Cache-Conscious Data Structures — Design and

Implementation

by

Trishul Madhukar Chilimbi

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1999

© Copyright by Trishul M. Chilimbi, 1999

All Rights Reserved

Abstract

The increasingly expensive cost of accessing memory provides an opportunity to signif-
icantly improve the performance of computer programs by redesigning their data struc-
tures to use processor memory caches more effectively. This thesis explores principles for
designing cache-conscious data structures, such as clustering, coloring, and compression.
These techniques improve the spatial and temporal locality of pointer-based data struc-
tures. To formalize the design process, this thesis provides an analytic framework that

quantifies the performance of cache-conscious pointer structures.

Unfortunately, cache-conscious structure design requires a deep understanding of a pro-
gram’s structures and operation, and familiarity with a machine’s memory architecture.
These prerequisites can limit cache-conscious structures to performance-critical portions
of code written by expert programmers, much as assembly code is used today. To make
the performance benefits of cache-conscious structures available to the average program-
mer, this thesis investigates several techniques that facilitate the creation of cache-con-

scious structure layouts.

Ideally, cache-conscious structure transformations should require no programmer inter-
vention. However, low-level languages, such as C and C++, make this goal impossible to
attain without hardware support. While offering no silver bullet for these low-level lan-
guages, this thesis explores several mechanical techniques that greatly reduce the pro-
gramming effort and application knowledge required to improve cache performance.
These techniques produce a cache-conscious arrangement of structure instances in mem-
ory. Additional techniques manipulate the internal organization of fields in a structure
instance to make the layout cache-conscious. Finally, the thesis shows that these cache-

conscious techniques can be packaged into easy-to-use tools.

11

This thesis also describes a more attractive alternative for languages that support gar-
bage collection. In this situation, a generational garbage collector can easily be modified
to produce cache-conscious layouts of small objects. The thesis demonstrates the feasibil-
ity of low-overhead, real-time profiling of data access patterns for object-oriented lan-
guages and describes a new copying algorithm that uses this information to produce
cache-conscious object layouts. Measurements show that this technique reduces cache
miss rates and improves program performance significantly. Techniques such as these
may help narrow, or even reverse, the performance gap between high-level programming

languages, such as Lisp, ML, or Java, and low-level languages, such as C or C++.

iii

Acknowledgements

Firstly, I would like to thank my advisor Jim Larus. Jim always let me pursue my ideas,
even if he thought some of them misguided. His healthy skepticism often spurred me on.
In addition, his insight and experience saved me much effort. Jim always made the time to
provide me with extensive feedback. While I failed to emulate his time-management

skills, they served as an inspiration.

Next, I would like to thank Mark Hill. Mark set aside large amounts of time for stimulat-
ing discussions. Both Mark and Jim taught me the importance of not only doing good

research but also taking the time to present it clearly.

I owe much to the Wisconsin Wind Tunnel project, co-supervised by Mark Hill, Jim
Larus, and David Wood. Being part of a large, top-notch research project taught me the

value of collaboration as well as the effort needed to achieve it.

I would also like to thank Tom Reps. Tom was very encouraging and spent large
amounts of time attending my talks and reading my research. He provided me with much

useful feedback. I also learned a lot about sailing from him.

I would also like to thank my many friends, especially those at Hoofers Sailing Club,
who made my stay in Madison a most enjoyable one. Though you probably delayed my

graduation, it was time well spent.

I owe much to my parents, Madhukar and Romila Chilimbi. Finally, I would like to
thank Anne Doremus for her love and support. In addition, she spent copious amounts of

time proof-reading my dissertation despite all the jargon.

iv

Table of Contents

ADSIraCt. . .. [
ACKNOWIEdgMENTS iii
Tableof CoNtents. e v
LisSt Of FIQUIES. . . .o e Vii
Chapter 1. IntroducCtiont e 1
1.1 Cache Performance. i 7

1.2 Improving the Cache Locality of Pointer Manipulating Programs. 9

1.3 Overview of the Dissertationo iuiniuninenenenennnn. 12

1.4 Related Work 15
1.4.1 Improving the Cache Locality of Scientific Programs 15

1.4.2 Page-Conscious DataPlacement 16
Chapter 2. Cache-Conscious StructureDesign ..., 18
2.1 Background: Cache Architecturescuuiiinninnennennn. 19
2.2 Cache-Conscious Structure Designiiiiennenn .. 22
2.2.1 CacheParameters.ttt 22

2.2.2 Cache-Conscious Design Principles 23

2.2.3 Cache-Conscious Trees o.vutnt it 25

2.3 Evaluation of Cache-Conscious Structure Design 28
2.3.1 Methodologyoooi i e 29

2.3.1 Tree Microbenchmark 29

2.4 Related Work . ..o ot e 30

Chapter 3. A Framework for Cache-Conscious StructureDesign. 31
3.1 Analytic Framework........ 32
3.1.1 AnalyticModel 32

3.1.2 Speedup Analysis.ot e 35

3.2 Model Application: Steady-State Analysis., 36
3.2.1 Cache-Conscious Treesot 36

3.3 Model Application: Transient Analysisot 37
3.3.1 Cache-Conscious Treesvuiiin . 38

34 Model Validation e 40

3.5 Related Work e 42
Chapter 4. Cache-Conscious StructureLayout. ..., 46
4.1 Cache-Conscious Data Reorganization 48
411 CCMOr Ph o 48

4.2 Cache-Conscious Heap Allocation. 51
421 cemal 1 0C ... 51

4.3 Evaluation of Cache-Conscious Data Placement 53
4.3.1 Methodologyoii i e 53

4.3.2 Macrobenchmarks 53

4.3.3 Olden Benchmarks. i 54

434 DISCUSSION . . oo ettt et e e et e e e e e 58

4.4 Related Work 59
Chapter 5. Using Garbage Collection to Optimize DataLayout 60
5.1 Background: Generational Copying Garbage Collection. 62
5.2 Low Overhead Real-Time Data Profiling. 65

5.3 Constructing Object Affinity Graphso .. 68

5.4 Combining Cache-Conscious Data Placement with Garbage Collection. 71
5.4.1 Cache-Conscious Copying Algorithm 71

542 DISCUSSION . . v oot e e e e e e e e e e e e e e e e e 73

5.5 Experimental Evaluation. 74
5.5.1 Experimental Methodology i i, 74
5.5.2 Experimental Results. 77

5.6 Related Work 82

Chapter 6. Cache-Conscious Structure Definition 85

6.1 Structure Splitting. 89
6.1.1 ClassInformation. i 90
6.1.2 Hot/ Cold Class Splitting Algorithm 91
6.1.3 Program Transformationuuininirnrenenennnnn. 94
6.1.4 DISCUSSION . o v v vttt et e e e e 95

6.2 FieldReordering.couiiit e 95
6.2.1 Field Reordering Overviewu i ininnnnen... 97
6.2.2 Constructing the Structure Access Database....................... 98
6.2.3 Processing the Structure Database. 99
6.2.4 Producing Structure Field Orderings............................ 100
6.2.5 Evaluating Structure Field Orderings 103

6.3 Experimental Evaluation of Class Splitting 104

6.4 Experimental Evaluation of Field Reordering 108

6.5 Related Work 110

Chapter 7. ConClUSION i e 112

7.1 Future Work ... e 115

7.2 SomeFinal Remarks........... i 115

Bibliographyo 116

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.

vii

List of Figures

Exploiting locality withacache............ 3
Pointer structures and their memory layout.......................... 4
Different approaches to reducing memory latency 5
Improving software locality through program transformation. 6
Memory Cachet e 7
Improving cache performance 9
Strategies for cache-conscious data placement 10
Memory system withacache................, 20
Coloring data structure elements to reduce cache conflicts. 24
Compression through structure splitting 25
Subtree clustering. e 26
Compression by pointer elimination.. 27
B-treenode Size.. 28
Binary tree microbenchmark.. 29
Cache-conscious speedup.ottt e 35
Best-case cache-conscious speedupc.oviiin .. 36
Cache-conscious binary tree.ovviin i i 37
Predicted and actual effects of clustering. 41
Predicted and actual effects of coloring. 42
Predicted and actual speedup for C-trees. 43
ccmorph: Transparent cache-conscious data reorganization.. 49
Cache-conscious tree reorganizationc.o.euvunenenen .. 50
ccmalloc: Cache-conscious heap allocation. 52

RADIANCE and VIS Applications. Execution times above each bar. 54

Performance of cache-conscious data placement. 57

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

Cheney’s copying algorithm. 62
TO space during SCavenging.vven e nntn .. 63
Heap layout for a generational garbage collector. 64
Objectaccessbuffer. i 66
Profiling instrumentation code for the load of a base object address. 67
Constructing object affinity graphs.. 68
Locality queue inSertion.uuuitut it 69
Incrementing affinity graph edge weights.. 70
Combining cache-conscious data placement with garbage collection.72
Cache-conscious structure definition. 86
Class splitting OVEIVIEW. . ..o vi ittt 89
Class splitting algorithm. 94
Program transformation.. i 96
Field reordering overview..t 97
Structure access database. 98
Processing the structure access database.. 100
Producing field orders from the structure field affinity graph. 102

1

To think isto confine yourself to a

single thought that one day stands

still like a star in the world's sky.

—Martin Heidegger, Poetry, Language, Thought

Chapter 1

| ntroduction

A computer system consists of processors for performing computation on data, a storage
system for data, and a variety of peripheral devices for interacting with the external envi-
ronment. To address the widely varying data requirements of different applications, stor-
age systems have evolved into primary or main memory, secondary storage, and tertiary
storage. These systems possess decreasing costs and data access speeds, and increasing
storage capacities. Main memory, which like microprocessors is implemented using semi-
conductor technology, has the fastest data access speed, but it is the most expensive and

has the smallest data capacity.

Speed of a computer system, which is calibrated in terms of time taken to execute stored
programs, is an important consideration. As with any complex system, it is limited by the
speed of its slowest component along the critical execution path. For many programs, this
is the speed of the secondary storage system, as tertiary storage is almost exclusively used
for archiving data and very rarely accessed during program execution. However, advances

in main memory technology have increased data capacity to the point where many appli-

2
cations seldom access secondary storage, and the limiting factor is the speed of main
memory. For applications that frequently access secondary storage, such as databases,
much research has focused on optimizing the references to secondary storage. Conse-
quently, even these applications have significant portions of computation that are memory

limited.

Since both microprocessors and memory are implemented with semiconductor technol-
ogy, one would expect their speeds to be comparable. However, the speed of microproces-
sors has increased 60% per year for almost two decades. Yet, over the same period,
memory access time decreased by less than 10% per year [56]. These trends appear likely
to persist barring an unforeseen technological breakthrough. This is because the primary
driving force behind memory technology is storage capacity, and current technology pre-

cludes the manufacture of high-capacity memories with fast access times.

The unfortunate, but inevitable, consequence is an ever-increasing processor—memory
performance gap. Memory caches are the ubiquitous hardware solution to this problem.
These are small, fast memories that store recently accessed data items and attempt to inter-
cept and satisfy data requests without accessing main memory. In the beginning, a single
level of cache sufficed, but the increasing performance gap (now almost two orders of
magnitude) requires a hierarchy of caches, which results in a wide range of memory

access costs.

Caches can improve performance by exploiting data reference locality (see Figure 1-1).
There are two types of data locality—temporal and spatial. A data item exhibits temporal
locality if it is repeatedly accessed within a short period of time. Spatial locality implies
that data items stored in adjacent memory locations are likely to be accessed contempora-
neously. Caches exploit temporal locality by storing recently accessed data. Caches trans-
fer data from main memory in contiguous blocks that encompass multiple words and,

consequently, benefit from spatial locality.

Temporal locality

vy
o
O]

CPU — Cache — Memory
\\/ <

Spatial locality

\ A 4
3
=)

| oad a
| oad n
| oad m

| oad a

Figure 1-1. Exploiting locality with a cache.

In addition to caches, a variety of hardware and software techniques—such as prefetch-
ing [53, 13], multithreading [46, 68], non-blocking caches [41], dynamic instruction
scheduling [75], and speculative execution [69]—have been developed and implemented
to reduce or tolerate memory latency. Prefetching attempts to reduce latency by anticipat-
ing data that will be required, and fetching it into the cache before it is requested. Multi-
threading tolerates latency by context switching from a stalled thread to another runable
thread. A non-blocking cache can tolerate multiple outstanding misses and return data in a
different order from the requests. In dynamic instruction scheduling, the hardware rear-
ranges instructions and executes them out-of-order to reduce stalls, but guarantees instruc-
tions are committed in-order. Speculative execution predicts a program’s control flow and
executes instructions eagerly. If a prediction is incorrect, the misspeculated instructions

are squashed.

Despite these techniques, which require complex hardware or software, many programs’

performance is dominated by memory references. Moreover, high and variable memory

Figure 1-2. Pointer structures and their memory layout.

access costs undercut the fundamental random-access memory (RAM) model that most
programmers use to understand and design data structures and algorithms. This can cause
unexpected behavior; for example, algorithms with a larger number of operations (but

fewer memory references) may outperform alternative algorithms with fewer operations.

From a software perspective, programming languages used to write programs have also
evolved. Early languages such as Fortran and Algol, used mainly for scientific applica-
tions, did not support pointers. Applications written in these languages store their data in
array structures. Subsequent languages such as Simula, Pascal, C, and C++ supported
pointers. Many applications written in these languages, such as databases and operating

systems, make extensive use of pointer structures to store data.

A pointer structure is a collection of heap-allocated data elements connected by pointers.
Figure 1-2 illustrates a tree pointer structure. Since pointer structures are collections of
heap allocated elements, they can be dynamically sized while a program is executing. A
pointer structure can be grown by allocating additional elements on the heap, and attach-
ing them to the existing structure with pointers. Shrinking a structure is the reverse process
in which elements are deleted and the freed heap space made available for reuse. Pointer
structures are frequently used in applications in which the data requirements are not
known until the program executes or varies widely during execution. Due to their dynamic
nature and reliance on heap-allocated storage, pointer structures tend to have less regular

access patterns than array structures.

(a) Using prefetching. (b) Rearranging the data layout.

a b c d a c d e
e f g h f b k g
i] k 1 h i] 1
A T .
prefetch b b .
prefetch k k .
.. b ... f.

kK ...

f

Figure 1-3. Different approaches to reducing memory latency.

We call applications that make extensive use of pointer structures pointer-manipulating
programs. Not surprisingly, techniques for reducing and tolerating latency that were
developed primarily for applications that manipulate data stored in array structures are not
as effective for pointer-manipulating programs [11, 57]. In addition, many techniques are
fundamentally limited by their focus on the manifestation of the problem (memory
latency), rather than its cause (poor reference locality). Figure 1-3 illustrates the differ-
ences between these two approaches. The prefetching approach, which focuses on allevi-
ating memory latency, can increase memory bandwidth requirements if the prefetched
data is replaced from the cache before it is referenced. This can occur if the cache blocks
that contain data items b and k map to the same location in the cache. In addition, the
prefetch instructions, which incur an address translation overhead, must be repeated at all
program points where that access sequence occurs. By contrast, an approach that rear-

ranges the data layout to improve reference locality, suffers from none of these problems.

A[0,0] - A[0,3]
—1» —1> —1»
v A v A - 1 —1»
| |
apo Y Y Y i i
ror 1 = 0 10 n do ror] =0 10 mado
for j = 0to mdo for i= 0 to n do
= A(j, 1) = A(j. 1)
done done
done done
Figure 1-4. Improving software locality through program transformation.

In general, software reference locality can be improved either by changing a program’s
data access pattern or its data organization and layout. The first approach has been suc-
cessfully applied to improve the cache locality of scientific programs that manipulate
dense matrices [84, 14, 28]. Figure 1-4 illustrates this with an example. The code snippet
on the left references array elements in a manner that cycles through different cache
blocks, accessing a single element in a cache block at a time. If it is possible to inter-
change the loops as shown in the code snippet on the right, the resultant data reference pat-
tern will step through all array elements in a cache block before accessing the next block.
Two properties of array structures—uniform, random access to elements, and a number-
theoretic basis for statically analyzing data dependencies—allow compilers to analyze
array accesses and perform transformations that reorder accesses without affecting a pro-

gram’s result.

Associativity (a)

+“—>
A
> >
[Cache _ Cache
CPU SiZC (C) Memory
; al
v
<+——>
Block
size (b)

Figure 1-5. Memory cache.

Unfortunately, pointer structures share neither property. Consider, for example, a tree
structure. A key search on this tree structure has to start at the root of the tree and follow
tree node pointers to the appropriate leaf. Reordering these accesses is, in general, impos-
sible. In addition, although much progress has been made in pointer-analysis techniques,
they are still not strong enough to guarantee that reordering pointer accesses will not affect
a program’s result. Pointer structures are however composed of separated, independently
allocated pieces and possess an extremely powerful property of location transparency:
elements in a compound data structure can be placed at different memory (and cache)
locations without changing a program’s semantics. The thesis of this work is that careful
placement of structure elements provides the essential mechanism to improve the cache

locality of pointer-manipulating programs, and consequently, their performance.

1.1 Cache Performance

As described earlier, caches are small, fast memories that store recently referenced data
(see Figure 1-5). Cache memory is constrained to be small to ensure high-speed access,
and hence cache capacity is much smaller than main memory capacity. To amortize the
high cost of accessing main memory, data is transferred in units called cache blocks that

encompass multiple words (typically 16-128 bytes). For several reasons, caches have

8
finite associativity (typically 1, 2, or 4) and this restricts where a block can be placed in

the cache.

Cache performance is often characterized by its miss rate. This is the fraction of the total
number of references that miss in the cache and need to access main memory. Higher miss
rates indicate poor cache performance. The average memory-access time for a machine

architecture with a cache is given by

Access Time = Cache Hit Time + (Cache Miss Rate) x (Cache Miss Penalty)

Since cache hit time and miss penalty are determined by the underlying hardware, reduc-
ing the cache miss rate provides the only opportunity to improve a program’s memory sys-

tem performance.

Hill characterized cache misses as compulsory misses, capacity misses, and conflict
misses [29]. Compulsory misses are incurred when a data item is first loaded in the cache.
A miss is a capacity miss if it would hit in a cache of larger size. Finally, a conflict miss is
a result of limited cache associativity and arises from blocks mapping to the same position

in the cache.

Figure 1-6 illustrates different approaches to improving cache performance. The shaded
units indicate contemporaneously accessed data items. Since data is transferred in cache
block sized units that can contain multiple data items, increasing cache block utilization
by placing contemporaneously accessed data in the same cache block increases the effi-
ciency of data transfer from memory and provides an implicit prefetching mechanism.
This reduces the number of compulsory and capacity misses. Moreover, making more
efficient use of cache space by reducing a structure’s cache block footprint will also
reduce the number of capacity misses (see Figure 1-6). Finally, mapping concurrently
accessed structure elements (which do not fit in a single cache block) to non-conflicting

cache blocks reduces conflict misses.

Cache block

e I T
-

Cache block size

Cache capacity

Cache block
working set
4>

Cache associativity

Cache
conflicts

Figure 1-6. Improving cache performance.

1.2 Improving the Cache L ocality of Pointer Manipulating Programs

This thesis explores several design principles that improve cache performance by
increasing a pointer structure’s spatial and temporal locality and by reducing cache con-
flicts. Clustering places structure elements likely to be accessed in succession in the same
cache block. This increases cache block utilization and reduces the cache block working
set (see Figure 1-6). Coloring segregates heavily and infrequently accessed elements in
non-conflicting cache regions. This reduces cache conflicts. Compression reduces struc-
ture size or separates the active portion of structure elements. This increases the benefits
that arise from applying clustering or coloring. This thesis explores applying these place-
ment design principles to construct cache-conscious data structures that demonstrate sig-

nificant performance gains.

To formalize the cache-conscious design process, this thesis presents an analytic frame-
work that quantifies the performance benefits of cache-conscious pointer structures. A key

part of this framework is a data-structure-centric cache model of a series of accesses that

10

Typedef struct { .. J A < Cache-conscious definition
- * . Cache-conscious allocation
(A*) malloc(...);| <om—

while(l) {
insert _A(); - Cache-conscious reorganization|
nmove_A(); s
delete_A(); |

}

Figure 1-7. Strategies for cache-conscious data placement.

traverse a pointer structure. The performance of a pointer structure is characterized by its
amortized miss rate over a sequence of such accesses. The model is applied to cache-con-

scious pointer structures and its predictions validated.

While cache-conscious pointer structure design offers significant performance benefits,
there are several reasons why this approach is difficult to apply to real programs. First,
applying these design principles is dependent on the data structure and its associated
access pattern, and consequently requires complete understanding of an application’s code
and data structures. Next, they require knowledge of the underlying cache architecture—
something many programmers are unfamiliar with. Finally, they require significant rewrit-

ing of an application’s code. The rest of the thesis addresses these issues.

To address the problems of architectural familiarity and extensive application rewriting
that make it impractical to apply cache-conscious design principles to large legacy appli-
cations, we have designed and evaluated several mostly-automatic and completely-auto-
matic strategies for implementing cache-conscious pointer structures. As Figure 1-7
illustrates, cache-conscious pointer structures can be implemented by changing the struc-
ture definition, by modifying the allocation policy for structure elements, or by reorganiz-

ing the structure layout. Changing a structure’s definition by reordering fields permits

11
clustering fields that are accessed contemporaneously in the same cache block. Splitting
structures into a hot and cold portion based on program accesses permits packing more hot
instances, that are accessed together, in the same cache block. Both of these techniques
increase cache block utilization. Cache-conscious allocation attempts to co-locate contem-
poraneously accessed data elements in the same physical cache block at allocation time.
This improves cache performance by increasing cache block utilization. Finally, cache-
conscious reorganization attempts to transform pointer structure layouts by linearizing
them with respect to the expected data access pattern, and mapping structure elements to
reduce cache conflicts. The expected access pattern can be obtained from program pro-
files. For certain pointer structures such as trees, access information can be gleaned from
data structure topology. For a tree structure, a node access is likely to be followed by an
access to a child of that node. Hence clustering tree nodes into subtrees that fit in a cache
block increases cache block utilization. In addition, the top levels of a tree are accessed
much more frequently than the bottom levels. Mapping a tree such that the bottom levels

of the tree do not conflict with the top levels in the cache will reduce cache conflicts.

The programming language employed can dramatically affect the feasibility and ease of
applying these cache-conscious transformation strategies. For example, languages such as
C and C++ support type-casting and pointer arithmetic operations that make it extremely
difficult to transparently move structures (i.e., without programmer intervention), and
hamper any structure reorganization strategy. In addition, these languages do not hide the
internal representation of structure instances and this hinders transparently modifying the
structure definition. Despite these problems, this thesis explores the application of each of
the cache-conscious transformation strategies—cache-conscious definition, cache-con-
scious allocation, and cache-conscious reorganization—that require minimal programmer
assistance in such unfriendly environments, and yet produce large performance improve-

ments.

