on
an 1/0 tus, such the Sun SBus or PClising a technique called tishadow addess
space Recall ivalidation signals are necessary to\alk processor tovaid having stale
copies of CQ blocks in the CNI'cache or memory when the processor writ&s mes-
sages to the CQ. Similarlywalidation signals help a CNI tovaid having stale copies of
CQ blocks in the processor cache when the CNI writesmessages auing from the

network into the CQ.

The shadw address space technique has been used before to communicate special sig-
nals from a processor to an I/Ovae [11, 47], It not in an 1/O bridge. In this technique,

the 1/0O bridge creates a shadspace for the gular I/O space by someviertible function

1. PCI supports only ter coherent transactions: memory read line and memory write eaid in
date. The imalidate command. Consequentlye need todke an iwalidation signal een on
PCI.

67
such as flipping a bit. Thus, if Oxxx represents an I/O spagsiqath address, 1xxx will

represent its shadophysical address. Reads from the processor to Oxxx will proceed nor-
mally, but reads to 1xxx will be interpreted by the I/Qvide as a special control opera-
tion, which in our case is anvalidation on the pysical address Oxxx (Figuf5). Thus,
when the 1/0O bridge obses an imalidation signal for address Oxxx on the memaug,b

it will convert it to a read signal on the address 1xxx.v@msely when the I/O bridge
obsenes an I/O bs read signal on 1xxx, it will cgart it to a memory s invalidation
signal on the address Oxxx. These enable an W@e&léo obserg all memory bs irvali-
dation signals for CQ blocks and sendaiidation signals for CQ blocks to memonysb
caches. In this thesis, for akgeriments with I/O bs CNIs, | assume that the I/O bridge
supports the shadoaddress space technique. | will refer to an ® dugmented with I/

O bridge ivalidation support as@heent I/O lus

If the home of the CQs is in the CNIuiee itself, then the first mechanism is not neces-
sary However, if processors cache CQ blocks, then a CNI mustiishate the processer’
stale CQ blocks when nemessages ame from the neterk. The ivalidation schemes

discussed in the preceding paragraph applies in this situation too.

There are other alternedi designs for CNIs on 1/Oues. Br example, although 1/O
buses may not al® main memory requests to be intercepted by WO deices, thg
could allav 1/0 bus deices to intercept requests to memory residing on theu<belf.
This would enable us to place the home in memory on the U& Another option is to
design the CNI to a standard I/@Qs(e.g., PCI) specificationybprovide special bridges
(such as the personality intaces on the SGI Rer Challenge I/O s [42]) through

which the CNI can talk to aaviety of memory bses (Sectio@.2).

3.6 Multipr ogramming CNIs

Emeging serer applications, traditional parallel programs, and themidef symmetric
multiprocessing nodes (SMPs) neait critical to multiprogram netork interfaces (NIs)

of high-end serers and parallel machine nodesontl-wide web, database, and netiw

68
computer query seevs constitute nve classes of emging serer applications that must

rapidly respond to incoming message requests. High-endrseachines that run multi-

ple such semr applications must be multiprogrammed tovalloaximum eerlap of CPU

and 1/0O operations from these sers. Throughput-oriented production runs of traditional
parallel applications, such as scientific codes, may not necessarily require a multipro-
grammed parallel machine.)e&theless, parallel machines must be multiprogrammed to
allow fast response times for programvelepment wrkloads. Finally the adent of

SMPs as high-end sems and parallel machine nodes wallithe opportunity to run multi-

ple processes in parallel within the SMP node itself. Multiprogramming processor and
memory for communication-inteva serer and parallel applications is,mever, almost

useless unless we multiprogram the NI itself.

| see four ky design challenges to multiprogramming an NI. These are:
* Ensuring protected access to the NI (Sec3idnl),
* Providing the NI with plysical addresses of message daiéels (SectiorB8.6.2),
» Allowing multiple processes to simultaneously access the NI (S&c6d), and

» Detecting generation of memessages from dé@rent processes (Sectidr6.4).

Below | discuss each of these design challengeise&ch design problem | firstamine
the alternaties that gist in todays commercial and research Nlis amglain which solu-
tions are most suitable for CNIs. Sect®6.5 discusses arxample send and reeei

datapath through a multiprogrammed D} device.

3.6.1 Ensuring Potected Access to the NI

Protected user access to status, control, and dgitders of an NI isolates user pro-
cesses from one another andverds one process from clobbering another prosesss-
sages. There are tnstandard ays to ensure protected, user access to gisters. The
first, and the traditional method, is to access the NI through the operating system (OS).
User applications send messages to andveceessages from the OS through the con-

ventional system call intea€e. In Unix for gample, users can send and reeenessages

69
to and from the netark via the socét interfice. This scheme ensures protection because

only the OS directly talks to the NI. Unfortunates discussed in Secti@B, routing
messages through the operating system can incur highyatems of microseconds),

because of the need to cross a protection boundary

In the second approach faled by CNIs, NI rgisters are memory-mapped directly into
user virtual space, which alls direct, protected, and rapid access to the §isters. In
this approach camentional virtual memory hardave guarantees protection on a per page
basis. © the best of my knaledge, the Thinking Machines’ CM-5 Nlas the first to
adopt this mechanism. B&al recent NI designs, such as the Princeton SHRIMP NI [12],
Mitsubishi DART [96], etc. hae adopted a similar straye for protection. All CNI
designs adopt this approach. CDRs and CQs are memory-mapped into user virtual space;
the virtual memory hardare guarantees protection for these data structures shared

between the NI and a user process.

Memory-mapping NI rgisters to user space introduces a corifyldor systems with
NlIs that directly read and write messages to and from the processariory space. Pro-
tection will be violated if the operating system remapsyaighl page to another process
or swaps a phsical page to disk when an NI is reading from or writing to that page.
DMA-based NIs and CNIsafl in this catgory of Nis. For DMA-based NiIs, this situation
can arise while DMA is in progressof~CNiIs this situation arises during cache block

writebacks from a CNI cache to main memory

Researchers kia proposed tw solutions to this problem of protection violation caused
by page remapping and apping. CNIs can use eithétirst, all pages that an NI reads
from or writes to can be pre-allocated and pinned to main mefmbiy ensures that all

physical pages to or from which an NI transfers data arermemapped or sapped. The

1. Even etensible operating systems, such as SPIN [10] or VINO [108], cannot eliminatethe o
head of trapping into the operating system. Extensible operating systemswarerheduce
the overhead of heay-weight protocols, such as UDP/IBy customizing them for specific
applications.

70

Arizona Application Deice Channels [35] and the Cornell U-Net architecture [12Vé ha
taken this approach. This scheme is simple to implement and requires poydittle
change to commodity operating systems and Nlsveder, this limits the amount of user
virtual memory space that an NI can address because only limited amounysioglph
memory can be pinned throughout thee@ition of a program. This pents NIs from

directly depositing data into wplace in user virtual space.

Second, instead of pinning all pages that the NI can potentially write data to or read data
from throughout the entire duration of a program, the OS and the NI can cooperate to tem-
porarily “pin” only those pages that arevatved in data transfer between the processor’
memory space and the NI (e.g., SHRIMP [[11], U-Net/MM [1313]'his allovs the NI to
address the entire user virtual spacewel@r, the OS must be careful not to remap pages
that hae data transfers in progress. Both SHRIMP and U-Net/MM dwallee OS
remapping such pages. In SHRIMP the OS is disakbfrom remapping pages that are
actively involved in message transfers. The SHRIMP NI har@vwosts addresses of such
pages in its mgisters. The OS simply reads thesgisters before remapping or apping
ary page; if a page’address is currently in an Nrster then the OSweids remapping
or swapping that page until the NI clears that address from thistees. U-Net/MM is
more coarse-grained. It disalle ary further remapping of a page that has been mapped
by a translation cache (Secti8r6.2) located in the NI. The OS can only remap pages

whose translations kia been replaced from or do not appear in the tddnslation cache.

CNiIs with caches impose an additional requirement on the OS and NI. Before a page
remap or page sap, modified CNI cache blocks corresponding to a page must be flushed
to main memoryThe OS can use the same technique it uses to flush cache blocks from
processor caches. The OS running on a processor simply reads the entire page into the

processor cache and then writes the page to main mefterysame protection mecha-

1. Alternatively, the OS itself could dynamically pin the pages before initiating data transfer
between main memory and the NI. But this has highern@ad because the OS must veked
on every message send and reception to update the page table data structures that typically con-
tain this information.

71
nisms described earlier in this subsection can be usedvenprine CNI to re-read the

same blocks. Alternately, the CNI can coordinate with the OS to flush all cache blocks

directly from the CNI cache to main memaory

3.6.2 Poviding the NI with Physical Addresses of Message Data

NlIs that read data from or write data to processor caches, NI caches, or main memory
must knav the plysical address of the message daiffieibs. NIs that transfer data to or
from main memory using DMA prade a classicxample of this kind of NIs. CNIsate a
similar challenge because CNIs must be prepared tovwetl@&a from processor caches
and write data to main memory or CNI caches themasel@oherent memorybes sim-
plify the solution for NIs because NIs need nairy about whereactly the data is
located; the data can either be in main memory or processor caches. The NI simply speci-
fies the plisical address of the message datifelb and the memoryus returns an up-to-
date cop of the message data to the NI. As discussed in S&torhis is knan as

coherent I/0.

There are tw standard ways in which an NI can acquireysical addresses of datafb
ers: either the processor can\pde the NI with the pysical address of the dataffers
just before the message send or rexer the user application can directly send the virtual
address of the message daiéfdrs to the NI deice. In the latter case, the NI mustvba
mechanism to translate the user virtual address to ysgahaddress in the system. CNIs
can adopt either method;veetheless, for performance reasonsould recommend the

second approach.

In the first and the more traditional method, the OS supplies Weegewith plysical
addresses because user applications do metdwess to and cannot be trusted witfsph
ical addresses of NI diees or main memonyrhis requires OS inteention on gery mes-
sage send and reeei Recentlythe Princeton UDMA mechanism retakthis constraint
by shaving hov DMA can be initiated directly from usésvel through theshadow

address spacéechnique [11] using simple uncached loads and stores to thevigéde

72

The shader address space technique atoa user process to transfeygical addresses

for the source and destination of DMA to the NI without violating protection. This strat-
egy works well for processeanitiated sends and processoitiated message reses.
However, for asynchronous message reception such as thefeneddby the Actie Mes-
sage model, this may hinder performance because the NI cannot directly deposit data into
user space without processor inttion. Alternatrely, as in the Princeton SHRIMP
approach [12], the sending NI cargp&ate ahead of time the ygical addresses to which
messages ould be deposited in the reeig node. On a message send, the sending NI
appends to the message the appropriaisighl address in the reegig node. This
approach allwvs asynchronous message reception without processorenten. The
dravback of this approach is thatyatocal change in translation (e.g., page remap or
swap) requires the system to reflect this change glghvalich can be anxpensve oper-
ation. This can bevaided by pinning the destination pages for the entire duration of a par-

allel program.

In the second method, the NI holds the user virtual-isiphl translations so that it can
directly interpret user space virtual addressesiged by the useiThere are seral alter-
natives for this—from storing the entire page table in the NI [107], to caching the transla-
tions in NI data structures, either in sadine [47] or in hardare [96]. There are v
problems associated with caching the translations in the Mitddill the NI translation
buffer and hav to avoid stale copies of translations when the operating system has
remapped a page or apped a page to disk. The NI translatioffdr can be filled in tw
ways. First, on a translatioutier miss, the NI can interrupt the operating system, which
can insert the requested translation into the NI translatifarbSecond, translations can
be inserted into the NI translationfter directly by the user through the shadaddress

space technique [11, 47, 101] using simple uncached loads or stores to the dtéll de

1. See Chaptes for details on Useevel DMA

73
The translation table in the NI must be updated if the operating system either remaps a
page or sw&ps a page out to disk. If the operating system decides to remap a page, it can
simply invalidate the corresponding translation in the NI. The operating system rey ha
to wait for an access is in progress from the NI on that particular page to complete. Alter-
natively, the operating system can ensure that pages mapped by $hELBlare alvays

pinned in memory and rer reclaimed unless the Nxgicitly gives them up [133].

Page svaps can be handled inawvays. First, all piasical pages may be pinned in main
memory for the duration of the progranarfong-running programs, this solution may be
infeasible. Second, the operating system caainagwvalidate the translation in the NI
translation bffer when it svaps a page out to disk. When the NI accesses the paige ag
it will incur an NI translation bffer miss and request the host processor to remap the page.
The host processor will @p the page back into y$ical memory and reinsert the transla-

tion into the NI translationugfer. 1

3.6.3 Allowing Multiple Pr ocesses to Simultaneously Access the NI

The adent of SMPs as high-end sers and parallel computer nodes has made it critical

to allov multiple processes to access the NJisters simultaneousiyraditionally, Nis

have pravided only one set of gisters (status, control, and data) that are accessed and
controlled only by the OS. This solutiorovks for SMPs if all message sends and esei

are routed through the OS. Wever, UserLevel NIs (ULNIs) do not hee this prvilege
because themust allav user applications to directly access the Njiseers. ULNIs such

the TMC CM-5 NI [124] and the Princeton SHRIMP NI [13]fsuffrom a similar prob-

lem; although these NIs allomultiple processes to access the Njisters, thg do not

allow more than one user process to simultaneously access thgistine

A common approach to alldong multiple processes to access the Njisters simulta-

neously is to prade multiple sets of NI gasters and memory-map aféifent set into dif-

1. For more detailed discussions on protection and address translation issues in dinle inéw
face, please see Heinlein, et al. [47], Blumrich, et al. [11], and Schoinas and Hill [105].

74
ferent user virtual spaces. The Arizona Applicatiorvibe Channels (ADCs) [35], the

Cornell U-Net [127], and Fujitsu AP-Net [111]veaall talen this approach. Theak
interface abstraction for these approaches nseanory-based quey&ection2.7). CNIs

take a similar approach; additional@NI,Q,,'s (i > 0), which are CNIs with caches whose
home is in main memoyyprovide greater fheibility in multiprogramming. Processes com-
municate with CNIs through CQs, which are memory-based queues with the additional

property that these queues can be cached in the processor and CNI caches.

Memory-based queues are allocated by eithadidig up the fied amount of memory
in the NI among multiple queues or using main memory as a repository for these queues.
The first method limits the number of queues that can be allocated because NI memory is
usually a small and precious resource and for each process the queues must be allocated in
multiples of page sizes (e.g., 4 - 16 kilobytes) because the standard virtual memory hard-
ware guarantees protection only at the page granul@uagsequentlyAP-Net supports
only two usetlevel queues, while the ADC implementation described in [35] supports 16
userlevel queues. Alternately, these NIs can support adar number of queues if the OS
is prepared to s&@ and restore the queues and queue state when the number of queues allo-
cated &ceeds the total amount of memory on the NiwEeer, since message queues can
be quite lage (tens of kilobytes), sang and restoring these queues and queue state can be
an pensve operation. The CIND designs—CNIs with no caches—®uffrom this
problem. The second method, adopted by the U-Net architectwataethis problem
somavhat by allocating the queues in main memory and queue state in the NI memory
Since the queues are in main memory and managed thrapgarreirtual memory hard-
ware and softare, thg need not be sad and restored. kaver, the disadantage of this
method is that messages cannot be transferred directly between the NI and processor; all

messages must be routed through main memory

CNIiQy's (i > 0) simplify the multiprogramming problem becauseytalblow a system
to support a laye number of queues witlery little memory in the NI. Thedy obsera-

tion is that thg separate the logical allocation of CQs from theiygital location. Logi-

75
cally, CQs are allocated in virtual address space of each process at page granularity
Physically, howvever, they can be located in the CNI caches, processor caches, or main
memory as need be. L&kthe ADC implementation, theallow messages to be directly
transferred between the NI and the processaz;UikNet the number of CQs supported is
only restricted by the number and amount of CQ state that can be allocated in the NI mem-
ory. Since the amount of CQ state per CQ is typically smabléB.2)—that is, tens of
bytes—the number of CQs that can be supportedrislage.

The number of CQs supported by a CNI can be meele lager, if need be so, by mak-
ing main memory the home of the CQ state and caching the CQ state in the CNI. The Ber-
keley Active Messages implementation on a Natwof Workstations running the Solaris
operating system and connected with Myricom Myrinet switches [74], caches state spe-
cific to network connections (called endpoints) in the NI memeétgwever, the Myrinet
host interice does not interact with the host system through coherent operations. Conse-
guently the Berleley implementation mustdep such state coherent in s@fte. Alterna-
tively, because CNiIs interact with the host system through coherent memory operations,
the CQ state itself can be allocated in coherent memory and treataly éke CQs them-

sehes.

3.6.4 Detecting the Generation of New Messages by Di#at Processes

CNIs must hae eficient mechanisms to detect the generation of messages by dif-
ferent processes, both during message send and reception. Message detection has tw

parts: detection of message creation and association of a message with a specific process.

On the send side, in almost all current NI designs, processes inform the NI of the cre-
ation of a n& message through an uncached signalling store to the NI. This approach is
appealing because of its simplicitMevertheless, as discussed in Chagteuncached
loads and stores can bewland often stop the speculation engine of modern micropro-
cessors. In the absence of uncached signalling stores, CNIs must be prepared to monitor

the state of each CQ to detect the presence ofvanmessage—either by monitoring

76
changes in the tail pointer or by detecting changes in the mesdabbits. Monitoring a

large number of CQs can be atpensve operation because the CNI has to check the sta-
tus of each CQ for me messages. ikual polling (Sectior8.1.2) can be a viable alterna-
tive here, particularly in the presence of @éanumber of CQs. A CNI gie can be
mostly passie; it needs to poll a CQ only when amahdate coherence signal appears at
the CNI's kus interfice. Associating a message with a specific process is simple for CQ-
based CNIs because feifent processes will write messages tofedént plysical

addresses.

On the recefe side, a CNI logically detects the presence ofva message either by
polling the aternal netwark interface or through anxeernal netwrk interface interrupt.
The actual state machine can be implemented either in direnwr as a finite-state
machine. ® associate an incoming message with a vaagiprocess, the message pro-
vides the CNI with some identifieExamples of such identifiers include global process
identifiers and CQ identifiers. M@ver, such identifiers must be added to the message by
the sending CNI, and not the udaecause CNIs cannot trust users twiol®correct iden-
tifiers. Such identifiers can be obtained from the operating system and maintained along
with the CQ state @ble3.2).

3.6.5 Multiprogrammed CNIQ,, Datapath

Figure3-6 shavs the logical path follwed by a message through a multiprogrammed
CNI;Qy, device. Figure3-6a shavs the logical path follwed on a message send. The mes-
sage arries from coherent memory$. The CNIQ,, device examines the queue identifier
and looks up the queue state in the queue state table. It translates the virtual queue pointer
addresses and yarother virtual address specified in the message to the corresponding
physical addresses through the TLB (translation lookasidie). In parallel the dece
fetches the corresponding cache blocks from the cache to which the message must be writ-
ten. When the translation completes and the message is written to the cacheicthe de

signals the xernal netwrk interface of the presence of amnenessage. When the net-

77

From Coherent Memory Bus To Coherent Memory Bus
CNIiQp, CNI;Qp,
y Bus Interface Bus Interface |
TLB Queue TLB
* State *
Queue
External Network Inteiace xternal Network Interface
I
To hYetwork From Network
(a) (b)

Figure 36. Logical datapath through multiprogrammed @] device. This figure shas
the logical path through folleed by a message for a message send (a) and message (ie}
for a multiprogrammed CND,,, device.

work is ready to recee messages, thaternal netwrk interface reads the message from

the CN|Q,, cache and injects it into the nerk.

Figure3-6b shavs the logical recee datapath through a GR\,, device. When the
message comes in from the netiwand through thexéernal netwrk interface, the CNI-
iQm device examines the queue identifier from the message, looks up the queue state table,
extracts the virtual addresses from the queue state and the incoming message, consults the
translation table for the correspondingypical addresses and fetches the corresponding
cache block in parallel, and finally inserts the message into th@®QgNbache. At some

later time, the corresponding user process will read the message from g, Calthe.

For both send and resei the CNIQ,, device may hse to postpone writing me mes-
sages into the cache, if the corresponding cache blocks in e dache are maeki

modified and must be flushed to main memory

78
3.7 Interfacing CNIs with Standard Networks

Although CNIs are a n@l class of netark interfaces, thg can be intedced with stan-

dard netwrks in three ways:

» A user process can communicate witragantusing CQs. This agent is a user process
that runs on the same processor (oied#nt processor in a Symmetric Multiprocess-
ing node) and communicates with the nodes standardreinteriace on behalf of

user process.

* A user process can communicate directly with a standararetmterface using CQs.
For example, the Myrinet host intex€e [15] could allw CQs if it could interdice to a

memory lus and reflect coherence signals to its on-board microprocessor

* Another alternatie is to standardize the intace between the internal anxte¥nal
network interfaces (Sectiof.2), so that each memoryd\endor can pnade its avn
internal interfice. Such an internal intade could implement CNI techniques to opti-

mize data transfers between a processor cache and trwhetigrface.

3.8 Related Wrk

Coherent Netwrk Interfaces difer from most preious work on program-controlled net-
work I/O in three important respects. First, ualither NIs, CNIs interact with processor
caches and main memory primarily through the rodeherence protocol. Second, CNIs
separate the logical andyshical locations of NI rgisters and queues along processors
to cache them li&k memory Third, CNIs preide a uniform memory-based intace for
both local and remote communicatiomble3.5 compares netwk interfaces of diferent
machines with respect to these three issues. The Thinking Machines’ CM-5 [124], the
Wisconsin ¥phoon [100], the Stanford FLASH [64], and the MeiRS2 [78] multipro-
cessors pnade high lateng uncached access to their NIs on the memasy Bince both
Typhoon and FLASH hea a coherent cache in their netW interfaces, thg could both
support CQs. The Meik CS2 netwrk interface supports the memoryds coherence
protocol, lut does not contain a cache. The MIT wiie [2] and FUGU [72] machines

79

Network Interface Coherence Caching Uniform Interface
CNI Yes Yes Memory Interfice
TMC CM-5 [124] No No No
Typhoon [100] Possible Possible Possible
FLASH [64] Possible Possible Possible
Meiko CS2 [78] Possible No Possible
Alewife [2] No No No

FUGU [72] No No No
StarFNG [22] No Maybe No
AP1000 [110] No Sender No
T-Zero [103] Partial Partial No
SHRIMP [12] Yes Write Through No

DI Multicomputer[23] No No Network Interface

Table 3.5:Comparison of CNI with other nebwk interfaces

provide uncached access to their NIs under control of a custom CMMU unit. The StarT
NG NI [22] is not coherent because it is aveldevice on the non-coherent L2 coprocessor
interface. StarING NI queues can be cached in the L1 cache,the processor must
explicitly self-invalidate or flush stale copies of the NI queuesscdhsin FZero [103]
caches déce raisters, It not queues, and only uses them to send information from the
device to the processoAP1000 L1Q directly DMA's messages from the processor’
cache to the NI, Wt does not rece¢ messages directly into the cacliinceton
SHRIMP’s memory hs NI [12] allavs coherent caching on the proces$at requires
processors to use the higher fi@arite-through modeThe DI multicomputes on-chip

NI [23] neither supports coherence nor akoits registers or queues to be cached. The
processor chip intemtes with the rest of the system through the NI. @nlkher
machines, the DI-multicomputer supports a uniform message-based@aatéol both
memory and the netwk, whereas CNI uses the samemoryinterface for both memory
and netvork.

Unlike maiy other NIs, mymplementatiorof CNIs does not require changes to an SMP

board or other standard componentst tig/ enable processors and netwinterfaces to

80
communicate through the cachable memory accesses, for which most processors and

buses are optimized. Henry and #pg0] and Dally et al. [34] adecate changes to a pro-
cessors raisters. MIT Alavife [2] and Fugu [72] rely on a custom cache controN&iT
StarFNG [22] requires a co-processor intaré at the sameMel as the L2 cache. AP1000
[110] requires intgrated cache and DMA controllers. Stanford FLASH [64, 48] uses a
custom memory controller with an embedded procesitrer eforts, such as the TMC
CM-5 or SHRIMPR use standards componentst bettle for laver performance by using
loads and stores to either uncachable or write-through memetgad of using the full

functionality of write-back caches.

Five eforts that appearery similar to this wrk are FLASH messaging [47], UDMA/
SHRIMP-I11 [11], Remote Queues [16], Cray T3E messaging [107], and SCI/QOLB [116].
CNiIs differ from FLASH, because tiiedo not require a processor core in the oetw
interface, thg allov commands to use cachable loads and stores, apddhenotify the

receving process without an interrupt.

CNIs differ from the UDMA/SHRIMP-II, because CNIs use the same mechanisms when
the destination is local and remote (whereas SHRIMPUDMA does not handle local
memory to local memory copies), CNIs use only virtual addresses (where SHRIMP-II
requires that the sender kmothe recefer’s plysical addresses), thallow device regis-
ters to use writeback caching, andytiecus on fine-grain uséo-user communication in

which the receiing process may be notified without an interrupt.

CNiIs differ from Remote Queues by being at avdelevel of abstraction. Remote
Queues prade a communication model similar to AciMessages [128]xeept atract-
ing a message from the netsk and iwvoking the receie handler can be decoupled.
Implementing Remote Queues with CNIs is straightiodvand ders adantages wer
CM-5, Intel Raragon, MIT Alevife, and Cray T3D netark interfaces. CNIs support cach-
able deice raisters for lav-overhead polling (unli& the others), all@ network buffers to

gracefully averflow to memory (unlike the CM-5), and do not require a second processor

81
(Paragon), custom cache controller (Wl&e), or hardvare support for globally shared

memory (T3D).

Like Remote Queues, the Cray T3E queues are at a higekeofl@bstraction. CQs dif-
fer from T3E queues becausettae allocated by operating system, whereas T3E queues
are allocated by the user itself. CQs are communication structures between a local proces-
sor and a local CNI. Consequentthere &ist separate send and re@eiCQs, which
together ma& a remote CQ. In contrast, in T3E the NI iswa@ of ay such queue struc-
ture. CQs can automatically wrap around for reuse without userentem, whereas the
T3E queues require the user tpkcitly manage the queues. Finallyecause a CNI is
aware of a C(structure optimizations, such as intra-message prefetch (Sg&id)

are possible.

A CNI differs from the SCI coherence protocol, because a Oitia coherence proto-
col itself; instead, a CNI inteates to a coherence protocol. A CNI can be designed to a
memory interconnect that supports most standard coherence protocols, includmg SCI’
coherence protocol. kaever, QOLB (queue on lock bit)—a feature optionally supported
by SCl—can help impnee the performance of a CNI. QOLB alls eficient implementa-
tion of the produceconsumer sharing pattern by aliog direct transfer of a single cache
block from the producer to the consumBy queueing the consumgnr'equest for a pro-
ducers cache block, QOLB pvents the consumer from repeatedly stealing the cache
block that the producer is writing to. Because a processor cache and a CNI constitute a
producerconsumer pajrCNIs can dectively use the QOLB primitie of SCI. Havever,
for send CQs in which the CNI is the consuntiee virtual polling technique can poten-

tially achieve the same &fct as QOLB.

