MATHEMATICAL PROGRAMMING

Instructions for Depth Exam Students: Answer any 6 of the 8 following questions.

Instructions for Breadth Exam Students: Answer any 3 of the 8 following questions.

1. Use the simplex method to solve the following problem:

$$
\begin{array}{lc}
\operatorname{maximize} & 5 x_{1}-x_{2}+11 x_{3} \\
\text { subject to } & x_{1}-x_{2}+2 x_{3} \leq 3 \\
-2 x_{1}+x_{2}-2 x_{3} \leq 8 \\
& -2 \leq x_{1} \leq 3,-1 \leq x_{2} \leq 1, \quad x_{3} \leq 0
\end{array}
$$

2. Consider

$$
\begin{array}{lc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{i} x \geq b_{i} \quad i=1, \ldots, m \tag{1}
\end{array}
$$

Let x^{1} be optimal for

$$
\begin{array}{lc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{i} x \geq b_{i} \quad i=2, \ldots, m
\end{array}
$$

and x^{2} be optimal for

$$
\begin{array}{lc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{1} x=b_{1} \\
& A_{i} x \geq b_{i} \quad i=2, \ldots, m
\end{array}
$$

(a) Prove that (??) is solvable.
(b) Give an upper and a lower bound for the minimum value of (??).
(c) Prove that one of x^{1} or x^{2} solves (??).
3. Let

$$
\begin{equation*}
\theta(b):=\min \{f(x) \mid g(x) \leq b\} \tag{2}
\end{equation*}
$$

where $f: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}, g: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}^{\mathrm{m}}$ are convex functions on \mathbb{R}^{n} and $b \in \mathbb{R}^{\mathrm{m}}$. Suppose that for each b in some set B in \mathbb{R}^{m}, the minimization problem of (??) is solvable. Suppose now that an optimal Lagrange multiplier $u(\bar{b}) \in \mathbb{R}_{+}^{m}$ exists for some fixed $\bar{b} \in B$, such that in addition to satisfying the Kuhn-Tucker saddlepoint conditions, $u(\bar{b})$ also satisfies

$$
u(\bar{b})(\bar{b}-b) \geq 0 \quad \forall b \in B
$$

What can you say about $\theta(\bar{b})$ relative to $\theta(b)$ for all $b \in B$? Prove your claim.
4. Suppose that for some real number $\gamma>0, x(\gamma)>0$ solves the interior penalty problem

$$
\min \left\{f(x)-\gamma \sum_{j=1}^{n} \log x_{j} \mid A x=b\right\}
$$

where $f: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}, A$ is an $m \mathrm{x} n$ real matrix, b is an $m \mathrm{x} 1$ real vector and f is convex and differentiable on \mathbb{R}^{n}. Give a lower bound to

$$
\inf \{f(x) \mid A x=b, \quad x \geq 0\}
$$

in terms of $f(x(\gamma)), \gamma$ and n. Establish your claim.
5. Suppose the problem

$$
\begin{array}{lc}
\operatorname{minimize} & f(x) \tag{3}\\
\text { subject to } & h(x)=0
\end{array}
$$

(where $f: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}$ and $h: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}^{\mathrm{m}}$ are continuous functions) has a solution x^{*}. Let M be an optimistic estimate of $f\left(x^{*}\right)$, that is, $M \leq$ $f\left(x^{*}\right)$. Consider the unconstrained problem

$$
\begin{equation*}
\underset{x}{\operatorname{minimize}} \quad v(M, x):=[f(x)-M]^{2}+\|h(x)\|^{2} \tag{4}
\end{equation*}
$$

Consider the following algorithm. Given $M_{k} \leq f\left(x^{*}\right)$, a solution x_{k} to problem (??) with $M=M_{k}$ is found, then M_{k} is updated by

$$
\begin{equation*}
M_{k+1}=M_{k}+\left[v\left(M_{k}, x_{k}\right)\right]^{1 / 2} \tag{5}
\end{equation*}
$$

and the process repeated.
(a) Show that if $M=f\left(x^{*}\right)$, a solution of (??) is a solution of (??).
(b) Show that if x_{M} is a solution of (??), then $f\left(x_{M}\right) \leq f\left(x^{*}\right)$.
(c) Show that if $M_{k} \leq f\left(x^{*}\right)$ then M_{k+1} determined by (??) satisfies $M_{k+1} \leq f\left(x^{*}\right)$.
(d) Show that $M_{k} \longrightarrow f\left(x^{*}\right)$.
6. Let f be a semipositive vector in \mathbb{R}^{n} (that is, each component of f is non-negative, and $f \neq 0$), and define a function ϕ from \mathbb{R}^{n} to the extended reals by

$$
\phi(x)=\inf \{\alpha \mid x \leq \alpha f\}
$$

(a) Show that ϕ is a closed proper convex function.
(b) Compute the conjugate function ϕ^{*} and show that ϕ^{*} is the indicator of a certain polyhedral convex set S. Exhibit S explicitly.
(c) Explain what the support function of a set is. Prove that ϕ is a support function, and identify the set of which it is the support function.
(d) Give a condition on f (only) to ensure that the effective domain of ϕ^{*} is compact. Justify your condition.
7. Let

$$
\begin{array}{lc}
\underset{x}{\operatorname{minimize}} & c x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

be a min cost network flow problem
(a) State the corresponding "big M" problem, being precise about how M is obtained from the data of the original problem.
(b) Show that if the big M problem is unbounded, then the original problem is either unbounded or infeasible.
(c) What additional procedure may be performed to identify which of the alternatives in (b) holds?
8. Write an integer program equivalent to

$$
\begin{array}{lc}
\operatorname{maximize} & z=3 x_{1}+4 x_{2}-3 x_{3} \\
\text { subject to } & x_{1}+x_{2}+4 x_{3} \leq 60 \\
-x_{1}+2 x_{2}+x_{3} \geq 12 \\
\text { if } x_{2}+x_{3}>0 \text { then } x_{1}+x_{3} \leq 54 \\
\left(x_{1}, x_{2}, x_{3}\right) \geq 0
\end{array}
$$