On the other hand, modern languages such as Java provide a much more conducive

environment for such data layout optimizations. The unrestricted pointers of C and C++

12

are replaced by references that facilitate transparent movement of structures. In fact, auto-
matic memory-management schemes such as copying garbage collection, commonly
employed by these languages, routinely move data. This thesis shows that copying gar-
bage collection can be used for transparent and automatic implementation of cache-con-
scious data layouts. In addition, modern languages such as Java are type-safe, and this
permits transparently changing the internal structure representation. We exploit this to
automatically split structures into a hot and cold portion. This splitting permits more hot
structure instances, which are referenced together, to be packed into a cache block. When
combined with cache-conscious garbage collection, this scheme produces significant

speedups.

In summary, this thesis explores a wide variety of highly effective approaches for
improving the cache performance of pointer-manipulating programs both in the context of
low-level languages such as C and C++, as well as for modern languages such as Java.
However, given the relative ease of applying data layout optimizations to Java as com-
pared to C/C++, and the growing processor-memory performance gap, we believe that
such data layout optimizations may enable large Java programs to approach and perhaps

eventually surpass the performance of equivalent applications written in C/C++.

1.3 Overview of the Dissertation

Chapter 2 explores the role of clustering, coloring, and compression in cache-conscious
pointer structure design. It presents a brief overview of cache architectures and discusses
the impact of cache parameters on structure design. Tree pointer structures are used to
illustrate the cache-conscious design process. The large performance benefits of these

cache-conscious pointer structures are established experimentally.

Chapter 3 presents an analytic framework for quantifying the performance improve-
ments that result from cache-conscious data layouts. The framework is applied to cache-
conscious pointer structures, and its predictions are validated against experimental results.

The framework is shown to have good predictive power, underestimating the actual per-

13
formance improvements by not more than 15%, and accurately predicting the shape of

speedup curves.

Chapter 4 explores two strategies—cache-conscious allocation and cache-conscious
reorgani zation—for implementing cache-conscious pointer structure layouts in unfriendly
environments such as C and C++, where moving structures is in general unsafe. These
strategies produce a cache-conscious arrangement of structure instances in memory. The
chapter describes tools—ccmal | oc and ccnor ph—that embody each of these strate-
gies. It illustrates the possibility of cache-conscious allocation by describing a solution
wherein the heap allocator—ccmal | oc—takes an additional, programmer-supplied
parameter, which is a pointer to a data structure element that is likely to be accessed con-
temporaneously, and attempts to co-locate the new data item in the same physical cache
block as the existing data. The chapter investigates alternative strategies to handle the case
where the selected cache block is full. This technique has the advantage that an incorrect
choice for the programmer-supplied parameter does not affect a program’s correctness.
For small pointer benchmarks, ccmal | oc produced performance improvements of

12%—194%, and a large, real-world application improved by 27%.

In addition, this chapter investigates the task of reorganizing pointer structure layout
during program execution. Two possibilities exist for such cache-conscious data reorgani-
zation. While general, graph-like structures require a detailed profile of a program’s data-
access patterns for successful reorganization, a very important class of structures (trees)
possess topological properties that permit cache-conscious data reorganization without
profiling. The chapter describes a topology-based reorganizer—c c nor ph—that transpar-
ently transforms tree-like structures with homogeneous elements, and without external
pointers into the middle of the structure. ccnor ph exploits two properties of tree topol-
ogy for this reorganization. First, for random key searches, packing subtrees into cache
blocks is optimal. Second, a tree can be placed in memory such that frequently accessed
structure elements (top levels of a tree), and infrequently accessed elements (all other lev-

els of a tree) are mapped to non-conflicting cache regions. ccnor ph improved the perfor-

14
mance of several small pointer benchmarks by 28%—138%, and produced a 42% speedup

for a realistic application.

Chapter 5 explores cache-conscious layout transformations in the context of modern
languages such as Java that provide a much more conducive environment for such data
layout optimizations. These languages support automatic memory management using gar-
bage collection. This chapter shows that copying garbage collection can be used for trans-
parent and automatic implementation of cache-conscious data layouts. The chapter
discusses a profile-based reorganization technique that uses a generational copying gar-
bage collector to produce a cache-conscious data layout, in which objects with high tem-
poral affinity are placed next to each other, so that they are likely to reside in the same
cache block. First, we discuss a technique for collecting profiling information about data-
access patterns in object-oriented languages—in real-time and with low overhead (<
6%)—that exploits the observation that most objects are small (less than 32 bytes). Next, a
new copying algorithm utilizes this profile information to produce a cache-conscious
object layout. Experimental results for several object-oriented programs show that our
cache-conscious data placement technique reduces cache miss rates by 16-42% and
improves program performance by 10-37% over the traditional (Cheney’s) copying algo-
rithm. In addition, it outperformed a page-conscious copying algorithm (Wilson-Lam-
Moher) by 8%—31%, indicating that improving locality at the page level is not necessarily

beneficial at the cache level.

The effectiveness of such cache-conscious object co-location depends on the average
program object size, and it does not perform as well for programs that manipulate larger
objects (for e.g., many Java programs). To address this difficulty, Chapter 6 investigates
structure definition strategies for manipulating the internal organization of fields in a
structure instance to make the layout cache conscious. It describes a technique for parti-
tioning structures into a hot and cold portion using field-access statistics from program
profiles. This partitioning technique exploits the observation that for many programs,

most of their structure references are often to the same, small set of fields, and permits

15

more hot structure instances, which are referenced together, to be packed into a cache
block. For five medium-size Java benchmarks (3000-28,000 lines), hot/cold object parti-
tioning combined with cache-conscious object co-location reduced cache miss rates by
29-38%, with field partitioning accounting for 7-21% of the reduction, and improved per-
formance by 18-31%, with field partitioning contributing 5-22%.

In addition, Chapter 6 explores the possibility of defining pointer structures in a cache-
conscious manner by reordering structure fields. A suitable field order can improve a
structure’s cache block utilization and reduce its cache pressure. The chapter discusses an
algorithm for structure field reordering and describes a tool—bbcache—that imple-
ments this algorithm. bbcache correlates static information about the source location of
structure field accesses with dynamic (profile) information about the temporal ordering of
accesses, and their execution frequency, to create a structure-access database. This data-
base is used to construct a field affinity graph for each structure. These graphs are pro-
cessed to produce structure field order recommendations. Measurements indicate that field
reordering of just 5 active structures improves the performance of Microsoft SQL Server

7.0—a large, highly tuned commercial application—by 2—3% on the TPC C benchmark.

Chapter 7 summarizes the ideas discussed in the dissertation, draws some conclusions,

and suggests possible areas for further research.

1.4 Related Work

This section reviews related work on reordering data accesses to improve spatial and

temporal locality, and techniques for improving a program’s virtual-memory performance.

1.4.1 Improving the Cache L ocality of Scientific Programs

Previous research has attacked the processor-memory gap by reordering computation to
increase spatial and temporal locality [28, 84, 14]. This work focused on programs with
loop nests that access arrays in a regular manner. Gannon et al. studied an exhaustive

approach that generated all possible permutations of a loop nest [28]. They considered

16
uniformly-generated references, used reference windows to determine the minimum mem-
ory locations necessary to maximize reuse within a loop nest, and selected the best permu-
tation based on an evaluation function. Their exhaustive approach is impractical when
including loop transformations, such as loop fusion and loop distribution, which combine

and create loop nests.

Wolf and Lam developed a loop transformation theory, based on unimodular matrix
transformations, that unifies loop transforms like interchange, reversal, and skewing [84].
They introduced the notion of a reuse vector space to capture the potential of optimizing a
given loop nest for locality and used this to prune the search space. A heuristic algorithm
selects the best combination of loop transformations. Their technique ignores loop bounds

even when they are known constants.

Carr et. al used a simple model of spatial and temporal reuse of cache lines to selectively
apply compound loop transformations that include loop permutation, reversal, fusion, and
distribution [14]. Their model uses reference groups, which are slightly more restrictive

than uniformly generated references [28], to calculate reuse.

This work considers an entirely different class of data structures. Pointer-based struc-
tures do not support random access, and hence changing a program’s access pattern to

improve reference locality is impossible in general.

1.4.2 Page-Conscious Data Placement

Database researchers long ago faced a similar performance gap between main memory
and disk. They designed specialized data structures, such as B-trees [7, 21], to bridge this
gap. In addition, databases use clustering [6, 77, 26, 9] and compression [21] to improve

virtual memory performance.

Clustering has also been used to improve virtual memory performance of Smalltalk and

LISP systems [52, 71, 82, 42, 23] by reorganizing data structures during garbage collec-

17

tion. Researchers investigated two approaches to using a garbage collector to improve
paging behavior of Smalltalk and LISP systems. Static regrouping uses the topology of
heap data structures to rearrange structurally-related objects [52, 82], while dynamic
regrouping clusters objects according to a program’s data access pattern [23]. Moon found
that depth-first copying generally yields better virtual memory performance than breadth-
first copying for LISP, because it is more likely to place parents and offsprings on the
same page, particularly if data structures tend to be shallow, but wide [52]. Wilson et al.
treated hash tables, which group data in a pseudo-random order, specially, and ‘normal’
data structures were copied in depth-first order [82]. Their results showed a significant
reduction in the incidence of page faults. However, in a later study, the authors found that
the optimal grouping of data structure elements was very dependent on the shape and type
of the structure being copied [42]. While hierarchical decomposition performed well for
trees, it was disappointing for other structures. Court’s dynamic regrouping technique
takes advantage of specialized hardware to provide incremental garbage collection, which
tends to copy objects in program access order, and this can dramatically reduce the num-

ber of page faults [23].

More recently, Seidl and Zorn combined profiling with a variety of different information
sources present at the time of object allocation to predict the object’s reference frequency
and lifetime [64]. They showed that program references to heap objects are highly predict-
able.

These studies focused on a program’s paging behavior, not its cache behavior. Our work
differs, not only because of the different costs for a cache miss and a page fault, but also

because cache blocks are far smaller than memory pages.

18

In the face of the lack of direct mathematical
demonstration, one must be careful and
thorough to make sure of the point, ...
Nevertheless, a very great deal more truth
can become known than can be proven.

—Richard Feynman, Nobel Prize Address

Chapter 2

Cache-Conscious Structure Design

A growing processor—-memory performance gap, coupled with the presence of a fast
cache memory (or multiple levels of cache memory) between the processor and main
memory, divides memory references into two categories — those that hit in the cache with
a low access cost, and those that miss in the cache with access costs orders of magnitude
higher. Given this memory organization, data structures designed and organized such that
most structure references hit in the cache have the potential to significantly improve per-

formance. This chapter explores the design of such cache-conscious data structures.

Pointer structures possess an extremely powerful property of locational transparency
that facilitates cache-conscious structure design. Elements in a structure can be placed at
different memory (and cache) locations without changing a program’s semantics. Careful
placement of structure elements provides a mechanism to improve the cache locality of

pointer-manipulating programs and, consequently, their performance. This chapter inves-

19
tigates three placement design principles—clustering, coloring, and compression—that
improve cache performance on uniprocessor systems by increasing a data structure’s spa-
tial and temporal locality, and by reducing cache conflicts. Clustering places structure ele-
ments likely to be accessed contemporaneously in the same cache block. Coloring
segregates heavily and infrequently accessed element in non-conflicting cache regions.
Compression reduces structure size or separates the active portion of structure elements
from infrequently accessed fields. The chapter discusses the application of these design

principles to construct cache-conscious trees.

We performed experimental evaluations of these cache-conscious data structures.
Microbenchmarks show that cache-conscious trees outperform their naive counterparts by
a factor of 4-5, and can even outperform B-trees by a factor of 1.5. These results demon-

strate that cache-conscious data structures can offer large performance benefits.

While the design principles described are well known, a contribution of this chapter is to
collect these ideas and apply them to improve the cache performance of pointer structures.
The rest of the chapter is organized as follows. Section 2.1 provides a brief overview of
cache architectures. Section 2.2 discusses cache-conscious structure design principles and
explores applying them to trees. Section 2.3 evaluates cache-conscious trees with

microbenchmarks. Finally, Section 2.4 briefly discusses related work.

2.1 Background: Cache Architectures

This section provides a brief overview of current microprocessor cache architectures. A
detailed understanding of cache architectures is essential for designing cache-conscious
data structures. Smith’s [59] survey paper, and Hennessy and Patterson [33] contain more

information.

Figure 2-1 depicts a typical memory system organization that includes a cache. The

cache sits between the processor and main memory and intercepts all memory references.

20

Access Time Transfer Unit

o o ;—__—; Cache Block
! {} |T % ' |

Cachel | |
- T - - = | | | | Data Item
t | T ll L T 2l o —
_________ | | | |
L — — 4 L — —
CPU

Figure 2-1. Memory system with a cache.

References that hit in the cache (1) incur an access cost of t. References that miss in the
cache (2) initiate a cache block transfer to bring the data from main memory into the cache

and incur an access cost of (t+T). The average memory-access time is given by
Access Time = Hit Time + (Missrate) x (Miss penalty)
=t+ (Missrate) x T

Cache hierarchies were introduced as a consequence of the growing processor-memory
performance gap. The idea is to have a small Level 1 (L1) cache that can match the cycle
time of the processor and a large Level 2 (L2) cache to satisfy references that would other-
wise access memory. The average memory-access time for such a two-level cache hierar-

chy is given by

Access Time = Hit Timg ; + Miss rate ; x (Hit Timg, + (Miss rate , x Miss
penalty; 5))

To amortize the high cost of accessing main memory, data is transferred in units called

cache blocks that encompass multiple words. Typical cache block sizes for current micro-

21
processor systems are 16—64 bytes for the L1 cache and 32-256 bytes for the L2 cache.

There is a trade-off involved in selecting a cache block size. Larger cache blocks incur a
higher miss penalty, but can reduce the number of subsequent misses if the references
exhibit spatial locality. However, extremely large cache blocks are undesirable because of
the danger of polluting the cache with data that is never referenced. In addition, in multi-
processor systems, large cache blocks exacerbate the false sharing problem, in which dis-
tinct data items written by different processors happen to reside in the same cache block.

This can cause the block to ping-pong between the caches of different processors.

Caches have finite capacity, and require a policy for selecting a block to replace when a
cache miss causes a new block to be brought in. Typical L1 cache capacities are 1-128 KB
and typical L2 cache capacities are 256 KB—4 MB. If the cache were organized as a fully
associative memory, then a block could occupy any position in the cache, and all blocks in
the cache would be potential candidates for replacement. However, because fully associa-
tive memories are slow, and their implementation costly, caches are either direct-mapped
or set-associative. Direct-mapped caches have a fixed cache location for every block of
main-memory; thus, many blocks share the same location, and the block to be replaced is
completely specified. Direct-mapped caches are simple to build and fast to search, but
they tend to have higher miss rates than set-associative caches [34]. Set-associative caches
are organized into sets, each of which can contain any number of blocks up to a fixed limit
(typically two or four). Every block of main memory is mapped to a set, which occupies a
fixed position in the cache. However, there is no restriction on the placement of blocks
within a set. Thus set-associative caches represent a compromise between direct-mapped
and fully-associative caches wherein every block within a set is a candidate for replace-

ment. The cache replacement policy (typically LRU) selects one of these blocks.

Caches also differ in the mechanism used to access a cache block. They can be virtually-
indexed [8] or physically-indexed. Virtually-indexed caches use the virtual address to
access the cache as opposed to physically-indexed caches which use the physical address.

The advantage of using the virtual address is that cache hits are faster since they do not

22

have to wait for the TLB to translate the virtual address to a physical one prior to cache
lookup. However, virtually-indexed caches have a problem with synonyms that arises
when the operating system uses the same virtual address for two different physical
addresses. Typically, L1 caches are often virtually-indexed, and L2 caches are physically-

indexed.

A more recent innovation in cache design is a lock-up free or non-blocking cache [41].
A non-blocking cache allows for multiple, concurrent outstanding misses. These are bene-
ficial in current microprocessors that support out-of-order execution [75], because instruc-
tions that do not require the data that caused the cache miss can continue to execute and
access the cache. Non-blocking caches can also reduce the effective memory-access time
by overlapping multiple misses. On the other hand, non-blocking caches have complex
hardware requirements and for many programs it is unclear whether their benefits justify

their cost.

2.2 Cache-Conscious Structure Design

This section discusses cache parameters that are relevant to cache-conscious structure
design and explores three placement principles—clustering, coloring, and compression.

The example in this discussion is binary trees.

2.2.1 Cache Parameters

Caches can be parameterized by capacity, block size, associativity, indexing (virtual or
physical), write policy, and non-blocking degree. This thesis focuses on three essential
parameters: capacity, block size, and associativity. The other parameters are likely to have
second-order effects (with the possible exception of non-blocking degree, which we did
not consider as a design parameter in this thesis). Write buffers do a good job of hiding
write latency, hence write hit/miss policy is unlikely to have a large impact on perfor-
mance. No such technique exists for read latency, which is the primary problem. In addi-

tion, while many architectures have physically-indexed L2 caches, operating systems such

23
as Microsoft Windows NT, Sun Solaris, and SGI IRIX have a deterministic page-mapping

policy that maps consecutive virtual pages to non-conflicting physical pages [38]. Con-
flicts only occur between pages whose virtual addresses differ by a multiple of the cache

set size.
A cache configuration C can be expressed as a triple < ¢, b, a > where:
¢ = cache capacity in sets
b = cache block size in bytes
a = cache associativity.

For example, a two-way set-associative 64 Kbyte cache with 64 byte blocks is <512, 64,
2>,

2.2.2 Cache-Conscious Design Principles

This section discusses three general data placement design principles—clustering, col-
oring, and compression—that can be combined in a wide variety of ways to produce
cache-efficient data structures. Clustering attempts to pack data structure elements likely
to be accessed contemporaneously into a cache block. Clustering improves spatial and
temporal locality and provides implicit prefetching. Figure 2-4 illustrates clustering

applied to a binary tree.

Caches have finite associativity, which means that only a limited number of concur-
rently accessed data elements can map to the same cache block without incurring conflict
misses. Coloring maps contemporaneously accessed elements to non-conflicting regions
of the cache. Figure 2-2 illustrates a 2-color scheme for a 2-way set-associative cache
(easily extended to multiple colors). A cache with C cache sets (each set contains a =
associativity blocks) is partitioned into two regions, one containing p sets, and the other C

— p sets. Frequently accessed structure elements are uniquely mapped to the first cache

24

p
| Frequently Remaining

accessed elements elements

A
000
Cob—» |
P
e
.

oo
acne

Virtual Address Space

Figure 2-2. Coloring data structure elements to reduce cache conflicts.

region (i.e., such that they don’t conflict with each other), and the remaining elements are
mapped to the other region. The mapping ensures that heavily accessed data structure ele-
ments do not conflict among themselves and are not replaced by infrequently accessed
elements. In addition, if the gaps in the virtual address space that implement coloring cor-
respond to multiples of the virtual memory page size, this scheme does not waste any

physical memory.

Compressing data structure elements enables more elements to be clustered in a cache
block. This both increases cache block utilization and shrinks a structure’s memory foot-
print, which can reduce capacity and conflict misses. Compression typically requires addi-
tional processor operations to decode compressed information. However, with high
memory access costs, computation may be cheaper than additional memory references.
Structure compression techniques include data encoding techniques, such as key compres-
sion [21], and structure encoding techniques, such as pointer elimination and hot/cold

structure splitting.

Pointer elimination replaces pointers by computed offsets. The classic example of

pointer elimination is the implicit heap data structure, in which children of a node are

25

Structurelsplitting

Cold Cold

Head

Ke
for (p = Head; p !'= NULL; p = p->next)

i f(p->key == Key)
br eak;
}
if (p !'= NULL)
Exam ne other fields of p;

Figure 2-3. Compression through structure splitting.

stored at known offsets in an array. Another example is the tree structure shown in
Figure 2-5, which eliminates the internal subtree pointers from the clusters in the tree

shown in Figure 2-4.

Hot/cold structure splitting is based on the observation that most searches examine only
a portion of individual elements until a match is found. Structure splitting does not com-
press the data structure. Instead, it separates heavily accessed (hot) portions of data struc-
ture elements from rarely accessed (cold) portions (Figure 2-3). The heavily accessed

portions can then be clustered to improve locality.

2.2.3 Cache-Conscious Trees

An effective way to cluster a tree is to pack subtrees! into a cache block. Figure 2-4
illustrates subtree clustering for a binary tree. An intuitive justification for binary subtree

clustering is as follows (a detailed analysis is given in Section 3.3). For a series of random

1. The term subtree is used to refer to subtree regions rather than complete subtrees.

26

N Y R N N VAN

Figure 2-4. Subtree clustering.

tree searches, the probability of accessing either child of a node is 1/2. With k nodes in a
subtree clustered in a cache block, the expected number of accesses to the block is the
height of the subtree, l0g,(k+ 1), which is greater than 2 for k> 3. Consider the alternative
of a depth-first clustering scheme, in which the k nodes in a block form a single parent-

child-grandchild-... chain. In this case, the expected number of accesses to the block is:

1,1 1 ado
1+1><2+1x22+...+1x2le —2X%D[QDDSZ

Of course, this analysis assumes a random access pattern. For specific access patterns,
such as depth-first search, other clustering schemes may be better. In addition, tree modi-
fications can destroy locality. However, our experiments indicate that for trees that change

infrequently, subtree clustering is far more efficient than allocation-order clustering.

For a tree, the most heavily accessed elements are the nodes near the root of the tree.
Hence, the tree can be colored as shown in Figure 2-2 with the top levels of the tree
marked as frequently accessed elements. These elements are mapped to a unique portion

of the cache that does not conflict with the rest of the tree.

After a tree is clustered into subtrees (see Figure 2-4), the structure can be compressed
by eliminating pointers between nodes in the same cache block subtree, as shown in

Figure 2-5. Further compression, by applying structure splitting to the tree shown in

27

[| [| [
-I-I- -I-I- -I-I- -I-I-
VYV OWOYOYOWOYOYOWOY oYY
Figure 2-5. Compression by pointer elimination.

Figure 2-5 results in an object that is structurally similar to a B-tree (except for the space

in a B-tree node that is reserved for insertions).

The previous discussion showed that clustering and compressing a binary tree produces
a structure similar to a B-tree. Another approach to constructing a cache-conscious tree is
to start with a B-tree, which was originally designed as an on-disk data structure that
addresses the performance gap between memory and disk, and adapt it to an in-core struc-
ture that addresses the processor-memory performance gap. Due to the high cost of trans-
ferring data between disk and memory, B-tree nodes are sized to fit in a disk page when
completely full. Thus it seems advantageous to size an in-core B-tree node to fit in a cache

block.

We ran a microbenchmark to verify this hypothesis. The microbenchmark constructed
an in-core B-tree containing 32767 keys, where each node except for the root contained
between d and 2d keys. It then performed a million searches for randomly selected keys in
this in-core B-tree. We performed a number of experiments varying the size of d and

obtained the results shown in the graph (Figure 2-6).