3.9 Summary

This chapterplored a nwgel class of netark interfaces calledoheent network inter-
faces (CNIs}hat use snooping cache coherence to ingommmmunication performance

between processors and netl interfaces. CNIs use twwmechanisms that CNIs use to

82

communicate with processors.cAchable deice rgister (CDR)allows information to be
exchanged in whole cache blocks and permiisient polling where cache misses (and

bus transfers) occur only when status chanGashable queues (CQeduce re-usever-

head by using array of cachable, coherent blocks managed as a circular queue and (option-
ally) optimized with lazy pointers, messagdid bits, sense-werse, empty slot remal,

and intra-message prefetch. Because CDRs and CQs can be cached in processor and CNI
caches, the require ahome which is an 1/O dace or memory module that services
requests and accepts writebacks for CDR and CQ blocks. Either the CNI itself or main
memory can seevas the home for CDRs and CQst EQs whose home is in main mem-

ory and that are cached in CNI caches Vviettgped tvo mechanisms-dead mesgge elim-

ination and cache bypass-to minimize cache flushes from the CNI cache to main
memory Based on CDRs, CQs, and home for CDRs and CQselaped a CNI taxon-

omy that captures a wide range of traditional NIs and CNIs. Filadkamined hw to

interface CNIs to 1/0O bses and the operating system support needed to multiprogram
CNiIs.

83

Chapter 4

An Evaluation of Coherent Network Interfaces

Coherent Netwark Interfaces (CNIs) constitute aweclass of uselevel network inter-
faces (ULNI) that interact with the processor via the reodeherence protocol. The opti-
mal CNI design déctively exploits all eight opportunities for optimization described in
Chapter2. The prgious chapterxamined specific techniques for ineing CNIs with a
nodes coherence protocol. It alsapwsed a spectrum of alternagtiCNI designs, each

with different performance characteristics.

This chapter waluates the performance of four CNIs from the CNI design space and
compares them agnst a more traditional ULNI, l&k the TMC CM-5 NI. Sectiod.1
describes the implementation of thesee fNIs | evaluated in this chapteGectiord.2
describes thevaluation methodology | used in this chapter and the rest of the thesis.
Sectiord.3 and Sectiod.4 present detailed results from thigaleation with tvo
microbenchmarks andn macrobenchmarks, respeely. Finally, Sectior4.6 presents

my conclusions.

84
The ne&t chapter focuses on data transfer anffiebing—two of the eight optimizations

described in Chapt&—and compares andauates CNI techniques for data transfer and

buffering a@inst alternatie ULNI designs.

4.1 Network Interfaces Simulated

This section describes the implementation ot fivetvork interfaces (NIs)—Nj,,
(Section4.1.1), CN}), (Sectiond.1.2), CNE,Q (Sectiord.1.3), CNE;Q (Sectiord.1.3),
and CNk,Q,, (Sectiord.1.4)—for 256-byte netark messages. These NIs are summa-
rized in Table4.1. In Sectionrt.3 and Sectiod.4, | will evaluate and compare the perfor-

mance of these NIs.

4.1.1 Nb,, Implementation

NI, is a comentional netwrk interface modeled after the Thinking Machines CM-5
NI. Messages are sent by first checking an uncachable stgisterd¢o ensure there is
room to inject the message, then the message is written to an uncachatdeaester
bacled by a hardare queué.Similarly, receves check an uncached statugister to see
if a message isvailable, then read the message from an uncachableedeyister
Because all accesses to the NI queues are non-cachable,cafuaityyte words of the

message arexposed, | classify this de&e as Nj,,

1. In the TMC CM-5, a user process,(eoftware message library) first writes albrds of a mes-
sage to the NI, and then checks the send stajigeeto mak sure that the NI has accepted the
message. If not, it writes the messagaimgo the NI. Aoiding the status gister check before
sending the message is an optimization the¢ssan uncached load on the critical path of the
message send. Va@id this optimization because of three reasons. First, | assume@ketes-
sage size of 256 bytes. Consequelttig relatve overhead of status check isMer than the CM-

5, which has a netwwk message size of only 20 bytes. Second, thiemaky comparison uni-

form with the CNIs, which cannot blindly write messages without checking the stgistetre

This is because the message queues reside in memory shared between the processor and the
CNI. Third, writing a message directly to the NI without Wag if the NI will accept the mes-

sage requires the messaging safevto lnffer these messages in certain cases. This can incur
extra overhead and reduceerall performance.

85

NI/CNI Exposed Queue Sizgueue Pinters Home
Nloy, 2 words

CNly 4 cache blocks device
CNI3zQ 32 cache blocks explicit device
CNIg1:Q 512 cache blocks explicit device
CNI3Qm 32 cache blocks explicit main memory

Table 4.1:Summary of Netwrk Interface Deices.

4.1.2 CNl, Implementation

CNI, extends Nj,—my baseline NI dace—by using four 64-byte CDRs tamose a
256-byte netwrk message. Chlexploits the memory is’s block transfer capability to
move a message between the processor and theedélovever, the status and control
registers are uncached. When a messageearat the CNldevice, the deice checks if
the CDRs are free. If so, it writes the message to the CDRs and sets a gistieisineli-
cating the presence of a message. The processor checks this giatas fiads a ne/
message, and incurs cache misses for the CDRs to read the messageaftardihg pro-
cessor is done reading the message, it issues an uncached store tq thei@Nthat sig-
nals that the CDRs can be reused. Unfortunatelgse checks introduce a thrgele
handsha& and reduces thefeftive bandwidth between the processor and the NI (see
Section3.1.3).

4.1.3 CNE,Q and CNI5,Q Implementations

CNI3-Q and CN&;Q amortize the cost of CNE three-gcle handshak by emplying
CQs (Sectior8.2) for message data anguéar memory for control and status information
(head and tail pointers). CHQ and CN§,,Q cache up to 32 and 512 blocks, respec-
tively. The memory that backs up the caches resides on\loesi¢themseks. The lager
capacity of CNd,Q reduces the number ofwiccontrol stalls, increasing performance for

applications with manmessages in flight.

86
Sending messages to a @ldevice involves three steps: checking for space in the CQ,

writing the message, and incrementing the tail paiftee send is further optimized by
sending a message ready signal to the CMtdehrough an uncached store. As discussed
in Section3.1.2, with a non-speculaé, in-order processowhich | use for all myalua-
tions in this thesis, uncached stores are mdreiezft than cache block operations for
small control operations. Hence, for the send queue, the Gitledgoes not use virtual
polling. Instead, the CND uses the message ready signaktpka count of pending mes-
sages. This count is incremented on each message ready signal and decremented when the
device injects a message into the nettv As long as this counter is greater than zero, the
CNI;Q dervice pulls messages out of the processor cache (unless the bloelkaready
been flushed to their home in thevide) and increments the head point@n the recee
side, the processor polls the head of the queue, reads the messagalidhéren incre-
ments the head pointéddoth sender and reeer toggle their sense bits whenyherap-
around the end of the CQ.

4.1.4 CNkQ,, Implementation

The CNk,Q,, device caches up to 32 cache blocks for each CQ on therieinterfice
device, and gerflowvs to main memory as necessarfie total size of the memory-based
gueue is 512 cache/memory blocksvidg main memory as home for the CQ simplifies
software flav control. Specificallyfor the other NIs, wherer the sender cannot inject a
message it mustxplicitly extract aly incoming messages andffer them in memory
[16]. Corversely CNI3,Q,, does this bffering automatically when the CNI cache cannot

contain all the messages.

4.2 Simulation Methodology

This section describes theis®onsin Whd Tunnelll simulator (Sectiort.2.1), the sim-
ulation parameters (Sectidn2.2), and the macrobenchmarks (Secfiéh3) | used to
evaluate the fig NIs described in Sectighl. Sectiot.3 and Sectiod.4 present results

from the @aluation.

87
4.2.1 Wsconsin WInd Tunnel Il Simulator

| use the Visconsin Whd Tunnel Il (WWTII) [92] simulator for all my simulations in
this thesis. WWTI is a fast and portable simulator for parallel architecturesvéldeed
WWT Il jointly with Babak Falsafi, Mike Litzkow, and Stee Reinhardt. WWTI inherits
mary features of the original W&consin Whd Tunnel (WWT) [99, 91], including distrib-
uted, discreteaent simulation techniques [40], directegution [27], and accurate calcu-
lation of a simulated architectuseé&ecution time via xecutable editing [65]. Heever,
unlike WWT, which only runs on the TMC CM-5, we designed WWTo be easily por-
table. ConsequentiyWWWT Il runs on seeral uniprocessor and multiprocessoARE
platforms, including sparcstations, SUN SMP enterpriseesgrand a cluster of sparcsta-
tions connected via Myrinet Myricom switches. This ability to run WNVan several
platforms ofers simulation gcles that is orders of magnitude greater than teitadle
from WWT.

4.2.2 Simulation Rarameters

All my simulations use system parameters specifiedbleB.2, unless specified other-
wise. | use an aggressione-GHz, dual-issue Hyper®RC-like processorAlthough my
simulations do not model a dynamically-scheduled process$uch is likely to dominate
in the future, | beliee that both my quantitae® comparisons and qualitagitrends can be
extrapolated to these processors. This is because my primary focuseiatore perfor-
mance of diferent NIs using the same base processor model, and not on the absolute per-
formance of a particular processor architecture. Additionatly relatve performance
results are conseattive for CNIs. This is because out-of-order and speeelatiocessors
hide memory latencies better than in-order processors. Because CNIs are memory-based

NlIs, they can mak better use of such latgnhiding techniques compared to,\|I

1. WWT II's release information isvailable fromhttp://www.cs.wisc.edu/~wwt/wwt2.

88

System Rirameters
Number of parallel machine nodes 16
Processor speed 1 GHZz
Cache block size 64 bytes
Cache size one megabyte
Cache associafity direct-mapped
Main memory access time 120 ns
Memory hus coherence protocol MOESI
Memory kus width 256 bits
Memory hus clock frequenc 250 MHZz
I/0O bus width 64 bits
I/0O bus clock frequenc 125 MHZ
Network message size 256 bytes
Network lateny 40 ns
NI memory access time 60 ns

Table 4.2:System parameters for simulated systefdl simulations in

this chapter use the alm parameters, unless specified otherwise. The NI
memory access time is 60 ns for all Nicept CN|Q. Because CND’s
home resides in the CNI itself, the CNI memory must lgelém support a
large dgree of multiprogramming. Hence, kpect it to be hilt with
commodity DRAM with access time characteristics similar to main
memory (i.e., 120 ns). Note that a QQJ}, device intertice with a 120ns
access time wuld perform similar to a CND device when the CNQ,,
cache werflows rarely Thus, sensiity to this parameter on CNQ,,’'s
performance can be interpreted indirectly from my results in Set#oh.

All my simulations ignore netark topology | assume messages&ad0 n$ to traverse
the netvork from injection of the last byte at the source tovatmf the first at the destina-
tion. RecentlyDai and Rnda [33] hae shavn that netwrk contention can significantly
degrade the performance of some shared-memory applicatiomsvelpbecause | focus
on relatve performance using the same base odtvwnodel, | belige my quantitatie

results and qualitate trends can bexgrapolated to more realistic netvks. Additionally

1. The SGI Spider switch, foxxample, ofers a port-to-port lategoof 40ns [41].

89
an abstract netwrk model frees thevaluation from the idiosyncrasies of a particular net-

work implementation and alles me to focus my attention purely on the NI. In
Sectiond.5, | study the impact of netrk lateng on the werall performance of bench-

marks.

| model hardwre flav-control at the NIs using a scalable end-to-end femntrol
scheme calledeturn-to-sendef39]. In this scheme, the sending NI allocates an empty
buffer for a message and injects the message into themetiiythe recaring NI has a
free huffer to accept the message, it sends an adeaigment to the sender to free up the
senders luffer. However, if the receting NI cannot accept the incoming message due to
lack of huffers, it returns the message to the sentlee sender must eject the returning
message from the netwk into the preiously allocated bffer and retry the send latéio
prevent deadlock (or message loss), these returning messages veustguaranteed path
back to the sendefhis can be achied through a second neidvk (either virtual or pys-
ical). The return-to-sender flocontrol stratgy is scalable (unli, for kample, all-to-all
buffer reseration [76]) because the number of netilwvmessage Wfers allocated in the
NI is independent of the number of nodes in the parallel machine. In all simulations in this
chapter| assume that the number of netlw messageuffers allocated at the sender and
recever respectiely is fixed at eight. Chaptér examines the éct of varying this param-

eter on seeral Nls.

| ran all my benchmarks on thempest parallel programming intack [52]. Message-
passing benchmarks use onnipest actve messages. Shared-memory codesem-T
pest also use avé messagesubassume hardave support for fine-grain access control

[103]. Codes with custom protocols use a combination of the tw

4.2.3 Macobenchmarks

| use seen macrobenchmarks fovauating the fie Nis. Table4.3 summarizes these

seven macrobenchmarks—appbt, barnes, dsmc, em3d, moldyn, espaoly unstruc-

90

Benchmark |Source Input Data | Iters|Key Comm.| Msg.| Dyn.| Dyn.
Set Pattern Size % of| % of
(bytes) msgs| bytes
appbt NASA Ames |24x24x24 4|Near 12| 67% 15%
[7, 18] cubes neighbor 140 32% 85%
barnes Stanford 16K parti- 4Irregular 12| 67% 16%
SPLASH-2 [cles 16| 4% 1%
[134] 140 29% 82%
dsmc U. of Mary- |48600 ini- 20[Fine-grain 12| 45% 10%
land & Wis- |[tial particles, messages, 44 25% 21%
consin [93] |9720 cells producer 140 26% 68%
consumer
ema3d U. of Berle- |16K nodes, 10|Fine-grain 120 2% 1%
ley & Wiscon+degree 5, messages 20] 98% 99%
sin [29, 37] [10%
remote,
span 2
moldyn U. of Mary- |2048 parti- 30|Bulk 8| 5% 0%
land & Wis- |cles reduction 12| 65% 7%
consin [93] 140 27% 35%
3084 2%| 58%
spsolhe U. of Mary- (3720 ele- 1|Fine-grain 8 6% 3%
land & MIT [ments messages 12 3% 2%
[24] 20| 919% 95%
unstructuredU. of Mary- |9428 nodes 10(Single- 8 35% 1%
land & Wis- 59863 edges, producer
consin [93] |5864 fces multiple 351 64% 98%
consumers | (avg.)| (avg.)| (avg.)

Table 4.3:Summary of macrobenchmarldessage size includes both header and pay
| simulate the macrobenchmark. Cormr
Dynamiwg.A= average. Percentage of e:

Iters

number of
communication. Msg.

iterations for which
message. Dyn.

benchmark may not sum to 100% due to rounding and the presence \oalafraiction of
messages of other sizes. The first six macrobenchmarksdistinct peaks at the message ¢
described abee. Havever, unstructured shws only one distinct peak at 8 bytesyBrd that i
shavs a range of message sizemying between 12-1812 bytes. Here | report therage
message size for this range.

91
tured—and their input data set®ykcommunication pattern, and message size distrib

tion. Belowv | describe the communication pattern of each of tiiersenacrobenchmarks.

Appbt is a parallel three-dimensional computational fluid dynamics application [18]
from the NAS benchmark suite. It consists of a cubad#id into subcubes among proces-
sors. The code is spatially parallelized in three dimensions. The main data structures are a
number of 3D arrays, each of which isided up among dérent processors as 3D sub-
blocks. Each processor is responsible for updating the sub-bloskst &haring occurs
between neighboring processors in 3D along the boundaries of these sub-blocks. Commu-
nication induced by sharing occurs between neighboring processors along the boundaries
of the subcubes through thadsbnsin Stache protocol, which isripest dehult invali-

dation-based shared memory protocol [100].

Barnes simulates the interaction of a system of bodies in three dimensions using the
Barnes-Hut hierarchical N-body method [134]. The main data structure is an octree. The
octrees leaves contain information about each body and internal nodes represent space
cells. In each iteration the octree isu#tand trarersed once per body to compute the
forces on indiidual bodies. The communication pattern induced by sucskersals is

quite irrggular.

Dsmcstudies the properties of aggby simulating the nmement and collision of a Iige
number of particles in a three-dimensional domain with discrete simulation Monte Carlo
method [93] Dsmcdivides domains into cells in a static Cartesian grid. Each cell contains
particles, which collide only with other particles in the cell. The cells are spatialtiedi
up among processors. At the end of each iteration, partickes inton one cell to another
The primary communication occurs during thisvexment. This chapter and Chapber
uses a &rsion of dsmc that performs this communication usiegndests actve mes-

sages. Chaptér uses aersion of dsmc that performs this communication using Stache.

92
Em3d models three-dimensional electromagnetawevpropagtion [29]. It iterateser

a bipartite graph consisting of directed edges between nodes. Each node sentks- tw
gers to its neighboring nodes through a custom update protocolg&@ral update mes-
sages (with 12 byte payload) can be in flight, which 8ksole, can createursty trafic

patterns.

Moldyn is a molecular dynamics application, whose computational structure resembles
the non-bonded force calculation in CHARMM [17]. Moleculesnioldynare uniformly
distributed over a cuboidal gion with a Maxwellian distribtion of initial welocities. A
molecules \elocity and forcexerted by other particles determine the molesyp@sition.

Force computation limits interactions to molecules within a cutaafius. An interaction
list—rekuilt every 20 iterations—records pairs of interacting molecules. The arrays that
record the forcexerted on molecules and molecules’ coordinates induce the maximum
communication. Updates to the coordinates occur through Stache. Updates to the force
array is done through aulx reduction of the shared force arrdjhe hulk reduction is

done diferently in two different \ersions. This chapter and Chadieuse a grsion of
moldyn that perform the reduction usingmpess virtual channels. Onexecution of this
reduction protocol iterates as nyatimes as there are processors. In each of these itera-
tions, a processor sends 3.1 kilobytes of data to the same neighboring processor through
Tempess virtual channels. In contrast, thersion used in Chaptérperforms the ok
reduction entirely via transparent shared memory (using the Stache protocol). This reduc-

tion phase results in the migratory sharing pattern for moldyn reported in S&é&tion

Spsole [24] is a \ery fine-grained iterate sparse-matrix sodv in which actre mes-
sages propade dovn the edges of a directedyatic graph (DAG). All computation hap-
pen at nodes of the Al within actve message handlers. The messagveyhead is
critical because each astimessage carries only a 12 byte payload and the total computa-
tion per message is only one doublerd addition. Seeral actve messages can be in

flight, which can createuosty trafic patterns.

93
Unstructur ed is a computational fluid dynamics application that uses an unstructured

mesh to model a pisical structure, such as an airplane wing or body [93]. The mesh is
represented by nodes, edges that connexintvdes, andaces that connect three or four
nodes. The mesh is static, so its connégtdoes not change. The mesh is partitioned spa-
tially among diferent processors using a recuescoordinate bisection partitionérhe
computation contains a series of loops that iterade wodes, edges, aratkes. Updates to
nodes require a reduction phase ltke one used in moldyn. Updatedues of nodes are
communicated along edges aratds of the mesh (in a single-produaeultiple-con-
sumer &shion). In the @rsion of the unstructured used in this chapter and Chapter
implemented both reductions and updated usemgpess ulk messages. Heever, the
version of unstructured used in Chagiamplements both reductions and updates using
Stache. Reductions result in migratory sharing and updates result in single-producer multi-

ple-consumers sharing pattern.

4.3 Microbenchmark Results

This section kamines the performance ofdwnicrobenchmarks for my NI imple-
mentations. | simulated all four CNIs and,{\lon the memoryis. Havever, on a coher-
ent 1/0 s’ | simulated all bt CNI3,Q,,, since CN4,Qp, cannot be implemented with
current coherent I/Ouses (Sectio.5). In Sectior.4 | will examine the performance of

these Nis for the sen macrobenchmarks described in Sedcdi@n3.

The microbenchmark numbers in this section include the messaging Vaykead for
copying a message from the netnk interface to a usdevel huffer, and vice ersa. Thus,
data bgins in the sending processocache and ends in the ret®eg processos cache,

rather than simply mang from memory to memory

1. See Sectio3.5 for my definition of a coherent /&

94

Memory Bus I/0O Bus
10 10
Nigy
*—% CNly
8 | |@—®CNI3Q 1 gt
+—+CNilg1,Q
(2} HCNISZQm
2
& 67
(8}
(D)
0
o
S 47
=
2
0 1 1 1 1 0 L 1 1 L
8 16 32 64 128 256 8 16 32 64 128 256
Message Payload Size (bytes) Message Payload Size (bytes)

(a) (b)

Figure 4. Process-to-process round-trip message lsitdis figure shars the process-tc
process round-trip message latgmt microseconds @rtical axis) for diferent message siz
(horizontal axis). (a) shes the round-trip message latgrfor Nl,,,, CNly, CNI35Q, CNI51-Q,
and CN-Q,, on the memorys. (b) shwrs the same feept CNkyQ,y,) on the I/O bis.

4.3.1 Round-Tip Latency

Figure4-1 shavs the round-trip laterycof a message for each of A\land the four
CNis. It shavs two important results. First, CNIs reduce messagwverheads signifi-
cantly For small messages, between 8 and 256 bytesz ONlis 87-342% better than
NI, on the memoryus (Figured-1a) and CN4,Q is 100-377% better than §J on the
I/O bus (Figure4-1b). Second, on the memorydhCNk,Q,, consistently outperforms the
other three CNIs. CN)Q,, outperforms CN| by 20-60% because, uniik CNl,
CNI3Qp, polls on a cached messagai@ bit and amortizes thexpensve three-gcle
handsha& over an entire queue of messages. £Q), outperforms CN,Q and
CNI51Q, which perform similarlyby 21-25% because CNQ,, organizes its memory as
a small cache, which can beilb with fast SRAMs. In contrast, Ixpect CNL,Q and
CNI5;Q to be hilt with slover DRAMs because of their & huffer requirements
(Section2.3).

95

100%
Nloy

Ef 80%

=

2
3 o
= 60% O lIdeal Software
; B Network Interface
ng- 140° 0 Nebarork

k-]

& 20%

001’0 T T T T T
a8 i6 32 64 128 256
Message Payload Size (bytes)
(a)
1009
CNI:.Qy,

Z 80%

=

2

3 o

2 60% - O Ideal Software
':.: B Network Interface
E a0z 0 Nebwork

5

& 20%

00/0 T T T T T 1
a8 16 32 64 128 256
Message Payload Size (bytes)
(b)

Figure 42. Breakdavn of round-trip latengfor Nl,,, and CN},Q,,. This figure break
down the round-trip message latgnaf Nl,,,, and CNg,Qy,, (attached to the memory$) into
three components—ideal sofive lateng, network interface lateng, and netwrk. The idea
software lateng is the NI-independent, minimum message protocol |gteraurred with a Nj,,
device attached directly to the processor and accessed itydee The netwrk interface lateng
includes both the hardwe and softare werhead of the specific netwk interface. Finally
network lateng represents just the time toveaise the netark. The absolute latepaiumbers
corresponding to the percentages awglable from Figurel-2.

Figure4-2 further shws the contribaition of three components—NI-independent, mini-

96
mum software protocol lateng lateny to access the NI (both softwve and hardare),

and netwrk lateng—to the total round-trip lategcfor Nl,,, and CN§,Q,,. For this
experiment both NJ,, and CNg.Q,,, are attached to the memorysb | chose only N,
and CNk,Q,,, because these are therat- and best-performing NIs on the memouyg.d
calculated the NI-independent, minimum sdafte protocol latencby subtracting tw
times the netark lateny from the total round-trip lategcfor an ideal Nj,, device

attached directly to the processor and accessed in a syatge c

Figure4-2 shavs that CN4,Q,, significantly reduces the contution of the NI access
lateng to the total round-trip lategcAdditionally, the contrilation of CNk,Q,,'S access
lateng to the werall round-trip latengis almost same or\eer than the NI-independent,
minimum software protocol latenc This suggests that significant performanaeg in
lateny cannot be achwed without similar reductions in the sofive protocol latenc

itself.

4.3.2 Banavidth

Figure4-3 graphs the bandwidth pided by the fie netvork interfaces. This figure
shaws that CNIs impree the bandwidth\er Ni,,, significantly even for very small mes-
sages On the coherent memorys CNL,Q,, is 109-202% better than §y} for 8-4096
byte messages (Figude3a). For the same message sizes, GMD is 113-402% better
than Nb,, on the coherent I/Ous (Figure4-3b).

All four CNIs offer significantly greater bandwidth than, | Among the CNIs, CN|
performs verst of the four CNIs because of its higrethead for polling uncachedgis-
ters and the threeycle handshakin the critical path of message reception. £&Qland
CNIg1Q perform the best due to theimlgoll overhead and ability to cache multiple

messages (a nebnk message fits in four cache blocks).

97

Memory Bus I/O Bus

350 350

300 300 r
B 250 250 |
o)
£ 200 200 |
e
5
= 150 150 +
©
S
m 100 100 ¢

50 t 50 |

0 I I 0 S o Il I
8 64 512 4096 8 64 512 4096

Message Payload Size (bytes) Message Payload Size (bytes)

b
Figure 43. Process%—process message bandwildiks figure shws(t?le process-to-proce
message bandwidth in gebytes per second dxtical axis) for diferent message siz
(horizontal axis). (a) shws the process-to-process message bandwidth fQy, KNI, CNI3Q,
CNIg10Q, CNKQ,, and CNkQ,, with send throttling. (b) shes the same feept the
CNI32Q, graphs). CNI Lgend:m = CNI3oQp+send throttlel] = CNI35Q,, + = CNI51Q, @ =
CNiI32Q, O = CNly.

CNI, shavs two different knees on the coherent memory and USeb respectely. The
knee on the 1/0O Us appears when CjNsaturates the I/Ous. Havever, the cause of the

knee on the memoryB is slightly more subtle.

CNI,'s knee on the memoryub appears when the message skmeeds one cache
block. This is because before the GNé&vice can write a ne message, it mustvalidate
the corresponding CDR in the processaache. Each CDR requires a separataida-
tion signal on current memoryses. Hwever, before the CNJ device completes wali-
dating all the CDRs, the processouncached poll for the regeistatus rgister completes
and reports no pending message in theQi¥ice. This forces the processor tatehe
optimized inner loop thatxracts messages from the NI and processes them. When the
CNI, device completes writing e messages to the CDRs, the processor re-enters the
inner message processing loop, which incurs additiorethead, such as checking and

setting interrupt masks. Thisfe€t does not occur for messages less than a cache block,

98
because the Clyldevice manages to grab the memonstand imalidate the single CDR

block before the processsmincached poll appears on the memary. Interestinglythis
knee does not appear on the I/ pbecause the processarhcached load for the status
register is repeatedly nack-ed by the I/O bridge until all the cohenealidates issued by
CNI4 have been satisfied. By the time the processpending uncached load acquires the
I/O bus and completes the transaction, the aiVice has already successfully written a
nev message to the corresponding CDRs. Consequéimiyprocessor does notitethe

inner message processing loop in this case.

CNI3,Q, achieves slightly laver bandwidth than CN{ Q. This is because the message
send rate is significantly greater than the message reception rate, causing Vimeggrecei
CNI3Qp,'s cache towerflow. The resulting writebacks to main memory induce/iidais
contention, which decreases the maximum communication bandwidth. Unfortunately
because the problem is bandwidth not lageacwriteback bffer will not help with this
microbenchmark as it euld for the round-trip microbenchmark. Wever, throttling the
sender appropriatelgan significantly increasing the bandwidth. Figts&a shavs, throt-
tling the CNKsQ,, sender can increase the bandwidth for 4096-byte messages from
209MB/s to around 351 MB/s.

