## MATHEMATICAL PROGRAMMING

## Depth Exam: Answer any 6 of the following 8 questions <br> Breadth Exam: Answer any 3 of the following 8 questions

1. Solve by the simplex method the following Linear Programming Problem:

$$
\begin{aligned}
& \max \quad-4 x_{2}-2 x_{3}-7 x_{4} \\
& 2 x_{1}+x_{2}+x_{3}+3 x_{4}=3 \\
& \text { s.t. } x_{1}-x_{2}+x_{4} \leq 1 \\
& 2 x_{1}+2 x_{2}+4 x_{4} \leq 3 \\
& x_{i} \geq 0 \quad i=1, \ldots, 4
\end{aligned}
$$

Hint: Start with $x_{3}$ as a basic variable even though it also occurs in the objective function.
3. Let $f: R^{n} \rightarrow R$ be a differentiable convex function on $R^{n}$ and let $x^{1}, \ldots, x^{k}$ be $k$ points in $R^{n}$ such that for some $\bar{u} \in R^{k}$ :

$$
\sum_{i=1}^{k} \bar{u}_{i} \nabla f\left(x^{i}\right)=0, \quad \sum_{i=1}^{k} \bar{u}_{i}=1, \quad \bar{u} \geq 0
$$

Give a lower bound to $\inf _{x \in R^{n}} f(x)$ in terms of $x^{1}, \ldots, x^{k}$ and $\bar{u}$.
6. Suppose that $G$ is a directed graph consisting of $n$ nodes and $K$ (connected) components. Prove that the rank of the corresponding node-arc incidence matrix is $n-K$.
7. Consider the integer program

$$
\begin{array}{cl}
\min _{x} & c x \\
\text { s.t. } & A x=b \\
& x_{i}=0 \text { or } 1 \quad(i=1, \ldots, n)
\end{array}
$$

(IP)

Assuming (IP) is feasible, prove that for sufficiently large $M$, every optimal solution of (IP) is also an optimal solution of

$$
(N L P)
$$

$$
\begin{array}{cl}
\min _{x} & c x+M \sum x_{i}\left(1-x_{i}\right) \\
\text { s.t. } & A x=b \\
& 0 \leq x_{i} \leq 1 \quad(i=1, \ldots, n)
\end{array}
$$

8. Consider the function $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x):=\left\{\begin{array}{lll}
0 & \text { if } & x=0 \\
a & \text { if } & x \in(0,1] \\
b x+c & \text { if } & x \in(1,2]
\end{array}\right.
$$

where $a, b$ and $c$ are real numbers. Determine conditions on $a, b$ and $c$ such that
(a) there exists a Linear Program Minimization Model for $f(x)$ on $[0,2]$;
(b) there exists a Mixed Integer Minimization Model for $f(x)$ on $[0,2]$.

Write a Mixed Integer Minimization Model for $f(x)$ on [0,2] (under conditions found in (b)).

## Convex programming question Spring 90

Suppose $f$ is a closed proper convex function on $\mathbf{R}^{n}$, and let $K$ be a nonempty closed convex cone, also in $\mathbf{R}^{n}$. Consider the primal problem of minimizing $f$ on $K$. Using the duality structure given by

$$
F(x, p)= \begin{cases}f(x) & \text { if } x \in K+p \\ +\infty & \text { otherwise }\end{cases}
$$

obtain the Lagrangian and the dual objective function for this problem in the simplest practical form. Also prove that the dual problem has a maximum (attained) if

$$
\text { ri } K \cap \operatorname{ridom} f \neq \emptyset .
$$