The graph has a cost minimum when the in-core B-tree nodes are 96 bytes, although the
cache block size is only 64 bytes. This seemingly surprising result makes sense on closer
examination. A 96 byte in-core B-tree node implies that the node may contain 5 to 10
keys, whereas a 64 byte in-core B-tree node can contain only 3 to 6 keys. Since the cache

block size is 64 bytes, in-core B-tree nodes that contain 5 or 6 keys fit in a single cache

28

Effect of in—core B—tree node size [(12+4+(B*Number of kexls)) bytes]
bO—T 771 T T T T T 1"

40 10 keys = 96 byte in—core B—tree npde

n2
)
|
|

Execution time [(secs)
A
=
[
|

e
I
I

ooe L Uiy
0.0 40 80 1201860 20,0 24.0 28,0 32.0 36.0 40.0

Mumber of keys per node

Figure 2-6. B-tree node size.

block, and those that contain 7 to 10 keys require 2 cache blocks. Since most B-tree nodes
are not completely full, a 96 byte tree node may fit in a cache block. Even if the tree node
occupies two cache blocks, the child pointer traversed during a search may reside in the
first cache block. A larger in-core B-tree node causes less frequent node splitting, reduc-
ing the height of the tree and resulting in fewer accesses per search. Thus, this result indi-
cates that for the optimal-sized in-core B-tree node, most node accesses require only a
single cache block transfer. The occasional requirement to access an additional cache
block is more than compensated for by the reduced tree height a larger node size entails.
Hence we should size an in-core B-tree node such that the average sized node fits in a
cache block, and not the largest in-core B-tree node. This result does apply to out-of-core

B-trees due to the enormous penalty of accessing an additional disk page.

Section 2.3.2 compares the performance of this in-core B-tree (with the top tree levels

colored to reduce cache conflicts), with the subtree clustered tree discussed earlier.

2.3 Evaluation of Cache-Conscious Structure Design

This section evaluates cache-conscious trees with microbenchmarks.

29

FPerforrmance of different tree configurations

— 20.0 | I I I | i
o i ®—® Randomly clustered binary tree |
E B—® Depth—first clustered binary tree
2 O1ED 4 —%In—core B-tree —
E A—a Transparent C—trese
L
E
= 10,0
1
e
=)
i
YBD
o4
=
00 | | | | |
1 10 100 1000 10000 100000 1000000
Murber of repeated sedrches
Figure 2-7. Binary tree microbenchmark.

2.3.1 Methodology

We ran the benchmarks on a single processor of a Sun Ultraserver E5000, which con-
tained 12 167Mhz UltraSPARC processors and 2 GB of memory, running Solaris 2.5.1.
This system has two levels of blocking cache—a 16KB direct-mapped L1 data cache with
16 byte lines, and a 1 MB direct-mapped L.2 cache with 64 byte lines. An L1 data cache hit
takes 1 cycle (i.e., t; = 1). An L1 data cache miss, with an L2 cache hit, costs 6 additional
cycles (i.e., ty 1 = 6). An L2 miss typically results in an additional 64 cycle delay (i.e.,
tm 2 = 64). All benchmarks were compiled with gcc (version 2.7.1) at the -O2 optimiza-

tion level and run on a single processor of the ES000.

2.3.2 Tree Microbenchmark

The tree microbenchmark measures the performance of the cache-conscious binary
search tree described in Section 2.2.3 without compression applied, a data structure we
call a transparent C-tree. We compared its performance with an in-core B-tree, also col-

ored to reduce cache conflicts, and with random and depth-first clustered binary trees. The

30

microbenchmark does not perform insertions or deletions. The tree contained 2,097,151
keys and consumed 40 MB of memory (forty times the size of the L2 cache). Since the L1
cache block size is 16 bytes and its capacity is 16K bytes, it provides practically no clus-
tering or reuse, and hence its miss rate was very close to one. We measured the average
search time for a randomly selected element, while varying the number of repeated
searches to 1 million. Figure 2-7 shows that both B-trees and transparent C-trees outper-
form randomly clustered binary trees by up to a factor of 5, and depth-first clustered
binary trees by up to a factor of 3. Moreover, transparent C-trees outperform B-trees by a
factor of 1.5. The reason for this is that B-trees reserve extra space in tree nodes to handle
insertion gracefully, and hence do not manage cache space as efficiently as transparent C-
trees. However, we expect in-core B-trees to perform better than transparent C-trees when

trees change due to insertions and deletions.

2.4 Related Work

Database researchers long ago faced a similar performance gap between main memory
and disk speeds. They designed specialized data structures, such as B-trees, to bridge this
gap [7, 21]. In addition, databases use clustering [6, 77, 26, 9] and compression [21] to
improve virtual memory performance. Section 2.2.3 shows that the spirit of database tech-
niques carries over to in-core data structures, but different costs lead to different design

decisions.

Clustering has also been used to improve virtual memory performance of Smalltalk and
LISP systems by reorganizing data structures during garbage collection [52, 71, 82, 42,
23]. However, these studies focused on a program’s paging behavior, not its cache behav-
ior. Our work differs, not only because of the different cost for a cache miss and a page

fault, but also because cache blocks are far smaller than memory pages.

31

Thetest of scienceisits ability to predict.
Richard Feynman, The Feynman Lectures, book 11

Chapter 3

A Framework for Cache-Conscious Sructure Design

Although the cache-conscious data placement design principles discussed in the previ-
ous chapter can improve a structure’s spatial and temporal locality, their description is ad
hoc. The framework presented in this chapter addresses this difficulty by quantifying their
performance advantage. The framework permits a priori estimation of the benefits of
these design principles. Its intended use is not to estimate the cache performance of a data
structure, but rather to compare the relative performance of a structure with its cache-con-
scious counterpart. In addition, it provides intuition for understanding the impact of data

layout on cache performance.

A key part of the framework is a data structure-centric cache model that analyzes the
behavior of a series of accesses that traverse pointer-paths in pointer-based data structures.
A pointer-path access references multiple elements of a data structure by traversing point-
ers. Some examples are: searching for an element in a tree, or traversing a linked list. To
make the details concrete, this chapter applies the analytic framework to predict both the
steady-state performance and the start-up or transient performance of cache-conscious

trees. In addition, it reports on experiments to validate the model’s predictions.

32

The rest of the chapter is organized as follows. Section 3.1 presents our analytic frame-
work for characterizing the performance benefits of cache-conscious pointer structures.
Section 3.2 applies the model to analyze the steady-state performance of cache-conscious
trees. Section 3.3 analyzes their transient or start-up behavior. Section 3.4 discusses exper-
iments to validate the model’s predictions via microbenchmarks. The chapter concludes

with a brief discussion of related work.

3.1 Analytic Framework

This section discusses our analytic framework for characterizing the performance of

cache-conscious pointer structures.

3.1.1 Analytic Model

For a two-level blocking cache configuration, the expected memory-access time for a

pointer-path access to an in-core pointer-based data structure is given by
tmemory = (th + M1 Xty 1 + Mg X Mo Xty 2) X (Memory References)
t: level 1 cache access time
My 1, M| »: miss rates for the level 1 and level 2 caches respectively
t 1, U2t miss penalties for the level 1 and level 2 caches respectively

A cache-conscious data structure should minimize the expected value of this memory
access expression. Since miss penalties are determined by hardware, design and layout of
a data structure can only attempt to minimize its miss rate. We now develop a simple
model for computing a data structure’s miss rate. Since a pointer-path access to a data
structure can reference multiple structure elements, let m(i) represent the miss rate for the
i-th pointer-path access to the structure. Given a sequence of p pointer-path accesses to the

structure, we define the amortized miss rate, denoted by my(p), as

33

p
S m(i)
mg(p) = i=1
p
For a long, random sequence of pointer-path accesses, this amortized miss rate can be
shown to approach a steady-state value, Mg (in fact, the limit exists for all but the most

pathological sequence of values for m(i)). We define the amortized steady-state miss rate,

denoted by mg, as

ms = lim ma(p)
p — 00

We examine this amortized miss rate for a cache configuration C=< ¢, b, a >, where C is
the cache capacity in sets, b is the cache block size in bytes, and a is the cache associativ-
ity. Consider a pointer-based data structure consisting of n homogenous elements, sub-
jected to a random sequence of pointer-path accesses of the same type. Let D be a pointer-
path access function that represents the average number of unique references required to
access an element of the structure. D depends on the data structure and the type of pointer-
path access. If the pointer-path accesses are not of the same type, D additionally depends
on the distribution of the different access types. For example, D is logy(n+1) for a key
search on a complete, balanced binary search tree of n elements. Let the size of an individ-
ual structure element be €. If e < b, then [b/e[Jis the number of structure elements that fit
in a cache block. Let K represent the average number of structure elements residing in the
same cache block that are required for the current pointer-path access. K is a measure of a
data structure’s spatial locality for the access function D. From the definition of K it fol-

lows that

34

For the i-th pointer-path access, let R(i) represent the number of elements of the data

structure required for the current pointer-path access that are already present in the cache

because of prior accesses. R(i) is the number of elements that are reused during the i-th

pointer-path access, and is a measure of a data structure’s temporal locality. From the def-
inition of R(i) it follows that

0sR(i)<minElk3chxa, DE
e

With these definitions, the miss rate for a single pointer-path access can be written as

m(i) = (number of cache misses) / (total references)

DDR() | pR0)

. K _ D
m(i) O D K

The reuse function R(i) is highly dependent on i, for small values of i, because initially,

a data structure suffers from cold start misses. However, one is often interested in the
steady-state performance of a data structure once start-up misses are eliminated. If a data
structure is colored to reduce cache conflicts (see Section 2.2.2), then R(i) will approach a
constant value Ry when this steady state is reached. Since D and K are both independent of
I, for a large, random sequence of pointer-path accesses p, all of the same type, the amor-
tized steady-state miss rate Mg of a data structure can be approximated by its amortized
miss rate my(p) as follows

Y

z m(i) b Rs

_ =1 D
ms~ma(p)||argep p K

0

This equation can be used to analyze the steady-state behavior of a pointer-based data

structure, and the previous equation to analyze its transient start-up behavior.

35

(t + (M Dyaige Xt TMp g xmp,) o Xt)
Cache D conscious Speedup = h Naive M, Naive M.,

(th (M) o X b, H ML XM) oo)

Figure 3-1. Cache-conscious speedup.

3.1.2 Speedup Analysis

The cache performance model given in the previous section shows that a pointer-based
data structure’s miss rate can be decreased in three ways—increasing K, increasing R, or
decreasing D. Decreasing D is not always possible if the data structure has been optimized
for a uniform-cost memory system, while the cache-conscious design techniques increase
K and R. K can be increased by intelligently clustering data structure elements into cache
blocks. K can also be increased by compressing data structure elements, which also per-
mits greater clustering of elements. Techniques that increase K also increase R, since data
structure compression, as well as smarter clustering, make more efficient use of the cache
and increase the likelihood of a structure element being re-referenced before being
replaced. In addition, R can be increased by judiciously coloring data structure elements to

reduce cache conflicts.

We use the model to derive an equation in terms of cache miss rates for the speedup that
results from applying cache-conscious techniques to a pointer-based data structure. This
metric is desirable, as speedup is often more meaningful than cache miss rate, and is easier

to measure.

Cache-conscious speedup = (tmemory)Naive / (tmemory)Cache-conscious

When only the structure layout is changed, the number of memory references remains

the same and the equation reduces to that in Figure 3-1.

36

t,.+t +1t
(h M, mLZ)

(th + (le)cc % tle * (le % mLz)cc x tmu)

Best case Cacheb conscious Speedup =

Figure 3-2. Best-case cache-conscious speedup.

In the worst case, with pointer-path accesses to a data structure that is laid out naively, K
=1 and R= 0 (i.e., each cache block contains a single element with no reuse from prior
accesses) and (M 1)naive = (M 2)Naive = 1- Thus, the best-case cache-conscious speedup

reduces to that in Figure 3-2.

3.2 Model Application: Steady-Sate Analysis

This section demonstrates how to calculate the steady-state performance of a cache-con-

scious tree (see Section 2.2.3) subjected to a series of random key searches.

3.2.1 Cache-Conscious Trees

Consider a complete, balanced binary tree of n nodes. Let the size of a node be e words.
If the cache block size is b words and e < b, up to [(B/e[Inodes can be clustered in a cache
block. Let subtrees of size k = [/e[lnodes fit in a cache block. The tree is colored so that
the top (¢/2 x b/elIx a) nodes of the tree map uniquely to the first ¢/2 sets of the cache
with no conflicts, and the remaining nodes of the tree map into the next ¢/2 sets of the

cache (other divisions of the cache are possible).

Coloring subtree-clustered binary trees ensures that, in steady-state, the top (c/2 x b/e[]
X @) nodes are present in the cache. A binary tree search examines |0g,(n+1) nodes, and in
the worst-case (random searches on a large tree approximate this), the first log,((c/2 x b/
elIx a)+ 1) nodes will hit in the cache, and the remaining nodes will miss. Since subtrees of
size kK = [b/e[lnodes are clustered in cache blocks, a single cache block transfer brings in

log,(k+ 1) nodes that are needed for the current search. If the number of tree searches is

37

log2(0/2 xkxa+1)
1D
(10g2(n+ b log2(0/2 xkxa+ 1))/(log2(k+ 1)) logz(n+ 1)
s log,(n+1) - log,(k+1)

Figure 3-3. Cache-conscious binary tree.

large, we can ignore the start-up behavior and approximate the data structure’s perfor-

mance by its amortized steady-state miss rate.

From the above discussion, we have K = |log,(k+1) and Rg=10g,(c/2 x kx a + 1). That
is, cache-conscious trees have logarithmic spatial and temporal locality functions, which
intuitively appear to be the best attainable, since the access function itself is logarithmic.

Applying the steady-state miss rate equation, we get the result shown in Figure 3-3.

3.3 Model Application: Transient Analysis

In this section, we demonstrate how amortized analysis [73] can be applied to our cache

model to compute the transient or start-up behavior of cache-conscious trees.

Amortized analysis, which averages the cost of a sequence of operations, is a powerful
technique for the complexity analysis of data structures. In many cases, a worst-case anal-
ysis, in which the worst-case times of individual operations is summed, is overly pessimis-
tic, as it ignores correlated effects of the operations on the data structure. In such a
situation, an amortized analysis, in which the running time per operation over a (worst-

case) sequence of operations is averaged, can yield an answer that is more realistic.

The combination of a sequence of accesses to a data structure and the presence of a
cache results in correlation between different accesses. We adapt amortized analysis to
this situation and use the aggregate method of amortized analysis to compute worst-case
bounds for the cache-performance parameters, K and R. Using the aggregate method, we
show that a sequence of pointer-path accesses 0, has a total worst-case cost T, for any O.

Thus, in the worst case, the amortized cost per pointer-path access is T4/|0].

38
3.3.1 Cache-Conscious Trees

To demonstrate this technique, we apply the model to analyze the cache performance of
a series of searches on a complete binary tree. To simplify matters, assume the cache con-
figuration to be a fully-associative, blocking cache of infinite capacity, where the cache
block size is b words. For such a cache configuration, the cost of a binary tree search can

be reduced by intelligently clustering tree nodes in cache blocks.

Consider a complete binary tree of n nodes. Let the size of a node be € words. If the
cache block size is b words, up to [b/e[lnodes of the tree can be clustered in a cache block.
To simplify calculations, let us assume that k = [b/ellis of the form 2" — 1. This allows
complete subtrees of the appropriate size to fit in a cache block. Let us additionally
assume that logy(k+1) is a factor of logy(n+1). This permits a division of the complete
binary tree into complete binary subtrees. We cluster the binary tree into subtrees and
place these in cache blocks. To do this we recursively divide the tree into subtrees contain-
ing [b/elInodes, starting at the root, as shown in Figure 2-4. All the assumptions made

here are solely to simplify the calculations, and do not affect the generality of the analysis.

Now let us consider a series of i worst-case searches on this subtree clustered binary
tree, where i < (n+1) / (k+1). To simplify matters, we assume that i is a power of (k+1).
We use the term worst-case search to imply that each successive search has minimal cor-
relation with elements accessed during the previous searches. Since the cache configura-
tion is fully-associative and has infinite capacity, this greedy worst-case approach is in
fact the worst-case when all sequences are considered. The first search accesses |og,(n+1)
elements, all of which miss in the cache, and this corresponds to 109 1y(n+1) cache
block misses. The second “worst-case” search accesses 10go(n+1) elements, all of which

miss in the cache, except for the first logy(k+1) elements, which were brought in by the

39
previous access, resulting in Iog(k+ 1)(n+ 1) — 1 cache block misses, and so on for each suc-

ceeding access. Thus we have
Pointer Path Access Cache Misses

2...(k+1) - logy)(n+1)b1
(k+1)+1..(k+1)° = logg, y(n+1)D2

log)i D1

(k+1) tlo.d - logyy p(n+1)Dlogg.,

Summing up the Lh.s. and r.h.s., we have

Total Number of Connected Accesses Total Number of Cache Misses

i - ilog(k+1)(n+1)DT

10g(k+1)(i)D 1

T = K(1+2x (k+ 1)+ ... +logge, i x (k+ 1))

Now the series §, has the closed form

nD1 _ nanD(n+ 1)x"+ 1
(xD 1)

Sn = 1+2x+3x2+...+nx

Using this to evaluate T, with (k+ 1) replacing X and 10gy+ 1)i replacing n, we have

(iD1)

T =ixlogy,)i b ”

%Og(kﬂ)i xix(k+1)D(logg, yi + 1) xi+ 1%
O k2 0

T=Kk

40
Back-substituting for T and calculating the amortized number of cache misses per con-

nected access (i.e., cache misses / 1), we have
(ibl)
i xk

I - log l)(n+ 1)b log i+ 1)i +

The last term in this is negligible, and thus the expression can be rewritten as

dogz(n +1)b logziD

1 -0q log,(k+1) O

Now for a binary tree search, D = logy(n+1) for a single pointer path access. Then

oo
00 T

: og,(n
Missb Rate = CacheMisses _ o5 B2 0
References 0 log,(k+1)
0 W

Comparing this with the transient miss rate equation, we have
K = O(log,(k+1))

R(i) = O(log,i)

Similar analysis can be performed for alternative tree layouts or designs.

3.4 Model Validation

This section addresses the question of how well this model predicts performance. Two
aspects are addressed. First, we show that the individual techniques of cache-conscious
design and layout correspond to the model. Second, we show that the model has good pre-
dictive power, underestimating the actual performance improvement by not more than
15%, and accurately predicting the shape of speedup curves. Some reasons for this sys-
tematic underestimation might be a lower L1 cache miss rate (assumed 1 here) and TLB

performance improvements not captured by our model.

41

5(I3_|ustering compdarison (3 tree nodes per cache blocQ

=

=
o

Cache—-Caonscious Speedup

0.0

Depth—first Depth first Subtree Subtree
clustermc% flus er5ng Elustermg cluster|r‘5g
ual

(predicte actual predicted) (act

Figure 3-4. Predicted and actual effects of clustering.

The experimental setup is the same as before (see Section 2.3.1). The tree microbench-
mark is used for the experiments of 1 million repeated searches for randomly generated

keys in a tree containing 2,097,151 keys with 3 tree nodes in a cache block.

First, we used the model to compare the performance benefits of subtree and depth-first
clustering of trees and validated its predictions against real executions. In both cases, tree
nodes were not colored to reduce cache conflicts, so all performance improvement is due
to clustering. As noted previously, the L1 cache miss rate for this large tree is likely to be
very close to 1. The L2 miss rate for the subtree-clustered tree is 1/l0og,(3+1) = 0.5. The
L2 miss rate for the depth-first clustered tree is 1/(2(1-0.125)) = 0.571. Using these miss
rates in the equation for best-case cache-conscious speedup (see Figure 3-2), we obtained
the predictions shown in Figure 3-4. The model underestimates the speedup for both clus-

tering techniques by only 8-9%.

To validate the model’s prediction of the benefit of coloring, we varied the number of

tree nodes that are uniquely mapped to a region of the cache from 384 (one 8K page’s

42

Calaring

D_\?),CIH T IIIIIII| T IIIIIII| T IIIIIII=
- ®—® Predicted Speedup
§ - B Actual Speedup 1
0
w 2.5 - |
o}
=
o
2 . |
[
o
T 2.0 |
L
iy
U - =
=
[

1(5“ | IIIIIII| | IIIIIII| | IIIIIIIu

100 1066 10006 106000
Number of tree nodes uniguely mapped to cache
Figure 3-5. Predicted and actual effects of coloring.

worth) to 64 x 384 (half the L2 cache capacity). Although colored, tree nodes were not
clustered, so the performance benefits are attributable to the coloring. The model predicts
the L2 miss rate to be 1 — (logy(nodes uniquely mapped+1)/logy(total nodes+1)).
Figure 3-5 shows that the model underestimates the improvement by only 8-14% and

accurately predicts the shape of the speedup curve.

Finally, we applied the model to predict the performance advantage of transparent C-
trees, which use both subtree clustering and coloring. For the experiments, subtrees of size
3 were clustered in a single cache block and 64 X 384 tree nodes (half the L2 cache capac-
ity as 384 nodes fit in a 8K page) were colored into a unique portion of the L2 cache. The
tree size was also increased from 262,144 to 4,194,304 nodes. The results are shown in
Figure 3-6. As the graph shows, the model underestimated the actual speedup by only
15% and accurately predicted the shape of the curve.

3.5 Related Work

Several other cost models have tried to capture the hierarchical nature of memory sys-

tems. The Uniform Memory Hierarchy (UMH) model of Alpern et al. models memory as

43

Cache—conscious speedup for different tree sizes
=l 7.0 n T T T T T T 17T | T T T T LI I=

?3 6.5 - &®----@ Predicted speedup -
= +— Actual speedup
555 |
2
» 5.0 - —
—
C 45 .. —
i e
= 40 - ® —
]
3 35 -]
3'0 “ 1 1 | 1 | 111 | | | | 1 1 11 Iu
10° 10° 107
Tree size
Figure 3-6. Predicted and actual speedup for C-trees.

a sequence of increasingly large modules <M, My,... >, in which each module M,,, is rep-
resented with 3 parameters, <s,, N, |~ [5]. Intuitively, M, is a box that holds n, blocks,
each of size S, and |, is the latency for transferring this block to the next level of the hier-
archy. The UMH model assumes that the ratio of n, to S, is the same for all modules, the
ratio of S, to Sy.1 is a constant, and that the transfer cost between levels of the hierarchy
can be represented by one function, f(u). This model is closely related to the Hierarchical
Memory Model (HMM) [2], and the Block Transfer model (BT) [3]. Each model is a fam-
ily of machines parameterized by a function that represents the cost of accessing data. An
HMMT{(X) is a RAM machine where referencing the k-th memory location costs f(k). For a
BTf(x) machine, referencing the k-th memory location costs f(k) as well. However, a block
of length | starting at location K can be transferred at cost f(k) + |. The HMM model does
not take spatial locality into account and, like the BT model, only permits one data transfer
at a time, whereas the UMH model allows separate data blocks to be transferred simulta-
neously between different memory modules. To date, these models have only been
applied to problems, such as matrix multiplications and FFT, in which the computation is

oblivious to data values. Our model is more limited in scope and focuses on the cache

44
behavior of in-core, pointer-based data structures, but addresses non-oblivious computa-

tions.