4.4 Macrobenchmark Results

This section ealuates the performance of the NIs described in Sedtibwith seen
macrobenchmarks. Thextechapter (Chaptes) delhes deeper into tavkey parameters—
data transfer anduffering—that impact the design of high-performance NIs and com-
pares the performance of CGMD, and CN};,Q with five other netwrk interfaces
(including Nb,,).

Section4.4.1 compares the performance of the fNis on coherent memory and I/O
buses. Section.4.2 shaws the speedup ackied by the seen macrobenchmarks with
CNI3,Qp,, Which performs the best on the coherent memosy dind CN4; Q, which per-

forms the best on the coherent I/Gsb

99

Macrobenchmark|| appbt | barnes| dsmc| em3d | moldyn | unstuctured| spsohe

I/O Bus Slonvdown|| 0.62 0.71 | 0.79 0.60 0.67 0.58 0.74

Table 4.4:Nl,,’'s slavdown on the 1/0 bs.This table shas Ni,,'s eecution time on the
memory lus dvided by Nb,,'s execution time on the 1/Ous for the seen macrobenchmark

These normalizingafctors should be used to compare Figdrdsand 45, which compare th
performance of these macrobenchmarks on the memory andd443 kespedcitly.

4.4.1 Rerformance Comparison of fie NIs on Memory and 1/O Buses

Figures4-4 and 45 shav the performanceains from CNIs on coherent memory and |/
O huses respeately for the seen macrobenchmarks. Both these figures are normalized to
the eecution time of NJ,, on the respeacte kuses. @ble4.4 prosides the normalizing
factors that must be used for each macrobenchmark to compare these figures. On the
memory lus, | xamine all five NIs described in Sectighl. On the coherent 1/Qub, |
examine all, it CNI3,Qp,, because CNLQ,, cannot be implemented with current 1/O

buses.

CNly, CNIzQ, CNIs1Q, and CN4,Q,, offer a progression of incremental benefitero
NI, Unlike Nl,,,, which can only be accessed through uncached loads and storgs, CNI
effectively exploits the memory Ws’s high-bandwidth block transfer mechanism by trans-
ferring messages in full cache block units. ¢JQ and CN4,Q further impree perfor-
mance by polling for incoming messages on a cachable memory location, amortizing the
three-gcle handshak over an entire queue of messages, andigirtg a lager capacity
for messages that helps yeat lursty trafic from backing up the netwk. CNI3,Q,, fur-
ther simplifies softare flav control in the messaging layer by aliog messages to
smoothly @erflov to main memory when the wdee cache fills. This\eids processor
intervention for messageulfering, which, otherwise, can significantlygiade perfor-

mance.

Block Transfer. The increase in bandwidth obtained by transferring messages in whole

cache block units has a major impact on performance. Moldyn and unstructured primarily

100

3.5

Performance on memoryb

3.0

2.5

2.0

15

1.0

Speedup/Nl,,,,memory bus

0.5

0.0

appbt
barnes
dsmc

em3d
moldyn
spsolve
unstructured

Figure 44. CNIs’ performance on the memorys This figure compares the performanc
Nloy CNI4 CNI3xQ, CNIsQ, and CNgQp on the memory s for seen macrobenchmark
The \ertical axis shars the speedup of each of the N\&oONI,,,,

do hulk transfers and appbt and barnes communicate with moderaigdy ([E28-byte)
shared-memory blocks. Moldys'reduction protocol transfers 3.1 KB of data between
neighboring processors, while dwrocessors in unstructured, oreeage, gchange 351
bytes between them in the main communication phases &x#e413 for message size
distributions). Consequentlypn arerage, the portion of a CDR block that does not carry
useful information is moderately u\e—30% for moldyn and 14% for unstructured
(Table4.5). For appbt and barnes, roughly half a cache block spacaste@von \aeragel.
However, the time vasted by this undattilization is lov because todag’'memory hses
are often as wide as half a cache block (e.g., SUN Ulaptage [112]), which can be

transferred wer the memory s in only two memory bis g/cles.

1. This problem may not arise witlanable-sized message entries in whicha meessage starts
immediately after the end of the pi®us message. hver, this may introduce meproblems,
such asdlse sharing.

101

35
Performance on |/OuUs —
Nl
3.0 H CNI,
CNI3,Q
CNIs1,Q
n 25
>
3 _
Q]
: 2.0 ’,_
& (—
=z
o
()
Q
o
” 1.0 -
0.5 - - - - - I - -
0.0
kS| 3 g & s g D
z Z g 5 2 5
o = 7 5
I
c
>

Figure 45. CNIs’ performance on the I/Qub.This figure compares the performance
Nloy CNIg CNI3oQ, and CNi;Q on the I/O bis for sgen macrobenchmarks. Thertical axis
shaws the speedup of each of the N\V®oNIs,,,.

With respect to actuakecution time, CNJ improves moldyn, unstructured, appbt, and
barnes’ performance by 28%, 24%, 38%, and 16% respBctbn the memory us. For
the 1/0 us, the impreements for these macrobenchmarks are 30%, 32%, 25%, and 15%
respectrely. Even for em3d and sps@wvhat send small messages (12-byte payload) and
dsmc that communicates with relatly small (44-byte) messages and moderatebyelar
(128-byte) shared-memory blocks, GMIperformance impk@ment @er Nl,,, is signifi-
cant—that is, between 7-38%-xezpt for spsole on the 1/O bs, which shars only a 1%

improvement of N,

CNI,'s performance impk@ment for spsokr on the coherent I/QuB is not as high as
on the memory s because of contention at the 1/0 bridge. Thg,Mevice never tries to

acquire the memory or 1/Qub because it is\ahys a los slae. Hovever, CNI, competes

102

Macrobenchmarks Percentage of cache block wasted
appbt 45.70
barnes 47.50
dsmc 41.20
em3d 63.61
moldyn 29.54
spsohe 63.85
unstructured 13.57

Table 4.5:Percentage of a cache block spaested for CNJ. This

table shws the percentage of a CDR block that does not carry useful
information when transferring data between hd a processa’
cache. The CQ-based CNIs—GMD, CNI51Q, and CN4,Q,—shav
similar utilization for the CQ blocks.

with the processor cache to acquire the memory andug®sh Simultaneousib acquisi-
tion requests at the I/O bridge from the processor cache angdattie creates conten-
tion. This efect appears to besse in spsole. For example, the memoryus occupangc
(Table4.7) for a system with Clylon the 1/0O lns compared to a system witholjlon the
I/O bus decreases between 10-44% for all macrobenchmadeptespsolg for which the

occupang increases by 3%.

Overall, for the seen macrobenchmarks, CNimproves the performancever Nl,,,
between 16-38% on the coherent memaryg bnd 1-32% on the coherent 1/@sbintra-
message prefetching (Secti®2.2) accounts for between 0-8% of this iny@mment on
the memory bs. In one case—em3d on the memarg-kintra-message prefetching actu-
ally deteriorates performance by 2%. Intra-message prefetching does not help on the 1/0O

bus.

On the memory lis CNly’s performance impk@ment accounts for 58% @aged
across all macrobenchmarks) of the to&hgachieed by CN,Q,,, which performs the

best on the memoryuk. On the 1/0O bs CNI,’s performance impr@ment accounts for

103

Macrobenchmark | NI, | CNIl4 | CNI3Q | CNI5;Q | CNIzsQp

em3d 29% | 14% 21% 0% 0%
spsolhe 55% | 53% 32% 0% 0%

Table 4.6:Percentage of messagesfbred aplicitly for memory lus Nis.

26% (averaged across all macrobenchmarks) of the tatim gchieed CNE;1,Q, which
performs the best on the I/@$ The amount ofuffering plays a more important role on
the 1/0O lus because of its longer latencies, and hence block transfers (as,jra€unt

for a lesser fraction of the total impement on the I/Ous.

Impact of CQs. My implementations of the CQ-based CNIs im@@erformance\er
CNl, in three vays. First, the poll for incoming messages on a cached messagehit.
Second, thg amortize the xpensve three-gcle handshak over an entire queue of mes-
sages. Third, theprovide etra kuffering that helps smooth outitsts in message tfaf.

Below | examine the déct of each of these optimizations.

The cached messagalid bit offered by CQs impnes performance in wways. First,
in the absence of gmMmessage a processpolls for incoming messages are satisfied
directly from the processar’cache. Second, when a message doe® atine process@’
cache miss for the messagdid bit brings in the first cache block of the message along
with the message status. Figdré, which breaks den the diferent Ni-related memory
bus transactions for the 8wWIs, shas that the CQ-based CNIs reduces the processor’
poll transactions by aattor of 14 or more. This does not directly translate into perfor-
mance for my ealuation because | f1@ only one processor per node of the parallel
machine. Hwever, for parallel machinesuilt with SMP nodes, this reduction carvha

significant impact on performance.

Figure4-6 also shws that the CQ-based CNIs successfully amortizethehead of the
three-gcle handshak This is because CHRQ and CNi;,Q’s non-poll transactions
between the CPU and NI are consistently less than that of. Gbdll example, CN.,Q

104

o appbt barnes
S 100 100
@
g ™r . 75 b i
=
p 50 R 50 - -
m
> 251 R 25 L .
: 111 111
g 0 0
0 dsmc em3d
5 100 100 138
E
@ 75 - 75 + -
©
Y, 50 - . 50 .
@
o
% 0 I . i 0
=
0 moldyn spsolve
E 100 100
E
@ 75 i 75 + i
e
t 50 . 50 - .
@
> 25 - 25 _
: 111
o) 0 0
s
@ unstructured & § 4 4 oEa
c o —
S 100 z 0 £ B 3
i3] O Z p4
© O O
75 i
8
'_
P 50 B
D 5L } CPU/MEMORY poll
IS CPU/MEMORY non-poll
§ o i N B NI/MEMORY
= : v o o £ CPUINI poll
s Z 8§ 9 CPUINI non-poll
z O = o > p
O Z z
3]

zZ

Figure 46. Breakdavn of memor)L/)bs transactions for fememory bs NIs.This figure
shavs the breakden of memory hs transactions for fevmemory hs Nis totalled across all :
nodes. The notation X/Y denotes that the transaction happened between modules X and
memory lus. For Ni,,, and CN}, poll denotes transactions corresponding to a procegsalls to
the send and rea@ status rgisters. Ier CQ-based CNIs, poll denotes the processoache
misses for cache blocks that return withcalid’data and the processogolls for the send stati
register which is uncached in these CNI implementations. Non-poll denotes all NI-r
transactions other than polls. GNVith em3d shas a slight anomaly because node 15 beca
hot spot due to accidental fdifences in global memory allocation. Wiaver, this appears to ha
only significantly afected the bs transaction count, and not the totedaution time of CN{

105
reduces the number of non-poll memonskransactions between 8-45%ep CNl, on

the memory bs.

The etra kuffering provided by CN,Q and CNE,Q helps smooth outubsty trafic
patterns andwaids clogging up the netwk. In my simulated system, if a processor
blocks on a send due to the absence of adequétibg in the message path, then the
processorlicitly removes messages from the NI and stores thenufiiets allocated in
the usess virtual memoryThis is necessary tov@d deadlock in the softave message
library [68]. The reduction in number of messageffdred eplicitly in users virtual
memory is an indirect and approximate measure of the potentialviempent ofered by

CQ’s tra kuffering capability

Table4.6 lists the percentage of messagéféebed by the fie NIs on the memoryus
for em3d and spsodv For the other macrobenchmarks, theéra kuffering has a small
impact on performance (less than 10%). Abl&4.6 shavs, the &tra kuffering pravided
by CNI3,Q and CNi;Q does indeed help reduce the number of messagésda
explicitly for em3d and spsoé: Table4.6, havever, shavs the same anomalous situation
for CNI, with em3d, as as shan in Figure4-6. Em3d sends almost twice as mames-
sages for CNjcompared to Ni,, even though the number of messagefdred explicitly
is almost same. Thisfett reduces theverall percentage of messagesféred from 29%

in N, to 14% in CN}.

Overall, for em3d on the memoryu$, CNE,Q and CN§;Q improves performance
over CNl, by 18% and 40% respeaily. For spsole, the corresponding numbers are 34%
and 78% respeetely. The long latencies due to the 1/@sh havever, reduce the rate at
which messages can be rarad from an 1/0O bs NI. Consequentlyextra kuffering has a
greater impact on performance. Across theesemacrobenchmarks, CNOQ and

CNIlg1Q improve performancewer CNI, between 13-57% and 21-77% respesiii

106

em3d spsolve

1.3

T T T
®—@ threshold=infinite
=—a threshold=8
&—— threshold=4
+—— threshold=2
1.2 1%« threshold=1

1.1 ¢4 R

Normalized Execution Time

. 1.0 ——
8 16 32 64 128 256 512 8 16 32 64 128 256 512

i (of CNI,Qy,) i (of CNIiQp,)

1.0 '

Figure 4. CNI;Qp, cache sizeariation.This figure shars the eflect of varying CN|Q,,'s
cache size, i.e. “i”, and the dead message elimination threshold described in $8c2oBact
graph is normalized to thex@cution time of CNj,gQ,, with threshold = 1. An infinite threshc
indicates no dead message elimination optimization.

Overflow to Memory. CNI3,Q,, allows messages to smoothlyesflov to memory
when the dece cache fills up. Figuré-4 shavs that CN4,Q,, performs similarly to
CNlg;Q, except for spsole. For spsole, CNk,Q,, outperforms CNj;.Q by 18%
because of itsalster memory @ble4.2). Hawever, if the CNE;,Q memory can éér the
same latencas in CN§5Qy,,, then the performance of both NlIs are almost similar for all
the seen macrobenchmarks (not shg. Thus, CN§,Q,, performs similarly or better

than CNE,Q even with significantly less memory (j.eade) on the déce

Figure4-7 studies the &ct of varying the cache size, i.e. “i", for C)@,,,. The \ariation
in cache size has a major impact only on the performance of em3d aneéspbatvo
macrobenchmarks for whichuffering plays an important role.oF other macrobench-
marks the déct of cache sizeariation is less prominent and th&ation in performance

is within at most a 6% range of CNQ,,,.

As Figure4-7 shavs, the dead message elimination threshold (see S&c8@) inter-
acts with the ariation in CNJQ,, cache size. Wth an infinite threshold—that is, the
receve CQs head is aays read lazily—CNQ@,, is most of the time unsuccessful in

determining if messages are already dead, and consequently it ends up flushing dead mes-

107
sages to main memoryhis efect is particularly seere in spsole, where performance is

affected hewily. However, when the cache size equals the memory allocated for the
queue—512 memory blocks in this case—the entire queue fits in the cache, #Qg CNI

does not hee to flush ap message to memoty

The flush threshold for which CQ,,, offers the best performancanies with the cache
size. for cache sizes greater than 64 blocks, a flush threshold offeretbe best perfor-
mance for both em3d and spsal¥or cache sizes of 32 cache blocks or less, the best flush
threshold waries, lnt in a \ery narrov range. Hence, for all myxperiments (ecept

Figure4-7) with CNLQ,,,, | have assumed a flush threshold of one.

Section3.3.2, which describes the dead message elimination optimization, also proposes
a second optimization called cache bypass for the case when messages are not dead and
the recere cache werflows. For CNI3,Q,, this optimization imprees em3d and sps@'s
performance by 4% and 8%, respeely. The fraction of messages that bypass the
CNI3Qp, cache are 66% and 33% for em3d and spsmgpectiely. All graphs in this

and the net chapters assume cache bypass optimization fo;GzNI

Overall, CNkL-,Q,, shavs the best performance impsment eer Nl,,, (between 21-
190%) on the coherent memorysd) and CN§;Q shavs the best performance impe

ment wer NI, (between 42-228%) on the coherent I143.b

Finally, CNIs significantly reduce the memorysoccupanc Table4.7 shavs the
memory lus occupangc for Nly, and CN,Q.,, both attached to the memorysh
CNI3Q,, reduces the occupanmf a non-split-transaction memoryud) as | hee
assumed for thisvaluation, by 58-78%. Because this magmstimate theus occupanc
reduction for a split-transactioruy, Table4.7 characterizes theud occupangcreduction
for bus arbitration and data transfarhich cannot bewaided &en in a split-transaction
bus. Table4.7 shavs the CN4.Q,, reduces the arbitratioryces between 38-67% and

1. CNI;Qy, still flushes the sense bitsjem though it is unnecessary

108

Nlowy CNI3Qm
Macrobenchmark Total | Arb | Data | Total | Arb | Data
appbt 15.20 | 1.00 | 0.99 | 4.27 | 0.56 | 0.52
barnes 1756 | 1.00| 1.10 | 7.29 | 0.60| 0.67
dsmc 1881 | 1.00| 1.06 | 6.17 | 0.44 | 0.48
em3d 20.21| 100 1.06 | 7.70 | 0.62| 0.62
moldyn 16.12 | 1.00| 1.00 | 3.53 | 0.50| 0.46
spsohe 18.88| 1.00| 1.05 | 450 | 0.61| 0.52
unstructured 19.63| 1.00| 1.08 | 6.60 | 0.33| 0.41

Table 4.7:Breakdavn of memory bis g/cles for Nb,, and CN,Q,,,. This table
shavs the breakden of the memory bis g/cles for the non-split-transaction
memory lus | used for all my simulations.ofl denotes the totalub
occupanyg, arb denotes theycles required for s arbitration, and data denotes
the gcles required for data transfefhe table is normalized to H|'s

arbitration gcles.

data transferycles between 39-62%. Thus, GMD,, frees up at least a third of \Js

memory lus bandwidth for use by other processors.

4.4.2 CNLQ,, and CNIs;,Q Speedup

Figure4-8 plots the speedup caw of the seen macrobenchmarks with CNQ,, on
the coherent memoryus and CN4;,Q on the coherent 1/0uls. These NIs perform the

best on the respeet kuses.

CNI3,Q,, on the coherent memoryi® and CNd; Q on the coherent I/Qus shav mod-
erate to good speedup for all macrobenchmarksp spsole. For 16 nodes, CNLQ,,'s
speedup on the memorydranges between 4.5 and 13.9, while £z0’s speedup on
the I/O lus ranges between 3.87 and 10.91.

With 16 nodes, spsaiis speedup is only 1.2 for CND,,, on the coherent memory$.
For 16 nodes, spsatvshavs no speedup for CRYQ on the coherent 1/Ouls. Havever,

109

CNI3,Q,, on Memory Bus CNI5;,Q on I/O Bus
16
16 —e®emad ' ' ' '
E—H& dsmc
4— unstructured
12 F|4+——+ moldyn 12 -
*—% appbt
=2 ¥—Y barnes
g 8 ||X—X spsolve 8 r
o
(7]
4 4 r
O 1 1 0 | |
0 4 8 12 0 4 8 12 16
Number of nodes Number of nodes

Figure 438. Macrobenchmark speeduphis figure shas the speedup of the vem
macrobenchmarks with CBHQ,,, on the memory is and CNd;,Q on the I/O bs. These NI
perform the best on the respeethuses.

for CNI5,Q on the I/O bis, spsole achiees a speedup of 1.29 for 32 nodes (notvshio
graph). Although parallel sps@\wdoes not slvo spectacular speedup, it can still be useful.
This is because of wreasons. First, spselvs primarily used as an embeddedriel in
parallel applications [24]. Consequentlgccording to Amdahd’ Law, ary speedup
obtained from spsoés is beneficial. Second, data required byed#nt processors in
spsohe may already be distubed across dérent nodes of the parallel machine. This
may male it difficult and/or &pensve to run the sequentiakksion of spsole, instead of

the parallel ersion.

A speedup of four or more—as sfto by most of my macrobenchmarks—is actually
cost-efective on todays cluster of wrkstations. Wod and Hill ague [137] that parallel
computing is cost-&ctive, when speedups of applicatiomseed the costup of the paral-
lel machine. Wod and Hill define costup as the ratio of the cost of the parallel machine
vs. cost of a uniprocessor machiner Bn older generation of SGI machinegdd and
Hill showed that for parallel applications with ¢gr memory requirements, parallel com-

puting can be cost-efctive with speedups much less than linear

110
An examination of the cost of Sun Enterprise E3000essrvUltral workstations, and

Myricom Myrinet netvork reveals that parallel applications need achienly a speedup

of two to male a 16-node parallel machine codeefive. A uniprocessor Sun E3000
enterprise seer—with 4 GB of memory and a 167 MHz Ultra&®C processor—costs
$232,500 [82]. In comparison, a 16-node parallel machinek-hith 16 Ultral worksta-
tions, each equipped with 512 MB of memory and a 167 MHz Ul&R&Rprocessgrand
connected with a Myricom Myrinet netrk—costs $452,960. This is because each Ultral
workstation costs $26,495 [81] and a 16-node Myricom Myrinet orétwosts $29,040
[26]. The total memory on the 16-node parallel machine is 8 GB—twice that of the uni-
processor E3000 machine—to alldor ary extra memory that parallel applications may
require. | cannot use a uniprocessor Ultradrkstation as the uniprocessor machine,
because an Ultral can only support upto 2 GB of menitwys, the costup of the parallel
machine is slightly less than aw($452,960 / $232,500), and probablee less because
the cost of each Ultral awkstations abee includes the cost of a color monit@onse-
guently for such a system, parallel applications need aehéespeedup of only twto
make parallel computing costfettive. In contrast, most of my macrobenchmarks aehie

a speedup of four or more on a 16-node parallel machine.

4.5 Impact of Network Latency

Finally, Figure4-9 shavs the impact of neterk lateng on CNI techniques. On the
memory lus, CNE,Q,, consistently outperforms B belov a netvork lateny of 10
microseconds. B®nd 10 microseconds the relati importance of CNI techniques

decreases because the rmtnbecomes the dominant bottleneck.

4.6 Conclusions

This chapter ealuates the performance of four alternate CNI designs—GINI3,Q,
CNI51Q, and CN4.Q,—with a CM-5-like NI. Microbenchmark results shed that
CNis significantly impreed the round-trip lateycand bandwidth of small and moder-

ately lage messagesoF small message sizes, between 8 and 256 bytes, CNIsviadpro

111

3.00 T T T T T T T T T T
= spsolve |
275 Mm———_ — ema3d
B appbt |
250 - TNy e moldyn
° 777 barnes
225 7 — unstructured 7]
— dsmc
2.00 N

1.75

1.50

CNI3Qm speedup (over Nipy,)

1.25

100 1000 10000 100000

Network Latency (nanoseconds)

Figure 49. Impact of Network Lateng.

the round-trip latencby 87-342% compared to Hj} on a coherent memoryb and 100-
377% on a coherent I/OoFmoderately laye messages, between 8 and 4096 bytes, CNIs
improved bandwidth by 109-202%ver Nl,,, on a coherent memory$ and 113-402%

on an I/O lois.

Macrobenchmark results shed that CN§,Q,, performed the best on the coherent
memory lus and CN4;-,Q on the coherent 1/0Ous. CNE,Q,,, was 21-190% better than
NlI,,, on the memory s, while CN,,Q was better than M|, by 42-228% on the 1/O
bus. This performance boost from GMD,,, and CNE;Q come from their ability to rap-
idly transfer data in cache block unitgeo the memory s, pravide lowv-overhead cach-
able queues, and plentifulfbering either in main memory or in the NI itself. Thexhe
chapter gamines the data transfer andfbring parameters more carefylgnd compares
CNI3,Q, and CNE41Q with five alternatre Nls, all attached to the memonysb

112

113

Chapter 5

Impact of Data Transfer and Buffering Alter natives

This thesis gamines hw processor accesses to a ratninterface (NI) can be signifi-
cantly accelerated by treating accesses to theonletimterface as memory accesses.
Chapter2 agued that such treatment opens up at eight opportunities for performance
improvement. Chapte3 proposed and Chaptérevaluated a neel class of Nis called
Coherent Netwrk Interfaces thatgloit all the eight opportunities. This chapter system-
atically exkamines andwaluates tw of the eight parameters—data transfer anffieb

ing—in greater detail.

The data transfer parameters captune htessages are transferred between a processor
and an NI. The Wffering parameters capture where and/lam NI luffers incoming net-
work messages. Figukel shavs the impact of data transfer andaffbring parameters on
the performance of gen parallel scientific applications studied in this chafteis figure
shows that data transfer andftering can respeately account for up to 42% and 58% of
the total @ecution time of these parallel programs. In otherds, proper choices of the

data transfer anduffering parameters canv&a dramatic impact on performance.

114

100
75 —
g
= 50 — —
X
25 — —
0
5 8 2 3 £ £ 3
s c @ £ S S 5
© 5] © () g 3 B
g BDaft]g;\ rranster ® =
urterin 7]
Rest g 5
Figure 541. Impact of data transfer andiffering. This figure demonstrates the imp:

of data transfer anduffering on the performance of a memonyshbNI for seen parallel
scientific applications. ¢t these measurements, | use a CM-B-litetvork interface and
number of flev control luffers equal to 1. See Sectibr8 and Sectiob.4 for a descriptior
of my CM-5-like NI, my flov control scheme, and the applications.

The data transfer anditbering parametersx@ose an enormous NI design space. This is
because these parameters can be implementedarakdiferent ways. In this chapter |
evaluate seen memory bs Nls that | beliee capture the essential components of this
design space. Thesevea memory bs NlIs abstract theelt data transfer andufering
parameters of the Nis for the TMC CM-5 [68], Fujitsu AP3000 [111], Princeton User
Level DMA [11], Digital Memory Channel [44], MIT StarJR [53], and tw CNIs—
NI512Q and CNg,Qr—described in Chapté.

| evaluate these Nlis using the same twicrobenchmarks andw&n macrobenchmarks

described in Sectio#.2. My results indicate that a high-performance NI design must:
» effectively use the block transfer mechanism of current memasgd)

* minimize processor wolvement for data transfer

« directly transfer messages between an NI and a procassast in the common case,
» provide plentiful luffering, possibly in main memagrgnd

* minimize processor wolvement to bffer incoming netwrk messages.

115
The relatve importance of these parameters depends on both the specific NI design and

the characteristics of the application.

These obseations are, hwever, applicable primarily to usdevel Nis [88] tageted for
fine-grain communication. Nls that require operating system emnéon for message
send and receipt or must transfer multigaigytes of data directly from a graphicwvide
or a disk (e.g. in a video s&mn may require optimizations that arefeliént from those

discussed in this chapter

| have two main contrilations in this chaptefirst, | identify and xamine the ky data
transfer and wffering parameters that underlie high-performance,-lesef NI designs
for fine-grain communication. Second, | undeetdke first systematic simulation study
that compares sen Nis representae of the design spacemosed by these parameters.
As a corollary of this study find that, contrary to caentional wisdom, mapping an NI to
the processor gisters may not be the ideal choice. This is because procegsiere
memory is a precious resource, which may notipgemadequateuffering for some appli-

cations.

The rest of the chapter isganized as follas. Sectiorb.1 and Sectiob.2 discuss the
different data transfer andiffering parameters. Secti@n3 describes the wen memory
bus NiIs | studied in this chapteBection5.4 describes mywvaluation methodology
Section5.4 discusses my results. Secttof describes relatedonk. Finally Sections.6

presents my conclusions.

