MATHEMATICAL PROGRAMMING

Instructions for Depth Exam Students: Answer any 6 of the 8 following questions.

Instructions for Breadth Exam Students: Answer any 3 of the 8 following questions.

1. Use the simplex method to solve the following problem:

maximize	$5x_1 - x_2 + 11x_3$
subject to	$x_1 - x_2 + 2x_3 \leq 3$
	$-2x_1 + x_2 - 2x_3 \leq 8$
	$-2 \le x_1 \le 3, \ -1 \le x_2 \le 1, \ x_3 \le 0$

2. Consider

minimize
$$c^T x$$

subject to $A_i x \ge b_i \quad i = 1, \dots, m$ (1)

Let x^1 be optimal for

minimize
$$c^T x$$

subject to $A_i x \ge b_i \quad i = 2, \dots, m$

and x^2 be optimal for

minimize
$$c^T x$$

subject to $A_1 x = b_1$
 $A_i x \ge b_i \quad i = 2, \dots, m$

- (a) Prove that (??) is solvable.
- (b) Give an upper and a lower bound for the minimum value of (??).
- (c) Prove that one of x^1 or x^2 solves (??).

3. Let

$$\theta(b) := \min\{f(x) \mid g(x) \le b\}$$
(2)

where $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^m$ are convex functions on \mathbb{R}^n and $b \in \mathbb{R}^m$. Suppose that for each b in some set B in \mathbb{R}^m , the minimization problem of (??) is solvable. Suppose now that an optimal Lagrange multiplier $u(\bar{b}) \in \mathbb{R}^m_+$ exists for some fixed $\bar{b} \in B$, such that in addition to satisfying the Kuhn-Tucker saddlepoint conditions, $u(\bar{b})$ also satisfies

$$u(\bar{b})(\bar{b}-b) \ge 0 \ \forall b \in B$$

What can you say about $\theta(\overline{b})$ relative to $\theta(b)$ for all $b \in B$? Prove your claim.

4. Suppose that for some real number $\gamma > 0$, $x(\gamma) > 0$ solves the interior penalty problem

$$\min\left\{f(x) - \gamma \sum_{j=1}^{n} \log x_j \mid Ax = b\right\}$$

where $f: \mathbb{R}^n \to \mathbb{R}$, A is an mxn real matrix, b is an mx1 real vector and f is convex and differentiable on \mathbb{R}^n . Give a lower bound to

$$\inf \left\{ f(x) \mid Ax = b, \ x \ge 0 \right\}$$

in terms of $f(x(\gamma))$, γ and n. Establish your claim.

5. Suppose the problem

$$\begin{array}{ll}\text{minimize} & f(x) \\ \text{subject to} & h(x) = 0 \end{array} \tag{3}$$

(where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are continuous functions) has a solution x^* . Let M be an optimistic estimate of $f(x^*)$, that is, $M \leq f(x^*)$. Consider the unconstrained problem

minimize
$$v(M, x) := [f(x) - M]^2 + ||h(x)||^2$$
 (4)

Consider the following algorithm. Given $M_k \leq f(x^*)$, a solution x_k to problem (??) with $M = M_k$ is found, then M_k is updated by

$$M_{k+1} = M_k + [v(M_k, x_k)]^{1/2}$$
(5)

and the process repeated.

- (a) Show that if $M = f(x^*)$, a solution of (??) is a solution of (??).
- (b) Show that if x_M is a solution of (??), then $f(x_M) \leq f(x^*)$.
- (c) Show that if $M_k \leq f(x^*)$ then M_{k+1} determined by (??) satisfies $M_{k+1} \leq f(x^*)$.
- (d) Show that $M_k \longrightarrow f(x^*)$.
- 6. Let f be a semipositive vector in \mathbb{R}^n (that is, each component of f is non-negative, and $f \neq 0$), and define a function ϕ from \mathbb{R}^n to the extended reals by

$$\phi(x) = \inf \{ \alpha \mid x \le \alpha f \}.$$

- (a) Show that ϕ is a closed proper convex function.
- (b) Compute the conjugate function ϕ^* and show that ϕ^* is the indicator of a certain polyhedral convex set S. Exhibit S explicitly.

- (c) Explain what the support function of a set is. Prove that ϕ is a support function, and identify the set of which it is the support function.
- (d) Give a condition on f (only) to ensure that the effective domain of ϕ^* is compact. Justify your condition.
- 7. Let

$$\begin{array}{ll} \underset{x}{\mininimize} & cx\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

be a min cost network flow problem

- (a) State the corresponding "big M" problem, being precise about how M is obtained from the data of the original problem.
- (b) Show that if the **big M problem is unbounded**, then the original problem is either unbounded or infeasible.
- (c) What additional procedure may be performed to identify which of the alternatives in (b) holds?
- 8. Write an integer program equivalent to

maximize
$$z = 3x_1 + 4x_2 - 3x_3$$

subject to $x_1 + x_2 + 4x_3 \leq 60$
 $-x_1 + 2x_2 + x_3 \geq 12$
if $x_2 + x_3 > 0$ then $x_1 + x_3 \leq 54$
 $(x_1, x_2, x_3) \geq 0$