Researchers have also used empirical models of program behavior [4, 63, 70] to analyze
cache performance [59, 66, 31]. These efforts tailor the analysis to specific cache parame-
ters, which limits their scope. Two exceptions are Agarwal’s comprehensive cache model
[1] and Singh’s model [65]. Agarwal’s model uses a large number of parameters, some of
which appear to require measurements to calibrate. He provides performance validation
that shows that the model’s predictions are quite accurate. However, the model’s com-
plexity, reflected in the large number of parameters makes it difficult to gain insight into
the impact of different cache parameters on performance. Singh presents a technique for
calculating the cache miss rate for fully associative caches from a mathematical model of
workload behavior. His technique requires fewer parameters than Agarwal’s model, but
again measurements appear necessary to calibrate them. The model’s predictions are accu-
rate for large, fully associative caches, but are not as good for small caches. Hill proposed
the simple 3C model, which classifies cache misses into three categories—compulsory,
capacity, and conflict [29]. The model provides an intuitive explanation for the causes of
cache misses, but it lacks predictive power. These models focus on analyzing and predict-
ing a program’s cache performance, while we focus on the cache performance with

respect to (sequences of) operations on individual in-core pointer structures.

Lam et al. [43] developed a theoretical model of data conflicts in the cache and analyzed
the implications for blocked array algorithms. They showed that cache interference is
highly sensitive to the stride of data accesses and the size of blocks, which can result in
wide variation in performance for different matrix sizes. Their cache model captures loop
nests that access arrays in a regular manner, while our model focuses on a sequence of

pointer-path accesses to an in-core pointer-based data structure.

LaMarca and Ladner explored the interaction of caches and sorting algorithms [44, 45].

In addition, they constructed a cache-conscious heap structure that clustered and aligned

45

heap elements. Their “collective analysis” models an algorithm’s behavior for direct-
mapped caches and obtains accurate predictions. Their framework relies on the “indepen-
dence reference assumption” [4], and is algorithm-centric, whereas ours is data structure-
centric, and specifically targets correlations between multiple accesses to the same data

structure.

46

Nothing of him that doth fade
But doth suffer a sea-change
Into something rich and strange.
—Shakespeare, The Tempest

Chapter 4

Cache-Conscious Structure L ayout

As the previous chapter showed, careful design of data structures provides a mechanism
to improve the cache locality of pointer manipulating programs, and consequently their
performance. However, cache-conscious data structure design requires detailed knowl-
edge of a program’s code and data structures, familiarity with the architecture of the target

machine, and considerable programmer effort.

These costs may limit the use of cache-conscious data structures to performance critical
portions of code written by expert programmers, much like assembly programming is used
today. To make the performance benefits of cache-conscious structures available to the
average programmer, we explore two strategies—cache-conscious reorganization and
cache-conscious allocation—for facilitating the creation of cache-conscious pointer struc-
ture layouts. In addition, to make these discussions concrete and demonstrate the feasibil-
ity of this approach, we describe two semi-automatic tools—ccnorph and
ccmal | oc—that embody these strategies. Measurements show that the cache-conscious

data layouts produced by ccnor ph and ccrmal | oc produce large performance benefits.

47

Cache-conscious reorganization can utilize structure topology or profiles of data-access
patterns to transform pointer structure layouts. This chapter discusses the use of structure
topology to produce cache-conscious structure layouts. The next chapter explores the use
of program profiles for this purpose. The topology approach to structure reorganization is
incorporated in a utility—ccnor ph—that reorganizes tree-like structures, such as trees,
lists, and chained hash tables, by clustering and coloring the structure as described in

Chapter 2.

Cache-conscious allocation improves conventional heap allocation by attempting to co-
locate contemporaneously accessed data elements in the same physical cache block. The

chapter discusses ccmal | oc, a memory allocator that implements this strategy.

Both of these tools require little effort and understanding on the part of a programmer.
To use ccnor ph, a programmer need only supply a function used to traverse the data
structure. In the case of ccrmal | oc, a programmer must only specify an additional argu-
ment to each call to mal | oc—a pointer to a structure element likely to be in use contem-

poraneously with the one to be allocated.

Our experimental evaluations demonstrate the performance benefits of these approaches
to cache-conscious data placement. For some pointer-intensive programs in the Olden
benchmark suite [60], semi-automatic cache-conscious data placement improves perfor-
mance by 28—194%, and even outperformed state-of-the-art software prefetching by 3%—
194%. We also applied the techniques to full application programs: RADIANCE [80], a
widely used ray-tracing program, ran 42% faster, and VIS [10], a model-verification pack-
age, improved by 27%. Significantly, applying ccmal | oc to the 160,000 line VIS code

required little understanding of the application, and took only a few hours.

The rest of the chapter is organized as follows. Section 4.1 explores cache-conscious
data reorganization and describes ccnor ph. Section 4.2 investigates cache-conscious

heap allocation and discusses ccmal | oc. Section 4.3 evaluates the performance benefits

48
of our approaches to producing cache-conscious structure layouts. Finally, Section 4.4

briefly discusses related work.

4.1 Cache-Conscious Data Reor ganization

The elements of a data structure are typically allocated with little concern for a memory
hierarchy. The resulting layout may interact poorly with the program’s data-access pat-
terns, thereby causing unnecessary cache misses and reducing performance. Cache-con-
scious data reorganization addresses this problem by changing a structure’s layout to
correspond to its access pattern. General graph-like structures require a detailed profile of
a program’s data access patterns for successful data reorganization [12, 20]. However, a
very important class of structures (trees) possess topological properties that permit cache-
conscious data reorganization without profiling. This section presents a transparent
(semantics-preserving) cache-conscious tree reorganizer (CCnor ph) that applies the clus-

tering and coloring techniques described in Chapter 2.

Reorganization is appropriate for “read-mostly” data structures—one that are built early
in a computation and subsequently heavily referenced. With this approach, neither the
construction nor the consumption code need change, as the structure can be reorganized
between the two phases. Moreover, if the structure changes slowly, ccnor ph can be peri-

odically invoked.

4.1.1 ccmorph

In a language such as C, which supports unrestricted pointers, analytical techniques can-
not precisely identify all pointers to a structure element. Without this knowledge, a system
cannot move or reorder data structures without an application’s cooperation (as it can in a
language designed for garbage collection [20]). However, if a programmer guarantees the
safety of the transformation, ccnor ph transparently reorganizes a tree data structure to

improve its locality by applying the clustering and coloring techniques from Section 2.2.3.

49
mai n()

root = naketree(4096, ..., ...);

ccnor ph(root, next_node, Num nodes,

Max_ki ds, Cache_sets, Cache_ bl k_size,
Cache_associativity, Color_const);

}

Quadtree next _node(Quadtree node, int i)

/* Valid values for i are -1,
1 ... Max_kids */
switch(i){
case -1:
return(node->parent);
case 1:
return(node->nw) ;
case 2:
ret urn(node- >ne) ;
case 3:
return(node->sw);
case 4:
return(node->se);

Figure 4-1. ccnor ph: Transparent cache-conscious data reorganization.

ccnor ph operates on tree-like structures that have homogeneous elements and do not
have external pointers into the middle of the structure (or on any data structure that can be
decomposed into components satisfying this property). However, it has a liberal definition
of a tree in which elements may contain a parent or predecessor pointer. A programmer
supplies ccnor ph with a pointer to the root of a data structure, a function to traverse the
structure, and cache parameters. For example, Figure 4-1 contains the code used to reorga-
nize the quadtree data structure in the Olden benchmark perimeter. The programmer sup-

plies the next_node function.

50

1
, \ Cache
Memor
Y Empty
4
5
Figure 4-2. Cache-conscious tree reorganization.

ccnor ph copies a structure into a contiguous block of memory (or a number of contig-
uous blocks for large structures). In the process, it partitions a tree-like structure into sub-
trees that are laid out linearly (see Figure 4-2). The structure is also colored to map the
first p elements traversed to a unique portion of the cache (determined by the Color_const
parameter) that will not conflict with other structure elements. ccnor ph determines the
values of p and the size of subtrees from the cache parameters and the structure element
size. In addition, it takes care to ensure that the gaps in the virtual address space that

implement coloring correspond to multiples of the virtual-memory page size.

The effectiveness of ccnor ph is discussed in Section 4.3.

51
4.2 Cache-Conscious Heap Allocation

Although ccnor ph requires little programming effort, it currently only works for tree-
like structures whose elements can be moved. In addition, incorrect usage of ccror ph
can affect program correctness. A complementary approach, which also requires little pro-
gramming, is to perform cache-conscious data placement when elements are allocated. In
general, a heap allocator is invoked many more times than a data reorganizer, so it must
use techniques that incur low overhead. Another difference is that data reorganizers oper-
ate on entire structures with global techniques, such as coloring, whereas a heap allocator
has an inherently local view of the structure. For these reasons, our cache-conscious heap
allocator (ccrmal | oc) only performs local clustering. ccrmal | oc is also safe, in that

incorrect usage only affects program performance, but not correctness.

4.2.1 ccmalloc

ccmal | oc is a memory allocator similar to mal | oc, but ccmal | oc takes an addi-
tional parameter that points to an existing data structure element likely to be accessed con-
temporaneously with the element to be allocated (e.g., the parent of a tree node).
ccmal | oc attempts to locate the new data item in the same cache block as the existing
item. Figure 4-3 contains code from the Olden benchmark health that illustrates the
approach. Our experience with ccmal | oc indicates that a programmer unfamiliar with
an application can sometimes select a suitable parameter by local examination of code sur-

rounding the allocation statement and obtain good results (see Section 4.3).

In a memory hierarchy, different cache block sizes means that data can be co-located in
different ways. ccmal | oc focuses only on L2 cache blocks. In our system (Sun UltraS-
PARC 1), L1 cache blocks are only 16 bytes (L2 blocks are 64 bytes), which severely lim-
its the number of objects that fit in a block. Moreover, the bookkeeping overhead in the
allocator is inversely proportional to the size of a cache block, so larger blocks are both

more likely to be successful and to incur less overhead. On a system with a larger L1

52

voi d addLi st (struct List *list, struct Patient *patient)

{
struct List *b;
while (list !'= NULL){
b =1ist;
list = list->forward;
list = (struct List *)
ccrmal | oc(si zeof (struct List), b);
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = I|ist;
}
Figure 4-3. ccmal | oc: Cache-conscious heap allocation.

cache block it would probably be advantageous to adopt a hierarchical approach with co-
location first attempted in the same L1 cache block. If that fails the subsequent co-location

attempt could be in the same L.2 cache block.

An important issue is where to allocate a new data item if a cache block has insufficient
space. ccmal | oc tries to put the new data item as close to the existing item as possible.
Putting the items on the same virtual-memory page is likely to reduce the program’s work-
ing set, thereby improving TLB performance by exploiting the strong hint from the pro-
grammer that the two items are likely to be accessed together. Moreover, putting them on
the same page ensures they will not conflict in the cache. There are several possible strate-
gies to select a block on the page. The closest strategy tries to allocate the new element in
a cache block as close to the existing block as possible. The new-block strategy allocates
the new data item in an unused cache block, optimistically reserving the remainder of the
block for future calls on ccmal | oc. The first-fit strategy uses a first-fit policy to find a

cache block that has sufficient empty space. The next section evaluates these strategies.

53
4.3 Evaluation of Cache-Conscious Data Placement

To evaluate our cache-conscious placement techniques, we use two large, real-world
applications. In addition we performed detailed, cycle-by-cycle simulations on four
benchmarks from the Olden suite to break down where the time is spent. The macrobench-
marks were a 60,000 line ray-tracing program and a 160,000 line formal-verification sys-

tem. The Olden benchmarks are a variety of pointer-based applications written in C.

4.3.1 Methodology

We ran the benchmarks on a Sun Ultraserver E5000. The machine configuration is
described in Section 2.3.1. All benchmarks were compiled with gcc (version 2.7.1) at the -

02 optimization level and run on a single processor of the ES000.

4.3.2 Macrobenchmarks

We studied the impact of cache-conscious data placement on two real-world applica-
tions. RADIANCE is a tool for modeling the distribution of visible radiation in an illumi-
nated space [80]. Its input is a three-dimensional geometric model of the space. Using
radiosity equations and ray tracing, it produces a map of spectral radiance values in a color
image. RADIANCE’s primary data structure is an octree that represents the scene to be
modeled. This structure is already highly optimized. The program uses implicit knowl-
edge of the structure’s layout to eliminate pointers, much like an implicit heap, and it lays
out this structure in depth-first order (consequently, it did not make sense to use ccnal -
| oc in this case). We changed the octree to use subtree clustering and colored the data
structure to reduce cache conflicts. The performance results include the overhead of

restructuring the octree.

VIS (Verification Interacting with Synthesis) is a system for formal verification, synthe-
sis, and simulation of finite-state systems [10]. VIS synthesizes finite-state systems and/or

verifies properties of these systems from Verilog descriptions. The fundamental data

54

- Base
Clusterng
Clustering + Coloring
m MNew—block cache—concious heap alloocrtor_l

106 | {1953% {180}

2o | {1551 {150)
{13753

Bo — —

40 |- _

Normalized Execution Time

20 - —

[l o =y
RADIANCE VIS

Figure 4-4. RADIANCE and VIS Applications. Actual execution times above each bar.

structure used in VIS is a multi-level network of latches and combinational gates, which is
represented by Binary Decision Diagrams (BDDs). Since BDDs are DAGs, ccnor ph
cannot be used. However, we modified VIS to use our cchal | oc allocator with the new-

block strategy (since it consistently performed well, see Section 4.3.3).

Figure 4-4 shows the results: Cache-conscious clustering and coloring produced a
speedup of 42% for RADIANCE, and cache-conscious heap allocation resulted in a
speedup of 27% for VIS. The result for VIS demonstrates that cache-conscious data place-
ment can even improve the performance of graph-like data structures, in which data ele-
ments have multiple parents. Significantly, very few changes (less than three hundred
lines of code) to these 60—160 thousand line programs produced large performance
improvements. In particular, the modifications to VIS were accomplished in a few hours,

with little understanding of the application.

4.3.3 Olden Benchmarks

We performed detailed, cycle-by-cycle uniprocessor simulations of the four Olden
benchmarks [60] using RSIM [54] to break down where the time is spent. RSIM is an exe-

cution-driven simulator that models a dynamically-scheduled, out-of-order processor sim-

55

Issue Width

4

Functional Units

2 Int, 2 FP, 2 Addr. gen., 1 Branch

Integer Multiply, Divide

3, 9 cycles

All Other Integer

I cycle

FP Divide, Square Root

10, 10 cycles

All Other FP

3 cycles

Reorder Buffer Size

64

Branch Prediction Scheme

2-bit history counters

Branch Prediction Buffer Size

512

L1 Data Cache

16 KB, direct-mapped, dual ported, write-through

Write Buffer Size

8

L2 Cache

256 KB, 2-way set associative, write-back

Cache Line Size

128 bytes

L1 hit I cycle
L1 miss 9 cycles
L2 miss 60 cycles
MSHRs L1, L2 (# of outstanding | 8, 8

misses)

Table 4.1: Simulation Parameters.

ilar to the MIPS R10000. Its aggressive memory hierarchy includes a non-blocking,
multiported, and pipelined L1 cache, and a non-blocking and pipelined L2 cache.

Table 4.1 contains the simulation parameters.

Table 4.2 describes the four Olden benchmarks. We used the RSIM simulator to perform
a detailed comparison of our semi-automated cache-conscious data placement implemen-
tations—ccnor ph (clustering only, clustering and coloring), and ccrmal | oc (closest,

first-fit, and new-block strategies)—against other latency reducing schemes, such as hard-

56

— Main Pointer- Memory
Name Description Sructures Input Data Set Allocated
Tree- Sums the values stored in | Binary tree 256 K nodes 4 MB

Add tree nodes
Health | Simulation of Colombian | Doubly linked | max. level = 3, 828 KB

health care system lists max. time =3000
Mst Computes minimum Array of sin- 512 nodes 12 KB
spanning tree of a graph | gly linked lists
Perim- | Computes perimeter of Quadtree 4K x 4K image | 64 MB
eter regions in images

Table 4.2: Benchmark characteristics.

ware prefetching (prefetching all loads and stores currently in the reorder buffer) and soft-
ware prefetching (we implement Luk and Mowry’s greedy prefetching scheme [50] by
hand).

Figure 4-5 shows the results. Execution times are normalized against the original, unop-
timized code. We used a commonly applied approach to attribute execution delays to vari-
ous causes [55, 61]. If, in a cycle, the processor retires the maximum number of
instructions, that cycle is counted as busy time. Otherwise, the cycle is charged to the stall-

time component corresponding to the first instruction that could not be retired.

Treeadd and perimeter both create their pointer-based structures (trees) at program start-
up and do not subsequently modify them. Although cache-conscious data placement
improves performance, the gain is only 10-20% because structure elements are created in
the dominant traversal order, which produces a “natural” cache-conscious layout. How-
ever, all cache-conscious data placement implementations outperform hardware prefetch-
ing, are competitive with software prefetching for treeadd, and outperform both software
and hardware prefetching for perimeter. The ccmal | oc-new-block allocation policy

requires 12% and 30% more memory than closest and first-fit allocation policies, for tree-

57

Buisy B - Base

Tstdst?”” HP - H/W prefetch
> sac s SP - S/W prefetch
" A store stall - cemal | oc:
100 HP _ | FA - First-fit allocator
w " CA - Closest allocator
g B mE=F - . NA - New-block
e = Lel 1| - allocator
5 ccnor ph:
= i 1 Cl - Clustering only
T B0 Cl+Col - Clustering
i and coloring
— [|
L
40
=
= i i
(=]
= 20
0 :
Treeadd Health kst Perirmeter
Figure 4-5. Performance of cache-conscious data placement.

add and perimeter, respectively (primarily due to leaf nodes being allocated in new cache
blocks).

Health’s primary data structures are linked lists, to which elements are repeatedly added
and removed. The cache-conscious version periodically invoked ccnor ph to reorganize
the lists (no attempt was made to determine the optimal interval between invocations).
Despite this overhead, ccnor ph significantly outperformed both software and hardware
prefetching. Not surprisingly, the ccrmal | oc-new-block allocation strategy, which left
space in cache blocks to add new list elements, outperformed the other allocators at a cost

of 7% additional memory.

Mst’s primary data structure is a hash table that uses chaining for collision resolution. It
constructs this structure at program start-up and it does not change during program execu-
tion. As for health, the ccrmal | oc-new-block allocator and ccnor ph, significantly out-
performed other schemes. ccnor ph’s coloring did not have much impact since the lists
were short. However, with short lists and no locality between lists, incorrect placement
incurs a high penalty. The ccmal | oc-new-block allocator significantly outperformed

both first-fit and closest allocation schemes at a cost of only 3% extra memory.

58

Source
: Data Program | Architectural Code Perfor-
Technique e
Structures | Knowledge | Knowledge M odifi- mance
cation
CC Design | Universal | High High Large High
ccnor ph Tree-like Moderate Low Small Moderate—
High
ccmal | oc | Universal | Low None Small Moderate—
High

Table 4.3: Summary of cache-conscious data placement techniques.

In summary, ccnor ph outperformed hardware and software prefetching schemes for
all benchmarks, resulting in speedups of 28—138% over the base case, and 3—138% over
prefetching. With the exception of treeadd, the ccrmal | oc-new-block allocation strategy
alone produced speedups of 20—194% over prefetching. In addition, the ccnal | oc-new-
block allocator compares favorably with the other allocations schemes, with low memory
overhead (with the exception of perimeter). To confirm that this performance improve-
ment is not merely an artifact of our ccmal | oc implementation, we ran a control exper-
iment where we replaced all ccmal | oc parameters by null pointers. The resulting

programs performed 2%—6% worse than the base versions that use the system mal | oc.

4.3.4 Discussion

Table 4.3 summarizes the trade-offs among the cache-conscious data placement tech-
niques. While incorrect use of ccnor ph can affect program correctness, misapplying
ccmal | oc will only affect program performance. In addition, the techniques in this
chapter focus primarily on single data structures, though ccmal | oc can co-locate ele-
ments from different structures. Real programs, of course, use multiple data structures,

though often references to one structure predominate. Our techniques can be applied to

59
each structure in turn to improve its performance. The next chapter considers interactions

among different structures.

Our cache-conscious structure layout techniques place contemporaneously accessed ele-
ments in the same cache block. While this will always improve cache performance on uni-
processors, for multiprocessor systems it depends on whether the data items are accessed
by same processor or by different processors. In the latter case, co-locating the data ele-

ments could exacerbate false-sharing.

4.4 Related Work

Seidl and Zorn combined profiling with a variety of different information sources
present at the time of object allocation to predict an object’s reference frequency and life-
time [64]. They showed that program references to heap objects are highly predictable.
These studies focused on a program’s paging behavior, not its cache behavior. Our work
differs, not only because of the vast difference in cost between a cache miss and a page

fault, but also because cache blocks are far smaller than memory pages.

Calder et al. [12] applied placement techniques developed for instruction caches [29, 58,
51] to data. They used a compiler-directed approach that creates an address placement for
the stack (local variables), global variables, heap objects, and constants in order to reduce
data cache misses. Their technique, which requires a training run to gather profile data,
shows little improvement for heap objects but significant gains for stack objects and glo-
bals. By contrast, we provide techniques and tools for cache-conscious layout of heap-
allocated structures that produce significant improvement without profiling. In addition,
they used an entirely different allocation strategy, based on a history of the previously
allocated object, rather than the programmer-supplied hint that ccral | oc uses to co-

locate objects.

60

Above all things, keep clean.

It isnot necessary to be a

pig in order to raise one.

—R. G Ingersoll, About Farming in Illinois

Chapter 5

Using Garbage Collection to Optimize Data L ayout

Chapter 4 showed that dynamically reorganizing data structures while a program exe-
cutes can increase its reference locality and improve its cache performance. Garbage col-
lectors, which support automatic memory management, determine when dynamically
allocated storage has become unreachable and automatically recycle that memory. One
type of garbage collector—a copying garbage collector—does this by traversing the heap
and copying live data to a separate region of memory. All memory in the traversed space
is then freed up for reuse. Thus, the copying phase of garbage collection offers an invalu-
able opportunity to reorganize a program’s data layout to improve cache performance.
However, such a scheme relies on the ability to transparently relocate heap data. In addi-
tion, it requires that pointers be distinguished from non-pointer data. Hence, it cannot be
implemented as described for low-level languages, such as C or C++, that support arbi-
trary pointer-manipulation operations and preclude transparent data movement. On the
other hand, object-oriented languages, such as Java and Cecil, and functional languages,

such as ML and Lisp, permit copying garbage collection. For these languages, a copying

61

garbage collector can be used to reorganize data and produce a cache-conscious structure

layout.

This chapter discusses how a copying garbage collector can produce or improve a cache-
conscious structure layout using program profiles. A cache-conscious data layout places
objects with high temporal affinity near each other, so that they are likely to reside in the
same cache block. In our approach, a program is instrumented to profile its data access
patterns. The profiling data gathered during an execution is used to optimize that execu-
tion, rather than a subsequent one. We rely on a property of object-oriented programs—
most objects are small—to perform low overhead real-time data profiling. The garbage
collector uses a profile to construct an object affinity graph, in which weighted edges
encode the temporal affinity between objects (nodes). A new copying garbage collection
algorithm uses the affinity graph to produce cache-conscious data layouts while copying
objects. Experimental results for several object-oriented programs show that this cache-
conscious data placement technique reduces cache miss rates by 16—42% and improves

program performance by 10-37%.