5.1 Data Transfer Parameters

An NI is a deice that sends and reges messages to and from ameenal netwrk on
behalf of the processaConsequent|ythe most important data sent and reegiby an NI
are netwrk messages.df high performance, NIs must transfer these messages rapidly

between the internal memory structures (e.g. procesgistars, main memory) of a node

116
and the NI. Br memory lbis NlIs (Figure-1), such data transfer occungeo the memory

bus.

| have identified and will discuss threeykparameters that influence the speed of such
data transfer:
* size of transfer
» degree of processorwlvement for transfeand

+ source and destination of transfer

5.1.1 Size of fansfer

Today most high-performance memonsbs allov at least tw data transfer sizes: small
chunks (between one to eight bytes) and medium-sized blocks (between 16-64 bytes). The
latter is more dicient than the former mechanism because block transfersfeatively
use the bandwidthvailable from wide memoryuses and amortize controverheads,

such as bs arbitration, grant, and turnaround time.

Several recent studies shothat applications can fettively use such block transfers
over the memory Ws. Clearly if the typical message size in fine-grain communication
were a fev bytes, block transfersver the memory s would be useless. kever,
Cypher et al. [32] found that in sen parallel scientific applications 30% of the messages
were between 16 bytes and a kilobyte. Kay aashBale [59] found that the median mes-
sage sizes for TCP and UDP (mostly generated by theddefwle System) trdic in a
departmental netark were 32 and 128 bytes respeely. They also found that 99% of
TCP and 86% of the UDP tfaf was less than 200 bytese&ton, et al. [60] analyzed a
debitcredit benchmark on a commercial database and found that all messages were less
than 200 bytes. In thesen parallel scientific applications | studied in this chapteund
that the serage message size ranges between 19-230 bytas413).

Current microprocessorsfef three mechanisms tofegtively use the block transfer

mechanism of memoryuses. These are coalescing load/stoiftels, block loads/stores,

117
and cache blocks. A coalescing load/starffdp coalesces a processoaccesses to con-

secutve addresses (and, in some cases, the same address) and transfers them as a single
block over the memory is. Therefore, a processoeccesses to Nlgisters can be coa-

lesced in the coalescingfers and transferred as a single block.

Block load/store instructions—recently introduced in the Sun UltraSparc processor
[119]—allows a processor to ae a block of data between ava, such as main mem-
ory or NI, and the UltraSparc floating poingigers. The Fujitsu AP3000 machine uses

UltraSparc block load and store instructions to access the memory on the NI [109].

Finally, block transfer wer the memory lis can be achied by transferring data as
cache blocks. Heever, this requires the NI to interact with the cache coherence signals,
which are supported by most high-performance memasgdtodayThis is hecessary to
avoid having stale data in the processocache. Currentlynost DMA-based NIs transfer
data in coherent, cache block unit&®othe memory ls to &oid this problem. Recently
Mukherjee, et al. [85] deloped techniques using which processors and NIs can commu-

nicate more ééctively via coherent, cache block transfers.

5.1.2 Degee of Pocessor Iivolvement for Transfer

Performance of data transfer depends not only on the size of the trénsfaiso on
how much the processor isvimlved in the transfeffwo design alternates «ist. The pro-
cessor can initiate the transfer andwltbe NI to manage the rest of the transédterna-
tively, the processor itself can aely manage the transfeiEach of these options V&

different design and performance implications. | discuss these optioms belo

5.1.2.1 NI manages transfetf the NI manages the transfénen the processor is usually
required to only initiate the data transfer between the NI and the internal memory struc-

tures of a node. Currentlg processor can use one of three mechanisms to initiate rapid

1. Athird option is possible in which a separateide or DMA engine manages the data trangfer
do not consider this option here.

118
data transfer to or from an NI. uncached load/store, -Usexl DMA (UDMA), and

cached store. An uncached load or store from the processor to a memory-mapged NI re
ister can rapidly initiate data transfer from user spaceigrer, an NI also needs phical
memory addresses of dataffiers from which it can obtain the data that must be trans-
ferred. Unfortunatelyusers cannot pvide authenticated pgiical addresses of dataff

ers without violating most operating systems’ protection model. Consequelglynust

be prepared to fetch authenticypltal addresses from the operating system [105, 47,
133].

To avoid the complrity of building an NI that fetches and manages authentysipal
addresses, Blumrich, et al. [11, 88] proposed va-deerhead data transfer initiation
scheme called Usérevel DMA (UDMA). In this scheme users pride authentic pysical
addresses to the NI via a sequence ofaerlevel instructions: an uncached store and an
uncached load. Additionallj]JDMA allows users to directly deposit data into user data

structures.

Unfortunately the a ley limitation of UDMA is that there is no kmo technique to
extend UDMA in a general ay to a multiprogrammed symmetric multiprocessing (SMP)
node. The UDMA mechanism requires thetinstruction sequence to be atomic.wHo
ever, in an SMP node, multiple such store-load sequences issued by multiple processors
simultaneously can beverlapped leading to erroneous results. Markatos andvétate
[75] shaved the UDMA initiation sequence can be made atonuicpbly under restricted

conditions.

The multiprogramming problema¢ed by UDMA can bewercome using the third
scheme in which processors and NIs communicate via cachable, shared nfersend
a message a processor simply writes to a location shared between the processor and the NI
(e.g. increment the shared tail pointer of a shared queue). The NI polls the shared location
to determine the presence of a message. Similahgn a message ams at the NI, the

NI sets a shared location that the processor monitors. This scheme da@e® béfsame

119
multiprogramming problem of UDMA. This is because such an NI can directly read and

write data to a portion of the usedddress space, which is protected by the normal virtual
memory mechanisms. Maver, like the first mechanism, this scheme does require the NI

to fetch and manage authenticypital addresses to which the shared locations are
mapped. Another dveback of this approach is that the NI must remember to poll the
cached, shared locations to check fowrmaessages. This is because, wnlikncached
accesses, cached accesses by the processor is usually not visible outside the processor

cache.

Cached stores additionally aNospeculatre processors to generate messages specula-
tively [87]. A processos speculatie stores are usuallyfiered locally inside the proces-
sor and committed only when the speculation succeeds. Consegaepthycessor can
speculatrely issue a store to the cachable memory location shared between the processor
and the NI. The store will, never, be visible (and the message committed) to the proces-

sor only after the speculation succeeds and commits.

5.1.2.2 Popcessor manages transfefhe preious subsection discusses solutions in
which the processor initiates and the NI manages the data traksfaternatve solution

is to allawv the processor to both initiate and manage the data trafRsfexample, tradi-

tional program-controlled 1/O requires direct processaoliement to transfer data
between the processor and the NI. In this scheme a processor directly reads and writes
data (instead of addresses) to memory-mappeddiditees via uncached loads and stores.
Even the Ultrasparc block load and store instructions require processdvement

because these instructions block the processor until the data transfer is complete.

Processemanaged transfers usually simplify the NI design because an NI does not
require authentic pfsical addresses to access a message. A processolvement for
every data transfehowever, uses up precious processor resources, which can be used for

other purposes (e.g. computation). Both UDMA and cache block trangfédspaocessor

120
involvement for data transfewhich reduces processor occupaaad allavs overlap of

computation with data transfer

5.1.3 Souce and Destination of Tansfer

For both message send and reception data must be transferred between source and desti-
nation memories located in the processby or main memoryThe source and destination
of data transfer impact performance irotways: determining what technology is used for
the source and destination memories and whether or not dedis fram the source to the

destination directly

Memory technology influences performance because the performance of current memo-
ries vary widely DRAMs—the dominant technology used for main memory—is usually
much slever than SRAMs, which are used toild processor memories, such agiseers
and caches. Consequentisansferring messages between the processor and NI via main
memory and not directly between the NI and processan hurt performance. Addition-
ally, transferring messages between the processor and NI via main memory axitds an e
hop aver the memory s, which addsxra lateng. Nevertheless, if the NI memoryer-
flows, it may be more useful tather messages in main memory rather than blocking the

network or dropping the message. | discuss these issues inxthsegon.

5.2 Buffering Parameters

The amount of bifering available for an NI can he& significant impact on an Nlper-
formance (Sectio.3). Unfortunately NIs cannot rely on netwk switches/routers to
provide this level of kuffering. Current commercial netwk switches/routers usually pro-
vide only a fev hundred bytes ofuffering (Table), which is usually sticient to maintain
the full bandwidth through the switch/routetowever, if the recering NI fails to remwoe
messages from the naivk, the switches will block and send backpressure to the sender
thereby clogging up the nebrk. Alternatvely, switches, such as the Myricom Myrinet,

simply drop messages if the redag NI fails to eject the message from the rarkw For

121

Network Switch/Router Maximum Buffering

Cray T3E router 105 bytes per non-adaygi virtual channel
[106]

IBM Vulcan switch (SP2) 31 bytes + 1 Kbyteudfer pool shared
between four ports [122]

Myricom M2M switch 20 bytes [38]

SGI Spider/Craylink switch 256 bytes per virtual channel [41]

TMC CM-5 network router 100 bytes [141]

Table 5.1:Buffering in commercial netarks. This table shas the amount of
buffering available between an input port and an output port exdommercial netark
switches/routers.

such netwrks either the NI must ka suficient kuffering to rapidly remee messages
from the netwrk or softvare must guarantee reliable @ehy, which incurs substantial

overhead.

The rest of this section discusse® parameters that influence the amountuifdsing
available to an NI: where the NUulfers are located (Secti&?2.1) and hev much the pro-

cessor is molved to luffer messages. (SectiérR.2).

5.2.1 Location of NI Buffers

The location of NI bffers is influenced by tavgoals that may often be conflicting. |
want NI huffers to be located such that the processor can access them. idpidyer, |

also vant the NI liffers to be plentiful.

Allocating NI kuffers in the NI itself alls direct and rapid data transfer between the NI
and processotJnfortunately supporting lage amounts of dedicated memory on the NI to
buffer messages may not be economically feasible. In contrast, main memory can support
large amounts of udffering, ut may not allev rapid data transfers (Sectibril.3). Tadi-
tionally, NIs hare either allocated messageffers in dedicated NI memaryain mem-
ory, or a tybrid combination of the ta | discuss the implications ofbrid designs in the

next subsection.

122
One compromise that alls the best of both is to distinguish between the logical and

physical location of NI bffers. Logically | can allocate the messagétfers in coherent,

shared memorywhich is plentiful. Piasically, however, such NI liffers can be located in
processor caches, main memanyNI memoryA host nodes coherence protocol ensures

that the diferent plysical copies of the same (logical) messag#els are consistent
across the node. In such a design, the NI memorybshi#e another processor cache in

an SMP node. Thus, in the common case, the processor can transfer data directly from the
NI memory to the processor cache.wéwer, if the NI memory werflows, the messages

will be automatically replaced from NI memory to main memaryich allavs plentiful

buffering.

5.2.2 Degee of Pocessor Iivolvement or Buffering

If NI buffers are allocated both in dedicated NI memory and main memhery either
the processor or the NI must transfer messages from the dedicated NI memory to main
memory In the absence of such transfers, the agtwan fill up slaving dowvn the entire
system. More criticallyin some situations, this can cause the system to deadlock. This is
because the umailability of message uifers can cause adic dependence in which
multiple processors are blaat (e.g. on a message sendjting for other blockd proces-

sors to process incoming messages [68].

Transfer of messages from dedicateffdrs to main memory can be managed by either
the processor or the NI. Who (processor or NI) manages such transfers depenas on ho
often such bffering is required. & Nls that alvays store message data to a n®deain
memory processor volvement for liffering can seriously dgade performance. In con-
trast, Nls that are designed with the assumption thatonktitraffic jams” are rare occur-

rences may use processnanaged bffering as adllback mechanism.

123

Data Transfer Parameters Buffering
Network Simple Send Receve Parameters
Interfaces description 576" T Who | Source| Size | Who |Destina-| Location| Proc.
man- man- tion Involved?
ages ages
trans- trans-
fer? fer?
NIy, TMC CM-5 NI Uncached Proc. | Proc. [Uncached Proc. Proc. [NI7VM Yes
like [124] Registers Ragisters|
NlggntUdma [Princeton Block NI Cache/| Block NI Memory | NI/ VM / Yes
Udma-based Memory Memory
(11]
NIgntBIkbuf |Fujitsu Block Proc. | Block | Block Proc. | Block | NI/VM Yes
AP3000-like Buffer Buffer
[109]
CNIgQm MIT StarT-JR- | Block NI Cache /| Block NI Memory | Memory No
like [53] Memory
(NI1gy*+Blkbuf)s|DEC Memory Block Proc. | Block Block NI Memory | Memory No
(CNIgQm)r Channel NlI-lile Buffer
(44]
CNI51 Q Wisconsin CNI| Block NI Cache /| Block NI Proc. | NI/ VM Yes
with no cache Memory Cache
[85]
CNI3Qm Wisconsin CNI| Block NI Cache /| Block NI Proc. [NI Cache No
with cache [85 Memory Cache | Memory

Table 5.2:Classification of memoryus Nls. This table classifies thevean memory bs
NIs | evaluated in this chapteBlock denotes block transfdvlemory denotes main
memory Proc. denotes Processand VM denotes virtual memorgee Sectiob.3 for ar
explanation of the taxonomy | use for Nls. Nls thative the processor to manage ¢
transfer between the NI and the processue liegher processor occupgrmmpared t
the Nlis that use NI-managed data transfers.

5.3 Network Interface Implementations

This section describes thevea Nlis | @aluate in this chapteGiven the enormity of the
design spacexposed in Sectiob.1 and Sectiob.2, it would be hard towvaluate each and
every component indidually. Hence, | hae selected sen Nis that, | beliee, capture the
essential components of the data transfer anigdiing parameters.df all of my Nis, |

assume a uniform nebsk and flav control mechanism described in Sectiod.

Table5.2 lists the se=n Nis | aluate in this chapte€olumn one uses the taxonomy |

developed in SectioB.4 to describe the NlIs. Columndvgives a simple description of

124
these NIs to aid readers in remembering which NI is which. | will use both descriptions

(column one and tw) interchangeably in the rest of the chapter

Nl,,, is aCM-5-like NIin which the processor can access only the firstvwards of the
NI fifo. | study two variants of Nj,. Section5.4.2 compares a memorys$ Nb,, with
other memory bs NIs. Sectio®.4.3 uses an N}, which can be accessed in a single
cycle, to approximate a processegistermapped NI. @ distinguish this NJ,, from the

memory lus Nb,, | call it the single-gcle NI,

NlganwrUdma (Udma-based NBllows the processor txamine the first 64 wrds of the
NI fifo (256 bytes) and optionally transfer them to memory via the UDMA mechanism at
both send and reca nodes (Sectiob.1.2.1). Although the Udma-based NI implementa-
tion allovs overlap of computation and data transtbe messaging softwe waits until
each UDMA transfer is complete. This reduces the caxiiplen the messaging softwe
and aoids changes to the macrobenchmarks. Thisvall uniform comparison across all

seven NIs.

Nl gt Blkbuf is anAP3000-lile NI, which allavs the processor to load and store 16
words (64 bytes) from the head of the fifo to a 64-byte send ovedaeick luffer located
in the processd‘rThe processor accesses the bladkdp via a load/store intaate. These

block kuffers approximate the UltraSparc block load and store mechanism.

CNIgQn, is aStart-JR-lile NIfor which message queues reside in main menitry ‘0’
in CNIyQ,, indicates that CNRQ,, does not cache gnmessage in the NI. CpD,
approximates the data transfer andfdring characteristics of the MIT StadR NI [53].
However, unlike CNQ,,,, the StarTJR NI resides on the I/Qub and does not use the lazy

pointer and sensewerse optimizations.

1. The Fujitsu AP3000 NI has another mechanism to access theMdinfplicity, | limit my dis-
cussion only to the ay it accesses the NI via the processblock load/store instructions.

125
(NI1 gt Blkbuf)(CNIgQp)r approximates thélemory Channel N[44]. It denotes a
hybrid NI in which the send inteate resembles M, +Blkbuf (AP3000-like NI) and the
receve interbice resembles CpD,, (the Start-JR-lie NI). Hovever, unlike the Digital
Memory Channel NI, which attaches itself to the PCI IS, attach my Memory Chan-
nel-like NIdirectly to the memoryus to perform a uniform comparison with other Nls.
Additionally, | do not use the multicast feature of the Memory Channelonktecause |

focus specifically on its N’ data transfer andiffering parameters.

CNI51Q denotes &£NI with no cabe Its send and recg queues contain 512 64-byte
blocks.CNI3,Q,, is aCNI with a cabe That is, memory on the NI for both the send and
receve queues is treated as 32-entry caches (with 64 byte cache blocks). Seed4Skection

for more details on these CNiIs.

5.4 Results

This section xamines the sen NIs’ performance with respect to the data transfer and
buffering parameters. All simulations in this section use the same methodology described
in Sectiord.2. Sectiorb.4.1 and Sectioh.4.2 eamine the performance of theveas Nls
with two microbenchmarks andwen macrobenchmarks respeety. Then, Sectio®.4.3
compares the performance of the singtele Nl,,, with CNI3,Q,, (CNI with a cache),
which performs the best for six of mys@ macrobenchmarks and slightlgnse than the
AP3000-like NI for unstructured.

Throughout the rest of this section | will uniformlgry the number of netwk message
buffers allocated at the sender and reeeil call this parameteitow contol buffers. So,
for example, if the number of fl@ control luffers = 4 that implies that each NI has four

outgoing luffers and four incoming netwk messageuifers allocated for fi control.

126
5.4.1 Microbenchmarks

In this section | characterize the performance wéseé\ls using tw microbenchmarks:
round-trip lateng and bandwidth. These microbenchmarks capture the baseline perfor-

mance of these NIs.

An alternatve approach wuld be to characterize the NiIs using the B&gk LogP
model [30]. The LogP model characterizes NI accesses with three parameteng:(lgtenc
overhead or processor occupgr{o), and bandwidth (g). heever, | refrain from using
this model because the latgrend oerhead components of this model do not uniformly
capture the same metrics for all of my Nlsr Example, for coherent netwk interfaces,
the lateng component includes both the latgrio transfer a message from the processor’
cache to the NI and the naik lateng. In contrast, for CM-5-lig Nls, the latenccom-
ponent captures only the netik lateng, while the actual data transfer is included in the
overhead/occupagacomponent of the model. Mertheless, the LogP model does help us
understand qualitately the performance of these Nisrfexample, Nlis that require pro-
cessor imolvement for data transfer V@ a higher processor occupgraompared to Nlis

that themseles manage the data transfer (Sechidn2.2).

5.4.1.1 Round-Tip Latency. Table5.3 shavs theprocess-to-pscessround-trip lateng
and bandwidth for my sen NlIs. These numbers include the messaging layehead for
copying a message from the NI to a utsel buffer and vice ersa. Thus, for all Nls,
except the Udma-based NI, dategbes in the sending processocache and ends in the
receving processos cache, rather than simply wiog from memory to memorYnly for
the Udma-based NI datadies in the sending processocache, bt ends in the recaing

processos memory

The round-trip latencnumbers in @ble5.3 shavs three important results. First, each of
the three data transfer parameters—size of trgrdgree of processorwolvement for
transfer and source/destination of transfer-wasignificant impact on the round-trip

lateny of each NI. Carefully choosing these parameters can iaptiee round-trip

127

Network Round-Trip Latency Bandwidth

Interface 8 64 256 8 64 | 256 | 4096
CM-5-like NI 241 | 525 | 15.11 17 54 63 69
Udma-based NI 448 | 583 | 10.10 7 42 78 109
AP3000-like NI 195 | 2.48 4.47 26 154 234 298
Start-JR-lile NI 154 | 2.38 5.04 29 119 191 221
Memory Channel-lik NI 155 | 242 4.89 27 119 191 221
CNIlg1Q 156 | 2.22 4.17 28 134 209 259
CNI3,Qm, 1.29 | 1.78 3.42 36 120 189 209
CNI3,Qmnt+Throttle n/a n/a n/a 36 158 272 351

Table 5.3:Process-to-process round-trip latghar seven NIs. This table shas the
process-to-process round-trip latgrf microseconds) for 8-, 64-, and 256-byte
message payload and process-to-process bandwidgalfgtes per second) for 8-, 64
256-, and 4096-byte message payload. Each message contains an eight-byte hei
CNI3Qn+Throttle throttles the sender to match the maximum message consumpti

of the recering NI. Send throttling does not significantly change the bandwidth atte
by ary other NI. for all these numbers, | set the number of/ ftmntrol tuffers = 8.

lateng by more than eefctor of three. Second, the relatimportance of these parameters
depend on the specific NI design. Third, among thersa&lls, CN§,Q,,—the CNI with a
cache—dfers the best round-trip latendecause it optimizes the three data transfer

parameters.
Below | examine fi\e interesting comparisonsvealed by @ble5.3:

The Udma-based NI performs better than CM-B-M only for mesgges geater than 96
bytes

The Udma-based Nd’round-trip latengcis worse than CM-5-lik NI for messages with
payload less than 96 bytes (theaet breakven point is not shen in the table), bt sub-
stantially better as the message payload increagemdbehis size. This is because for
small messages, the Udma-based Migh initiation @erhead (one uncached store + one
uncached load + switchub master from processor to Nifs#ts its tvo advantages: abil-

ity to transfer messages in blocks and ability to directly deposit data in user space without

128
processor imolvement. Hence, for my macrobenchmarks the Udma-based NI attempts to

use the UDMA mechanism only for messages with payload greater than 96 bytes.

The AP3000-lik performs substantially better than the Udma-based NI

The AP3000-lile NI performs substantially better (more tharaetdr of tw) than the
Udma-based NI,v&n though all transfers are managed by processor for the AP3600-lik
NI. This is because l&kthe Udma-based NI, it transfers messages in blooksnbke the
Udma-based NI, it has avoinitiation overhead (an uncached store) @nalansfers data
directly to the &st receie block luffer residing on the processor chip (and not intaelo

main memory).

The Start-JR-lik NI and AP3000-li& NI have a @sswer point

The Start-JR-lik NI outperforms the AP3000-BkNI for messages less than 64 bytes
(size of the block bffer) because the AP3000-4KNI has higherwerhead (12 processor
cycles) to flush and load the send and nexbiock luffers respectely. Beyond a 64-byte
message payload, the AP3000eliMI's overhead is amortized and consequently it outper-
forms the Start-JR-l& NI. The Memory Channel-l&kNI's round-trip lateng is almost
similar to that of the Start-JR-BkNI, which indicates that the send side of the Start-JR-

like NI and the Memory Channel-8K\NI exhibit almost similar performance.

CNIg,Q outperforms the Start-JR-&KNI

CNIg,Q—the CNI with no cache and queues allocated in dedicated CNI memory—out-
performs Start-JR-l& NI, ezen though the memory on CNIQ is as sl as main mem-
ory. The diference arises because obtweasons. First, on the reaeiside messages are
steered to processor caches directly from the NI and not via main memaci adds
additional lateng for the Start-JR-lig NI. Second, on the send side, for messaggsrlar
than a cache block (i.e., 64 bytes), gNQ prefetches cache blocks as the processor com-
poses them in its cacheorFexample, while a processor is composing a cache block of a

message, CN}Q fetches the pwgous block of the same message. This fetch is initiated

129
by CNI51,Q when it obsems the processariequest forxelusive access for a subsequent

cache block of a message. If a cache block is fetched too garybefore entire cache

block is written, then CNLQ can re-fetch it when the message is ready fovelgli

Thus, aoiding processor wolvement for data transfer alls simultaneous transfer and
creation of a message. UICNL,Q, the Start-JR-Ii& NI cannot prefetch cache blocks

of a message because it does respond to the memory coherence signals (e.g. coherent

invalidations).

CNI3,Q,, shows the besbund-trip latency

CNI3Qp—the CNI with a cache—s the best round-trip latep@among my seen
NIs because it prades all the benefits of CAQ, kut with smaller anddster cache
memories compared to CNLQ. Therefore, werall it outperforms all other Nis by

roughly 20%-342% for message payload between 8-256 bytes.

In summary | find that lav lateny transfer can be aclved for small messages via
block transfers, minimal processowaivement, and direct procesgorNI transfers. The

relatve importance of these parameters depend on the specific NI designs.

5.4.1.2 Bandavidth. The bandwidth numbers inable5.3 shav trends similar to the

round-trip lateng numbers with tw key exceptions that | discuss b&lo

The AP3000-lie NI ofers significantly geater bandwidth compad to the Start-JR-l&k
NI and CNE1Q

This is because at the reaeiside the AP3000-I&NI transfers messages directly from
the small anddst NI memory to the reaa block luffer located net to the processor
This is significantly dster than reading messages from theveslanain memory for the
Start-JR-lile NI and slaver NI memory for CN4; Q.

130

3.0 ——
© # buffers = infinite
.E L # buffers = 8 i
c # buffers = 2
L 20k [N #buffers=1 _
3
(0]
x - .
a
?
N 10 - —
©
E - _
S
P
0.0
ZZZ ZZZ ZZZ zZzZZ ZZZ ZZZ zZzZZ
QT QO QT QO QT QO QT O QT QO QT QO QT QO
X O X X QO X X QO X X O X X O X X O X X O X
?8? ?g? ?g? ?g? ?g? ?g? ?g—T
228 228 223 228 228 223 228
= © O = O = O = © O = O = O = O
OEE OE& OEE OEE OE& OEE OEE
ie]]] ie]]] ie]
5< o< o< o< o< o< o<
appbt barnes dsmc em3d moldyn spsolve unstructured
(a)
g L — _ -
= 1.0 — — = — — — =
5 - —] - |
= 08 M — —
>
Q - u
2
% 0.6 - —
5 L]
N 04 —
g |]
5 0.2 -
Z L -
0.0
SO E SSO E SSO E SSO E SSO E SSO E SSO E
2032 S e e e e e
ééz”’_m é.*—:z”’_m .é.éi”’_m ééé’_m ééz”’_m 552”’_@ ééé’_m
ox0d Oaxd5 Oaxd5 Oaxd5 Oaxds Oxd3 Oxd5
s =" =" =7 =" =7 =7
g g g 5 g S S
n n n n n n n
appbt barnes dsmc em3d moldyn spsolve unstructured

(b)

Figure 52. Comparison of xecution time of seen Nis. Both (a) and (b) are normalized
the AP3000-lile NI with number of flv control tuffers = 8. # hffers denotes the number ofvl
control huffers. (a) compares the performance of my three fifo-based Nls feredif levels o
flow control luffering. The black shade represents tkecation time with infinite flew contro
buffering. Lighter shades represent the incrementation time penalty for three Wlocontro
buffering levels (8, 2, and 1). (b) compares the performance of four cohererirkehteriace:
with number of flov control uffers = 2. | Hevever, because these NlIs themssvpraide
plentiful buffering, their performance is lgely insensitie to the number of fl@ control luffers
MC-like NI denotes the Memory Channeldikl.

131
Without thiottling CNk,Q,,'s bandwidth is wae than the AP3000-BkNI, een though
CNI3Qp's latency is significantly better
This is becaus€NI3-Q,,'s send bandwidth is significantly greater than its vedeand-
width. This causes CMHJQ,,’s receve cache to erflow, which forces the recang pro-
cessor to pick up most messages from main mertikeythe Start-JR-li& NI. Howvever,
appropriately throttling the sending processor afteerye send can help impre
CNI3,Qq's bandwidth by preenting the recee cache fromeerflowing. This allavs the
receving processor to pick up messages from th&t CNE,Q,, memory instead of

slower main memoryHowever, | do not see this fct in my macrobenchmarks.

Overall, with send throttling, CN)Q,,, achieves a bandwidth of 351 mabytes/second,
which is significantly greater than the bandwidtfedd by ag other NI.

5.4.2 Macobenchmarks

This section discusses the performance of merséls with seen macrobenchmarks
(Section4.2.3). Overall, |1 can drev two conclusions. First, the data transfer parameters
have significant impact on the performance of allesemacrobenchmarks. Secondffb
ering only afects two of the macrobenchmarks: em3d and spscohhis is because both
these benchmarks generate small messages more rapidly than tiagguecessor can
consume. Consequentlfor em3d and spsady huffering is more important than data

transfer

| do not, hevever, attempt to quantify the rela& importance of each of the three data
transfer and tw huffering parameters. This is because tktemt to which each parameter
affects a macrobenchmark depends on the specific NI design and the macrobenchmark
itself. Nevertheless, it should be noted that each of these parameters direcily pér-
formance. This is because for pure shared-memory applications, such as appbt and barnes,
which communicate using a request-response protocol, all the parameters adggdatenc
the requests and responseer pure message-passing applications, such as em3d and

spsole, the recefe side is the bottleneck. Consequerdli/the parameters on the reaei

132
side is on the critical path. The rest of the applications thatyis@lprotocols—that is,

both message passing and shared memory—consequergltheasame befaer.

| divide my discussion into twvparts andyamine the results in detail. First, | discuss
the performance of the CM-5-BkNI, the Udma-based NI, and the AP300@liKI
(Section5.4.2.1). These Nis rely on NI memory toffier network messages (via the Wo
control huffers). These three Nls are fifo-based Nig, differ in the vay they pop/push
data to the fifos. & such push and pop the CM-5dilNI uses uncached loads/stores, the
Udma-based NI uses Uskevel DMA (or UDMA), and AP3000-lik uses block loads/

stores.

Second, | discuss the Memory ChannetliKl, the Start-JR-l& NI, CNk;Q, and
CNI3Qp, (Sectionb.4.2.2). These NIs pvale plentiful luffering in main memory with-
out requiring a processarinvolvement. All these four Nls are either fully coherent or par-
tially coherent. The differ primarily in the vay the NI queues are allocated. The Memory
Channel-lile NI allocates recee queues in main memoryhe Start-JR-lig Nl allocates
both send and rea& queues in main memoi@NIls; Q allocates the queues in dedicated
CNI memory Finally, CNI3,Qy, allocates queues in main memoyt caches them in a
CNI cache.

5.4.2.1 Comparison of Thee Fib-based NIsFigure5-2a compares thexecution time

for the three fifo-based NlIs. The black bars, whichwstie execution time for the three

NlIs for infinite flov control tuffering, allav us to isolate the impact of the data transfer
parameters on the macrobenchmarksthVihfinite flow control huffering, the Udma-
based NI outperforms the CM-5-4kNI by 0-15% and the AP3000-&KNI outperforms

the Udma-based NI by 11-44%. The Udma-based NI performs similar to or better than the
CM-5-like NI because it uses the UDMA mechanism only faydgpayloads andalis

back on uncached loads and stores like CM-5-lile NI, for smaller messages. The
AP3000-like NI's lover lateng and greater bandwidth (Sectibrt.1) clearly help

improve the macrobenchmarks’ performance.

133
The lighter bars in Figurg-2a shav the increase inxecution time as | reduce the num-

ber of flav control luffers. Clearly the number of fl control luffers hae a significant
impact on performance. Figute2a shavs two interesting results aboutWacontrol tuff-
ering. First, for all three NIs and all of ourvea applications, increasing the number of
flow control luffers from one to te significantly imprees performance (between 6-
40%). Havever, increasing the number of flocontrol luffers bgond two buys only mod-

est performanceayns (less than 19%) for most applicationsept em3d and spsayv

Second, the number of Wlocontrol luffers has significant impact on em3d and spsolv
This is because both em3d and spsajenerate ursts of small messages (less than 20
bytes) more rapidly than the reaeig NI can consume. Consequentilye lack of flav
control huffers has a dramatic impact on performane®. ém3d and spsadvincreasing
the number of flv control luffers from tw to infinity improves performance by 29-40%
and 78-101% respewély for the three Nls. Actuallyncreasing the number of Wocon-
trol buffers to 128 for em3d and 33 for sp®lwaptures most of the performaneeng

that can be achied from an infinite number of flocontrol ffers.

5.4.2.2 Comparison of Bur Coherent Network Interfaces. Figure5-2b compares the
execution time (normalized to the AP3000diklI for flov control uffers = 8) of four NIs
that are either partially or fully coherent. These Nis/g® NI-managed, plentifuluifer-
ing in main memory on the regeiside. Consequentlthese Nis are lgely insensitre to

the number of flav control huffers.

Figure5-2b shavs three interesting results. First, the performance of the Memory Chan-
nel-like NI varies widely for the s&n macrobenchmarks. It performs significantly better
than the AP3000-I& NI, with the number of fls control uffers = 8, for em3d and
spsole because it puades plentiful liffering in main memory without direct processor
involvement. It performs almost similar to the AP300@ kI for appbt, barnes, dsmc,
and moldyn because these macrobenchmarks damosignificantly from plentiful bff-

ering. It performs wrse than the AP3000-BkNI for unstructured because unstructwsed’

134
large messages fettively use the greater bandwidth pieed by the AP3000-I& NI

(Table5.3).

Second, among the four NiIs shoin Figure5-2b, the Memory Channel-kEkNI per-
forms the vorst and CN4,Qy,, performs the best. ChHQ,,—the CNI with a cache—out-
performs the Memory Channel-8kNI by 2-26% for the seen macrobenchmarks due to
its lower lateny and higher bandwidth éble5.3). CNk,Q,, also outperforms The
AP3000-like NI—the best fifo-based NI—and GNQ—the CNI with queues allocated
in main memory—for all applicationsxeept unstructured. It appears that the most impor-
tant feature of unstructuredcommunication is to stream data from the sender to the
recever. Both the AP3000-li& NI and CN4;Q has less\erhead for this data streaming
compared to CNLQ,,,, which incurs gtra overhead due to its cache management (e.g.
cache replacement). ConsequentyNI;Q,, performs maginally worse than the
AP3000-like NI and CN4,-Q for unstructured. L& Mukherjee, et al. [85], | find that

CNI3,Qy, is competitve with CNE;,Q with much less memary

Third, a comparison of the Start-JRdiNI and CN4,Qy,, shavs that caching messages
in a CNI cache, as in ChYQ,,, provides a performance boost of 2-13% for theese
macrobenchmarks. Anxamination of Nl-related memoryub transactions veals that
CNI3,Qp, reduces the number of main memory to processor cache transactions by 54%
(averaged across thevam macrobenchmarks). This is because G}, provides mes-
sages to the processor via direct CNI-cache-to-proceasbe transfers. Furthes the
performance g@p between microprocessors and main memory widenxpekce CNk-Qy,
to provide significantly better performance than the Start-JRINkbecause of tw rea-
sons. First, because CMQ,, caches are small, thecan be hilt with faster SRAMs,
thereby preiding lower lateng to transfer messages. Second, £}, satisfies more
than 50% of the processsraccesses to the NI directly from its cache, whudhds mes-

sage steering via main memory

135
Overall, | find that CN§,Q,—the coherent inteace with a cache—performs the best

because it optimizes all of the divdata transfer anduffering parameters. In summary
CNI3Qp;
» effectively uses the block transfer mechanism of current memagsby transferring

messages in cache blocks;

* minimizes processor wlvement for data transfer by initiating the transfer using a
cachable store and decoupling the processor and NI via memory-mapped, cachable

queues;

« directly transfers messages from the NI cache to the processor cache in the common

case;
» provides plentiful luffering in main memory; and

» allows the NI to directly deposit messages into main memdrgn the NI cachever-

flows.

5.4.3 Single-Cycle N}, vs. CNLQ,

Figure5-3 compares the performance of G)Q,,, with an Nb,, NI, whose memory can
be accessed by the processor in a singteec Thus, my singleycle NI, approximates

processoregistermapped Nls in research machines, such as the MIT M-machiné [39].

Figure5-3 shavs two interesting results. First, CQ,,—the CNI with a cache—out-
performs my singleyele Nl,,, for spsole and em3d for small number ofvlacontrol
buffers. Processenegistermapped Nls are lidy to hare a small number of fle control
buffers because of twreasons. First, a processamgister memory is a precious resource
and its size is serely constrained by its access time. Second, the demands of multipro-
gramming require that the b} buffers be either partitioned among multiple processes or
saved and restored across cottswitches. The first solution limits the number ofslo

control uffers allocated per process and the second solution increases th-saritdn

1. Unlike my single-gcle Nl a processor in the MIT M-machine can compute directly from the
NI registers, which alles zero-gcle access to the Nlgesters for some cases.

136

@ —@ spsolve

2.0 lB—8 em3d
& —@ dsnmc
A—4A moldyn
()
£ 15 barnes |
[unstructured
c
2 <4—<«appbt
3
2
i 1.0
©
(O]
N
©
5 \.—3
§ 05 —
0.0 | | | | | |
1 2 4 8 16 32 64 128

Number of Flow Control Buffers

Figure 53. Comparison of xeecution of a singleycle Nl,,, with CNI3,Q,,,. The \ertical
axis is normalized to the ChJQ,, on the memoryis. CNE,Q,, is independent of fl@ control
buffering because it puides plentiful lffering in main memory

time. Furthermy single-gcle Nl,,, cannot also rely on commercial Nls for plentifuffo
ering (see able). ConsequentlyCNIz,Q,,'s ability to luffer messages in NI caches and
main memory without processonvoivement mags its performance better or comparable
to the single-gcle NI, for spsole and em3d. ¢t example, for flov control luffers = 2,
CNI3,Qq's performance is better than the singlele Nl,,, by 18% for spsolr and com-
parable for em3d.df spsole and em3d, the brealen point between CN}Q,, and the
single-gcle NIy, occurs when the number flocontrol luffers equals 32 and 2 respec-

tively.

Second, for the fix macrobenchmarks other than speand em3d, CMNVQ,, is within
15% of the performance of the singlgele Ni,,, (averaged across the &vmacrobench-

marks).

137
The abee results suggest that in the absence of adequéfribg, mapping an NI

directly to the processorgisters may not alays be the optimal design point. Perhaps a
two-level register memory hierarghfor NI registers can mak such processoegister

mapped NIs competite with a memory s NI, such as CNLQp,.

5.5 Related Vork

To the best of my knwledge, this wrk is the first to systematically identifgcamine,
and eplore the data transfer andffering parameters that underlie the design of high-per-
formance NIs for fine-grain communication. Karamcheti and Chien [58] compared the
messaging support in TMC CM-5 and Cray T3D and concluded that requiring processor
involvement for message reception can significanttyratde performance. | impre upon
their work by eposing and xamining the design space of data transfer asfteting
parameters. Blumrich, et al. [14] compared the SHRIMRd SHRIMPII Nls, but did
not explore alternate data transfer andfbring mechanisms. Maekzie, et al. [73] stud-
ied the efiect of huffering using a synthetic evkload and concluded thatiffering mes-
sages in virtual memory can occur only rarely for realistic applicationgekdn in
contrast | found that for twof my seen macrobenchmarksutfering can play a signifi-
cant role in impreing performance. Henry and Jgg60] compared the performance of
three NIs mapped respeaadly to the processorgesters, L1 cacheus, and an éfchip L2
cache bs. Havever, unlike my studythey did not &amine the impact ofuffering on the

performance of these Nis.

5.6 Conclusions

In this chapter | hae systematically identifiedxamined, andxplored two key parame-
ters—data transfer andiffiering—that affect the design of high-performance Nigyeted
for fine-grain communication. The data transfer parameters capturenegsages are
transferred between internal memory structures (e.g. processor caches, main memory) of a
computer and a memory$ NI. The biffering parameters capture where and/ fam NI

buffers incoming netark messages. | found that each of the three data transfer parame-

138
ters—size of transfedegree of processorwolvement for transfeand source/destination

of transfer—and te buffering parameters—Ilocation otitbers and dgree of processor

involvement for lnffering—can hege a significant impact on performance.

Using two microbenchmarks andwen macrobenchmarks vauated seen memory
bus Nls that | beliee captured the essential components of the design spaased by
the five data transfer andiffering parameters. Thesevea Nls abstract the data transfer
and luffering parameters of the NiIs in TMC CM-5, Fujitsu AP3000, Princeton-U=sesi
DMA, Digital Memory Channel, MIT StarJR, and tw Coherent Netark Interfaces—
CNIl51Q and CN4,Qp—proposed in this thesis.

Overall, | found that among thesevea NIs, CN,Q,,,—a coherent netork interface

that treats memory on the intack as a cache—performed the best because it optimizes

all five data transfer andiffering parameters. It:

» effectively uses the block transfer mechanism of current memagsby transferring
messages in cache blocks,

* minimizes processor wolvement for data transfer by initiating the transfer using a
cachable store and decoupling the processor and NI via memory-mapped, cachable
queues,

» directly transfers messages from the NI cache to the processor cache in the common
case,

» provides plentiful liffering in main memoryand

» allows the NI to directly deposit messages into main memdrgn the NI cachever-

flows.

As a corollary of this stugy found that, contrary to ceantional wisdom, mapping an
NI to the processor gesters may not alays be the ideal choice. This is because processor
register memory is a precious resource, which may notigeoadequate uffering for
some applications. Consequentlgr two of my seen macrobenchmarks, | found that

CNI3,Qy, outperformed a processmgistermapped NI with small amounts ofiffering.

139

Chapter 6

Using Prediction to Accelerate Coheence Potocols

Chapter - 5 eplored techniques to accelerate the performance ofonletwteriaces
for system area netwks. These techniques can accelerate-toseser messaging in a
parallel machine programmed witlxpdicit message-passing. In this chaptexamine
techniques to accelerate the communication performance of parallel machines pro-

grammed with a shared-memory programming model.

Shared-memory communication interés difer from netvork interfaces in at least twv
ways. First, shared-memory communication irstees allev processors to access memory
using a single address spacegrethough some memories may be located in a remote

computer (Figurd.-3).

Second, interaction of processor and shared-memoryadoesfis usually muclaster
than processeN| interactions. This is because shared-memory communicatioreicesrf
usually hardwire protocols that prepare messages in haedw firmvare to fetch remote
memory blocks. In contrast, natvk interfaces typically see/as a conduit for messages

generated by processors.

140
Unfortunately performance problems with shared-memory iatse$ arise in the hard-

wired protocol itself. Modern shared-memory indéeds in lage, shared-memory multi-
processors alle processors to transparently cache remote meroigh interfices use a

form of cache coherence protocol called a directory protocol (Sekfioh) to leep per
processor caches coherent.wdger, a hardwired directory protocol may not match an
applications shared-memory communication patterns (alsavknassharing patternk
Consequentlymemory references to remotely-cached blocks thatkenthe directory
protocol can sidér long latencies.d@ ameliorate this lategcresearchers ka augmented
standard coherence protocols with optimizations for specific sharing patterns, such as
read-modify-write, produceronsumer and migratory sharing. This chapter seeks to
replace these directed solutions with general prediction logic that monitors coherence

activity and triggers appropriate coherence actions.

The first contrilntion of this chapter is the design of thesmosoherence message pre-
dictor for accelerating coherence protocols (Sedi@y). Cosmos’ design is inspired by
Yeh and Bitt’s two-level PAp branch predictor [139] (Sectidhl.2). Cosmos mas a pre-
diction in two steps. First, it uses a cache blag#ress to index into aMessa@e History
Table to obtain one or moreprocessor,message-type> tuples. These<proces-
sor,message-type> tuples correspond to sender and message type of thewastlier-
ence messages reeai for that cache block. Second, it uses thpseessor,message-
type> tuples to inde a Pattern History &able to obtain a<processor,message-type>
prediction. NotablyCosmosdces a greater challenge than branch predictors because the
Cosmos’ prediction is a multi-b#processor,message-type> tuple rather than a single

bit branch outcome.

This chapter concentrates on coherence protocol message prediction in isolation (analo-
gous to studying branch prediction in isolation). | do notgrate the Cosmos predictor
into a coherence protocol fordweasons. First and most important, my tools are not ready
to handle a full timing simulation of a protocol that can be accelerated using prediction.

Second, | do not ant initial results in this area obscured by implementation idiosyncra-

141
sies. Negertheless, |)pect such intgration to be successful because thegnation of

directed predictions has been successful [66,67,28, 120]. SéRibnefly discusses pos-

sibilities for such intgration.

The second contrittion of this chapter is a detailedaduation of the Cosmos coherence
message predicto6ection6.4 states methodological assumptions, including the use of
five scientific benchmarks on agat shared-memory machine with 16 processors running
the Stache directory protocol [100]. Sectb gves Cosmos’ prediction rates and ana-
lyzes application details.aviations of Cosmos predict the source and type of the ne
coherence message with surprisingly-high accuracies of 62-6&te§, 84-86% (nol-
dyn), 84-85% &ppbd, 74-92% (instructued), and 84-93%dsmg. Cosmos’ high prediction
accurag results from predictable coherence message pattersgmatues associated
with specific cache block addresses. Such signatures are generated by sharing patterns [9,
46] that do not change or changery slavly during the &ecution of these applications.
Cosmos’ laver accurag for barnesoccurs becaudearnesperiodically re-hilds its prin-
cipal data structure (an octree), therebywmg logical nodes (with stable sharing pat-

terns) to diferent memory addresses (obscuring sharing patterns from Cosmos).

Section6.7 eplores the implications of Cosmos. Cleadgherence message prediction
works, because sharing patterns are often stable. Otheysstpdoited sharing patterns
with directed optimizations, such as dynamic sel&iiation and migratory protocols.
Using Cosmos could be better (oonse) than directed predictors due to performance and
implementation issues. Cosmos can perform heliecause it can diseer and track
application-specific patterns not kmo a priori (e.g., as occurs famstructued). It can
perform worse if it is slover to recognize knan patterns. Cosmos’ implementation com-
plexity can be less, because predictor logic is separated from the standard protocol logic
(unlike previous directed predictors that are intertwined with the standard coherence pro-
tocol). Cosmos, heever, is likely to require more state than directed optimizations. In
summary (Sectio6.8), Cosmos’ high prediction accuracies justify movestication into

using prediction to accelerate coherence protocols.

142
6.1 Background

This section describes the structure of a basic directory protocol (Sedtiah and
reviews Yeh and Btt’s two-level adaptve branch predictor (Secti@l.2). In the ne sec-
tion | discuss e Cosmos—a modifiedersion of ¥h and Rtt's two-level predictor—
can predict a directory protocslinessages with high accuya€hroughout the rest of the
chapter | will use the terms “node” and “processor” interchangeably because | consider

only single-processor nodes to simplify my discussion.

6.1.1 Structure of a Directory Protocol

Most lage-scale shared-memory multiprocessors use a directory protoeapaoriulti-
ple caches coherent. A directory protocol associates state with both caches and memory
This state is typically maintained at a cache block (e.g. 32-128 bytes) grandiaaty

state associated with each memory block is referred to as a directory entry

The directory entry for each memory block records whether or not a memory block is
idle (that is, no cached copiesist), a writable cop of the block &ists, or one or more
readable copies of the blockigt. To simplify the discussion | only consider a full-map
and write-ivalidate directory protocol, such as the SGI Origin protocol [69]. A directory
entry in such a protocol maintains logical pointers to all caches that haldlaep of
the block and ivalidates all outstanding copies of the block when one processor wishes to
write to it. Similarly a block in a cache is usually in one of three quiescent statakdjn
shared, orxclusive. These states define whether a proceskmat or store can access the
cache block. Processors mustdlve coherence actions on loads teeiid blocks and on

stores to shared (i.e. read-only) anhird blocks.

A cache coherence protocol can, therefore, b&adesimply as a finite-state machine
that changes state in response to processor accessegerndl anessagesoF caches
state transitions occur in response to processor accesses and messages from the directory

(and possibly other caches). A directory entry changes state in response to messages from

Node 25
cache

Node 18

Directory

e’

ICoherence protocol action

(@)

143

get_rw_request
rom processor 1
}o

inval_rw_request
from directory

_rw_response
from processor 2
exclusive
in
Node 1

Node 1 Directory Node 2

Protocol State rAnsitions

(b)

Figure 6-1. Basic structure of a directory protocqh) shevs message xehange
between a directory and dacaches and (b) sivs the corresponding state transitic
Table6.1 contains anx@lanation of the coherence message types. Initiathcessor .
has an xclusive copy of a cache block. Processor 1 issues a store to the block
invokes the coherence protocol, which sends a message to the dirébmemjirectory
examines its state and sends a message to processor 2 requesting it to return th:
the directory and walidate its cop of the block. When it recees the block fron
processor 2, it forards it to processor 1, which marks the cache blockasswve in
processor 1. The states Valid to eclusve” and “eclusive to clusive” represen

transition states.

caches. Figuré-1 shavs an &le of messagexehange and state transitions inotw

caches and a directory

Unfortunately the finite-state machine that implements the coherence logic often incurs
multiple long-lateng operations. These latencies can becoraereaf coherence actions
are implemented in sofawe [104, 100, 80] or firmare [71]. Additionally a directory
may need toxehange messages with other caches before it can respond to a precessor
request for a memory block. Such messaghange can also introduce substantial delay
in the critical path of a remote accessr Example, Figuré-1a shavs that a processar’
store to a block that resides in another n@dathe may require as nyaas five coherence

protocol actions at diérent caches and the directory and four messagersals across

144
the netvark that connects these caches and the diredioisome protocols, such as the

SGI Origin and Stanford ASH protocols, nod@’'s cache can forard the response
directly to nodel. Hawever, this only reduces the critical path of a remote access to four

coherence actions and three coherence messages.

6.1.2 wo-Level Adaptive Branch Predictor

A branch predictor predicts whether the branch will bernadr not tagn. Correct pre-
diction of branch directions impves the performance of wide-issue, deeply pipelined
microprocessors because it albthem to fetch andkecute probable instructions without
waiting for the outcome of pveous branches. J. Smith [114] proposedesal dynamic
branch predictors that use program feedback to increase the gauiubsanch prediction.
More recently Yeh and RBtt proposed a general dynamic branch predictor c&gul
[139]. FAp is a two-level adaptre predictor that mads a prediction for a branch based on
the sequence of branches a progrxeceted before it arred at the particular branch.
PAp malkes a prediction in ta steps. First, it uses the program counter of a branch to
index into aBrandc History Bbleto obtain k bits, which represent the outcomes of the last
k branches at this program countgecond, it uses these k bits to mdePe+BranchPat-
tern History Bbleto obtain a prediction. Each entry in thetrn History &ble is a finite-
state machine, which returns predictions based on the&ibebéa finite number of pre-
ous occurrences of this branch (and the k bits from the Branch Histblg)TIn the ne

section | will shav howv PAp can be modified to obtain coherence message predictions.

6.2 Predicting Coherence Potocol Messages

In this section | will study the Cosmos coherence message prethdioe n&t section |
will briefly describe her Cosmos can accelerate coherence protocols. This secgms be
with an xample of a produceronsumer sharing pattern and its corresponding coherence

message signature. The rest of the section usextrige to describe Cosmos in detail.

145

Messages Receéd by Directory from Caches

Messages Receéd by a Cache fom a

Directory

Message

Description

Message

Description

get_ro_request

get block in read-only
(shared) state

get_ro_response

response to get_ro_reque

(2]

get_rw_request

get block in read-write
(exclusie) state

get_rw_response

response to get_rw_reque

n

upgrade_request

upgrade block from read-
only to read-write

upgrade_respons

eresponse to
upgrade_request

inval_ro_response

response to
inval_ro_request

inval_ro_request

invalidate read-only
(shared) cop of block

inval_rw_response

response to
inval_rw_request

inval_rw_request

invalidate read-write
(exclusie) copy and return

block

Table 6.1:Sample of coherence messagesample of coherence messages usual
found in full-map, write-imalidate coherence protocols.

6.2.1 Signatue Generated by PoducerConsumer Sharing Rittern

Figure6-2 shavs an &le of a produceronsumer sharing pattern andahd can
lead to predictable message patternsigmatuesfor a particular cache blockoFexam-

ple, the producer in Figu&2 obseres the follaving message sequence:

sendget_rw_request
receve get_rw_response

to directory

from directory
from directory

to directory

receveinval_rw_request
sendinval_rw_response

Figure6-2b shavs the incoming message signature that results from the abessage
sequence. Figurg-2b, havever, represents a simple case. Consider a slightly more com-
plex example in which the pseudo code in Fig8f2a is etended to support twvconsum-
ers instead of one. In this case the producer and thedawsumers will still follav the
same predictable signatures asvamon Figure6-2b. However, at the directory the twv
get_ro_request ~messages canwairrive in ary order from the tw consumers. But, the
arrival of aget ro_request from the first consumer suggests strongly the possibility of
the arrval of anotherget_ro_request from the second consumer and viarsa. ©

achieze high accuraca predictor must adapt to sucériations in the incoming message

146

[*private_counter=privatevariable*/
/* shared_counter = shared variable */
repeat

if (producer)
private_ counter++
shared_counter = private_counter
barrier
else if (consumer)
barrier
private_counter = shared_counter
else
barrier
endif

until done

@)

inval_rw_reque
inval_ro_request

nval_ro_response
from consumer

get_rw_response

get_ro_responseg

get_rw_reques

from producer

(b)

produce
cache

consume
cache

directory

Figure 62. Message signature generated by a prodoocesumer sharing patter
(a) shavs a pseudo code for the producensumer sharing pattern. A producer wri
to a shared counter and a consumer reads the shared c(rgbovs the sequence
messages reaaid by the producer cache, consumer cache, and directory for the
block containing the shared counter (assumingatsefsharing). dble6.1 eplains the
different message types stin this figure.

stream. The rest of this section discusses the design of such anveagagdictor called

Cosmos.

6.2.2 Basic Structue of Cosmos

The preious subsection suggests that a coherence message predictor must adapt to an

incoming coherence message stream basedmproperties:

e address of cache blocks, because sharing patterngesédtfcache blocks may fif,

and

« history of messages for a cache block, because a stream of incoming coherence mes-

sages correspond to dit sharing patterns for specific cache blotks.

1. We will see in SectioB.5.1 that a history of three messages aelsienost of the prediction

accurag.

147

(Per Block Address) (Per Block Address) Pattern History @ble forshared_counter

Message Historydble Pattern History @bles Index Prediction
<P1, get_ro_request> | <P2, irval_ro_response

<P2, irval_ro_responsex <P2, get_ro_request>

\7

JE—

// <P2, get_ro_request> | <P1, irval_rw_response:
// <P1, irval_rw_responsep<P1, get_rw_request>
/ _ .
Message Histor
o Table
| <P2, get_ro_reques

Global Addre

of cache block Global Address qf
shared_counter

(a) (b)
Figure 63. Cosmos’ structure(a) shavs the logical structure the Cosmos cohert
message predictor and (b) slwan gample of hav the message and pattern hist
tables for a directory may look &kfor theshared counter in Figure6-2. In this
example, | assume that the last message weddiy the directory is a get_ro_reqt
from the consumer (denoted as P2). So, Cosmos will predict xhenessage to be
inval_rw_response from the producer (denoted as P1).