Earlier research attempted to improve a program’s virtual memory (page) locality by
changing the traversal algorithm used by a copying garbage collector [52, 82, 42, 23]. We
compare our cache-conscious copying scheme against one such algorithm (the Wilson-
Lam-Moher algorithm [82]). The results show that our cache-conscious object layout
technique reduces cache miss rates by 14-41%, and improves program performance by 8—
31% over their technique, which indicates that page-level improvements are not necessar-

ily effective at the cache level.

This chapter has six sections. Section 5.1 describes generational copying garbage collec-
tion and provides an overview of the most common traversal algorithm for copying
objects. Section 5.2 discusses the design and implementation of our low overhead real-
time data profiling system for object-oriented programs. Section 5.3 describes how this

profiling information is used to construct object affinity graphs. Section 5.4 explains our

62

?cavenge() Tospace_copy(P)
Flip roles of Fromspace, Tospace; i f forwarded(P)
unprocessed = free = Tospace; return forwarding_addr(P);
for Rin root set el se -
R = Tospace_copy(R); {
whi | e unprocessed < free addr = free:
{ P, free);
for P in children(unprocessed) ??EZ(;: 5{§§Z)f(p);
*P = Tospace_copy(*P); f orwar di ng_addr (P) = addr;
unprocessed += return addr;
si zeof (*unprocessed) ; }
}
}

Figure 5-1. Cheney’s copying algorithm.

cache-conscious copying algorithm. Section 5.5 presents experimental results that illus-

trate the benefits of this approach. Section 5.6 surveys related work.

5.1 Background: Generational Copying Garbage Collection

This section provides a brief overview of generational copying garbage collection. It
first discusses copying garbage collection and then describes generational copying gar-
bage collection. Jones and Lins [37] is a good reference for more information on genera-

tional copying and other types of garbage collectors.

Copying collectors divide the heap equally into two semi-spaces, one of which contains
current data (TO space), and the other garbage (FROM space). Garbage collection starts
by flipping the roles of the two spaces. Starting from the roots, which are data objects that
are known to be live (for e.g., global variables, stack data, variables in registers), the copy-
ing collector traverses the live data structures in FROM space and copies them to TO

space.

A common traversal algorithm for copying objects into TO space is Cheney’s algorithm
[18] (see Figure 5-1). Starting with the root set, objects are traversed in breadth-first order

and copied to TO space as they are visited. Breadth-first traversal requires a queue.

63

TO space

B Processed objects
Unprocessed objects

[0 Free space

unprocessed free
ptr. ptr.
Figure 5-2. TO space during scavenging.

Objects to be processed are extracted from the head of the queue, while their children (if

any) are added to the tail of the queue. The algorithm terminates when the queue is empty.

Cheney’s algorithm does not use extra space to maintain the queue. Rather, it uses an
elegant technique illustrated in Figure 5-2 which utilizes two pointers (unprocessed and
free). Since the algorithm copies objects as they are visited, it uses these TO space copies
as queue elements for breadth-first traversal. The head and tail of the queue are marked by
the unprocessed and free pointer, respectively. Once an object is processed, it is removed
from the head of the queue by incrementing the unprocessed pointer, and any children it
may have are added to the tail of the queue by copying them to TO space and increment-

ing the free pointer.

Garbage collection ends after all live data in FROM space has been traced and copied to
TO space. Since garbage is simply abandoned in FROM space, copying collectors are
often described as scavengers [78]—they pick out and take away the useful data amidst

the garbage.

Copying garbage collectors have some disadvantages. The most important drawback is
that since all live data must be traversed and copied, garbage collection may cause obtru-
sive program pauses. Generational garbage collectors attempt to address this shortcoming.
The generational hypothesis is that most objects die young [78], and garbage collection

can be made much more efficient by concentrating effort on reclaiming data most likely to

64
be garbage (i.e., young objects). Much research has gathered evidence that supports this

hypothesis.

The generational strategy is to segregate data by age into multiple heap regions called
generations. Different generations can then be collected at different frequencies, with the
youngest generation collected most often, and older generations collected less frequently.
Figure 5-3 illustrates the heap organization from the garbage collector’s viewpoint for one
kind of generational copying garbage collector [36]. The youngest (first) generation holds
the most recently allocated objects. Objects that survive repeated scavenges are promoted
to older (higher) generations. Garbage collection activity focuses on young objects, which
typically die faster than old objects. Each generation is divided into one or more steps that
encode objects’ age. The first step of a generation is the youngest. Objects that survive
scavenges are moved to the next step. Objects in the oldest step of a generation are pro-
moted to the youngest step of the next generation. Each step consists of a collection of

fixed size blocks, which are not necessarily contiguous in memory.

The scavenger always collects a generation g and all generations younger than g. Col-
lecting a generation involves copying all objects in the generation that are reachable from
the roots (objects in the generation pointed to by objects in older generations) into free
blocks. The blocks that previously held the generation can be reused. The new space to
which generation objects are copied is called TO gpace and the old space is called FROM
space [27].

Ungar and Jackson [79] demonstrated performance advantages from not copying large
objects. The UMass garbage collector toolkit [36], which we use for our experimental
evaluation, provides a separate large object space (LOS) as part of the collected area.
Each step has an associated set of large objects (= 256 bytes) that are of the same age as
the small objects in the step. A step’s large objects, though logically members of the step,
are never physically moved. Instead, they are threaded onto a doubly linked list and

moved from one list to another. When a large object survives a collection, it is unlinked

_> _>. o0 _>
Generation 2
B — oo g
]
[]
]
B — oo g
Generation 1
_> _>. o0 _>
Figure 5-3. Heap layout for a generational garbage collector.

Step 2

Step 1

Step 2

Step 1

Increasing age

65

from its current step’s list and added to the TO space list of the step to which it is pro-

moted. The toolkit does not compact the large object space.

5.2 Low Overhead Real-Time Data Profiling

Cache-conscious data placement requires knowledge of data-access patterns to be effec-

tive. In particular, it requires information about contemporaneously accessed data items.

These can be placed next to each other, so that they are likely to reside in the same cache

block. In addition, since cache blocks are fairly small, the information concerning contem-

poraneously accessed data items must be quite accurate for it to be useful. This requires

identifying specific structure instances that should be co-located. In general, static pro-

gram analyses cannot provide this level of detail. Hence, we profile a program’s data

aCCEeSSEs.

66

Program :
2 Insert Object Access
0x21d80 Buffer
load 0x21d80
objaccbuf

Guard
Page

Figure 5-4. Object access buffer.

A profile of an earlier training run is commonly used to guide program optimizations.
However, data access patterns require real-time profiling (i.e., profiling the current pro-
gram execution) because of the difficulty of providing object names that are consistent
and usable between runs of a program. Real-time profiling also spares a programmer an
extra profile-execute cycle, as well as the difficulty of finding representative training
inputs. However, the overhead of real-time profiling must be low enough that the perfor-
mance improvements are not outweighed by profiling costs. The rest of this section dis-
cusses the design and implementation of a low-overhead, real-time data-access profiler

that provides sufficient information for cache-conscious data placement.

In the most general case, profile-guided data placement requires tracing every load and
store to heap data. The overhead of such tracing (a factor of 10 or more [12]) precludes its
use in real-time profiling. However, two properties of object-oriented programs permit
low overhead data profiling:

* most objects are small, often less than 32 bytes, and

* most object accesses are not lightweight.
Section 5.5 provides experimental results to support these assertions.

If most objects are small (e.g., less than 32 bytes), then it is not necessary for data profil-

ing to distinguish different fields within the same object, since the objects reside entirely

67

| d baseobjptr, % eg
st %eg, [%objacchbuf]
add %obj accbuf, 4, %obj accbuf

Figure 5-5. Profiling instrumentation code for the load of a base object address.

within a cache block. Profiling can be implemented at object, not field, granularity. This
greatly reduces the number of program instructions that have to be instrumented. More-
over, if most object accesses are not lightweight (i.e., multiple fields are accessed together
or an access involves a method invocation), then profiling instrumentation (several

instructions per object access) will not incur a large overhead.

To perform profiling at object granularity, our real-time data profiling system only
instruments loads of base object addresses. The base object address is the object’s start
address, and object fields are accessed using offsets from this address. The profiling sys-
tem uses information provided by a slightly modified compiler, which retains object-type
information until the code-generation phase to permit this selective instrumentation of
loads. This optimization coalesces multiple, consecutive references to the same object into
a single profiled event, and substantially reduces the profiling overhead. Since cache-con-
scious co-location is performed at object, not field, granularity, this loss of information is

of no consequence.

Cache-conscious co-location requires information about contemporaneous object
accesses. We use an object access buffer, which is a sequential structure, similar to the
sequential store buffer used in the garbage collection toolkit (Figure 5-4), to collect this
information. The instrumentation enters the base object address in this object access
buffer. The sequential order of base object addresses in the buffer reflects the temporal
ordering of a program’s object accesses. Figure 5-5 shows the instrumentation emitted for
the load of a base object address (assuming the object-access-buffer pointer is stored in a

dedicated register).

68

construct _obj _affinity_graphs()

limt = objacchuf
obj accbuf = OBJ_ACC BUF_BASE;
whi | e(obj accbuf < limt)

i nsert_locality_queue(objacchuf);
i f(!exists_obj_affinity_node(objacchbuf))
create_obj _affinity node(objaccbuf);
i ncrement _obj _affinity_edge_wei ght s(obj accbuf);
obj accbuf += 4;
}
}

Figure 5-6. Constructing object affinity graphs.

The object access buffer is normally processed just before a scavenge to guide cache-
conscious object co-location. However, it may overflow between scavenges. Rather than
include an explicit overflow check in the instrumentation, the virtual-memory system
causes a page trap on buffer overflow. This is a cost-effective solution since our experi-
ence indicates that setting the buffer size to 51,200 entries (200 KB) prevents overtlow.
The trap handler processes the buffer and restarts the application.

Finally, for reasons put forth in Section 5.4.2, our generational garbage collection
scheme focuses on longer lived objects. Since most objects die young, profiling overhead
can be reduced by instrumenting only those loads that correspond to older objects. How-
ever, it is not possible to precisely identify all older object loads statically. Instead, we
apply a heuristic approach that works well in practice. Our static filtering technique uses
dataflow analysis to identify loads that target newly allocated objects. These loads are not

instrumented. This optimization reduced the number of instrumented loads by a factor of

3-10.

5.3 Constructing Object Affinity Graphs

As described in Section 5.1, generational garbage collection copies live objects to TO
space. Our goal is to use data-profiling information to produce a cache-conscious layout

of objects in TO space that places objects with high temporal affinity next to each other, so

69

insert locality queue(objaccbuf)
if (in_locality_queue(objaccbuf))
nove_t o_queue_tail (obj accbuf);
el se
if (is_queue_full())
del et e_queue_hd();
i nsert_queue_tail (objaccbuf);

}
}

Figure 5-7. Locality queue insertion.

that they are likely to be in the same cache block. While the data-profiling scheme dis-
cussed in the previous section captures the temporal ordering of base object addresses, this
information is not in a form suitable for efficient processing. To address this, we use the
data-profiling information to construct object affinity graphs. An object affinity graph is a
weighted undirected graph in which nodes represent objects and edges are labelled with

the number of times that objects are contemporaneously accessed.

Since generational garbage collection processes objects in the same generation together,
we construct a separate affinity graph for each generation (except the first, see
Section 5.4.2). This is possible because an object’s generation is encoded in its address.
Although this scheme precludes placing objects in two different generations in the same
cache block, we choose this approach for two reasons. First, the importance of inter-gener-
ation object co-location is unclear. Second, the only way to achieve inter-generation co-
location is to demote the older object or promote the younger object. Both alternatives
have disadvantages. Since generational garbage collection copies all objects of a genera-
tion together, intra-generation pointers are not explicitly tracked. The only safe way to
demote an object is to subsequently collect the generation it originally belonged to, in
order to update any pointers to the demoted object, which can produce unacceptably long
garbage collection times. The other option is to promote the younger object. Such promo-

tion is safe since the younger object’s generation is being collected (this will update any

70

i ncrenent _obj _affinity edge wei ght s(objaccbuf)
{
queue_el em = NULL;
init locality queue();
do
{
gueue_el em = next _queue_el em();
if(exists_obj affinity edge(queue_elem queue_tail())
i ncrement _af finity_edge_wei ght (queue_el em queue_tail());
el se
add_affinity _edge(queue_elem queue tail());
} while (queue_elem!= queue_tail())

Figure 5-8. Incrementing affinity graph edge weights.

intra-generation pointers to the object) Moreover, generational collectors track pointers
from older objects to younger objects, so they can be updated (at a possibly high process-
ing cost). However, the locality benefit of this promotion will not start until the older gen-
eration is collected (since it cannot be co-located with the older object until that time),
which may be much later. In addition, there is the danger of premature promotion if the

younger object does not survive long enough to merit promotion.

Figure 5-6, Figure 5-7, and Figure 5-8 contain the algorithm used to construct object
affinity graphs (one per generation) from profile information. The size of the locality
queue used in the algorithm is an important parameter. Too small of a queue runs the risk
of missing important temporal relationships, but a large queue can result in huge object
affinity graphs and long processing times. We used a queue size of three, since experi-
ments (see Table 5.5) indicated that it gives the best results. Given the sizes of objects (32
bytes or less) relative to cache blocks (64 bytes), it is rarely possible to pack more than
three objects in a cache block. Hence, it is not possible to take advantage of the richer tem-

poral relationship information that bigger queue sizes offer.

Prior to each scavenge, the object affinity graphs can either be re-created anew from the
contents of the object access buffer, or the profiling information can be used to update
existing graphs. The suitability of these approaches depends on application characteristics.

Applications with phases that access objects in distinct manners could benefit more from

71
re-creation (provided phase durations are longer than the interval between scavenges),
whereas applications with uniform behavior might be better suited to the incremental
approach. Our implementation re-creates the object affinity graph prior to initiating a
scavenge. This permits demand-driven graph construction that builds graphs only for the
generations that are going to be collected during the subsequent scavenge. In addition, this
re-creation approach minimizes the amount of garbage that is incorrectly copied (see

Section 5.4.2).

5.4 Combining Cache-Conscious Data Placement with Garbage Collec-
tion

Cheney’s algorithm copies objects to TO space in breadth-first order. Moon describes a
modification to this algorithm that results in approximate depth-first copying [52]. Wilson
et al. further refine the traversal to obtain hierarchical grouping of objects in TO Space
[82]. The copying algorithm (Figure 5-9) described in this section determines the traversal
it performs dynamically using the object affinity graph.

5.4.1 Cache-Conscious Copying Algorithm

Our cache-conscious copying algorithm can be divided into three steps.

STEP 1: Flip the roles of FROM space and TO space. Initialize the unprocessed and
free pointers to the beginning of TO space. From the set of roots present in the affinity
graph, pick the one with the highest affinity edge weight. Perform a greedy depth-first tra-
versal of the entire object affinity graph starting from this node (i.e., visit the next unvis-
ited node connected by the edge with greatest affinity weight). The stack depth for the
depth-first traversal is limited to the number of nodes in the object affinity graph, and
hence the object access buffer can be used as a scratch area for this purpose. In parallel
with this greedy depth-first traversal, copy each object visited to TO space (increment the
free pointer). Store this new object address as a forwarding address in the FROM space

copy of the object. After this step all nodes of the object affinity graph will be laid out in

72

Object Affinity Graph 72 A " Ik
41 7
S D—71G
Roots: A, E FROM space TO space
A
A | \<—G_ unprocessed ptr
Start of + \ / free ptr
scavenge B F V4
E
C D
FROM space unpro%egsed TO space
A _ c___ D _ G’
TR oo L
After \ /
Stepl | B F[F 7 | free ptr
E
Cc| C Dl D
FROM space TO space
(O D’
YN GG
After \ / B’
Step2 | B[B F| F° / ﬁfrliggo%gssed
E pte
Cc| C D| D
FROM space TO space
ALA GG
After \ /
free ptr
Step3 | B[B° Fe /7 unprocessed
E ptr
Cc| C Dl D ’
Figure 5-9. Combining cache-conscious data placement with garbage collection.

73
TO space in a manner reflecting object affinities (Figure 5-9), but will still contain point-

ers to objects in FROM space.

STEP 2: All objects between the unprocessed and free pointers are processed using
Cheney’s algorithm (except the step of copying the roots). We did not use a depth-first
copying algorithm for this step and the next, since improving locality among infrequently
accessed objects (those that do not appear in the affinity graph) is unlikely to compensate

for the higher overhead incurred by the depth-first traversal.

STEP 3: This is a cleanup step where the root set is examined to ensure that all roots are
in TO space (this is required as all roots may not be present in the object affinity graph or
reachable from these objects). Any roots not present are copied to TO space and processed

using Cheney’s algorithm (Figure 5-9).

5.4.2 Discussion

The first step of the algorithm copies objects by traversing the object affinity graph,
which may retain objects not reachable from the roots of the generation (i.e., garbage).
However, since the system recreates the object affinity graph from new profile informa-
tion prior to each scavenge, such garbage will be incorrectly promoted at most once. In
addition, we focus our cache-conscious data placement efforts on longer-lived objects and
do not use our copying algorithm in the youngest generation (where new objects are allo-
cated and most of the garbage is generated). Table 5.6 demonstrates that the amount of

garbage copied is negligible.

The copying algorithm described performs a greedy depth-first traversal of the object
affinity graph. This performed better than several alternative traversal methods that we
explored, such as greedy breadth-first traversal and depth-first traversal with lookahead.
The depth-first-with-lookahead traversal attempts to maximize the combined affinity
weights of the next two objects visited. The greedy-depth first traversal scheme appears to

outperform other schemes due to its ability to capture important temporal relationships

74
(object affinity graph edge weights were highly skewed, making the greedy choice often
the correct choice) at a low processing cost. In addition, the size of objects relative to
cache blocks prevents more sophisticated algorithms from exploiting their potentially bet-
ter layouts to compensate for larger processing costs. Table 5.7 contains the experimental

data.

5.5 Experimental Evaluation

This section presents experiments performed to support our assumption that object-ori-
ented programs manipulate small objects (less than 32 bytes), to demonstrate that our real-
time data-profiling technique incurs low overhead, and finally, to measure the impact of

our cache-conscious object layouts on program performance.

5.5.1 Experimental Methodology

Our system uses the Vortex compiler infrastructure developed at the University of
Washington [17]. Vortex is a language-independent optimizing compiler for object-ori-
ented languages, with front ends for Cecil, C++, Java, and Modula-3. In addition, both
Cecil and Java support generational garbage collection. This system uses the University of
Massachusetts language-independent garbage collector toolkit [36]. The toolkit imple-
ments a flexible generation scavenger [48, 78] with support for a time-varying number of
generations of time-varying size (see Figure 5-3). The collector was modified to incorpo-

rate our cache-conscious copying scheme.

Java is a widely popular object-oriented language [30]. Cecil [15, 16] is a dynamically-
typed, purely object-oriented language. It combines multi-methods with a simple class-
less object model, a kind of dynamic inheritance, and modules. Instance variables in Cecil
are accessed solely through messages, and can be replaced or overridden by methods. The
Cecil and Java benchmark programs used in the experiments are described in Table 5.1.
The first five are Cecil programs and the rest are Java programs. The programs were com-

piled at the highest optimization level (02), which applies techniques such as class analy-

75

Program Linesof Description
Codé?

richards 400 Operating system simulation
deltablue 650 Incremental constraint solver
instr sched 2,400 Global instruction scheduler
typechecker 20,000 Typechecker for old Cecil type system
new-tc 23,500P Typechecker for new Cecil type system
cassowary 3,400 Linear constraint solver
espresso 13,800 | Martin Odersky’s drop-in replacement for javac
javac 25,400 Sun’s Java source to bytecode compiler
javadoc 28,500 | Sun’s documentation generator for Java source
pizza 27,500 Pizza to Java bytecode compiler

Table 5.1: Benchmark programs.

a. Plus an 11,000 line standard library for the Cecil programs and a 13,700 line standard library
(JDK 1.0.2) for the Java programs.

b. The two Cecil typecheckers share approximately 15,000 lines of common support code, but the
type-checking algorithms are completely separate and were written by different people.

sis, splitting, class hierarchy analysis, class prediction, closure delaying, and inlining, in

addition to traditional optimizations [17].

The experiments were run on a single processor of a Sun Ultraserver E5000, which con-
tained 12 167Mhz UltraSPARC processors and 2GB of memory, running Solaris 2.5.1.
The large amount of system memory ensures that locality benefits are due to improved
cache performance and not paging activity. This system has two levels of data cache—a
16 KB direct-mapped level 1 cache with 16 byte cache blocks, and a unified (instruction
and data) 1 MB direct-mapped level 2 cache with 64 byte cache blocks. The system has a
64 entry iTLB, as well as a 64 entry dTLB, both of which are fully associative. A level 1
data cache hit takes one processor cycle. A level 1 cache miss, followed by a level 2 cache

hit, costs 6 additional cycles. A level 2 cache miss typically results in an additional 64

76

#of heap
f# of heap Bytes Avg. allocated Bytes
allocated small %
allocated . large allocated
Program small obj ect . small
) (small . objects (large .

objects (< bi size 2 bi objects

256 bytes) obj ects) (bytes) (>=256 | objects)

bytes)

richards 567,896 4,551,792 8.0 2 2,064 100
deltablue 4,575,532 | 40,173,296 8.8 2 2,064 100
instr sched 783,929 7,276,792 9.3 31 50,912 100
typechecker | 14,095,598 | 118,520,372 8.4 1,821 | 1,676,104 100
new-tc 13,023,528 | 112,296,720 8.6 1,268 | 1,155,276 100
cassowary 958,355 | 19,016,272 19.8 6,094 | 2,720,904 994
espresso 287,209 8,461,896 29.5 1,583 | 1,761,104 99.5
javac 489,309 | 15,284,504 31.2 2,617 | 1,648,256 99.5
javadoc 359,746 | 12,598,624 35.0 1,605 | 1,158,160 99.6
pizza 269,329 7,739,384 28.7 1,605 | 1,696,936 994

Table 5.2: Most heap-allocated objects are small (less than 32 bytes).

cycle delay. Each experiment was repeated five times and the average value reported (in

all cases the variation between the smallest and largest values was less than 2%).

The generational garbage collector was configured as follows. The first three genera-
tions were each limited to 512 KB and the fourth and final generation was initially set to
4MB but could grow if needed. This configuration permitted the youngest generation to fit
completely in the 1 MB level 2 cache. Previous research has indicated that this is impor-
tant for good garbage collection performance [83]. Garbage collections were triggered if
any generation had insufficient space for objects. The first generation, in which new

objects were allocated, used a Cheney-like copying scheme (to minimize copying gar-

77
bage—see Section 5.4.2), while the other generations used the object affinity graph co-

location scheme described in Section 3.1.