(%

Fortunately a modified ersion of ¥h and Btt's two-level adaptie branch predictor
calledPAp [139] satisfies the ale requirements! | call such a coherence message predic-
tor Cosmos Given the address of a cache block and the history of messagesddoei
that block, Cosmos can predict with high accyride sender and type of thexhéxcom-
ing message for the same block. | allocate a Cosmos predictoefgraache or directory

in the machine.

Figure6-3a shavs the logical structure of Cosmos. Cosmos is@lewel adaptie pre-
dictor. The first-leel table—called theMessae History Bble (MHT)}—consists of a
series oMessae History Rgisters (MHRs) Each MHR corresponds to afdifent cache
block address. An MHR contains a sequences@aider, type> tuples corresponding to
the last fev coherence messages thatwedli at the node for the specific cache block. | call

the number of tuples maintained in each MHRd&pthof the MHR.

148
The second-lel table of Cosmos consists of a sequenc®abfern History &bles

(PHT), one for each MHR. Each PHT contains prediction tuples corresponding to possible
MHR entries. Each PHT is inged by the entry in the MHR entryhe net two subsec-

tions outline hav to obtain predictions from and update entries in Cosmos.

Figure6-3b shevs the entries in an MHR and its PHT corresponding to the
shared_counter variable in Figuré-2. The MHT in Figure-3b has a depth of one, so
this MHR entry contains only onender, type> tuple. The<P2, get_ro_request>
tuple shavn in this figure denotes that the last messagevestéor the cache block con-
taining theshared_counter IS aget_ro_request ~message from the processor P2, which
is consumer of thehared_counter in this case. The corresponding PHT captures pat-
terns of messages reeed forshared_counter . For example, earlier Cosmos obsedva
get_ro_request ~ message from processor P1 foled by aninval_ro_response from
processor P2. The first entry of the PHT reflects this relationship. Thus, Cosmos will pre-
dict the arwval of aninval_ro_response message from processor P2xtrtame it sees a
message@et_ro_request from processor P1. Because the MHR contains the tuple corre-
sponding to the last message reedj to obtain a prediction | simply find the correct
MHR, and use that entry to indeto the PHT which will give us a prediction if an entry

exists for that tuple.

Cosmos bormes its two-level structure from ¥h and Btt's two-level adaptve branch
predictor called Rp (see Sectioﬁ.l.Z).1 Nevertheless, Cosmos tifs from R\p in three
ways. First, the first-leel table in Cosmos is inged by the address of a cache block,
whereas Rp is indexed by the program counter of a branch. Second, Cosmos must choose
one prediction from seral alternaties, whereasAp usually chooses betweendalter-
natves—branch tadn or branch not ta&k. Third, the state machine in each PHT entry in

PAp encodes the history of the lastifeutcomes of the same branch. Instead, a PHT entry

1. Wang and Franklis' data glue predictor [129] uses a similaradwevel structure. Unlik Cos-
mos, their first leel table is indeed by the instruction address. eilCosmos their secondvid
table is indeed by patterns from the firstviel table.

149
in Cosmos simply consists of a prediction. Additiona{AT entries in Cosmos can con-

tain state machines (Secti6r2.6), lut these are typically used as filters to reennoise

from the incoming message stream.

Below | outline the ®gact steps wolved in obtaining a prediction from and updating

Cosmos.

6.2.3 Obtaining Pedictions from Cosmos

Here the stepswolved to obtain a prediction from Cosmos:
* index into the MHR table with address of a cache block,
» use the entry in MHR to indento the corresponding PHand

* return the prediction entry (if onaists) in the PHT as the predicted tuple, which con-
tains the predicted sender and type of thé meomng message corresponding to that

cache block; otherwise, return no prediction.

6.2.4 Updating Cosmos

Typically, | expect Cosmos to be updated aftezry message reception when | iwnfor
sure thessender, type> tuple of a message. Here are the stegsvad in updating Cos-

mos:

 index into the MHR table with the address of a cache block,
 use the entry in MHR to inddnto the corresponding PHT

* write newv <sender,type> tuple as ne prediction for the inde corresponding to the MHR
entry and

left shift the<sender,type> tuple into the MHR for the cache block.

6.2.5 Hav Cosmos Adapts to Complex Coh@&nce Message Sétams?

Cosmos can adapt to complmessage streams, such as the one outlined at the end of

Section6.2.1. If two get_ro_request messages ame out of order from te different

150
consumers (P1 and P2), the PHT table will contain thevollp two entries:

Index Prediction
<P1, get_ro_request> <P2, get_ro_request>
<P2, get_ro_request> <P1, get_ro_request>

Therefore, Cosmos canfedtively predict the nd incoming coherence messageere

though incoming messages may\atin a diferent order in dferent instances.

For more complicated sequences of incoming messages, Cosmos may need an MHR
with depth greater than oneoiFexample, if threejet_ro_request messages come out of
order from three consumers (P1, P2, and P3), then the PHT for a Cosmos predictor with

MHR of depth = 2 may contain the foling three entries:

Index Prediction

<P1,get_ro_request>,<P2,get ro_request> <P3, get_ro_request>
<P2,get_ro_request>,<P3,get_ro_request> <P1, get_ro_request>
<P3,get_ro_request>,<P1,get_ro_request> <P2, get_ro_request>

Clearly, this allavs Cosmos to predict the third incoming coherence message accurately
based on the history of pfieus messages.oRunately several studies (e.g. [131, 136,
86]) have shavn that the @erage number of sharers of a cache block is usually less than
two. Consequent}yt do not eépect the depth of the MHR to bery high for most applica-
tions. Specificallyl found that an MHR of depth three is fatient in most cases for the

five parallel applications | study in this chapter

6.2.6 Filtering Noise fom Coherence Message S¢ram

When updating Cosmos we can difters to reduce noise from the coherence message
stream in the sameay Yeh and Btt's PAp predictor remees noise from a stream of

branches. & example, if 99% of the time, message B fallomessage A, then on seeing

1. A more aggresse predictor could ignore the senders fordéero_request messages. o
ever, this may not be possible if there are inggring messages of other types for the same cache
block.

151
message A, Cosmos will predict thexnmessage to be B. | do noamt the prediction to
change if once in a while messagesvarin the sequence: A, C, and B, instead of the
sequence A, B. Branch predictorsséa similar problem when programstdoops. Fre-
quently the &it from loops is a taén branch; heever, when the loop isx@cuted com-
pletely the it is a not-takn branch. Branch predictors typicallyoa updating their
prediction on giting a loop via a tw-bit saturating counter proposed by J. Smith [114].
One bit of the tw-bit counter represents the direction of the branch and other bit repre-
sents the counteBecause a message needs more than one bit to represendes,
type> tuple, | simplify the counter and use only a single bithwhis single-bit countet
update the prediction for a cache block to &edint message only if we seeotaonsecu-

tive message mispredictions for the same block.

My results (Sectio.5.2) suggest that filters increase the prediction acgtioacCos-
mos predictor with MHR depth of onaytithey do not help Cosmos predictors with MHR
depth greater than one. This is because both history and filters reduce noise from the mes-
sage stream. Rieever, history information adapts to the noise, while filters simply r&mo
it.

6.2.7 Implementation Issues 6r Cosmos

Cosmos is a ta-level adaptre predictor with the first &l containing message history
registers (MHRs) and the secondéé containing pattern history tables (PHT). It may be
possible to meye the first-lgel table with the cache block state maintained at both direc-
tories and caches. Mever, this may lead to a loss of Cosmos’ history information when
cache blocks are replaced. This problem may not arise for the directory because directory

state is usually persistent during the entire duration of a parallel application.

The second-kel table is more challenging to implement because it may requiye lar
amounts of memory to capture pattern histories for each cache blogkvétany results
(Section6.5.2) shav that Cosmos’ memoryverhead for 128 byte cache blocks is less

than 14% for an MHR depth of one. This is because the number of pattern histories corre-

152

Prediction Prediction | Static/ Action Protocol
Location Dynamic

Load/store from Cache Static Prefetch block in shared or | Stanford DASH protocol
processor exclusive state [69]
Read-modify- Directory | Static Directory responds with SGlI Origin protocol [66]
write block in exclusive state on

read miss for an idle block
Read-modify- Cache Static Cache requestxelusive Dir,SW [51], DirSW+
write copy on read miss [136]
Store from difer- | Cache Static Replace block and return to| Dir{SW [51], DirnpSW+
ent processor directory [136]
Store from difer- | Directory Dynamic | Invalidate block and replace| Dynamic Self-Iwvalida-
ent processor block to directory if gclu- tion [67]

sive
Block migrates Directory Dynamic | On read miss return block tg Migratory protocols
between dierent requesting processor in [28, 120]
processors exclusive state

Table 6.2:Examples of prediction-action pairs ixigting protocols.

sponding to a cache block isMpthat is, less than four (onexrage) for an MHR depth of

one for all five applications I studied in this chapt€onsequentlyl could preallocate four
pattern history entries corresponding to each cache block. If a cache block needs more pat-
tern histories, then it can allocate them from a common pool of dynamically allocated
memory in the sameay LimitLESS [20] directory entries captures the list of sharers for a
particular cache block. Nertheless, higher prediction accuracies may require greater

MHR depths, which may result in gggr amounts of memary

Clearly, storing, accessing, and updating these tables require moderate amounts of mem-
ory and computing peer. However, the &ailability of tens of millions of on-chip transis-
tors males hardwire implementations of these tables feasible. Additionalytware
implementations of Cosmos is also practical because of tieaof'symmetric multipro-
cessing (SMP) nodes in which the incremental cost of addingtenpgocessor for spec-

ulation is quite lav (e.g. less than 5% of the cost of a node).

153

Node 15 Directory Node 25 Node 15 Directory Node 25

cache cache
~'"W_r

(b)

ICoherence protocol action ISpecuIat've eecution of coherence protocol act

Figure 64. Two examples of using prediction to accelerate coherence protdapls
shaws a protocol in which protocol actions are accelerated in anticipation of \b
write miss. (b) shes a protocol that predicts incoming coherence messages, u
protocol state, generatesufbdoes not send) messages spesalyti and commit:
protocol state and messages only if the predicted messagsarri

6.3 Using Coheence Potocol Message Rxdictors

This section briefly discusseswh@a coherence protocol message predistach as Cos-
mos, can be ingrated with a coherence protocol. Predictocai sit beside each stan-
dard directory and cache module and accelerate coherendty attiwo steps. First, the
would monitor message aaty and male aprediction.Second, based on the prediction,
they will invoke anactionin the standard coherence protocol. Thg ¢hallenges include
mapping predictions to actions (Sect®B.1), performing actions at the right time (not

too early or late) (Sectiof3.2), and dealing with mis-predictions (Sectto8.3).

6.3.1 Mapping predictions to actions

Mapping predictions to actions is straightfang in mag cases. dable6.2 lists seeral
examples of prediction-action pairsof~example, a directory action corresponding to a
read-modify-write prediction for a blockould be to return the block to the requesting
cache in “&clusive” state, instead of the “shared” sthfeigure6-4a shavs anotheream-

ple where the predictor in nodes2ache predicts a write miss from another processor

154
consequent action—as done by an implementation of Lebeck and's\dynamic self-

invalidation protocol [67]—wuld be to replace the block from nodes Zache to the

directory before the directory reues the write miss request from nods dache.

More generally each directory and cache can predict incoming coherence messages,
execute protocol actions specwally (which may include sending messages specula-
tively), and tak appropriate actions on mis-predictions (Figi#kb). Speculatie execu-
tion of coherence protocol action may alsgoime executing a sequence of protocol
actions, instead ofxecuting a single action (that is normally done). Thisvadla direc-
tory and a cache to optimize for sharing patterns nowhkropriori. For example, a direc-
tory optimizing for a sequence of read-modify-write operations frofardifit processors

can directly capture the migratory protocol optimizations.

6.3.2 Detecting when to pedrm actions

Detecting when to perform actions is simple in some caségan be trick in others.
An obvious time to trigger actionsould be to do so on certain protocol transitiors. F
example, the directory can trigger the action corresponding to a read-modify-write predic-
tion when a read miss request\as for a block. In Figuré-4a, node & cache can trig-
ger the block replacement action when it sees_rw_request messages for other
spatially contiguous blocks. Alternagly, Cosmos predictions can be enhanced with a
program counter that will gé directories and caches to a more precise estimate of when

to trigger actions.

6.3.3 Handling mis-pedictions

Mis-predictions can la& the processor state, protocol state, or both in an inconsistent

state. Consequenilg protocol must reser from mis-predictions. In general, actions can

1.Cosmos identifies a read-modify-write operation from the signatérget_ro_request>,
<P,upgrade_request>

155
be classified into three cgtaries. Belav | outline possible rea@ry mechanism for each

action.

« Actions that mwge protocol between wv‘legal” states require no regery on mis-pre-
diction. Replacement of a cache block thatvesothe block from “eclusive” to

“invalid” state is anxample of such an action (Figuéeda).

* Actions that mee the protocol state to a “future” statet bo not &pose this state to
the processor can rear from mis-predictions transparentljhis scheme is analo-
gous to the “future file” scheme to implement preciseptions [115]. On detecting a
mis-prediction a protocol simply discards the future state. On detecting a prediction
success, heever, the coherence protocol state must commit the future state and
expose it to the processdis-predictions corresponding to actions in Figb#éh can

use such rea@ry actions.

» Actions that allev both processor and protocol states tovento future states need
greater support for regering from mis-predictions. One possible scheme is analo-
gous to the “history file” scheme used to implement preciseptions [115]. Before
speculation bgins both the processor and the protocol capture their states in a history
file. Then, on detecting a mis-prediction both processor and coherence protocol must
roll back to the state captured in the history file. On detecting a success, the current
protocol and processor states must be committed. Such actions can be created by cou-
pling a speculatie processgrsuch as the MIPS R10000 [83], with a coherence proto-
col accelerated with prediction. This is perhaps the most aggrefsim of

speculation with a coherence protocol.

Directories and caches can detect prediction successlumef—as required in the last
two actions—by simply erifying whether the né message for a cache block is indeed
the predicted message or not. Additionaifyarny of the last tw actions generate mes-
sages that are sent specwigiy to other directories or caches, then these directories or
caches must be informed of the mis-prediction. Thiswalla directory or a cache to

recover from mis-predictions caused by other directories and caches.

156

Benchmarks Iterations
appbt 30
barnes 19
dsmc 320
moldyn 40
unstructued 10

Table 6.3:Number of iterations for each benchmark.

6.4 Methodology

| evaluate Cosmos’ prediction accuyaasing traces of coherence messages obtained
from the Wisconsin Stache protocol (Sectiért.1) running fie parallel scientific applica-
tions—appbt barnes dsm¢ moldyn andunstructued (Sectiord.2.3)! Each application
has a start-up phase to initiate the computation (e.g. initiate data structures). My traces do
not contain coherence messages generated in this start-up phase. Also, the applications in
this chapter use a number of iterations (seblé€l6.3) diferent from those listed in
Table4.3 to allev Cosmos to adapt to sharing patterns of these applications
(Section6.5.2).

| generated the traces from thasébnsin Whd Tunnel Il simulator [92] simulating a
16-node parallel machine, with each nodeitng one processpa coherent memoryub,
and a CNJ,Q,, network interface [85]. The system parameters used to collect these traces
are the same as in Chapfeand Chapteb (see @ble4.2). Cosmos’ prediction accusac
however, is lagely insensitre to \ariations in system parameters, such as ortvateng.
For example, changing the netwk lateng from 40 nanoseconds to one microsecond

hardly changes Cosmos’ prediction rates for the dipplications | study in this chapter

1. Of the seen applications used in Chapteand Chaptes, | excludedem3dbecause it wuld
not run with 128-byte Stache blocks (Chajfier.1) andspsolvebecause | did not ke access to
a transparent shared-memoasyrsion of this program.

157
6.4.1 Wisconsin Stache Potocol

| obtained my coherence message traces from tiseosin Stache protocol [100].
Stache is a softare, full-map, and write-ralidate directory protocol that uses part of
local memory as a cache for remote data. Curre8thche is implemented on theni-
pest interdice [52], which is a portable intade for writing shared-memory programs.
Table6.1 shaevs all the types of coherence messages generated by Stache. These coher-
ence messages are also common to most full-map, waéeate directory protocols.

For all my simulations with Stache | use a (s@fte) cache block size of 128 bytes.

Stache dfers other full-map, write-walidate coherence protocols indiways:

* Unlike the DASH protocol, Stache uses thalf-migratory optimizationIn this opti-
mization a directory requests a cache to markatusive block ivalid, and not
shared, when it reog@s a read or write miss request from another cache. This is bene-

ficial if this same cache block is not immediately read from the former cache.

» The Stache implementation | use in this thesis allocates pages in roundasitaon f
across the 16 nodes. Therwer of each page functions as the directory for that page.
The directory pages are optimized to function as cache pages for the local node. Con-
sequentlyin most cases Stache does not generate local messages between the cache

and directory within a particular node.

» Cache blocks on a cache page in a local node communicate only with one specific
directory page in another node. Consequefdhlyblocks on a cache page, the sender is
always a fixed node containing the directory page. A directory page cavevko

receve messages fromyamode caching the page.

» Currently Stache does not replace pages (and, hence, cache blocks) from the portion
of local memory it designates as a cache for remote mefbiy implies that Cos-
mos’ history information for cache blocks persisterotime. Protocols that replace

cache blocks may need to presethe history informationven after the block is

158

Depth appbt barnes dsmc moldyn unstructured

MHR c|bpjlo|c|D|lO|lC|D|O|C|D|O|C|D]|O

1 91| 77|84 |80|42|62|94|73|84|92|79|86|85|65]| 74

2 90 | 79 | 85| 81| 56| 69| 95|77 |86|91|80|86|90| 86| 88

3 8980 |85| 79|57 |69|94|92|93|90|79|85]|90]| 88|89

4 89|80 |85| 78|56 |68|94|92|93|90|77|84| 96| 88|92
Table 6.4:Cosmos’ prediction ratesXeressed in percentage of hit§epth of

MHR denotes the number of messages used by Cosmos to predictttimeoming
coherence message. C = prediction rate at cache, D = prediction rate at diaecto

O = overall prediction rate.

replaced. Alternately, such protocols can speculate only at the directangre Cos-

mos’ history information is persistent during the duration of a parallel application.

» Barriers are implemented with point-to-point messages. Consequéasignos’ pre-

diction accuracies do not include prediction rates for baragables.

Nevertheless, | see no reasonyw®osmos prediction results with Stache should be sig-

nificantly different from what wuld be obtained with a full-map, writevalidate direc-

tory protocol.

6.5 Results

In this section | gamine Cosmos’ basic prediction accyrdSection6.5.1) and then

delve into Cosmos’ sensiity to noise and initialization &fcts and Cosmos’ memory

requirements (Sectiof5.2).

6.5.1 Basic Pediction Rate

Table6.4 shavs that Cosmos achies high prediction accunadWith an MHR depth of
one, Cosmos’werall prediction accurgcranges between 62-86%. Cosmos agsesuch
high accurag because cache blocks in most applications generate predictable coherence
message signatures. These signatures are related directly to sharing patterns of an applica-

tion’s data structures. All the applicationgceptbarnes have one or more fed signa-

159
tures (see Figures5 and 66) throughout the entirexecution of the parallel application.

Barneshas slightly laver accurag because shared-memory addresses are reassigned to
different objects across iterations. Belbdiscuss each applicatianprediction accurgc

in detail.

Table6.4 shavs that Cosmos has higher accyréar a cache compared to a directory
For the Stache protocol, a cache reesimessages from adtk sender—that is, a éd
directory which limits the number oksender,message-type> tuples Cosmos must
choose its predictions from. In contrast, a directory vesemessages from multiple
caches (i.e. senders) for the same cache block. Consequ&wgiyos’ predictions are

more accurate for Stache caches than Stache directories.

Table6.4 also shas that Cosmos’ prediction accuyacisually increases with the
increase in the MHR depth. it MHR depth of tw, the accuracranges between 69-
88%, while a depth of three results in prediction acquthat ranges between 69-93%.
Having history information helps because it alfo Cosmos to recognize predictable
coherence streams (Sect®2.5). Haovever, most of the applications do not benefit

beyond an MHR depth of three 4ble6.4).

Below | examine wly Cosmos achiees high prediction rates for each of thefapplica-
tions. Surprisinglyvariations in simple sharing patterns studied by Bennett, et al. [9] and
Weber and Gupta[46], can lead to sequences of coherence actions (and consequent signa-
tures) that are significantly f#rent from those generated by simple sharing patterns (e.g.
seeunstructueds sequence of messages glaConsequentlypredictors based on sim-
ple sharing patterns may not be able to correctly speculate the sequence of coherence
actions that may be generated.wéoer, Cosmos can capture sucariations in sharing
patterns because Cosmos adapts to the incoming message stream, which directly deter-

mines the sequence of coherence actions toafollo

160

inval_ro l
.

request

N
get_rw_request

dsmc

Figure 65. Dominant (incoming) message signatures dppbt barnes anddsmc
Arcs represent the order in whichawnessages aved. Each arc is labelled as X
where X = percentage of correct predictions for that particular arc and Y = percer
references to that arc. All X and Y numbers are measured with a Cosmos predic
MHR depth of one. The left side sh® the transitions for the cache and right sidevst
transitions for the directonpll Y for a benchmark do not add up to 100% because |
present the dominant transitions | observhe dotted lines represent dominant mes
signatures obseed in the message stream.

161

97/10

upgrade_request
/

et_ro_reqf uest
88/6

inval_r)/c_reque g get_ro_fresponsk
\

98/11] 97/8

inval_rol request
T

moldyn
P -_——
~
7 0TI~ N\
. 7)] 38/4 87/9
mva(l_pw_reque St EJ‘3/1___Y0;r espons upgrade_Xequey
~
% 98/6 J
| (9912, 731 86/9
N~ —
inval_ro_requesg
unstructured

Figure 666. Dominant (incoming) message signaturesnimdynandunstructued
See caption of Figuré-5 for an &planation of the figure. | slounstructueds second
dominant message signature (at the cache) using bold and dashed lines.

Appbt's high prediction accurgcresults from its produceronsumer sharing pattern.
Appbtis a three-dimensional stencil-style code in which a cubevidedi up into sub-
cubes. Each subcube is assigned to one proc&smmunication occurs between neigh-

boring processors along boundaries of the subcubes.

The sharing pattern that results in the sequence of messages &roappbt in
Figure6-5 is: producer reads, producer writes, and consumer reads. This pattern repeats
for most cache blocks throughout the entire application. Consequ€ntynos adapts
well to appbtresulting in a prediction accusaof 85%. Note that the half-migratory opti-
mization discussed in Sectié hurts here because the producer first reads a block
before writing to it. In the absence of this optimization, the producer patterid \wave

simply g/cled through the tay messagesival_rw_request andupgrade_request

162

Figure6-5 shavs that all transitions foappbthave high prediction accurgexcept the
transition fromupgrade_request tOinval_ro_response at the directoryThe lav accu-
racy on this transition results fromalse sharing in tevdata structures. It appears that this
false sharing generates multiple signatures that the protocol oscillates between randomly
This confuses the predictor resulting inver accurag Perhaps a “fuzzy” predictor that
predicts multiple signatures (with fifent probabilities) simultaneously can track this

false sharing better

Barnes's prediction accuracranges between 62-69% forfdifent MHR depths. This is
slightly lower than that for the other applications. | suspect this happéasriasbecause
nodes of the octree imarnesare reassigned to tBfent shared-memory addresses in dif-
ferent iterations. Unfortunatelosmos cannot makaccurate predictions for the nodes of
the octree because its prediction is based on information it collected on pasbiEhg.

previous iterations) of a particular shared-memory address (at a cache block granularity).

| suspect thabarnes low prediction accurgcresults from such reassignment because
of three reasons. First, bodies, which are not reassigxleibjtesignificantly higher pre-
diction accurag than the nodes. Second, increasing the depth of MidBR€®.4) or the
number of iterations (see ifiie to Adapt” in Sectio®.5.2) does not increase the predic-
tion accurag of barnes If barnes low prediction accuracresulted from other reasons,
such as random trarsal of the octree, then increasing the MHR depth or number of itera-
tions would steadily increase Cosmos’ prediction acoptmrause Cosmos adapts tavne
(and @en random) patterns. Finallizigure6-7 shavs that the distrilition of number of
bodies inbarnesin different children of the rootavies widely across ddrent iterations.
This lage \ariation suggests a & dgree of reassignment in the octree, which can

potentially lead to the Wwer prediction accurgdor the nodes of the octree.

Figure6-5 shavs thatbarneshas a driety of sharing patterns, some of whicthibit
dominant signatures throughout theseution of the program. kever, the lav accura-

cies on most arcs impre with more history information (i.e. greater MHR depth).

163

5000 T T T T T T T T T
C
o
=)
=
[&]
[%)
s of
G
8
5 e—e Child 0
o) =—= Child 1
L 4— Child 2
* -5000 A—AChild 3 =
£ <+—<«(Child 4
< ¥—¥ Child 5
= »—» Child 6
.g +—+ Child 7]
S
_10000 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Iteration Number

Figure 6-7. Variation in number of bodies in the raothildren inbarnes The root
has eight children because this is an octree.

Dsmc shaws the highest accura@among all the fig applicationsDsmcs dominant
sharing pattern is the classical producensumer pattern in which the producer writes
and the consumer reads shared cache blocks. This happens because at the end of each iter-
ation dsmccommunicates information betweenotwrocessors via sharedffers. This
leads to the message sequencevshia Figure6-5. Note that the half-migratory optimiza-
tion helpsdsmcbecause the producer does not read the data before it writes to it. Conse-
guently invalidating the produces’cache blocks, instead of eenting them to read-only

avoids an gtra handshakwith the directory

Figure6-5 shavs that the transition fromget_ro_request toinval_rw_response has
a lowv prediction accurac However, this lov accurag disappears with increased MHR
depth. This happens because updates to shaffedsafrequently follav deterministic pat-
terns; lut, in some cases a processor must lock a sharféer before writing to it. This
creates sonvehat oscillating patterns that confuses CosmeostuRately Cosmos learns
to isolate these cases using either more history information or via noise filters (see
Section6.5.2).

164

b appbt barnes dsmc moldyn unstructured

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
1 84 | 85 | 8 | 62 | 66 | 66 | 84 | 86 | 86 | 86 | 86 | 86 | 74 | 78 | 78
2 85 | 8 | 86 | 69| 71| 71| 8 | 88| 88 | 86 | 86 | 86 | 88 | 89 | 89

Table 6.5: Cosmos’ prediction accunaaevith filters.This table shas the predictio
accurag of Cosmos as lary the maximum count of the saturating counter from O
The saturating counter filters noise from the coherence message stream G2@)
The overall prediction rates inable6.4 correspond to this tabséecolumn O (i.e. no filter

Moldyn’s high accurag results from tw dominant sharing patterns: migratory and pro-
ducerconsumer patterns. The migratory sharing pattern results in the message sequence
<get _ro_response, upgrade_response, inval_rw_response> in both processors a
block is migrating between. The same patternxtslated for the producer in the pro-
ducerconsumer pattern. kaver, the consumer for the produessnsumer pattern sees
the sequencezget_ro_response, inval_ro_request> . Hence, the number of refer-
ences to the patteryet_ro_response, upgrade_response, inval_rw_response> is
greater than the number of references to the patteget_ro_response,
inval_ro_request> (Figure6-6). The sequence seen at the directory results primarily

from the migratory pattern.

Moldyn's migratory pattern results from thewit reduces a shared arrayhich con-
tains force calculations for simulated molecules. In each iteration each processor collects
its contrilution for diferent elements of the shared array in agte arrayAt the end of
the iteration each processor adds its contidgm from the prate array to the shared array
Updates to each element in the shared array happens in a critical section, which results in

the migratory pattern.

Moldyn's producerconsumer sharing pattern results from updates to a shared array that
contains the coordinates of simulated molecuMsldyns produceconsumer pattern
results in message signatures similar to thaippbts at both the producer and consumer

caches. Hovever, the averall number of consumers faroldynis 4.9, whereas faappbt

165

100 —————— . ————

— unstructure
—— appbt
moldyn
------ barnés
- -~ _dsmc

Prediction Accuracy (%)

10 ' T T 00

Number of Iterations
Figure 68. Cosmos’ time to adapfThis figure shavs hav mary iterations it taks
Cosmos (with MHR depth of one and no filter) to reach steady-state prediction gc
For each application the black dot indicates the number of iteratione Ich@sen fo
all my other &periments in this chaptefhe time to achie steady-state beliar for
other Cosmos predictors (with ifent MHR depths and filters) is similar the Cosr
predictor sharn in this figure.

the number of consumers is one. Consequertdlyectory obsems back-to-back

get_ro_request messages awing with high predictability

Unstructured is different from the rest of the applications because it héereiit domi-
nant signatures for the same data structures farelift phases of the application. The
same data structures oscillate between migratory and preclutgnmer sharing patterns.
The migratory sharing pattern is similar nwoldyris and occurs when each processor
updates ditrent elements of the shared arrays in critical sections. The migratory pattern
is followed by the produceronsumer pattern in which a producer is itself a consumer of
the data. Thewerage number of consumers per producer is 2.6. The signatue sho
bold and dashed ams in Figure6-6 represents the transition from migratory to producer

consumer pattern. The directory sees corresponding signatures.

Figure6-6 shavs thatunstructueds prediction accurgcfor several arcs with MHR
depth of one is M. This is because of the change in sharing pattexble®.4 shavs,

however, that Cosmos’ accurgiéncreases from 74% to 92% as the MHR depth increases

166

" 4 80 320
Transition iterations | iterations | iterations
hits | refs| hits | refs| hits | refs

<get_ro_response, upgrade_response> 2% | 20% | 34% | 4% | 62% | 2%
<get ro_request, inval_rw_response> 2% | 25% | 18% | 13% | 30% | 12%
<inval_rw_response, upgrade_request> 1% | 19% | 18% | 4% | 35% | 1%

Table 6.6:Dsmcs prediction accuracies for specific transitiombis table shas
dsm¢s prediction accurgdor different number of iterations. refs is percentage of-
references to the transition. hits is the percentage of hits to the transition.
numbers are measured with a filterless Cosmos predictor with MHR depth of on

from one to fourThis increase in prediction accuyaitom the increase in MHR depth

also results in high prediction accuracies for these arcs.

6.5.2 Additional Analysis

Effect of Filters on Prediction Accuracy. Noise filters can increase the prediction acgurac
of Cosmos. | implement Cosmos’ noise filter as a saturating coumtéch counts
upwards from zero and saturates at a maximum cowltle®.5 shavs the prediction

accurag of Cosmos as lary the maximum count between 0 and 2.

Filters increase prediction accuyaslightly (up to around 6%) only for Cosmos predic-
tors with MHR depth of one.df MHR depth of tw or beond filters do not help much.
This is because both filters and history information rempoise from the message
stream. Hwvever, history information allws Cosmos to learn from and adapt to the noise.
Consequentlyif the noise repeats, then Cosmos can a&ehiggher accurac In contrast,
filters simply remw@e noise, bt do not let Cosmos adapt to it. Hence, predictors with fil-
ters and MHR depth of one acteelover accurag than predictors with greater MHR

depths. Additionallyfilters do not help predictors thateaMIHR depth greater than one.

Time to Adapt. A critical question for predictors, such as Cosmos, v lomg it tales
them to achiee the steady-state prediction rat€osmos predictors need time to awvkie

steady-state behimr because theadapt to the incoming stream. | use number of itera-

167

Depth appbt barnes dsmc moldyn unstructured

of

MHR Ratio | Ovhd | Ratio | Ovhd | Ratio | Ovhd | Ratio | Ovhd | Ratio | Ovhd
1 1.2 5.4% 3.8 13.5%| 0.8 3.9% 0.8 4.0% 1.7 6.8%
2 14 9.6% 6.9 354%| 04 5.1% 11 8.3% 2.1 12.8%
3 19 16.4% | 9.3 63.0%| 0.3 6.7% 1.6 149% | 2.8 21.9%
4 2.6 26.5% | 109 | 91.8%| 0.3 8.9% 2.0 21.6%| 34 33.0%

Table 6.7:Memory averhead of Cosmos predictors (with no filté&tatio = total

number of PHT entries / total number of MHR entries. MHR entries correspond to
blocks that were referenced at least once in the parallel section of an applicatiol
expresses thevarage memorywerhead per 128-byte block as a percentage of the
size. More precise)yOvhd = (tuple size * [MHR depth + Ratio * (MHR depth + 1)
100 / 128)%. | assume the tuple size of taytes (12 bits for processors and 4 bits
coherence message types). Note that some Ratios are less than one. This is
unless the number of protocol references to a cache block is greater than the MH
| do not allocate a PHT for that MHR. This neakall ofdsm¢s Ratios less than ol
because some dsmcs shared-memory data structures are touched ré&mlyhe same
reason, unlig other benchmarksismcs Ratio decrease with increase in MHR de
because the number of these shared-memory blocks that are touched more times
MHR depth is een faver.

tions of each application as an approximation to time. This is becauseehmafallel
applications | gamined in this chapter iteratgey a number of steps or iterations. Cosmos
can predict incoming coherence messages for a cache laliolyk &ccurately because
sharing pattern of a cache block in one iteration is usually similar to its sharing pattern in

the preious iteration.

Figure6-8 shavs thatunstructued andbarnesachiee steady-state bebiar quickly (in
less than 20 iterationg\ppbt and moldyn take slightly longer (around 30 iterations).
Dsm¢ however, takes a lage number of iterations (around 300) to achisteady state
prediction rates. This is because specific transitiomisinctake a lage number of itera-

tions to achiee reasonable prediction accuraciesi€6.6).

Memory Requirement of Cosmos Redictors. Table6.6 shavs that dynamic memory
overhead incurred by Cosmos predictors is acceptable—that is, less than 22%—for most

applications for predictors with MHR depths of three ovdo Additionally, the number

168

Depth appbt barnes dsmc moldyn unstructured

Ic\)/]IcHR Base| +P | Base| +P | Base| +P | Base| +P Base | +P
1 84 -13 62 +5 84 +8 86 +1 74 -1
2 85 +2 69 +8 86 +7 86 +1 88 -3
3 85 +3 69 +7 93 +1 85 +3 89 -2
4 85 +2 68 +10 93 +1 84 +5 92 +0

Table 6.8:Using processor numbers to impeoCosmos’ accurgcDepth of

MHR denotes the number of messages used by Cosmos to predicttthe ne
incoming coherence message. Base = baseal prediction rates that appear

in Table6.4. +P denotes the increase in the prediction rate when we combine
processor (sender) ids with cache block addresses in the MHRs ($e6jion

of PHT entries per cache block (or MHR entry) is less than three in most casesvThe lo

PHT to MHR ratio suggests that perhaps a scheme that statically allocates three or four

PHT entries per cache block and dynamically allocates the rest from a common pool of

memory may wrk. Only for barnesthe memory werhead is as high as 63% for MHR

depth of three becausmrnesreassigns shared-memory addresses to logicaflgreit

objects, which confuses Cosmos and leads to greater number of coherence message pat-

terns

6.6 Increasing Cosmos’ Accuracy

Cosmos’ accuraccan be increased further by combining sender processor numbers
with cache block addresses in the MHR (firseldgable). The intuition behind this is that

not only incoming coherence messaf@sa specific cdee blod are highly correlated

(done so dr), lut also incoming coherence messafyes a specific mcessor for a spe-

cific cahe blok are highly correlated.

In the base model discussed ag fjiven a cache block address (inder MHRS) and

the history of messages (i.e. <sender processessage type> tuples), Cosmos can pre-

dict with high accuracthe <sender processonessage type> tuple of thexhenessage

1. Guri Sohi suggested this approach. This inaproent does not appear in [90].

169
destined for the cache block. Cosmos’ acoumacreases further if the MHRs are indd

by both cache block addresses and sender processor numbers. Thus, MHRs will be
indexed by <cache block address, sender processor>, instead of <cache block address>,

and the PHTs will predict <message type>, instead of <sender processeage-type>.

Table6.8 shaevs using sender processor numbers along with cache block addresses pro-
vides modest imprement in prediction accurgcparticularly forbarnesanddsmc The
improvement arises almost entirely from the imgnment in prediction accuraat the

directory

6.7 Comparison with Directed Optimizations

In this section | compare Cosmos with directed optimizations—that is, optimizations
introduced in a coherence protocol for specific sharing patterns. Dynamicvadéittation
[67] and migratory protocols [28, 120] ameaenples of tw such protocols. Both can be
thought of as implementing predictors directed at specific optimizations. Cosmos could be
less cost-déctive than predictors for directed optimizations because Cosmos requires
more hardware resources to store, access, and update the Message History attkthe P
History Tables. Havever, it may be possible to reduce Cosmos’ memory requirements by
grouping predictions for multiple cache blocks together (similar to Johnson ané Hwu’
macobloks [57]).

Cosmos could be better than directed optimizations foreasons. First, including the
composition of predictors of geral directed optimizations in a single protocol could be
more complg than Cosmos. All the predictors irigting coherence protocols that | am
aware of are intgrated with the finite-state machine of the coherence protocol. Such inte-
gration works well when one considers these protocolsviddally. Unfortunately com-
bining multiple such predictors into a single protocol can lead txplnsyve number of
interactions and states, which can mdRke resulting protocolutky and hard to dely
[21]. More critically extending a blky protocol with other kinds of speculation becomes

even harderIn contrast, Cosmos captures the predictors for directed optimizations in a

170
single predictar Figure6-9 shavs the coherence message signatures that trigger the

dynamic self-imalidation and migratory protocols. Cosmos can capture these signatures
easily Additionally, protocols accelerated with Cosmos are easiextemée because Cos-

mos separates the predictor from the protocol itself.

Second, Cosmos can diseo application-specific patterns not kna priori. For exam-
ple, Sectior6.5.1 shws that one ofinstructueds signatures is a compgleomposition of
migratory and producezonsumer sharing patterns. Predictors directed only at migratory
or producerconsumer pattern willail to trackunstructueds transition between migra-
tory and produceconsumer sharing patterns. As Sectdnl also shes, Cosmos can
easily capture, filterand adapt to diérent message signatures generateddbyations in

simple sharing patterns studied by Bennett, et al. [9] and Gupta elner M 6].

6.8 Summary and Conclusions

This chapter xplores using prediction to accelerate coherence protocols. A coherence
protocol can gecute &ster if it can predict future coherence protocol actions aecli&e
them speculately. It shares with branch prediction the need teeha sophisticated pre-
dictor. The first contribtion of this chapter is the design of tGesmoscoherence mes-
sage predictorCosmos predicts the xte<processor,message-type> in two steps
reminiscent of ¥h and RBitt's two-level PAp branch predictorCosmos dces a greater
challenge than branch predictors because the Cosmos’ prediction is a muktodeait-

sor,message-type> tuple rather than a single branch outcome bit.

The second contriftion of this chapter is a detailedaduation of the Cosmos coherence
message predictoUsing five scientific benchmarks on agat shared-memory machine
with 16 processors running the Stache directory protoadktons of Cosmos predict the
source and type of the xtecoherence message with surprisingly-high accuracies of 62-
69% (arney, 84-86% (oldyr), 84-85% @ppb), 74-92% (nstructued), and 84-93%
(dsmg.

171
nval_ro_response get_ro_request downgrade_response
- = from processor _
from consumer from processor Y /=

get_ro_reque upgrade_response
from consumer, from processor X

() A self-invalidation signature (b) A migratory protocol signature

Figure 69. Signatures for dynamic selfvalidation and migratory protocolg.he
downgrade_response, not shoin Table6.1, is a response to awdagrade_request se
by the directoryOn recering a devngrade_request for a block, a cache must chang
block from eclusie to shared state.

Cosmos’ high prediction accusacesults from predictable coherence message patterns
or signatues associated with specific cache block addresses. Such signatures are gener-
ated by sharing patterns that do not change or chargeshavly during the gecution of
these applications. Cosmos is more general than directed optimizations, such as dynamic
self-invalidation and migratory protocols. Cosmos could be less destie¢ than the
directed optimizations because it uses more resources (e.g., tables). Cosmos could be bet-
ter than directed optimizations because (1) including the composition of these optimiza-
tions could be more compiethan Cosmos and (2) Cosmos can discoand track

application-specific patterns not kmoa priori.

More work is needed to determine whether the high prediction rates of Cosmos can sig-
nificantly reduce xecution time with a coherence protocol. This @rkvis analogous to
taking a branch predictor with high prediction rates andymateng it into a micro-archi-
tecture to see omuch it afects the bottom line. | belie that results in this chapter on

Cosmoss high prediction rates indicate thabnk on the net step is justified.

172

173

Chapter 7

Thesis Summary

A modern computer system often “communicates” with a communicatiororietaore
than it “computes.Consequentlytoday much of a computsnalue depends on howell
it communicates withxernal netwrks. As processors and netiks continue to imprae
rapidly, interactions between a processor and a eorétwiteriace (NI) becomes a domi-

nant component of theverall communication lategc

An NI is a deice that allevs a processor to send and reeanessages from a netik.
Corventional NiIs suer from seeral sources of high latepbecause thewere designed
with an interbce similar to a disk’interfice. lor example, comentional NIs are usually
accessed via Vo-level software (e.g. déce driver) inside the operating system, located on
slow 1/0O buses, and accessed via direct memory access (DMA) or uncached, memory-
mapped dece raisters. With current technology each of these components can incur

between ten and hundreds of microseconds of katenc

This thesis imesticates ngel techniques to impx@ processeNI interactions in parallel
computer connected via a System Area NekwAppendix A). A key principle underlies

174
these techniquesteat NI access asgular, side-efect-free memory access, and not as a

disk interface access

This thesis mads four contrilaitions. The first contriltion of this thesis is to shothat
treating NI access lka rgular memory access opens up at least eight opportunities for

improving processeNI interactions. These opportunities are:

e using virtual memory hardave, and not operating system intgtion, to virtualize
the NI,

» placing the NI on the higher performance memary, land not on the si@r I/O hus,

* using virtual memory as a hugefter for network messages, instead of small amounts

of dedicated memory on the NI,
» caching messages in processor and NI cachesidjklar cachable memary

« allowing out-of-order accesses and specutatoads on a process®raccesses to an

NI, like side-eflect-free rgular memory accesses,

» transferring messages between processor caches, NI cache, and main memory through

cache block transfers, instead of DMA,

» designing the application programming inéexd (or API) to the NI as memory-based
gueues, and not directlxgosing the underlying data m@ment primitves as the API,

and

* notifying processor of Nlwents through cachevalidations, instead of hegweight

interrupts.

The second contriliion of this thesis is the design and detailedleation of a neel
class of Nis callecCoheent Network Interface€CNIs). CNIs are the embodiment of the
fundamental principle enunciated in this thesis. CNIs appear to their hosts raoneiik
ory than like a disk intedce and, hencexploit all eight opportunities for impwng pro-
cessoilNl interactions. CNIs use twmechanismgachable deice rgisters andcacable
gueueswhich interact with the host via cachable, coherent memory operations. CNIs use

several optimizations4azy pointey shadow headsense everse empty entry emoval,

175
intra-messge prefetd), dead messge elimination andcache bypass-to further optimize

processciCNI interactions.

| performed a detailed simulation of four CNIs with a moreveational NI—that is, a
Thinking Machines’ CM-5 NI [124]—using a 16-node parallel machine,rvicrobench-
marks, and sen parallel scientific applicationsoiFsmall message sizes—between 8 and
256 bytes—CNIs impnee the round-trip laterycby 87-342% compared to a e@mtional
NI on a coherent memoryb. For moderately laye messages, between 8 and 4096 bytes,
CNiIs improved the bandwidth by 109-202%. Results with theeseapplications sho

that CNIs can impnee performance by up to 21-190% compared to aexaional NI.

The third contrilntion of this thesis is a systematic classification araduation of tvo
of the eight opportunities—data transfer andfdring—that underlie high-performance
NI designs. | ealuate these parameters in the ceindé seven NIs, which abstract the data
transfer and bifering parameters of the Nis in the Thinking Machines’ CM-5, Fujitsu
AP3000, Princeton Usdrevel DMA, Digital Memory Channel, MIT StarJR, and tw
CNIs (CNEk;,Q and CNLQ.)-

My results sher that a high-performance NI design shoulteetively use the block
transfer mechanism of the memomysbminimize processorunlvement for data transfer
directly transfer messages between an NI and the processor (at least in the common case),
provide plentiful ffering (possibly in main memory), and minimize processeolire-
ment to luffer incoming netwrk messages. ChNR),, performs the best among the/ae

NlIs because it &ctively optimizes the data transfer andfbring parameters.

The fourth contrilation of this thesis is the design of tB®smoscoherence message
predictor Unlike the rest of the thesis, this part focuses on shared-memory multiproces-
sors. Most lage shared-memory multiprocessors use directory protocoksei feipro-
cessor caches coherent. Some memory references in such sysigevsy, lsufer long

latencies for misses to remotely-cached blocks.ameliorate this lategg researchers

176
have augmented standard coherence protocols with optimizations for specific sharing pat-

terns, such as read-modify-write, proddcensumerand migratory sharing. This paper
seeks to replace these directed solutions with general prediction logic that monitors coher-

ence actiity and triggers appropriate coherence actions.

This thesis tas the first step veard using general prediction to accelerate coherence
protocols by deeloping and ealuating theCosmoscoherence message predictdosmos
predicts the source and type of thetneoherence message for a cache block using logic
that is an gtension of ¥h and Btt's two-level PAp branch predictorFor five scientific
applications running on 16 processors, | found Cosmos has prediction accuracies of 62%
to 93%. | ague that this result justifies morev@stigation into using prediction to acceler-

ate coherence protocols.

| believe that challenging ark lies ahead in high-performance messaging systems. The
demand for la-latengy communication will continue to gnobecause as latenarops
below certain thresholds meapplications are enabled. Unfortunatdéfeny of commu-
nication faces hard pJsical limits (e.g. speed of light)oRunately in the future plenty of
cheap computing peer, transistors, memoyand disk space will bevailable. The ky
question is hay these cheap resources can be udedtefkly to sole the lateng problem.
One possibility is to use these resources to aggedgsnitiatesystem-wide speculation

messaging systems.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

177
References

SaritaV. Adve and MarkD. Hill. Weak Ordering - A Nw Definition. InProceed-
ings of the 17th Annual International Symposium on Computhitécture, pages
2-14, May 1990.

Anant Agarwal, Ricardo Bianchini, Dad Chaiken, Kirk L. Johnson, Dé&d Kranz,
John Kubiatavicz, Beng-Hong Lim, knneth Macknzie, and Donaldetng. The
MIT Alewife Machine: Architecture and Performance Pioceedings of the 22nd
Annual International Symposium on Computechitecture, pages 2-13, June
1995.

Anant Agarwal, Beng-Hong Lim, Dad Kranz, and John Hbiatavicz. APRIL: A
Processor Architecture for Multiprocessing. Pnoceedings of the 17th Annual
International Symposium on Computechitecture, pages 104-114, June 1990.

Anant Agarwal, Richard Simoni, Mark Howitz, and John Hennessgn Evalua-
tion of Directory Schemes for Cache Coherenc®rateedings of the 15th Annual
International Symposium on Computechitecture, pages 280-289, 1988.

Thomast. Anderson, HenriM. Levy, BrianN. Bershad, and EdwdD.
Lazownvska. The Interaction of Architecture and Operating System Desidtroin
ceedings of thedurth International Conf@mce on Ashitectural Support for Po-
gramming Languges and Opeating Systems (ASPLOS J¥grges 108-120, April
1991.

ThomasE. Anderson, SusaB. Owicki, JameB. Sax, and CharleR. Thacler.
High Speed Switch Scheduling for Local Area Netks. In Proceedings of the
Fifth International Confeznce on Adhitectural Support for Pogramming Lan-
guages and Opeating Systems (ASPLOS, Y¥ages 98-108, 1992.

David Bailey, John Barton, Thomas Lasinski, and Horst Simon. TA8 Rarallel
Benchmarks. &chnical Report RNR-91-002 #sion 2, Ames Research Center
August 1991.

Gordon Bell. 1995 Obseations on Supercomputing Alternags: Did the MPP
Bandwagon Lead to a Cul-de-Sa€bmmunications of theGM, 39(3):11-15,
March 1996.

JohnK. Bennett, Joh®. Carter and Wlly Zw aenepoel. Adapte Software Cache
Management for Distrilited Shared Memoryn Proceedings of the 17th Annual
International Symposium on Computechiitecture, page?, June 1990.

BrianN. Bershad, Steh Saage, Przemysia Pardyak, EminGun Sireyf Marc
Fiuczynski, Daid Becler, Susan Eggers, and Craig Chambers. Extensijbility
Safety and Performance in the SPIN Operating SysteRrolceedings of the 15th
ACM Symposium on Ogeing System Principles (SOSPages 267—-284, Decem-
ber 1995.

178
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

MatthiasA. Blumrich, Cesary Dubnicki, EdavdW. Felten, and Kai Li. Protected
Userlevel DMA for the SHRIMP Netwrk Interface. InProceedings of the Second
IEEE Symposium on HigheRormance Computer Anitecture, February 1996.

MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, EdvdW.
Felten, and Jonathon Sandipevirtual Memory Mapped Netark Interface for the
SHRIMP Multicomputerin Proceedings of the 21st Annual International Sympo-
sium on Computer &hitecture, pages 142-153, April 1994.

MattiasA. Blumrich. Network Interface for Protected, Uséevel Communication.
Technical report, Department of Computer Science, Princetowetsity, June
1996. Ph.D. Dissertation.

MattiasA. Blumrich, Cezary Dubnicki, EdardW. Felten, Kai Li, and MalenR.
Mesarina. Wo Virtual Memory Mapped Netwrk Interface Designs. Iot Inter-
connects 1 1994.

NanetteJ. Boden, Damn Cohen, RobefE. Felderman, Alak. Kulawik,
CharlesL. Seitz, Jakv N. Seizwic, and Wn-King Su. Myrinet: A Gigbit-per
Second Local Area Netwk. IEEE Micro, 15(1):29-36, February 1995.

Eric A. Brewer, FredericT. Chong, LoKT. Liu, ShamikD. Sharma, and Johnuki-
atovicz. Remote Queues: Exposing Message Queues or Optimization and Atomic-
ity. In Proceedings of the 8enth LM Symposium onadpallel Algorithms and
Architectures (SRA), pages 42-53, 1995.

B. R. Brooks, RE. Bruccoleri, BD. Olafson, D. J. States, SSwamintathan, and
M. Karplus. Charmm: A program for macromolecular ggeminimization, and
dynamics calculationlournal of Computational Chemisirg(187), 1983.

Doug Buger and Sanjay MehtaaRllelizing Appbt for a Shared-Memory Multi-
processarTechnical Report 1286, Computer Sciences Departmentetsity of
Wisconsin—Madison, September 1995.

Joseph Carbonaro and Frangrhoorn. Ceallino: The Eraflops Router and NIC.
In Hot Interconnects IVpages 157-160, 1996.

David Chailen, John Kibiatovicz, and Anant Agrwal. LimitLESS Directories: A
Scalable Cache Coherence SchemePioceedings of thedurth International
Confeence on Achitectural Support for Pogramming Languges and Opeating

Systems (ASPLOS N\jages 224-234, April 1991.

Satish Chandra, Brad Richards, and Jamdsarus. Eapot: Language Support for
Writing Memory Coherence Protocols. Rioceedings of the SIGPLAN '96 Con-
ference on Rsgramming Languge Design and Implementation (PLDIMay
1996.

Derek Chiou, Boors. Ang, Arvind, Michaell. Becherle, Andy Boughton, Robert
Greiner Jame<£. Hicks, and Jamé3. Hoe. Startdhg: Delvering Seamlessapal-
lel Computing. InProceedings of EUB-PAR '95 Stockholm, Sweden, 1995.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

179

Lynn Choi and Andng A. Chien. Intgrating Networks and Memory Hierarchies
in a Multicomputer Node Architecture. Proceedings of the Eighth International
Parallel Processing Symposiyrh994.

Fred Chong, Shamik Sharma, Eric Bex and Joel Saltz. Multiprocessor Runtime
Support for Irrgular DAGs. In R.Kalia and PVashishta, editorgoward Teraflop
Computing and Ne Grand Challeng ApplicationsNova Science Pulishers, Inc.,
1995.

Roy Clark and Knut Alnes. SCI Interconnect Chipset and Adapter: BuildingeLar
Scale Enterprise Seexs with Pentium Pro SHV Nodes. Hot Interconnects |V
pages 225-228, 1996.

Danry Cohen and Chuck SeitZl2M-OCFSW8: Octal 8-Brt Myrinet-SAN Switt
Recommendedopologies 1997. Aailable from http://wwwmyri.com/myrinet/
switches/m2m-oct-sw8.html.

R.C. Cwington, S Madala, VMehta, J.R. Jump, and J.B. Sincldihe Rice Bral-
lel Processing 8stbed. IrProceedings of the 1988°M SIGMETRICS Confence
on Measuement and Modeling of Computer Systgpagies 4-11, May 1988.

AlanL. Cox and Roberd. Fowler. Adaptve Cache Coherepcfor Detecting
Migratory Shared Data. IRroceedings of the 20th Annual International Sympo-
sium on Computer Ahitectur, pages 98-108, May 1993.

D. E. Culler A. Dusseau, SC. Goldstein, AKrishnamurtly, S.Lumetta, Tvon
Eicken, and KYelick. Rarallel Programming in Split-C. IRroceedings of Super-
computing '93 pages 262—-273, Nember 1993.

David Culler, Lok Tin Liu, Richard Martin, and Chadoghikava. Assessing &5t
Network InterfacesIEEE Micro, 16(1), February 1996.

David E. Culler Anurag Sah, KlauErik SchauserThorsten wn Eicken, and John
Wawrzynek. Fine-Grain &allelism with Minimal Hardware Support: A Compiler
Controlled Threaded Abstract Machine Rroceedings of thedurth International
Confeence on Achitectural Support for Pogramming Languges and Opeating
Systems (ASPLOS [\pages 164—-175, Santa Clara, California, 1991.

R. Cypher A. Ho, S.Konstatinidou, and.RMessina. Architectural Requirements of
Parallel Scientific Applications with Explicit Communication. Rroceedings of
the 20th Annual International Symposium on Computehitecture, pages 2—-13,
1993.