5.5.2 Experimental Results

Our first set of experiments were designed to verify our conjecture that most heap-allo-
cated objects are small. The run-time system was instrumented to gather object allocation
statistics. Table 5.2 shows the results of these experiments. Objects larger than 256 bytes
are allocated in a separate large object space (see Section 5.1), and are never physically
moved. Fortunately, the results indicate that the vast majority of objects are smaller than

256 bytes. In addition, the average size of these small objects ranges from 8-35 bytes.

However, small objects often die fast. Since our cache-conscious layout technique is
only effective for longer-lived objects, which survive scavenges, we are more interested in
live object statistics. Table 5.3 shows the results of the next experiment, which measured
the number of small objects that were live after each scavenge (all objects belonging to
any generation not collected during the scavenge were considered live), averaged over the
entire program execution. Once again, the results support our hypothesis that most objects

are small (i.e., not larger than 32 bytes on average).

The next set of experiments measured the instrumentation overhead of our real-time data
profiling with no co-location applied (Table 5.4). The results indicate that the overhead of
our real-time data-profiling technique is low (less than 6%). Next, we measured the
impact of the queue size used to construct object affinity graphs from object access buffer
information. This experiment has the garbage collector using the object affinity graph to
perform object co-location. As Table 5.5 indicates, a queue size of three worked best for
these set of benchmarks on our system. While bigger queue sizes help create object affin-
ity graphs that capture more temporal relationships, these graphs take longer to process at
garbage collection time. In addition, given the sizes of objects (32 bytes or less) relative to

cache blocks (64 bytes), it is rarely possible to pack more than three objects in a cache

78

Bvtes Avg.live
Avg. # of e small % live
i occupied . Large
Program | livesmall . obj ect . small
. (livesmall . objects .
obj ects obj ects) size objects
. (bytes)
richards 645 9,926 15.4 2 99.7
deltablue 16,567 305,637 18.5 2 100.0
instr sched 6,456 157,736 24.4 31 99.5
typechecker 51,627 1,114,865 21.6 1,821 96.5
new-tc 58,858 1,392,212 23.7 1,268 97.9
cassowary 25,648 586,304 22.9 1,699 93.8
espresso 72,316 2,263,763 31.3 563 99.2
javac 64,898 2,013,496 310 194 99.7
javadoc 62,170 1,894,308 30.5 219 99.6
pizza 51,121 1,657,847 324 287 994

Table 5.3: Most live objects are small (less than 32 bytes).

block. Hence it is not possible to take advantage of the richer temporal relationship infor-

mation that bigger queue sizes offer. The rest of the experiments use a queue size of three.

Our garbage collection scheme uses the object affinity graph to copy objects and as
noted in Section 5.4.2 may copy garbage. Table 5.6 demonstrates that the amount of gar-

bage copied is negligible.

Our next experiment tested alternative traversals of the object affinity graph, and mea-
sured their impact on overall performance. Table 5.7 contains the results. For reasons set

forth in Section 5.4.2, the greedy-depth first traversal performs best.

We used the UltraSPARC’s [72] hardware counters to measure the effect of our cache-

conscious object layouts on cache miss rates. Table 5.8 contains measurements of the

79

. Instrumented
Original
. program % overhead of
Program execution e . .
. executiontime | Instrumentation
time (secs)
(secs)

richards 0.202 0.213 5.45
deltablue 3.369 3.544 5.19
instr sched 3.518 3.683 4.69
typechecker 347.352 358.467 3.20
new-tc 391.250 403.378 3.10
cassowary 34.46 36.15 491
€spresso 44.94 47.20 5.04
javac 59.89 62.39 4.17
javadoc 44 .42 46.25 412
pizza 28.59 29.97 4.83

Table 5.4: Overhead of real-time data profiling.

overall execution time (including the instrumentation and processing overhead of our
technique). Our cache-conscious layouts reduce cache miss rates by 16—42% (our tech-
nique had practically no impact on L1 cache miss rates, as L.1 cache blocks are only 16
bytes), producing corresponding reductions in execution times ranging from 10-37%,

despite the technique’s instrumentation and processing overhead.

Finally, we compared our approach against the Wilson-Lam-Moher algorithm [82],
which uses a hierarchical decomposition algorithm for copying data between semi-spaces
(instead of Cheney’s breadth-first traversal) to improve a program’s virtual memory
(page) locality. This experiment (Table 5.9) investigated whether techniques designed to
improve locality at the memory (page) level are effective at the cache level, and to ensure
that the cache-miss rate reductions in Table 5.8 are not exaggerated by the poor locality of

the base case (which uses Cheney’s breadth-first traversal algorithm). Comparing

Queue Queue Queue Queue Queue Queue
Program Size?2 size3 size5 Size?2 size3 size5
(GC (GC (GC (Total (Total (Total

time) time) time) time) time) time)
richards 0.01 0.01 0.03 0.19 0.17 0.18
deltablue 0.57 0.73 1.17 2.97 2.58 2.87
instr sched 0.17 0.23 0.47 3.14 2.76 2.96
typechecker 26.49 37.63 63.97 317.22 238.18 259.42
new-tc 28.65 40.11 72.26 359.73 247.62 271.13
cassowary 2.67 3.13 5.02 32.51 27.67 28.96
espresso 8.18 9.35 14.17 42.16 40.67 44.29
javac 8.76 10.64 15.84 57.99 53.18 58.03
javadoc 7.02 8.40 12.16 43.23 39.26 42.22
pizza 3.90 4.87 8.33 27.92 25.78 28.45

Table 5.5: Impact of queue size on execution time.

Program Avg. #of livesmall Avg..#of livesmall | % gar.bage
obj ects (base) objects (CCDP) copied

richards 645 647 0.31%
deltablue 16,567 16,578 0.07%
instr sched 6,456 6,471 0.23%
typechecker 51,627 51,648 0.04%
new-tc 58,858 58,873 0.03%
cassowary 25,648 25,671 0.09%
espresso 72,316 72,391 0.10%
javac 64,898 64,937 0.06%
javadoc 62,170 62,195 0.04%
pizza 51,121 51,152 0.06%

Table 5.6: Amount of garbage incorrectly copied.

81

Greedy | Greedy | Depth- Greedy | Greedy | Depth-first

breadth | depth- | first with | breadth | depth- with
Program -first first look- -first first lookahead

(GC (GC ahead (Total (Total (Total

time) time) | (GCtime) | time) time) time)
richards 0.01 0.01 0.02 0.19 0.17 0.18
deltablue 0.68 0.73 1.06 3.15 2.58 2.79
instr sched 0.24 0.23 0.43 3.31 2.76 291
typechecker 36.24 37.63 54.01 321.20 | 238.18 268.76
new-tc 40.32 40.11 63.72 364.36 | 247.62 275.04
cassowary 3.17 3.13 4.79 32.11 27.67 28.80
€spresso 9.17 9.35 12.02 43.08 40.67 42.55
javac 10.44 10.64 14.16 58.41 53.18 56.05
javadoc 8.65 8.40 11.30 42.97 39.26 41.48
pizza 4.92 4.87 6.77 27.93 25.78 27.96

Table 5.7: Impact of the object affinity graph traversal algorithm on performance.

Table 5.8 and Table 5.9, we see that for three benchmarks (richards, deltablue, and instr
sched), the Wilson-Lam-Moher algorithm performs worse than Cheney’s algorithm, while
slightly outperforming it for typechecker, new-tc, and all the Java programs. These sur-
prising results are easily explained. Since the system has 2GB of memory, no application
pages. In addition, the system has a 64 entry dTLB (which supports a 512KB working set),
hence the only applications that might suffer dTLB misses are typechecker, new-tc, and
the Java programs (see Table 5.3), which is consistent with our measurements. Since the
Wilson-Lam-Moher algorithm is ineffective at reducing a program’s cache miss rate, and
has a slightly higher overhead than Cheney’s algorithm, it performs worse for richards,
deltablue, and instr sched.

82

% 0

L2cache | L2cache | reductio | Execution | Execution 7 :
)) . : reduction
Program | missrate | missrate n(L2 time time (execution

(base) (CCDP) miss (base) (CCDP) .
time)
rate)

richards 1.3% 1.0% 214 0.202 0.173 144
deltablue 3.6% 2.4% 32.6 3.369 2.578 23.5
instr sched 5.4% 3.9% 27.8 3.518 2.756 21.7
typechecker 9.5% 5.9% 37.6 347.352 238.179 314
new-tc 9.8% 5.7% 41.7 391.250 247.622 36.7
cassowary 8.6% 6.1% 29.1 34.46 27.67 19.7
espresso 9.8% 8.2% 16.3 44,94 40.67 9.5
javac 9.6% 7.7% 19.8 59.89 53.18 11.2
javadoc 6.5% 5.3% 185 44.42 39.26 11.6
pizza 9.0% 7.5% 16.7 28.59 25.78 9.8

Table 5.8: Impact of cache-conscious object layout.

5.6 Related Work

White [81] first suggested using garbage collection to improve a program’s locality of
reference. Researchers investigated two approaches to using a garbage collector to
improve paging behavior of Smalltalk and LISP systems [52, 82, 42, 23]. Static regroup-
ing uses the topology of heap-allocated data structures to rearrange structurally related
objects [52, 82], while dynamic regrouping [23] clusters objects according to a program’s
data access pattern. Moon found that depth-first copying generally yields better virtual-
memory performance than breadth-first copying for LISP, because it is more likely to
place parents and offspring on the same page, particularly if data structures tend to be
shallow, but wide [52]. Wilson et al. treated hash tables, which group data in a pseudo-
random order, specially, and ‘normal’ data structures were copied in depth-first order [82].

Their results showed a significant reduction in the incidence of page faults. However, in a

83

%
0,

L2cache | L2cache | reductio | Execution | Execution % :
)) : : reduction
Program | missrate | missrate n(L2 time time (execution

(WLM) | (CCDP) miss (WLM) | (CCDP))
time)
rate)

richards 1.3% 1.0% 20.2 0.211 0.173 18.0
deltablue 3.4% 2.4% 29.6 3.437 2.578 25.0
instr sched 5.3% 3.9% 26.3 3.621 2.756 23.9
typechecker 9.3% 5.9% 36.1 321.433 238.179 25.9
new-tc 9.6% 5.7% 40.7 358.512 247.622 30.9
cassowary 8.5% 6.1% 28.0 33.95 27.67 185
espresso 9.6% 8.2% 14.4 44.25 40.67 8.1
javac 9.4% 7.7% 18.4 58.38 53.18 8.9
javadoc 6.4% 5.3% 17.3 43.24 39.26 9.2
pizza 8.9% 7.5% 155 28.30 25.78 8.9

Table 5.9: Comparison with the Wilson-Lam-Moher algorithm.

later study, the authors found that the optimal grouping of data structure elements was
very dependent on the shape and type of the structure being copied [42]. While hierarchi-
cal decomposition performed well for trees, it was disappointing for other structures.
Court’s dynamic regrouping technique takes advantage of specialized hardware to support
incremental garbage collection, which tends to move objects to TO space in program
access order, and this can dramatically reduce the number of page faults [23]. These stud-
ies focused on a program’s paging behavior, not its cache behavior. Our work differs, not
only because of the different cost for a cache miss and a page fault, but also because cache
blocks are far smaller than memory pages. As our results indicate, techniques that improve
a program’s page locality, are not necessarily effective at the cache level. In addition, we
attempt to lay out objects in program-access order using real-time data profiling informa-

tion, rather than a single traversal order.

84

Recently, Calder et al. applied placement techniques developed for instruction caches to
data [12]. They use a compiler-directed approach that creates an address placement for the
stack (local variables), global variables, heap objects, and constants in order to reduce data
cache misses. Their technique, which requires a training run to gather profile data, shows
little improvement for heap objects, but significant improvement for stack objects and glo-
bals. By contrast, we use low overhead real-time data profiling and copying garbage col-
lection to implement on-the-fly cache-conscious data placement, showing significant

improvements for programs that manipulate heap-allocated data structures.

Ding and Kennedy explored two run-time transformations that improve the memory-
hierarchy performance of irregular computations and report promising results [25]. How-
ever, since the application domain they studied consists of irregular Fortran applications,

it is hard to compare their results with ours.

85

Definitions might be good things, if only
we did not employ words in making them.
—Rousseau

Chapter 6

Cache-Conscious Sructure Definition

Chapters 4 and 5 showed that an effective way to mitigate the continually increasing
processor-memory performance gap is to allocate or reorganize data structures in a man-
ner that increases a program’s reference locality and improves its cache performance.
Cache-conscious data layout, which clusters temporally related objects into the same

cache block or into non-conflicting blocks, can produce significant performance gains.

However, the techniques discussed in Chapters 4 and 5 (with the exception of the tech-
niques for reducing cache conflicts) work best for structures smaller than half of a cache
block, as they attempt to cluster multiple structure instances in the same cache block. To
address this limitation and make previous techniques applicable to larger structures, this
chapter continues the study of data placement optimizations along the orthogonal direc-
tion of reordering the internal layout of a structure or class’s fields. The chapter explores
two cache-conscious definition techniques—structure splitting and field reordering—that

can improve the cache behavior of programs. In other words, previous techniques focused

86

cache block size
-

Case 1: Structure size << cacheblock size

Sl No ast’ion Sl

Case 2: Structure size Ocacheblock size Structure hot cold
S2| f1 | 2| 3 |4 Sphtfﬁg S2[f3 [e fI [f2 [f4

Case 3: Structure size >> cacheblock size
S3| fl 2 3 4 5 16 7 8 9

Fieldfeorganization

S3°1 3] O] 15 fl fo6 f8 7 4 2

Figure 6-1. Cache-conscious structure definition.

on arranging structure instances in memory, while this chapter focuses on their internal

organization.

Figure 6-1 illustrates the relationship of cache-conscious definition technique to the size
of structure instances. For instances smaller than half a cache block (case 1) previous tech-
niques are effective—such as the cache-conscious object co-location scheme described in
the previous chapter, which uses a copying garbage collector to place objects referenced
together near each other in memory. Hence, these structures are unlikely to benefit from
additional manipulation at definition time. Such is the case for the Cecil objects of

Chapter 5.

If the size of data structure elements is comparable to the size of a cache block (case 2),
previous techniques that cluster multiple structure instances in the same cache block do
not work well. However, reducing the effective structure instance size can permit applica-
tion of these techniques. Chapter 2 discussed several complementary approaches to struc-
ture compression, such as data compression, pointer elimination, and structure splitting.

Data compression does not appear well suited to this problem due to the compression-

87
decompression overhead each time a structure instance is accessed. Pointer elimination
often requires programmer knowledge of the data structure, which makes it hard to auto-
mate. Structure splitting partitions structure elements into a hot and cold portion, based on
field access frequencies. This can produce hot structure pieces smaller than a cache block,
which permits application of cache-conscious reorganization techniques to these portions.
In addition, for type-safe languages, structure splitting can be automated. Hence,

Section 6.1 explores structure splitting as a mechanism to reduce effective structure size.

As Chapter 5 has shown, many Java objects satisfy this property (case 2). In addition,
since Java is a type-safe language, class splitting can be automated. The first step in this
process is to identify class member fields as hot (frequently accessed) or cold (rarely
accessed). While it may be possible to classify some member fields via static analysis, we
profile a program to determine member access frequency since this appears to be a simpler
and more general approach. A compiler extracts cold fields from the class and places them
in a new object, which is referenced indirectly from the original object. Accesses to cold
fields require an extra indirection to the new class, while accesses to hot fields remain
unchanged. The overhead of splitting includes the cost of an additional reference from the
hot portion to the cold portion, code bloat, more objects in memory, and an extra indirec-
tion for accesses to cold fields. To maximize the benefits of splitting, we carefully design
our splitting algorithm to reduce these costs. In addition, we use our garbage collection
scheme for cache-conscious object co-location (see Chapter 5) to aggressively exploit the
advantage offered by smaller (hot) class instances by packing more hot instances in the
same cache block. For five medium-sized Java benchmarks, class splitting combined with
our garbage collection scheme for cache-conscious object co-location reduced L2 cache
miss rates by 29-43%, with class splitting accounting for 26—62% of this reduction, and
improved performance by 18-28%, with class splitting contributing 22—66% of this

improvement.

Finally, when structure elements span multiple cache blocks (case 3), structure splitting

is likely to produce hot instances that are larger than a cache block, making it ineffective.

88
In this case, reordering structure fields to place those with high temporal affinity in the
same cache block can improve cache block utilization. Typically, fields in large structures
are grouped conceptually, which may not correspond to their temporal access pattern.
Unfortunately, the logical order for a programmer may cause structure references to inter-
act poorly with a program’s data-access pattern and result in unnecessary cache misses.
Compilers for many languages are constrained to follow the programmer-supplied field
order and so cannot correct this problem. Yet, given the ever-increasing cache miss penal-
ties, reordering structure fields to place those with high temporal affinity in the same
cache block, is a relatively simple and effective way to improve program performance.
Since this cannot be done automatically for many languages, our approach is to provide

recommendations to the programmer on the order in which structure fields should occur.

Legacy applications were designed when machines lacked multiple levels of cache and
memory-access times were more uniform. In particular, commercial C applications often
manipulate large structures. To investigate the benefits of field reordering, this chapter
describes an algorithm for recommending reorderings of structure fields in C programs.
This field reordering algorithm correlates static information about the source location of
structure field accesses with dynamic information about the temporal ordering of accesses
and their execution frequency. This data is used to construct a field affinity graph for each
structure. These graphs are then processed to produce field order recommendations. Mea-
surements indicate that reordering fields in 5 active structures improves the performance
of Microsoft SQL Server 7.0, a large, highly tuned commercial application, by 2—3% on
the TPC C benchmark [22].

The rest of the chapter is organized as follows. Section 6.1 investigates structure split-
ting. Section 6.2 discusses field reordering for C and describes our field reordering algo-
rithm. Section 6.3 and Section 6.4 present our experimental results. Finally, Section 6.5

briefly discusses related work.

89

Verified Java

bytecode

BIT

Instrumented Static class Java native code
Java bytecode information with split classes

¢

| JVM | |Class splitting algorithm |

¢

Class access
statistics

Figure 6-2. Class splitting overview.

6.1 Sructure Splitting

Chapter 5 found that Java objects are small, but on average they are approximately 8
bytes larger than Cecil objects, primarily due to larger Java object headers. Directly apply-
ing the cache-conscious garbage collection co-location scheme to Java programs yields
smaller performance improvements (10-20%) than those reported for Cecil (14-37%). A
possible explanation for this difference is that larger Java objects reduce the number of

contemporaneously accessed object instances that can be packed into a cache block.

One way to reduce the effective size of Java objects is to split Java classes into a hot
(frequently accessed) portion and a cold (rarely accessed) portion, based on field access
frequencies obtained via profiling. Splitting classes allows more hot object instances to be
packed into a cache block and kept in the cache at the same time. Structure splitting is a
well-known optimization that is often applied manually to improve performance. How-
ever, to the best of our knowledge, this is the first completely automatic implementation of

the technique.

90

Figure 6-2 illustrates the class splitting process. First, a Java program, in the form of ver-
ified bytecodes, is statically analyzed and instrumented using BIT [47], which is a Java
bytecode-instrumentation tool. Since standard library classes were not candidates for split-
ting to maintain program portability, the standard library was not instrumented. The static
analysis produces a variety of class information, including class and field names, field
types, and field sizes. Next, the instrumented Java program is executed and profiled. The
profile measures class-instantiation counts and instance-variable-access statistics (for non-
static class fields) on a per class basis. An algorithm uses the static and dynamic data to
determine which classes should be split. Finally, these splitting decisions are communi-
cated to the Vortex compiler [17], which compiles Java bytecode to native code. The com-
piler splits the specified classes and transforms the program to account for the change. The
class splitting algorithm and associated program transformations are described in more

detail in subsequent sections.

Applying the cache-conscious object co-location scheme described in the previous chap-
ter to the Java programs obtained from class splitting results in performance improve-
ments of 18-28%, with 22—66% of this improvement attributable to class splitting (see
Section 6.3).

6.1.1 ClassInformation

BIT is used to gather static class information, including class name, number of non-
static fields, and the names, access types (i.e., pri vat e, pr ot ect ed, publ i ¢), and
descriptors for all non-static fields. Non-static fields are tracked since these constitute the
instance variables of a class and are allocated on the heap. In addition, BIT instruments the
program to generate field-access frequencies on a per-class basis. While it may be possible
to classify some member fields as hot or cold via static analysis, we profile a program to
determine member-access frequency since this appears to be a simpler and more general

approach. An instrumented program runs an order of magnitude slower than its original.

91
6.1.2 Hot/Cold Class Splitting Algorithm

Class splitting involves several trade-offs. Its primary advantage is the ability to pack
more (hot) class instances in a cache block. Its disadvantages include the cost of an addi-
tional reference from the hot to cold portion, code bloat, more objects in memory, and an
extra field and indirection for cold field accesses. This section describes a class splitting

algorithm that considers these issues while selecting classes to split.

It is extremely hard to formulate the class splitting problem precisely, much less solve it
optimally. The costs of splitting, such as code bloat and more objects in memory, are diffi-
cult to quantify as they are often non-deterministic and dependent on the specific system
configuration. In addition, any precise solution will be valid only if the program is rerun
on the same input data set and the program is deterministic. However, we are interested in
splitting classes so the resulting program performs well for a wide range of inputs. For
these reasons, the class splitting algorithm uses several heuristics. Measurements in
Section 6.3.1 demonstrate that they work well in practice. In addition, they worked better
than several alternatives that were examined. In the ensuing discussion, the term “field”

refers to class instance variables (i.e., non-static class variables).

Figure 6-3 presents the splitting algorithm. The splitting algorithm only considers
classes whose total field accesses exceed a specified threshold. This check avoids splitting
classes in the absence of sufficient representative access data. The following formula
worked well for determining this threshold. Let LSrepresent the total number of program
field accesses, C the total number of classes with at least a single field access, F; the num-
ber of fields in class i, and A the total number of accesses to fields in class i. The splitting

algorithm only considers classes where:

A > LS/ (100 OC) EQ 1.

These classes are called the ‘live’ classes. Increasing this threshold reduced the number

of classes that were candidates for splitting in our benchmark suite. These included split

92

classes that contributed to performance improvements. Reducing this threshold introduced
a larger number of candidate classes. However, the additional split classes degraded per-
formance when the programs were run on a different input data set than the one used to

make the splitting decisions.

In addition, the splitting algorithm only considers classes that are larger than eight bytes
and contain more than two fields. Splitting smaller classes is unlikely to produce any ben-
efits, given the space penalty incurred by the reference from the hot portion to the cold

portion.

Next, the algorithm labels fields in the selected ‘live’ classes as hot or cold. An aggres-
sive approach that produces a smaller hot partition—and permits more cache-block co-
location—also increases the cost of accessing cold fields. These competing effects must
be balanced. Initially, the splitting algorithm takes an aggressive approach and marks any
field not accessed more than A; / (2 * F;) times as cold. Again, we experimented with dif-
ferent thresholds. Higher thresholds produced too many cold fields, which hurt perfor-
mance. On the other hand, lower thresholds defeat the purpose of the algorithm, which is
to be as aggressive as possible without degrading performance. If the cold portion of class
i is sufficiently large to merit splitting (at least 8 bytes to offset the space required for the
cold object reference), the following condition is used to counterbalance overaggressive

splitting:
(max(hot(class)) — 2 UZ cold(class;)) / max(hot(class)) > 0.5 EQ 2.

where (in a slight abuse of notation) the hot and cold operators take as input a class, and
return a sequence of access counts of a class’ hot and cold fields, respectively. This condi-
tion is motivated by trying to account for object co-location effects and can be informally
justified as follows. Consider instances of two different classes, 0, and 0, (since typically
two objects can be co-located in the same cache block), that are both comparable in size to

a cache block and that have a high temporal affinity. Let instance 0, have n fields that are

93
accessed ay, .., &, times, and 0, have mfields that are accessed by, .., by, times. It is reason-
able to expect the following access costs (number of cache misses) for the class instances
07 and 0y, since in the worst case every field access incurs a cache miss, while in a more
favorable case the accesses are clustered together, with the access count of the most fre-
quently referenced field indicating the number of distinct times the instance is accessed:

max(ay, ..., a,) < cost(07) < Z(ay, ..., &)
max(by, ..., byy) < cost(o,) < Z(by, ... by)

Now, if the hot portion of 04 is co-located with the hot portion of 0,, and these fit in a

cache block, then:
cost(o4) + cost(o,) U(max(hot(class,), hot(classy)) + €) + 2 U(=Zcold(class) +
>cold(classy))
where € is a very small quantity. This equation holds because the class instances have high
affinity (hot field accesses are clustered) and the cold fields are accessed through a level of
indirection. This will definitely be beneficial if the sum of the (best case) costs of access-
ing original versions of the instances is greater than the access cost after the instances have
been split and hot portions co-located:
max(ay, ..., a,) + max(by, ..., by) >
((max(hot(class,), hot(class,)) + €) + 2[{Zcold(class;) + Zcold(classy))
1.e.:
min(max(hot(class,;)), max(hot(classy))) >
2 U(Zcold(class)) + Zcold(classy)) + €
Since a priori we do not know which class instances will be co-located, the best we can do

is to ensure that:

TD(class) = max(hot(class)) — 2 0% cold(class) >> 0 EQ 3.

This quantity is termed the ‘temperature differential” for the class. For classes that do

not meet this criterion, a more conservative formula is used that labels fields that are

94

split_classes()

for each cl ass {
mark_no_split;
if((live)&&(suitable_ size)){
mar k_fi el ds_aggresi ve;
i f(sufficent_cold_fields)
if(normalized_tenperature_differential > 0.5)
mark_split;
el se{
re-mark_fiel ds_conservati ve;
i f(sufficent_cold_fields)
mark_split;

}
}
}

Figure 6-3. Class splitting algorithm.

accessed less than A; / (5*F;) as cold. If this does not produce a sufficiently large cold por-
tion (greater than 8 bytes), the class is not split.

6.1.3 Program Transformation

We modified the Vortex compiler to split classes selected by the splitting algorithm and
to perform the associated program transformations. Hot fields and their accesses remain
unchanged. Cold fields are collected and placed in a new cold counterpart of the split
class, which inherits from the primordial Object class and has no methods beyond a con-
structor. An additional field, which is a reference to the new cold class, is added to the
original class, which now contains the hot fields. Cold fields are labelled with the pub-
| i ¢ access modifier. This is needed to permit access to pri vat e and pr ot ect ed cold
fields through the cold class reference field in the original (hot) class. Since these transfor-
mations are applied to verified bytecode they do not affect program security, provided that

the compiler is a trusted entity.

Finally, the compiler modifies the code to account for split classes. These transforma-

tions include replacing accesses to cold fields with an extra level of indirection through

95
the cold class reference field in the hot class. In addition, hot class constructors must first
create a new cold class instance and assign it to the cold class reference field. Figure 6-4

illustrates these transformations for a simple example.

6.1.4 Discussion

Some programs transfer structures back and forth to persistent storage or external
devices. These structures cannot be transparently changed without losing backward com-
patibility. However, when new optimizations offer significant performance advantages,
the cost of such compatibility may become high, and explicit input and output conversion
necessary. Translation, of course, is the norm in languages, such as Java, in which struc-

ture layout is left to the compiler.

The splitting technique described produces a single split version of each selected class.
A more aggressive approach would create multiple variants of a class, and have each
direct subclass inherit from the version that is split according to the access statistics of the
inherited fields in that subclass. To simplify our initial implementation, we choose not to
explore this option, especially since its benefits are unclear. However, future work will

investigate more aggressive class splitting.

Since this thesis focuses on improving data cache performance, class splitting only con-
siders member fields and not methods. Method splitting could improve instruction cache
performance. In addition, it offers additional opportunities for overlapping execution of

mobile code with transfer [40].

6.2 Field Reordering

Commercial applications often manipulate large structures with many fields. Typically,
fields in these structures are grouped logically, which may not correspond to their tempo-
ral access pattern. The resulting structure layout may interact poorly with a program’s data

access pattern and cause unnecessary cache misses. This section describes an algorithm

class A{
protected | ong ail;
public int a2;
static int a3;
public float a4,
private int ab;

AOA

a4 = ..,

}
_—

class B extends A {
public |ong bil;
private short b2;
public | ong b3;

96

B() {
b3 = al + 7;
}
}
class A { class cld_A{

public int a2; public | ong al;
static int a3; public float a4,
public cld A cld_A ref; public int a5;
A(){ cld AO){...}

cld_ Aref = newcld A(); }

éid_ALref.a4 = ..;

}

class B extends A { class cld_B {
public | ong b3; public long bl;
public cld B cld B ref; public short b2;
B(){ cld B(){...}

cld_Bref =newcld_B(); }
b3 = cld_Aref.al + 7;

Figure 6-4. Program transformation.

97

¢ Program ¢

Microsoft Internal ‘ ‘

Tracing Tool AST toolkit

¢ bbcache ¢

. Static information
Trace File ¢ about structure
field accesses
Structure
field orders,
rankings,
evaluation metrics

Figure 6-5. Field reordering overview.

for producing recommendations for reordering structure fields and incorporates this algo-
rithm into a tool—bbcache. The field reordering recommendations attempt to increase
cache block utilization, and reduce cache pressure, by grouping fields with high temporal

affinity in a cache block.

For languages, such as C, that permit almost unrestricted use of pointers, reordering
structure fields can affect program correctness—though this is often a consequence of
poor programming practice. Moreover, C structures can be constrained by external fac-
tors, such as file or protocol formats. For these reasons, the field reordering recommenda-

tions must be examined by a programmer before they can be applied to C programs.

6.2.1 Field Reordering Overview

Figure 6-5 illustrates the field reordering process. A program is first profiled to create a
record of its memory accesses. The trace file contains temporal information and execution
frequency for structure field accesses. bbcache combines this dynamic data with static
analysis of the program source to produce recommendations for reordering structure

fields.

98

| |
struct A struct B

linst Al] .j inst A2 |

[fielda | | fieldb| | fieldc |
access al [®raccess a2 [®access a3 |

Figure 6-6. Structure access database.

The algorithm used to recommend structure field orders can be divided into three steps.
First, construct a database containing both static (source file, line, etc.) and dynamic
(access count, etc.) information about structure field accesses. The static and dynamic
information complement each other, and provide more data for making field reordering
decisions. Next, process this database to construct an instance field affinity graph for each
structure instance. An instance field affinity graph is a weighted undirected graph in which
nodes represent structure fields and edges encode temporal affinity between fields. Then
combine these instance field affinity graphs to produce a structure field affinity graph.

Finally, produce the recommended field order from these structure field affinity graphs.

bbcache also contains an evaluation facility that produces a cost metric, which repre-
sents a structure’s cache block working set, and a locality metric, which represents a struc-
ture’s cache block utilization. These metrics help compare the recommended field order
against the original layout. They, together with a ranking of active structures based on
their temporal activity and access frequency, can be used to identify structures most likely
to benefit from field reordering. This is especially important for large commercial applica-

tions that have thousands of structures.

6.2.2 Constructing the Structure Access Database

The ASTtoolkit [24], a tool for querying and manipulating a program’s abstract syntax
tree, is used to analyze the source program. It produces a file containing information about

each structure field access, including the source file and line at which the access occurs;

99
whether the access is ‘read’, ‘write’, or ‘read-write’; the field name; the structure instance;
and the structure (type) name. A structure instance is a function-name/structure-name pair,
where the function name corresponds to the function in which the instance is allocated.
With pointer aliasing, computing structure instances statically in this manner is an approx-
imation. The following example helps illustrate the problem. Consider consecutive
accesses to fields a and b in two different structure instances (though indistinguishable
with our approximation). This could lead to incorrectly placing fields a and b next to each
other. However, this did not appear to be a serious problem for our purposes, since most
instances showed similar access characteristics (i.e., consecutive accesses to the same
field in different (indistinguishable) instances, rather than different fields). bbcache
reads this file and builds a structure access database, which it represents as a hash table on
structure names (Figure 6-6). Each hash table entry represents a structure type and points
to a list of structure instances. Every structure instance points to a list of fields that were
accessed through that instance, and each field in turn points to a list of access sites that
record the source location from which the access took place. In addition, the program is
profiled to collect temporal information (when in the program were the fields accessed)
and execution frequency (how often were they accessed) of structure field accesses.
bbcache uses program debugging information to associate temporal information and

execution frequencies, from the program trace, with each field-access site.

6.2.3 Processing the Structure Database

The structure database contains information about field accesses for many instances of
the same structure type. For each structure instance, bbcache constructs a field affinity
graph, which is a weighted graph whose nodes represent fields and whose edges connect
fields that are accessed together according to the temporal trace information. Fields
accessed within 100 milliseconds of each other in the trace were considered to be accessed
contemporaneously. While we experimented with several intervals ranging from 50-1000
ms, most structures did not appear to be very sensitive to the exact interval used to define

contemporaneous access, and the results reported in Section 6.4 correspond to a 100ms

100

for each structure type

{

for each instance of this type

{
conbine field access information for nultiple
occurrences of the sane field,;
/Il Build a field affinity graph for this instance
for each pair of instance fields
{

conmpute field affinity edge wei ght;

}

}

/| Conbi ne instance field affinity graphs to create a
/'l structure field affinity graph
for each pair of structure fields

find all structure instances for which
this pair of fields has an affinity edge
and conpute a weighted affinity;

}
}

Figure 6-7. Processing the structure access database.

interval. Edge weights are proportional to the frequency of contemporaneous access. The
field affinities in each instance field affinity graph are weighted by the fraction of total
execution frequency of all structure fields accessed through that instance to the total num-
ber of structure field accesses thorough all instances. Finally, all weighted instance affin-
ity graphs of each structure type are combined to produce a single affinity graph for each
structure (Figure 6-7) by adding together the weighted field affinities for the same pair of
fields. Since all instances of a structure type must share the same field order, this use of
weights to combine multiple instance affinity graphs into a single structure affinity graph

favors field affinities that occur in frequently accessed instances.

6.2.4 Producing Sructure Field Orderings

The field reordering problem can be formally stated as follows. Given a structure § with

fields fq, ..., f,,, of sizes Sy, ..., Sy, respectively, and an access sequence A, which is a

101
sequence of fields that represents the program’s field accesses in program-access order,
find the optimal order of structure fields, such that the layout minimizes the structure’s
cache miss rate, if the cache configuration is <c, b, @> (i.e., cache capacity is C sets, cache
block size is b bytes, and associativity is a). This problem can be shown to be NP-com-

plete via a reduction similar to the one given by Thabit [74].

Even if it were possible to compute the optimal structure field order efficiently, the solu-
tion would be valid only if the program is rerun on the same input data set, and is deter-
ministic. However, we are interested in reordering fields so the resulting program
performs well for a wide range of inputs. Since contemporaneous field accesses and field-
access frequencies for different program inputs are unpredictable, we resort to using heu-

ristics.

In addition, since structure alignment with respect to cache block boundaries can only be
determined at run time (unless the malloc pointer is suitably manipulated), our approach is
to attempt to increase inherent locality by placing fields with high temporal affinity near
each other—so that they are likely to reside in the same cache block—rather than try to
pack fields exactly into cache blocks. If alignment (natural boundary) constraints would
force a gap in the layout that alternative high temporal affinity fields are unable to occupy,
we attempt to fill these with structure fields that were not accessed in the profiling sce-

nario.

We introduce the notion of configuration locality to explain bbcache’s algorithm.
Configuration locality attempts to capture a layout’s inherent locality. The first step is to
compute a layout affinity for each field, which is the sum of its weighted affinities with
neighboring fields in the layout up to a predefined horizon (presumably equivalent to the
cache block size) on either side. If field f; is surrounded by fields fy, ..., f,,, in the layout,
then its layout affinity is:

Field layout affinity(f;) = wt(fy, f;)Daff(fy,f;) + ...

102

Structure field affinity graph

Structure layout

s k|l e a
Cache block size (b) -

T
|
|
-

\(configuration D locality) = affinity(x, a) x b]a g affinity(x, e) x blg 6
+ affinity(x, k) % bf; 8 1 affinity(x s) x bDblz
Figure 6-8. Producing field orders from the structure field affinity graph.
+ Wiy, f)Daff(fy, 1) EQ4.

The weights correspond to the distance between the fields—the number of bytes separat-
ing the start of the fields—and are a measure of the probability that the fields will end up

in the same cache block. The weighting factor used is:

wi(fi, fj) = (monus'(cache block_size, di st(fi, f;)) / cache_block_size)

A structure’s configuration locality is the sum of its field layout affinities. Figure 6-8
illustrates the process of computing the increase in configuration locality from adding

field X to an existing layout.

The field reordering algorithm uses a greedy approach to produce a recommended field
ordering from a structure field affinity graph. It starts by adding to the layout the pair of
fields connected by the maximum affinity edge in the structure field affinity graph. Then
at each step, a single field is appended to the existing layout. The field selected is the one

1. where monus(a,b) =a —b ifa> b, = 0 otherwise.

103

that increases configuration locality by the largest amount at that point in the computation.

This process is repeated until all structure fields are laid out.

We investigated several other algorithms that performed different traversals of the struc-
ture field affinity graph (greedy breadth-first, greedy depth-first, depth-first with looka-
head), as well as an algorithm that bin-packed fields into cache blocks. The greedy
algorithm used performed better than all the alternatives (which produced no performance
improvement for Microsoft SQL server 7.0). We believe this occurred for the following
reason: Our algorithm attempts to improve a structure’s inherent locality, yet is conscious
that fields that are far apart are unlikely to reside in the same cache block. The depth-first
and breadth-first traversals of the affinity graph do not do as good a job of increasing a
structure’s inherent locality. In addition, if structures are not aligned on cache block
boundaries, the packing approach, which could pack fields with no affinity in consecutive

cache blocks, may perform poorly.

6.2.5 Evaluating Sructure Field Orderings

While the best way to evaluate a structure field ordering is to measure its impact on per-
formance, this entails a tedious cycle of editing, recompiling, and rerunning the applica-
tion. A quality metric for structure field orderings can help compare a recommended
layout against the original layout and help evaluate alternative layouts, without rerunning
the application. This is especially useful when field layout constraints prevent directly fol-

lowing the field ordering recommendations.

bbcache provides two metrics to evaluate structure field orderings, as well as a query
facility to compare alternative layouts. The first is a metric of the average number of struc-
ture cache blocks active during an application’s execution (i.e., a measure of a structure’s
cache block working set or cache pressure). This metric is computed by combining tempo-
ral information for field accesses with a structure’s field order to determine active cache
blocks. A program’s execution is divided into temporal intervals of 100ms each. This met-

ric assumes that structures start on cache block boundaries, and uses the field order (and

104

field sizes) to assign fields to cache blocks. If any of the fields in a cache block are
accessed during an execution interval, that block is considered to be active in that interval.
Let n represent the total number of program execution intervals, and by, ..., b, the number
of active structure cache blocks in each of these intervals. Then a structure’s cache block

pressure is:

Cache block pressure = Z(by, ...,b,) /' n EQS5S.

The second metric is a locality metric that measures a structure’s average cache block
utilization. Let fj; represent the fraction of cache block j accessed (determined by accessed

field sizes relative to the cache block size) in program execution interval i, then:

Cache block utilization = (fqq,fppn) / Z(by, -...0R) EQ 6.

6.3 Experimental Evaluation of Class Splitting

This section presents experiments that measure the effectiveness of the splitting algo-
rithm and its impact on the performance of Java programs. As described earlier, we used
the University of Washington Vortex compiler infrastructure with aggressive optimization
(-02). Table 5.1 describes the Java benchmarks and Section 5.5.1 describes the experimen-

tal methodology.

The first set of experiments were designed to investigate the potential for class splitting
in the Java benchmarks, study the behavior of our splitting algorithm, and examine the

sensitivity of splitting decisions to program inputs.

Table 6.1 shows that the five Java benchmarks for two different sets of inputs have a sig-
nificant number of classes (17-46% of all accessed classes) that are candidates for split-
ting (i.e., live and sufficiently large). Even more promising, 26—100% of these candidate
classes have field-access profiles that justify splitting the class. The cold fields include

variables that handle error conditions, store limit values, and reference auxiliary objects

105

Program # of # of # of # of can- # of Splitting
classes | accessed | ‘live didate split success
(static) | classes | classes| classes | classes ratio
(live & (H#split/
suitably #candi-
sized) dates)
cassowary 27 12 6 2 2 100.0%
espresso (i/p 1) 104 72 57 33| 11(8) 33.3%
espresso (i/p 2) 104 69 54 30 9(8) 30.0%
javac (i/p 1) 169 92 72 25 | 13 (11) 52.0%
javac (i/p 2) 169 86 68 23 | 11 (11) 47.8%
javadoc (i/p 1) 173 67 38 13 97 69.2%
javadoc (i/p 2) 173 62 30 11 7(7) 63.6%
pizza (i/p 1) 207 100 72 391 10(9) 25.6%
pizza (i/p 2) 207 95 69 36 | 10(9) 27.8%

Table 6.1: Potential for class splitting.

that are not on the critical path for traversing the data structure. The splitting algorithm is
fairly insensitive to the input data used for profiling field accesses. For all benchmarks,
regardless of input data set, 73—100% of the classes selected for splitting were identical
(the second number enclosed in brackets indicates the number of common classes split
with different inputs), with the same fields labeled hot or cold, barring a few exceptions.
Closer examination of the classes split with one input set and not the other revealed these
to be classes with the smallest normalized temperature differentials (though greater than

0.5).

Table 6.2 and Table 6.3 analyze the characteristics of the split classes in more detail.
Accesses to fields in split classes account for 45—64% of the total number of program field
accesses. The average dynamic sizes of split classes were computed by weighting each
split class with the number of its split instances. The splitting algorithm reduces dynamic

class sizes by 17-23% (cassowary shows a 68% reduction), and with the exception of jav-

106

Program Split class Avg. normalized Additional space
access /total temperature allocated for cold
prog. accesses differential classfield ref
(bytes)
cassowary 45.8% 98.6% 56
espresso (i/p 1) 55.3% 79.2% 74,464
espresso (i/p 2) 59.4% 79.5% 58,160
javac (i/p 1) 45.4% 75.1% 50,372
javac (i/p 2) 47.1% 79.8% 36,604
javadoc (i/p 1) 56.6% 85.7% 20,880
javadoc (i/p 2) 57.7% 85.2% 12,740
pizza (i/p 1) 58.9% 79.4% 55,652
pizza (i/p 2) 64.0% 82.1% 38,004
Table 6.2: Characteristics of split classes.
Avg. Avg. Avg. Avg. Avg. Avg.
pre-split | pre-split post- post- reduc- reduc-
Proaram classsize | classsize split split tion in tion in
J (static) (dyn) (hot) (hot) (hot) (hot)
classsize | classsize | classsize | classsize
(static) (dyn) (static) (dyn)
cassowary 48.0 76.0 18.0 24.0 62.5% 68.4%
espresso (i/p 1) 41.4 44.8 28.3 34.7 31.6% 22.5%
espresso (i/p 2) 42.1 36.2 25.7 30.1 39.0% 16.9%
javac (i/p 1) 45.6 26.3 27.2 21.6 40.4% 17.9%
javac (i/p 2) 49.2 27.2 28.6 22.4 41.9% 17.6%
javadoc (i/p 1) 55.0 48.4 29.3 38.1 46.7% 21.3%
javadoc (i/p 2) 59.4 55.1 33.6 44.0 43.4% 20.1%
pizza (i/p 1) 37.8 34.4 22.9 27.3 39.4% 20.6%
pizza (i/p 2) 39.4 30.9 23.7 24.4 39.9% 21.0%

Table 6.3: Impact of splitting on class size.

107

% %

L2 cache | L2cache L2 cache | reduction | reduction
Program missrate | missrate | missrate |inL2miss | inL2miss
(base) (CL) (CL +CS) rate rate
(CL) (CL +C9

cassowary 8.6% 6.1% 5.2% 29.1% 39.5%
espresso 9.8% 8.2% 5.6% 16.3% 42.9%
javac 9.6% 7.7% 6.7% 19.8% 30.2%
javadoc 6.5% 5.3% 4.6% 18.5% 29.2%
pizza 9.0% 7.5% 5.4% 16.7% 40.0%

Table 6.4: Impact of hot/cold object partitioning on L2 miss rate.

adoc, permits two or more hot instances to fit in a cache block. The normalized tempera-
ture differentials are high (77-99%), indicating significant disparity between hot and cold
field accesses. Finally, the additional space costs for the reference from the hot portion to
the cold portion are modest—on the order of 13—74KB—compared with the amount of

heap-allocated data.

Next, the UltraSPARC’s [72] hardware counters were used to measure the effect of our
cache-conscious object layouts on cache miss rates. Each experiment was repeated five
times and the average value reported (in all cases the variation between the smallest and
largest values was less than 3%). With the exception of cassowary, the test input data set
differed from the input data used to generate field-access statistics for class splitting. We
measured the impact of our garbage collection scheme for cache-conscious object co-loca-
tion on the hot/cold split classes versions of the Java programs and compared it against the
original versions of the programs. The results are shown in Table 6.4 (we do not report L1
miss rates since L1 cache blocks are only 16 bytes and miss rates were marginally
affected, if at all). CL represents direct application of our garbage collection scheme for

cache-conscious object co-location, and CL + CS represents this scheme combined with

108

% %
Execution | Execution , reduction | reduction
L L Execution . .
timein timein o in in
Program timein secs . :
SECS Secs (CL +CS) execution | execution
(base) (CL) time time
(CL) (CL +CS)
cassowary 34.46 27.67 25.73 19.7 25.3
espresso 44.94 40.67 32.46 9.5 27.8
javac 59.89 53.18 49.14 11.2 17.9
javadoc 44.42 39.26 36.15 11.6 18.6
pizza 28.59 25.78 21.09 9.8 26.2

Table 6.5: Impact of hot/cold object partitioning on execution time.

hot/cold class splitting. The results indicate that the garbage collection scheme for cache-
conscious object co-location reduces L2 miss rates by 16-29% and our hot/cold class
splitting increases the effectiveness of this scheme, reducing L2 miss rates by a further

10-27%.

Finally, we measured the impact of our techniques on execution time. The results shown
in Table 6.5 indicate that hot/cold class splitting also affects execution time, producing
improvements of 6—18% over and above the 10-20% gains from the garbage collection

scheme for cache-conscious co-location.