Donglai Dai and DhabaleswK. Panda. Haw Much Does Netark Contention
Affect Distrituted Shared Memory PerformancePhoceedings of the 1997 Inter-
national Confeence on Brallel Processing1997.

William J. Dally Andrev Chien, Stuart Fisk Waldemar Honat, John ken,
Michael Larvee, Rich Nuth, Scott s, Paul Carrick, and Gig Flyer The J-

180

Machine: A Fine-Grain Concurrent Computkr G.X. Ritter, editot Proc. Infor-
mation Pocessing 89Elsevier North-Holland, Inc., 1989.

[35] Peter Druschel, Larrly. Peterson, and Bruc Davie. Experiences with a High-
Speed Netwrk Adaptor: A Softvare Perspeate. In SIGCOMM 94 pages 2-13,
August 1994,

[36] Dave Dunning and GeRegnier The Mrtual Interface Architecture. Iidot Inter-
connects pages 47-58, 1997.

[37] Babak Rlsafi, Alvin Lebeck, Steen Reinhardt, loannis Schoinas, M&kHill,
James Larus, Anne Rogers, andvidaWood. Application-Specific Protocols for
UserlLevel Shared Memoryln Proceedings of Supssmputing '94 pages 380—
389, November 1994.

[38] Bob Felderman. Personal Communication, March 1997.

[39] Marco Fillo, StepheiV. Kekler, William J. Dally NicholasP. Carter Andrew
Chang, Y¥vgery Gurevich, and Whays. Lee. The M-Machine Multicomputer
Technical Memo A.l. Memo No. 1532, MIMarch 1995.

[40] RichardM. Fujimoto. Rarallel Discrete Eent SimulationCommunications of the
ACM, 33(10):30-53, October 1990.

[41] Mike Galles. The SGI Spider Chip. Hot Interconnects IVpages 141-146, 1996.

[42] Mike Galles and Eric Wiams. Performance optimizations, implementation, and
verification of the SGI Challenge multiprocesstr Proceedings of the 27th
Annual Hawaii International Confence on System Scienc&894.

[43] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gibbons, Anoop
Gupta, and John Hennes&yemory Consisterycand Eent Ordering in Scalable
Shared-MemoryIn Proceedings of the 17th Annual International Symposium on
Computer Achitecture, pages 15-26, June 1990.

[44] RichardB. Gillett. Memory Channel Netwk for PCI.IEEE Micro, 16(1):12-18,
February 1996.

[45] Silicon Graphics. Silicon Graphics and Cray ResearckielUiModular Origin
Sener Family. Available from http://wwwsgi.com/Headlines/1996/October/
originsener_release.html.

[46] Anoop Gupta and Vff-Dietrich Weber Cache Iwalidation Ritterns in Shared-
Memory MultiprocessordEEE Transactions on Computgr41(7):794-810, July
1992.

[47] John Heinlein, KWurosh Gharachorloo, Scé{t Dresserand Anoop Gupta. Inte-
gration of Messageddsing and Shared Memory in the Stanford FLASH Multipro-
cessor In Proceedings of the Sixth International Coefece on Ashitectural

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

181

Support for Pogramming Languges and Opating Systems (ASPLOS Mpages
38-50, 1994.

Mark Heinrich, Jdfey Kuskin, Daid Ofelt, John Heinlein, Joel Baxter
JaswindePal Singh, Richard Simoni, durosh Gharachorloo, Dial Nakahira,

Mark Horawitz, Anoop Gupta, Mendel Rosenblum, and John Hennds$sy Per-

formance Impact of Febility in the Stanford FLASH Multiprocessadn Proceed-

ings of the Sixth International Conégrce on Achitectural Support for

Programming Languges and Opeaating Systems (ASPLOS Vpages 274-285,
1994.

JohnL. Hennessy and & A. PattersonComputer Achitectue: A Quantitative
Approad. Morgan Kaufmann, 1990.

DanaS. Henry and Christoph&r Joeg. A Tightly-Coupled Processddetwork

Interface. InProceedings of theifth International Confegnce on Achitecturl

Support for Pogramming Languges and Opeating Systems (ASPLOS, Wpges
111-122, October 1992.

Mark D. Hill, JamesR. Larus, SteenK. Reinhardt, and Dad A. Wood. Coopera-

tive Shared Memory: Sofve and Hardare for Scalable MultiprocessoACM
Transactions on Computer Systerh$(4):300-318, Neember 1993. Earlierer-

sion appeared in it Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS V).

Mark D. Hill, JamesR. Larus, and Dad A. Wood. Tempest: A Substrate for Porta-
ble Farallel Programs. IROMPCON 95 pages 327-332, San Francisco, Califor-
nia, March 1995. IEEE Computer Society

Jame<C. Hoe and Mik Ehrlich. StarfJR: A Rarallel System from Commodity
Technology Computation Structuresethnical Memo 384, MITLCS, Oct 1996.

RobertW. Horst. TNet: A Reliable System Area Neik. IEEE Micro, 15(1):37—
45, February 1994.

SFARC International Inc. History of S¥RC systems:- the first decade 1987-1996.
Available from http://wwwsparcproductdirectorgom/historyhtml.

Myricom Incorporated. Myricom Home aBe. Aailable from http://
WWW.myri.com.

Teresa.. Johnson and ¥h mei Hwu. Run-time Adape Cache HierarghMan-
agement via Reference Analysis.Rroceedings of the 24th Annual International
Symposium on Computerdhitecture, pages 315-326, 1997.

Vijay Karamcheti and AndveA. Chien. A Comparison of Architectural Support
for Messaging in the TMC CM-5 and the Cray T3D.Froceedings of the 22nd
Annual International Symposium on Computethitecture, pages 298-307, 1995.

182

[59] Jonathan Kay and Joesphsquale. The Importance of Non-Dataughing Pro-
cessing Ogrheads in TCP/IRn SIGCOMM93 pages 259 — 268, 1993.

[60] Kimberly A. Keeton, Thomak. Anderson, and & A. Patterson. LogP Quanti-
fied: The Case for -Overhead Local Area Netwks. InHot Interconnects 1)
1995.

[61] David Kroft. Lockup-free instruction fetch/prefetch cachgamization. InPro-
ceedings of the 8th Annual International Symposium on Computhitestue,
pages 81-87, May 1981.

[62] John Kubiatavicz and Anant Agrwal. Anatomy of a Message in the Miée Mul-
tiprocessarin Proceedings of the 1993CM International Confesnce on Super-
computing 1993.

[63] John Kubiatawicz, David Chaiken, and Anant Agrwal. Closing the Widow of
Vulnerability in Multiphase Memory rénsactions. IrProceedings of the ifth
International Confeence on Ashitectural Support for Pogramming Languges
and Opeating Systems (ASPLOS, ¥ages 274-284, 1992.

[64] Jefrey Kuskin etal. The Stanford FLASH Multiprocessdn Proceedings of the
21st Annual International Symposium on Computehitecture, pages 302-313,
April 1994.

[65] JamesR. Larus and Eric SchnateEL: Machine-Independent Egutable Editing.
In Proceedings of the SIGPLAN '95 Comfiece on Rsgramming Languge
Design and Implementation (PLDPages 291-300, June 1995.

[66] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable
Sener. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 241-251, 1997.

[67] Alvin R. Lebeck and Dad A. Wood. Dynamic Self-lvalidation: Reducing Coher-
ence Oerhead in Shared-Memory Multiprocessors.Pimceedings of the 22nd
Annual International Symposium on Computechitecture, pages 48-59, June
1995.

[68] CharlesE. Leiserson, Zals. Abuhamdeh, Dad C. Douglas, CafR. Feynman,
MaheshN. Ganmukhi, Jdéfey V. Hill, W. Daniel Hillis, Bradlgy C. Kuszmaul,
Margaret A.St. Pierre, Daid S. Wells, MonicaC. Wong, Sha-Wen Yang, and
Robert Zak. The Netark Architecture of the Connection Machine CM-5 Hro-
ceedings of theifth ACM Symposium onarallel Algorithms and Ashitectues
(SRAA), July 1993.

[69] Daniel Lenoski, James Laudonpitrosh Gharachorloo, Anoop Gupta, John Hen-
nessy Mark Horawitz, and Monica Lam. Design of the Stanford&H Multipro-
cessor Technical Report CSL-TR-89-403, Computer System Labora&ianford
University, December 1989.

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]
[78]

[79]

[80]

[81]

[82]

[83]

183

Lok Tin Liu and Daid E. Culler Evaluation of the Intel &agon on Actie Mes-
sage Communication. Froceedings of Intel Supmymputer Uses Gioup Confer-
ence June 1995.

Tom Lovett and Rusell Clap. $NYG: A CC-NUMA Computer System for the
Commercial Marktplace. InProceedings of the 28rAnnual International Sympo-
sium on Computer &hitecture, pages 308—-317, 1996.

Kenneth Mac&nzie, John Kbiatavicz, Anant Agrwal, and Frans Kaashoek.
Fugu: Implementing fBnslation and Protection in a Multiusdtultimodel Multi-
processarTechnical Memo MIT/LCS/TM-503, MIT Laboratory for Computer Sci-
ence, October 1994.

Kenneth Mac&nzie, John Kbiatavicz, Matthev Frank, Wlter Lee, Anant Agr-

wal, and M.Frans Kaashoek. UDM: User Direct Messaging for General-Purpose
Multiprocessing. &chnical Memo 556, MIT Laboratory for Computer Science,
March 1996.

Alan Mainwaring and Deid Culler. Active Messages Applications Programming
Interface and Communication Subsystengadization. Draft €chnical Report,
Computer Science Department, Wemisity of California at Berdey.

Evangelos?. Markatos and Manolis G1. Katevenis. Usei.evel DMA without
Operating System &nel Modification. InPProceedings of the TRIrIEEE Sympo-
sium on High-Brformance Computer Ahnitectuie, 1997.

Richard Martin. HRM: An Active Message Layer for a Netvk of HP Worksta-
tions. InHot Interconnects |1 1994.

Robert McMillan. Nev Ultra 30 workstations signal end of SBusvalable from
http://mww.sun.com/sunarldonline/swl-07-1997/swl-07-ultra30.html.

Meiko World Inc. Computing Suslce 2: Oervien Documentation Set, 1993.

JohnM. Mellor-Crumme and MichaeL. Scott. Algorithms for Scalable Synchro-
nization on Shared-Memory Multiprocessoh&M Transactions on Computer Sys-
tems 9(1):21-65, February 1991.

MagedM. Michael, AshwiniK. Nanda, Beng-Hong Lim, and Michdel Scott.
Coherence Controller Architecture for SMP-Based CC-NUMA Multiprocessors. In
Proceedings of the 24th Annual International Symposium on Compudater

ture, pages 219-228, 1997.

Sun MicrosystemincorporatedRev. 5/20/97 - Wrkgroup, Dept., & Data Center
Serves, 1997.

Sun MicrosystemincorporatedRev. 5/20/97 - Wrkstation & Wrkgroup Serves,
1997.

MIPS Technologies InaMIPS R10000 Mi@processor Uses Manuaj 1995.

184
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Todd.C Mowry. Tolerating Latency Though Softwag-Contolled Data Pefetd-
ing. PhD thesis, Stanford Urmarsity, March 1994.

Shubhendis. Mukherjee, Babak dfsafi, MarkD. Hill, and Daid A. Wood.
Coherent Netwrk Interfaces for Fine-Grain Communication.Rroceedings of the
23rd Annual International Symposium on Computethectue, pages 247-258,
May 1996.

Shubhendis. Mukherjee and MarR. Hill. An Evaluation of Directory Protocols
for Medium-Scale Shared-Memory MultiprocessorsPhoceedings of the 1994
International Confegnce on Supeomputing pages 64—74, Manchest&ngland,
July 1994.

Shubhendis. Mukherjee and Mark. Hill. A Case for Making Netark Interfaces
Less Peripheral. Inlot Interconnects V1997.

Shubhendis. Mukherjee and MarR. Hill. A Survey of UserLevel Network
Interfaces for System Area Netwks. Technical Report 1340, Computer Sciences
Department, Uniersity of Wisconsin—Madison, February 1997.

Shubhendis. Mukherjee and MarR. Hill. The Impact of Data fansfer and Buf
ering Alternatves on Netwrk Interiace Design. IfProceedings of thedtrth IEEE
Symposium on Highdfformance Computer Ahmitecture, pages 207-218, Febru-
ary 1998.

Shubhendis. Mukherjee and MarR. Hill. Using Prediction to Accelerate Coher-
ence Protocols. IfProceedings of the 25th Annual International Symposium on
Computer Achitecture, June 1998.

Shubhendis. Mukherjee, Alain Kagi, and Douglas Ber. A Programming Wto-
rial for the Wisconsin Whd Tunnel. unpublished manuscriptyiged January 1995.

Shubhends. Mukherjee, StenK. Reinhardt, Babak d&safi, Mike Litzkow,
Steve Huss-Lederman, MaiR. Hill, JamesR. Larus, and Dad A. Wood. Wiscon-
sin WInd Tunnel Il: A Fast and PortabledpPallel Architecture Simulatofn Work-
shop on Brformance Analysis and Its Impact on DesigAl[®, June 1997.

Shubhendis. Mukherjee, ShamiR. Sharma, Marl. Hill, JamesR. Larus, Anne
Rogers, and Joel Saltz.fiefent Support for Irrgular Applications on Distrilted-
Memory Machines. Irrifth ACM SIGPLAN Symposium on Principles &aPtice
of Parallel Programming (PPOPR)pages 68-79, July 1995.

HowardM. Needham. Peripheral Component Interconnect (PCI) Bus for ASIC
Designers. gailable from http://wwwti.com/sc/docs/asiciga013/toc.htm.

AndreasG. Nowatzyk and BulR. Prucnal. Are Crossbars Realy Dead? The Case
for Optical Multiprocessor Interconnect Systems.Aroceedings of the 22nd
Annual International Symposium on Computethitecture, pages 106—-115, 1995.

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

185

Randy Osborne, Qin Zheng, Johnw#od, Ross Casjeand Doug Hahn. BRT -
A Low Overhead AM Network Interface Chip. IrHot Inteiconnects 1996.

RobertW. Pfile. Typhoon-Zero Implementation: Theokfex Module. Technical
report, Computer Sciences DepartmentMdrsity of Wsconsin—Madison, 1995.

Ken Polsson. Chronology of Ents in the History of Microcomputersvailable
from http://wwwislandnet.comkpolsson/comphist.htm.

StevenK. Reinhardt, MarlD. Hill, JamesR. Larus, AlvinR. Lebeck, James.
Lewis, and Daid A. Wood. The Visconsin Whd Tunnel: Mrtual Prototyping of
Parallel Computers. IiiProceedings of the 1993CM Sigmetrics Confence on
Measuement and Modeling of Computer Systgpagies 48—60, May 1993.

StevenK. Reinhardt, JameR. Larus, and Dad A. Wood. Tempest and yiphoon:
UserLevel Shared Memoryin Proceedings of the 21st Annual International Sym-
posium on Computer Ahmitecture, pages 325-337, April 1994.

StevenK. Reinhardt, RobeMV. Pfile, and Daid A. Wood. Decoupled Hardave
Support for Distrinted Shared Memoryn Proceedings of the 28rAnnual Inter-
national Symposium on Computeichitecture, May 1996.

Cray Research. Cray Research Redefines Scalable ComputinGnay T3E Sys-
tem, World’s First Tuly Scalable SupercomputerAvailable from http://
www.craycom/nevs/9511/scalable.html.

loannis Schoinas, Babakakafi, MarkD. Hill, JamesR. Larus, Christophet.
Lucas, ShubhendB. Mukherjee, SteenK. Reinhardt, Eric Schnarand Daid A.
Wood. Implementing Fine-Grain Distubed Shared Memory On Commodity SMP
Workstations. &chnical Report 1307, Computer Sciences Departmentekdity

of Wisconsin—Madison, March 1996.

loannis Schoinas, BabalaBafi, AlvinR. Lebeck, SteenK. Reinhardt, JameR.
Larus, and Dad A. Wood. Fine-grain Access Control for Disuiled Shared
Memory In Proceedings of the Sixth International Coefere on Achitecturl
Support for Pogramming Languges and Opeating Systems (ASPLOS Mbpages
297-307, October 1994.

loannis Schoinas and Maik Hill. Address Tanslation Mechanisms in Netwk
Interfaces. InProceedings of thedurth IEEE Symposium on Higlefformance
Computer Achitecture, pages 219-230, February 1998.

Steve Scott and Ggory M. Thorson. The Cray T3E Nebsk: Adaptve Routing in
a High Performance 3Dofus. InHot Interconnects IVpages 147-156, 1996.

Steve L. Scott. Synchronization and Communication in the T3E Multiprocebsor
Proceedings of the 8enth International Confence on Achitectural Support for
Programming Languges and Opeating Systems (ASPLOS VIPages 26-36,
1996.

186
[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Margo|l. Seltzer Yasuhiro Endo, Christopher Small, anditi A. Smith. Dealing
With Disaster: Surving Misbeh&ed Kernel Extensions. IfProceedings of the
1996 Symposium on Oping Systems Design and Implementation (OSI396.

Toshi Shimizu. Personal Communication, June 1997.

Toshiyuki Shimizu, &keshi Horie, and Hiroaki Ishihata. WwelLateny Message
Communication Support for AP1000. Rroceedings of the 19th Annual Interna-
tional Symposium on ComputerchAitecture, pages 288—-297, 1992.

O. Shiraki, M.Nagatsuka, THorie, Y. Koyanagi, T Shimizu, and Hlshihata. AP-
Net Advanced High-Performance Neaivk for Scalable &allel Serer. In Hot
Interconnects 1V1996.

Ashok Singhal, Dad Broniarczyk, Fred Ceraukis, 3ePrice, Leo Yian, Chris
Cheng, Drev Doblar, Stere Fosth, Nalini A@rwal, Kenneth Harey, Erik Hager-
sten, and Bjorn Liencres. Giglane (TM): A High Performance Bus for Qar
SMPs. InHot Interconnects IVpages 41-52, 1996.

Jonas Sé&ppstedt and Per Stenstrom. Simple Compiler Algorithms to Reduce
Ownership Oerhead in Cache Coherence ProtocolsPioceedings of the Sixth
International Confeence on Ashitectural Support for Pogramming Languges

and Opeating Systems (ASPLOS Mppges 286—296, San Jose, California, 1994.

Jame<£. Smith. A Study of Branch Prediction Stigitss. InProceedings of the 8th
Annual International Symposium on Computethitecture, pages 135-148, 1981.

Jame<£. Smith and Andme R. Pleszkun. Implementing Precise Interrupts in Pipe-
lined Processor$EEE Transactions on Computgr37(5):562-573, May 1988.

IEEE Computer SocietylEEE Stanall for Scalable Cohent Interface (SC))
1992.

Gurindar Sohi, Scott. Breach, and.IN. Vijaykumar Multiscalar Processors. In
Proceedings of the 22nd Annual International Symposium on Computetear
ture, pages 414-425, 1995.

GurindarS. Sohi and Manoj Franklin. High-Bandwidth Data Memory Systems for
Superscalar Processors.Rroceedings of thedurth International Confaance on
Architectural Support for Pogramming Languges and Opeating Systems (ASP-
LOS IV) pages 53—-62, 1991.

SFARC Technology BusinesdJltraSRARC-I Users Manual, Reision 1.0 Sep-
tember 1995.

Per Stenstrom, Mats Brorsson, and Lars Sandietaptve Cache Coherence Pro-
tocol Optimized for Migratory Sharing. Proceedings of the 20th Annual Interna-
tional Symposium on Computerchitectue, pages 109-118, May 1993.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

187

David Stodolsl, J.Bradley Chen, and Brial. Bershad. &st Interrupt Priority
Management in Operating Systeneriiels. InUsenix Micokernels Vdrkshop
1993.

CraigB. Stunlel, DennisG. Shea, Bulent Abali, Mark Atkins, Cakl Bender

Don.G. Grice, PeteH. Hochschild, Douglad. Joseph, Bed. Nathanson,
RichardA. Swetz, RoberE. Stucle, Michael Tsao, and PhiliR. Varker. The SP2
Communication SubsysteiBM Systemdurnal, 34(2):185-204, 1995.

Paul Sweazg and AlanJay Smith. A Class of Compatible Cache Consistéo-
tocols and their Support by the IEEE FutwebinProceedings of the 13th Annual
International Symposium on Computechitecture, pages 414-423, June 1986.

Thinking Machines Corporation. The Connection Machine CMe&hmical Sum-
mary, 1991.

DeanM. Tullsen, Susad. Eggers, Jo&. Emer HenryM. Levy, JackL. Lo, and
Rebeccd.. Stamm. Exploiting Choice: Instruction Fetch and Issue on an Imple-
mentable Simultaneous Multithreading ProcessorProceedings of the 24th
Annual International Symposium on Computethitecture, pages 191-202, 1997.

Pete Wbgt. Profusion: A Butred, Cache Coherent Crossbar SwitchHat Inter-
connects fpages 87-96, 1997.

Thorsten wn Eicken, Anindya Basu, iMeet Buch, and @fner \6gels. U-Net: A
UserLevel Network Interface for Rrallel and Distribted Computing. IiProceed-
ings of the 15th 8M Symposium on Opaing System Principles (SOSPRges
40-53, December 1995.

Thorsten wn Eicken, Daid E. Culler SethCopen Goldstein, and Klalsik
Schauser Active Messages: a Mechanism for br&ting Communication and
Computation. IfProceedings of the 19th Annual International Symposium on Com-
puter Achitecture, pages 256—-266, May 1992.

Kai Wang and Manoj Franklin. Highly Accurate Datalie Prediction using
Hybrid Predictors. In30th Annual IEEE/&M International Symposium on
Microarchitectue (MICRO 30), pages 281-290, 1997.

Wolf-Dietrich Weber Stephen Gold, & Helland, &keshi Shimizu, Thomas MKi,
and Wnfried Wilcke. The Mercury Interconnect Architecture: A Codeetive
Infrastructure for High-Performance Sers. InProceedings of the 24th Annual
International Symposium on Computechitecture, pages 98-107, 1997.

Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cachealidation Ritterns in
Multiprocessors. IProceedings of the Thirinternational Confeznce on Ashitec-
tural Support for Pogramming Languges and Opeting Systems (ASPLOS |Il)
pages 243-256, April 1989.

Shlomo Weiss and Jamds. Smith.Power and BwerPC Morgan Kaufmann Pub-
lishers, Inc., 1994.

188
[133]

[134]

[135]
[136]

[137]

[138]

[139]

Matt Welsh, Anindya Basu, and ThorstesnvEicken. Incorporating Memory Man-
agement into Usdrevel Network Interfaces. IrHot Interconnects V1997.

StevenCameron Wo, Moriyoshi Ohara, Ean Torrie, JaswindePal Singh, and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. IfProceedings of the 22nd Annual International Symposium on
Computer Achitecture, pages 24-36, July 1995.

David Wood. Personal Communication, April 1998.

David A. Wood, Satish Chandra, Babalaléafi, MarkD. Hill, JamesR. Larus,
Alvin R. Lebeck, JamesS. Lewis, Shubhend®. Mukherjee, Subbara@Rcharla,
and StgenK. Reinhardt. Mechanisms for CoopevatiShared Memoryin Pro-
ceedings of the 20th Annual International Symposium on Compudieite&tue,
pages 156-168, May 1993. Also appeared in it CM&hJactions,/ Spring 1994.

David A. Wood and MarlD. Hill. Cost-Efective Farallel ComputinglEEE Com-
puter, 28(2):69-72, February 1995.

Yong Yao. AGP Speeds 3D Graphidslicroprocessor Reportl0(8):11-15, June
17 1996.

T-Y Yeh and ‘dle Rtt. Alternatve Implementations of wo-Level Adaptve
Branch Prediction. IfProceedings of the 19th Annual International Symposium on
Computer Achitecture, pages 124-134, 1992.

[140] Albert Yu. The Future of Microprocessol&EE Micro, 16(6):46-53, December

[141]

1996.

Bob Zak. Personal Communication, March 1997.

189

Appendix A

System Area Networks

There is a n@ generation of netarks that &lls somehere between commercial local
area netwrks (LANs) and custom memoryges. Some of these netiks are simply bet-
ter LANs, some are interconnection netis for masskely parallel processors (MPPs),
while others resemble high-performance memarsels. These nebsks are calle@ystem
Area NetworkgSANSs). D the best of my knaledge, the term “System Area Netwk”

was first used by Robert Horst to describe tiedEm SemrNet.

Today’s corventional LANs are highly scalable and reusable yTd@nect hundreds of
host nodes and prale netvork interiaces that can be attached to standard USes
However, they do not ofer very high performance.oflays state-of-the-art LANSs, such as
100 meabits/second Ethernet or 155 gabits/second switchedTMs, offer very high
latengy (100-1000s of microseconds) and refally low bandwidth (10-200 ngabits/sec-
ond). The poor performance of LANs is agged by heay-weight legacy protocol
stacks, such as TCP/IBuch protocols makthe consertive assumption that LANs are

an «tension of the internet and therefore are highly unreliable and able to drop, corrupt,

190
replay expose, foge, and delay netwk messages. These assumptions result in cample

software protocol stacks that ensure reliability in saftsv

Memory luses are in striking contrast with LANS. Memonsbs delier extremely lav
latengy (10s of nanoseconds) andry high bandwidth (4 - 20 gadpits/second). Memory
buses can be accessed from processors iw priecessor ycles because their high reli-
ability and highly trusted eironment &oid software interention. Neertheless, unli&
LANs, memory lises are often customizedybaion-standard intex€es, and are hard to

extend to hundreds of hosts.

An ideal netvork would be one that combines the best of memarseb and LANS.
Such a netark would combine the performance and reliability of a memary and
avoid running TCP/IPBut the scalability and standardized inbeds of LANs are also
desirable so that tigecan be reused acrosveral generations of machines and/or manu-
factured by third partyendors. Thus, four goals Ve gien rise to a ne generation of

networks called System Area Neatwks (SANSs). These goals are:
* Performance (M latengy and high bandwidth)

* Reliability

e Scalability and

* Reusability

Some MPP netarks such as the TMC CM-5 neatvk or the Meilo CS2 netwrk can be
classified as SANs. More recenxiaenples of SANs are the Myricom Myrinet switch, the
IBM Vulcan switch used in SP2, the Spider switch used in the SGI/Cray Origin machine,
the Cray T3E netark, Dolphin SCI switch, the Fujitsu AP-Net, and the Craya@igy.
Tandems SererNet can also be classified as a SANwHEe@r, the Tandem SermrNet is
unique because it replaces the memary, bhe 1/0 bis, and the LAN with a single inter-

connection netark called the SerrNet.

191

Most of these SAN switches dedr latencies of less than aMfenicroseconds and link
bandwidth &ceeding one gapit/second. Theare highly reliable. Thedo not drop net-
work messages, prile CRC checks for error detection, and aqgeeted to operate in a
closed, secure, and trusted/ieonment such as aubiness dice or a machine room. As a
result, errors arextremely rare. If the system does detect a SAN error (gdi¢c cedun-
dang check error) it can either crash or return the error status to the user application. SAN
switches can be composed taild configurations that connect hundreds of host nodes,
which males them highly scalable (Bkswitched LANS). FinallySANs prweide internal
network interfaces that can be reused acrosediht machines or acrossfdifent genera-

tions of the same machine.

192