6.4 Experimental Evaluation of Field Reordering

We used a 4 processor 400MHz Pentium II Xeon system with a IMB L2 cache per pro-
cessor. The system had 4GB of main memory with 200 disks, each a 7200 rpm Clarion
fiber channel drive. The system was running Microsoft SQL Server 7.0 on top of Win-
dows NT 4.0. We ran the TPC-C [22] benchmark on this system. Microsoft SQL Server
was first instrumented to collect a trace of structure field accesses while running TPC-C.

bbcache used this trace to produce recommendations for ordering structure fields.

109

Cache block Cache block Cache
S S Cachepressure
Sructur utilization utilization pressure
-) (recommended
e (original (recommended (original or der)
order) order) order)
ExecCxt 0.607 0.711 4.216 3.173
SargMgr 0.714 0.992 1.753 0.876
Pss 0.589 0.643 8.611 5.312
Xdes 0.615 0.738 2.734 1.553
Buf 0.698 0.730 2.165 1.670

Table 6.6: bbcache evaluation metrics for 5 active SQL Server structures.

Out of the almost 2,000 structures defined in the SQL Server source, bbcache indi-
cated that 163 accounted for over 98% of structure accesses for the TPC-C workload. In
addition, the top 25 of these 163 active structures account for over 85% of structure

accesses. For this reason, we focused on these 25 active structures.

SQL Server uses a number of persistent, on-disk structures that cannot have their fields
reordered without affecting compatibility (Section 6.1.4). In addition, there are depen-
dences—e.g., because of the use of casting—between structures that prevent reordering
the fields of one without also reordering the fields of the other. It should be noted that SQL
server is a highly tuned commercial application, and many of the 25 active structures pre-
viously had their fields reordered by hand. We used bbcache to select 5 structures that
had no constraints on reordering and which showed the largest potential benefits accord-
ing to the cost and locality metrics provided (Table 6.6). We reordered these 5 structures
according to bbcache’s recommendations and ran the TPC-C benchmark on this modi-
fied SQL Server several times. The performance of the modified SQL Server was consis-

tently better by 2—-3%.

110
6.5 Related Work

Recent research has focused on reorganizing the data layout of pointer-based codes to
improve memory-system performance [12, 19, 20, 76, 39]. Calder et al. apply a compiler-
directed approach that uses profile information to place global data, constants, stack vari-
ables, and heap objects [12]. Their techniques produced significant improvements for glo-
bals and stack data, but only modest gains for heap objects. Their approach differs from
ours in two respects. First, they adjusted the placement of entire objects, while we reorga-
nized the internal fields of objects. Second, we focus on heap objects and demonstrate

large performance gains.

Chapter 4 describes two tools—a data reorganizer for tree-like structures and a cache-
conscious heap allocator—for improving the cache performance of C programs [19]. The
tools require few source code modifications and produce significant performance
improvements. Both tools reorganize the memory arrangement of entire objects. This
work complements that work, since the combination of the two techniques can yield larger

benefits than either alone.

Chapter 5 showed how to use generational garbage collection to reorganize data struc-
tures so that objects with high temporal affinity are placed near each other, so they are
likely to reside in the same cache block [20]. We extend this technique and increase its

effectiveness by partitioning classes into a hot and cold portion.

Truong et al. also suggest field reorganization for C structures. They develop a memory-
allocation library to support interleaving identical fields of different instances of a struc-
ture that are referenced together, and demonstrate significant reductions in cache miss
rates and execution times [76]. Our work complements theirs since they perform field
reorganization manually using profiling data, whereas we describe a tool—bbcache—
that automates part of this process. Moreover, we showed in Chapter 5 how to fully auto-

mate cache-conscious layout for languages that support copying garbage collection.

111

Concurrently, Kistler and Franz describe a technique that uses temporal profiling data to
reorder structure fields [39]. Their work differs from ours in four ways: First, they use
path profiling data to capture temporal relationships. Second, they optimize their layouts
for cache-line fill buffer forwarding, a hardware feature supported on the PowerPC,
whereas we optimize layouts for inherent locality. Third, their algorithm divides the affin-
ity graph into cache-line sized cliques. A consequence of this technique is that there may
be no affinity between fields placed in consecutive cache lines. Without cache-line align-
ment at allocation time (i.e., by suitably manipulating the malloc pointer), the resultant
layout may not perform well. Finally, we provide structure-activity rankings and two met-
rics for evaluating structure field orderings that permit an informed selection of suitable

candidates for structure field reordering.

112

All'swell that ends well; still the fine's the crown;
Whate er the course, the end is the renown.
—Shakespeare, All’s Well that Ends Well

Chapter 7

Conclusion

Traditionally, in-core pointer-based data structures were designed and programmed as if
memory-access costs were uniform. Increasingly expensive memory hierarchies have fal-
sified this simplifying assumption and provide an opportunity to achieve significant per-
formance improvements by redesigning data structures to use caches more effectively.
This thesis explores design principles, such as clustering, coloring, and compression, for
improving the spatial and temporal locality of pointer-based data structures. The resulting
cache-conscious data structures show significant performance benefits. In addition, this
thesis provides an analytic framework for quantifying the performance improvement of
these cache-conscious data structures. This framework can help guide the cache-conscious

design process and make it less of an art.

However, the design of cache-conscious data structures requires a deep understanding of
a program’s structures and operation, and familiarity with a machine’s memory architec-
ture. These prerequisites may limit the use of cache-conscious data structures to perfor-
mance critical portions of code written by expert programmers, much as assembly

programming is used today. To make the performance benefits of cache-conscious struc-

113
tures available to the average programmer, this thesis has investigated several strategies

that facilitate the creation of cache-conscious pointer structure layouts.

Ideally, the compiler or run-time system should automatically produce cache-conscious
pointer structure layouts with no programmer assistance or intervention. Unfortunately,
many popular programming languages, such as C and C++, contain low-level language
features that make this goal impossible to attain without hardware support. Not surpris-
ingly, this thesis offers no silver bullet for producing cache-conscious structure layouts in
these languages. However, it explores a wide variety of techniques that greatly reduce the
programming effort and application knowledge required to improve cache performance.
These techniques produce a cache-conscious arrangement of structure instances in mem-
ory. Additional techniques manipulate the internal organization of fields in a structure
instance to make the layout cache-conscious. Finally, the thesis shows that these cache-

conscious techniques can be packaged into easy-to-use tools.

This thesis describes a more attractive alternative for languages that support garbage
collection. A generational garbage collector can easily be modified to produce cache-con-
scious data layouts of small objects. The thesis demonstrates the feasibility of low-over-
head, real-time profiling of data-access patterns for object-oriented languages and
describes a new copying algorithm that uses this information to produce cache-conscious
object layouts. Measurements show that this technique reduces cache miss rates and
improves program performance significantly. Techniques such as these may help narrow,
or even reverse, the performance gap between high-level programming languages, such as

Lisp, ML, or Java, and low-level languages, such as C or C++.

114

The main contributions of this thesis are:
Design principles for cache-conscious structure design. While the ideas explored in
Chapter 2 are not fundamentally new, they have not been systematically applied to
construct cache-conscious pointer structures. In addition, the analytic framework pre-
sented in Chapter 3 quantifies the performance benefits of these design principles with
a new data structure-centric cache model, and helps make the cache-conscious struc-
ture design process less of an art.
Techniques for making the arrangement of structure instances in memory cache-con-
scious. The approaches—cache-conscious allocation and cache-conscious reorgani-
zation—presented in Chapter 4 are quite general and even apply to low-level
languages, such as C and C++.
A technique for using a generational garbage collector to implement cache-conscious
data placement. Previous work that used garbage collection to improve locality
focused on the page level, whereas this research focuses on the cache level. This dis-
tinction is important since Chapter 5 demonstrates that improving page locality does
not necessarily improve cache locality. In addition, the garbage collection scheme for
cache-conscious co-location is completely automatic and requires no programmer
assistance or intervention.
Techniques for making the internal organization of fields in a data structure cache-
conscious. While the foregoing techniques, which concentrate on arranging distinct
structure instances, work best for structures smaller than half a cache block, the cache-
conscious definition techniques in Chapter 6 improve the cache behavior of larger

structures.

115
7.1 FutureWork

This thesis lays the foundation for the principled design and implementation of cache-
conscious data structures. However, there are several issues that need further exploration.
« Can static program analyses provide sufficient information about dynamic structure

accesses that would eliminate or reduce the need for profiling?

« Can programmer annotations help the compiler or run-time system in producing
cache-conscious structure layouts? If so, what types of annotations would be most use-
ful? [32] contains some possible annotations.

» Are there additional techniques for producing cache-conscious data structures and can
they be automated?

* How do other latency reducing techniques, such as prefetching, interact with cache-
conscious data structures? [62] contains a study of prefetching cache-conscious lists.

* What kind of hardware support would be most appropriate for this problem? One pos-
sible approach is proposed in [49].

* Future work on cache-conscious data structures and algorithms is likely to be very

profitable. Will this require a radically new framework for algorithm design?

7.2 Some Final Remarks

Based on past trends and future technology, the processor-memory performance gap
will continue to increase and software will continue to grow larger and more complex.
Although the algorithmic and data structure design phase of software development is the
first, and perhaps best, place to address this growing gap, the complexity of software
design, and an increasing tendency to build large software systems by gluing together
smaller components, does not favor a focused, integrated approach. These realities make
techniques for producing cache-conscious data layouts, such as those presented in this the-
sis, an essential aspect of the process of achieving the highest performance on current and

future machines.

116

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

9]

A. Agarwal, M. Horowitz, and J. Hennessy. An Analytical Cache Model. ACM
Transactions on Computer Systems, 7(2):184-215, 1989.

A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical mem-
ory. In Proceedings of the 19th Symposium on Theory of Computation, pages 305—
314, May 1987.

A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with block transfer.
In Proceedings of the 28th Symposium on Foundations of Computer Science, pages
204-216, Oct. 1987.

A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of optimal page replacement.
Journal of the ACM, 18(1):80-93, 1971.

Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The Uniform Memory
Hierarchy Model of Computation. Submitted for publication, 1992.

J. Banerjee, W. Kim, and J. F. Garza. Clustering a DAG for CAD Databases. |EEE
Transactions on Software Engineering, 14(11):1684-1699, 1988.

R.Bayer and C. McCreight. Organization and Maintainence of Large Ordered
Indexes. Acta Informatica, 1(3):173-189, 1972.

S. Bederman. Cache Management System using Virtual and Real Tags in the Cache
Directory. IBM Technical Disclosure Bulletin, 21(11), 1979.

Veronique Benzaken and Claude Delobel. Enhancing performance in a persistent
object store: Clustering strategies in O2. In Technical Report 50-90, Altair, Aug.
1990.

[10] R. K. Brayton, G. D. Hachtel, A.S. Vincentelli, F. Somenzi, A. Aziz, S. Cheng,

S. Edwards, S. Khatri, Y. Kukimoto, A.Pardo, S.Qadeer, R. Ranjan, S. Sarwary,
T. R. Shilpe, G. Swamy, and T. Villa. VIS: a system for verification and synthesis. In
Proceedings of the Eight International Conference on Computer Aided Verification,
July 1996.

[11] Doug Burger, James R. Goodman, and Alain Kagi. Memory Bandwidth Limitations

of Future Microprocessors. In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture, pages 78-89, May 1996.

[12] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-Conscious Data

Placement. In Proceedings of the Eighth International Conference on Architectural

117

Support for Programming Languages and Operating Systems (ASPLOS VIII), pages
139-149, Oct. 1998.

[13] David Callahan, Ken Kennedy, and Allan Poterfield. Software Prefetching. In Pro-
ceedings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS V), pages 40-52, April
1991.

[14] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler Optimizations for
Improving Data Locality. In Proceedings of the Sxth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
V1), pages 252-262, Oct. 1994.

[15] Craig Chambers. Object-Oriented Multi-methods in Cecil. In Proceedings
ECOOP’ 92, LNCS 615, Springer-Verlag, pages 33—56, June 1992.

[16] Craig Chambers. The Cecil Language: Specification and Rationale. In University of
Washington Seattle, Technical Report TR-93-03-05, Mar. 1993.

[17] Craig Chambers, Jeftfrey Dean, and David Grove. Whole-Program Optimization of
Object-Oriented Languages. In University of Washington Seattle, Technical Report
96-06-02, June 1996.

[18] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11):677-678, 1970.

[19] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-Conscious Structure
Layout. In Proceedings of the SSGPLAN'99 Conference on Programming Language
Design and Implementation (PLDI), May 1999.

[20] Trishul M. Chilimbi and James R. Larus. Using Generational Garbage Collection to
Implement Cache-Conscious Data Placement. In Proceedings of the International
Symposium on Memory Management, pages 3748, October 1998.

[21] Douglas Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121-137,
1979.

[22] Transaction Processing Council. TPC Benchmark C, Standard Specification, Rev.
3.6.2. June 1997.

[23] R. Courts. Improving locality of reference in a garbage-collecting memory manage-
ment system. Communications of the ACM, 31(9):1128-1138, 1988.

[24] Roger F. Crew. ASTLOG: A language for examining abstract syntax trees. In Pro-
ceedings of the USENI X Conference on Domain-Specific Languages, Oct. 1997.

[25] C. Ding and K. Kennedy. Improving Cache Performance in Dynamic Applications
through Data and Computation Reorganization at Run Time. In Proceedings of the
SGPLAN'99 Conference on Programming Language Design and Implementation
(PLDI), pages 229241, May 1999.

118

[26] P. Drew and R. King. The performance and utility of the CACTIS implementation
algorithms. In Proceedings of the 16th VLDB Conference, pages 135-147, 1990.

[27] Robert Fenichel and Jerome Yochelson. A LISP garbage-collector for virtual-mem-
ory computer systems. Communications of the ACM, 12(11):611-612, 1969.

[28] Dennis Gannon, William Jalby, and K. Gallivan. Strategies for Cache and Local
Memory Management by Global Program Transformation. Journal of Parallel and
Distributed Computing, 5:587-616, 1988.

[29] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. Procedure Placement Using Tem-
poral Ordering Information. In Proceedings of MICRO-30, Dec. 1997.

[30] James Gosling, Bill Joy, and Guy L. Steele Jr. The Java Language Specification.
Addison-Wesley, 1996.

[31] L. J. Haikala. Cache hit ratios with geometric task switch intervals. In Proceedings of
the 11th Annual International Symposium on Computer Architecture, pages 364-371,
June 1984.

[32] L. Hendren, J. Hummell, and A. Nicolau. Abstractions for Recursive Pointer Data
Structures: Improving the Analysis and Transformation of Imperative Programs. In
Proceedings of the SGPLAN’ 92 Conference on Programming Language Design and
Implementation, pages 249260, Jun. 1992.

[33] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 1990.

[34] Mark D. Hill. A Case for Direct-Mapped Caches. |IEEE Computer, 21(12):25-40,
Dec. 1988.

[35] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. |EEE
Transactions on Computers, C-38(12):1612—1630, December 1989.

[36] Richard Hudson, Eliot Moss, Amer Diwan, and Christopher Weight. A Language-
Independent Garbage Collector Toolkit. In University of Massachusetts at Amherst
technical report TR 91-47, Sept. 1991.

[37] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley, 1996.

[38] R. E. Kessler and Mark D. Hill. Page Placement Algorithms for Large Real-Index
Caches. ACM Transactions on Computer Systems, 10(4):338-359, 1992.

[39] T. Kistler and M. Franz. The Case for Dynamic Optimization: Improving Memory-
Hierarchy Performance by Continuously Adapting the Internal Storage Layout of
Heap Objects at Run-Time. In Department of Information and Computer Science,
University of California at Irvine, Technical Report 99-21, May 1999.

119

[40] C. Krintz, B. Calder, H. B. Lee, and B. G. Zorn. Overlapping Execution with Transfer
using Non-strict Execution for Mobile Programs. In Proceedings of the Eighth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOSVII1), pages 159-169, Oct. 1998.

[41] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In The 8th
Annual International Symposium on Computer Architecture, pages 81-87, May 1981.

[42] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type directed garbage collection to
improve locality. In Proceedings of the International Workshop on Memory Manage-
ment, pages 16—18, Sept. 1992.

[43] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Performance
and Optimizations of Blocked Algorithms. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 63—74, Santa Clara, California, 1991.

[44] Anthony LaMarca and Richard E. Ladner. The influence of caches on the perfor-
mance of heaps. ACM Journal of Experimental Algorithmics, 1, 1996.

[45] Anthony LaMarca and Richard E. Ladner. The influence of caches on the perfor-
mance of sorting. In Eight Annual ACM-SAM Symposium on Discrete Algorithms,
Jan. 1997.

[46] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A Multithreading
Technique Targeting Multiprocessors and Workstations. In Proceedings of the Sxth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 308318, San Jose, California, 1994.

[47] H. B. Lee and B. G. Zorn. BIT: A Tool for Instrumenting Java Bytecodes. In Pro-
ceedings of the 1997 USENIX Symposium on Internet Technologies and Systems
(USITS 97), pages 73-83, Dec. 1997.

[48] Henry Lieberman and Carl Hewitt. A Real-Time Garbage Collector Based on Life-
times of Objects. Communications of the ACM, 26(6):419-429, 1983.

[49] C. K. Luk and T. C. Mowry. Memory Forwarding: Enabling Aggressive Layout Opti-
mizations by Guaranteeing the Safety of Data Relocation. In The 26th Annual Inter-
national Symposium on Computer Architecture, pages 88—99, May 1999.

[50] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data
structures. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VII), pages
222-233, Oct. 1996.

[51] Scott McFarling. Program Optimization for Instruction Caches. In Proceedings of the
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 183-191, 1989.

120

[52] D. A. Moon. Garbage collection in a large LISP system. In Conference Record of the
1984 Symposium on LISP and Functional Programming, pages 235-246, Aug. 1984.

[53] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of a
Compiler Algorithm for Prefetching. In Proceedings of the Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOSV), pages 62—73, October 1992.

[54] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM Reference Manual Version 1.0. In
Technical Report 9705, Dept. of Electrical and Computer Engineering, Rice Univer-
sity, Aug. 1997.

[55] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An evaluation of memory con-
sistency models for shared-memory systems with ILP processors. In Proceedings of
the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI1), pages 12-23, Oct. 1996.

[56] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keaton, Christoforos Kazyrakis, Randi Thomas, and Katherine Yellick. A Case for
Intelligent RAM. In IEEE Micro, pages 34—44, Apr. 1997.

[57] Sharon E. Perl and Richard L. Sites. Studies of Windows NT Performance using
Dynamic Execution Traces. In Second Symposium on Operating Systems Design and
Implementation, Oct. 1996.

[58] Karl Pettis and Robert C. Hansen. Profile Guided Code Positioning. SGPLAN
Notices, 25(6):16-27, June 1990. Proceedings of the ACM S GPLAN' 90 Conference
on Programming Language Design and Implementation.

[59] G. S. Rao. Performance analysis of cache memories. Journal of the ACM, 25(3):378—
395, 1978.

[60] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data struc-
tures on distributed memory machines. ACM Transactions on Programming Lan-
guages and Systems, 17(2), 1995.

[61] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of
architectural trends on operating system performance. In Proceedings of the 15th
ACM Symposium on Operating System Principles (SOSP), pages 285-298, Dec.
1995.

[62] Shai Rubin, David Bernstein, and Michael Rodeh. Virtual Cache Line: A New Tech-
nique to Improve Cache Exploitation for Recursive Data Structures. In Eight Interna-
tional Conference on Compiler Construction, LNCS 1575, pages 259-273, Mar.
1999.

[63]J. H. Saltzer. A simple linear model of demand paging performance. Communications
of the ACM, 17(4):181-186, 1974.

121

[64] Matthew L. Seidl and Benjamin G. Zorn. Segregating Heap Objects by Reference
Behavior and Lifetime. In Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
VIII), pages 12-23, Oct. 1998.

[65] Jaswinder Pal Singh, Harold S. Stone, and Dominique F. Thiebaut. A Model of
Workloads and Its Use in Miss-Rate Prediction for Fully Associative Caches. |EEE
Transactions on Computers, 41(7):811-825, 1992.

[66] A. J. Smith. A comparative study of set associative memory mapping algorithms and
their use for cache and main memory. |[EEE Trans. on Software Engineering,
4(2):121-130, 1978.

[67] Alan J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530, 1982.

[68] Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. In Real-Time Sgnal Processing IV, pages 241-248, 1981.

[69] Michael D. Smith, Mark Horwitz, and Monica S. Lam. Efficient Superscalar Perfor-
mance Through Boosting. In Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
V), pages 248-259, October 1992.

[70]J. R. Spirn, editor. Program Behavior: Models and Measurements. Operating and
Programming System Series, Elsevier, New York, 1977.

[71]J. W. Stamos. Static grouping of small objects to enhance performance of a paged vir-
tual memory. ACM Transactions on Programming Languages and Systems,
2(2):155-180, 1984.

[72] Sun Microelectronics. UltraSPARC User’s Manual, 1996.

[73] Robert E. Tarjan. Amortized Computational Complexity. SAM Journal on Algebraic
and Discrete Methods, 6(2):306-318, 1985.

[74] K. O. Thabit. Cache Management by the Compiler. In Ph.D. Thesis, Department of
Computer Science, Rice University, 1981.

[75] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. |BM
Journal of Research and Development, 11(1), 1967.

[76] Dan N. Truong, Francois Bodin, and Andre Seznec. Improving cache behavior of
dynamically allocated data structures. In International Conference on Parallel Archi-
tectures and Compilation Techniques, Oct. 1998.

[77] M. N. Tsangaris and J. Naughton. On the performance of object clustering tech-
niques. In Proceedings of the 1992 ACM SGMOD Intl. Conf. on Management of
Data, pages 144—153, June 1992.

122

[78] David Ungar. Generation Scavenging: A Non-disruptive High Performance Storage
Reclamation Algorithm. In Proceedings of the ACM SIGSOFT/SSGPLAN Software
Engineering Symposium on Practical Software Development Environments, pages
157-167, Apr. 1984.

[79] David Ungar and Frank Jackson. An Adaptive Tenuring Policy for Generation Scav-
engers. ACM Transactions on Programming Languages and Systems, 14(1):1-27,
January 1992.

[80] G. J. Ward. The Radiance Lighting Simulation and Rendering System. In Proceed-
ings of SGGRAPH “94, July 1994.

[81]J. L. White. Address/memory management for a gigantic LISP environment, or, GC
considered harmful. In Conference Record of the 1980 LISP Conference, pages 119—
127, 1980.

[82] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective “Static-Graph”
Reorganization to Improve Locality in Garbage-Collected Systems. SGPLAN
Notices, 26(6):177-191, June 1991. Proceedings of the ACM S GPLAN 91 Confer-
ence on Programming Language Design and Implementation.

[83] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collectors. In 1992 ACM Symposium on Lisp and Functional
Programming, pages 32—42, June 1992.

[84] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. SG-
PLAN Notices, 26(6):30—44, June 1991. Proceedings of the ACM S GPLAN' 91 Con-
ference on Programming Language Design and Implementation.

