
Programming Languages and Compilers
Qualifying Examination

Monday, February 6, 2012

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover ofeachbook the area of the exam, your code number, and the question
answered in that book. Ononeof your books list the numbers ofall the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if
needed.

POLICY ON MISPRINTS AND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you are convinced that a problem has been stated
incorrectly, mention this to the proctor. If necessary, theproctor will contact a representative of the
area to resolve problems during thefirst hourof the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Your interpretation should be such that the
problem is nontrivial.

1



(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024], *ptr;
(3) int counter;
(4) FILE *fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) copy_buffer(header);
(8) ptr = fgets (buf, 1024, fp);
(9) copy_buffer(buf);

(10) }
(11)
(12) void copy_buffer(char *buffer){
(13) char copy[20];
(14) strcpy(copy, buffer);
(15) }

Figure 1: Example Program

Question 1 (Security).

Part (a): Languages like C that do not guarantee array-bounds checking and that allow pointer
arithmetic can lead to programs that are vulnerable to certain kinds of malicious attacks. Explain
how a malicious user can exploit buffer overrun vulnerability in a program. Why are programs
written in languages such as Java not vulnerable to these vulnerabilities?

Part (b): Consider the program shown in Figure 1. How could a malicioususer exploit the buffer
overrun in this program, to execute the system callsystem(‘‘exec /bin/sh’’)? Assume
that the malicious user controls the contents of the file which fp points to.

Part (c): One technique to address the buffer-overrun vulnerabilityis to make the stacknon exe-
cutable. Explain why this addresses the buffer-overrun vulnerability. Discuss the run-time over-
head of this mitigation technique.

Part (d): Another technique for addressing the buffer-overrun vulnerability is to keep a auxiliary
stack. At a function call site, the return address is pushed on the auxiliary stack. Before returning
to that call site, the program verifies that the top of the auxiliary matches the actual return address.
Give details about this technique in the context of the program shown in Figure 1. Explain why
this technique addresses the buffer-overrun problem.

2



Question 2 (Functional Languages and Tail Recursion).

This question concerns implementation techniques for recursive functions in functional languages.

Part (a): Consider the following recursive function definition, which returns the length of a list:

Length: IntList → Int
Length(list) =

cases list
nil : 0
cons(hd, tail) : 1 + Length(tail)

end

For a call Length(list), wherelist is of lengthn, (i) how many calls are made, and (ii) how deep
does the stack grow?

Part (b): Consider the following function definition, which returns true or false depending on
whetherx is a member oflist:

MemberOf: Int × IntList → Boolean
MemberOf(x, list) =

cases list
nil : false
cons(hd, tail) : if x = hd then true else MemberOf(x, tail)

end

Note that function MemberOf is tail recursive.

1. Explain what optimization or optimizations are possiblefor tail-recursive functions.

2. For a call MemberOf(x, list), wherelist is of lengthn, (i) how many calls are made, and (ii)
how deep does the stack grow? Explain why.

3. In general, how deep does the stack grow for your proposed implementation of tail-recursive
functions? Explain why.

Part (c): “Continuation-passing style” is a paradigm for writing functional programs in which
functions receive explicit “continuation” arguments thatare invoked within the function instead
of returning from the function. In other words, each “return” from a function looks like a call on
another function.

Remark. The functional definition obtained as the meaning of a program in a lan-
guage whose denotational-semantics definition uses “continuations” is one example
of a function in continuation-passing style; this questionhappens to be about func-
tions written directly in continuation-passing style.End Remark.

3



Suppose that we rewrite the Length function from Part (a) as follows:

continuation = Int → Int
Length′ : IntList × continuation → Int
Length′(list, k) =

cases list
nil : k(0)
cons(hd, tail) : Length′(tail, λz.k(1 + z))

end

Length: IntList → Int
Length(list) = Length′(list, λz.z)

In particular, function Length′ is tail recursive and thus the method you described in Part (b) should
apply.

1. In terms of the number of calls made and/or the depth of the stack, did we “get something for
free” by turning Length into tail-recursive form (by transforming it into continuation-passing
style)? For instance, for a call Length(list), wherelist is of lengthn, (i) how many calls are
made, and (ii) how deep does the stack grow?

2. In general, by transforming a function into continuation-passing style do we necessarily gain
performance benefits (i.e., measured in number of calls and/or depth of the stack)? If not,
suggest a way in which a performance benefit could be gained for the modified version of
Length.

4



Question 3 (Dominators).

The notion ofdominancecan be useful for code analysis and optimization. This question asks you
to define, compute, and use dominators.

Part (a): Let n andm be nodes of a control-flow graph. Define what it means forn to dominate
m.

Part (b): Define each of the following properties and say whether or notthe property holds for the
dominance relation (justify your answers):

• transitivity

• reflexivity

• symmetry

• anti-symmetry

Part (c): A straightforward representation of the dominance relation for the nodes of a control-
flow graph requiresN2 space in the worst case, whereN is the number of nodes in the graph.
Describe a representation that is commonly used and that requires less space. How much space
does your representation require in the worst case?

Part (d): Define a dataflow analysis that can be used to compute the dominance relation for the
nodes of a control-flow graph.

Part (e): Describe at least two analyses and/or optimizations that require knowing the dominance
relation for the nodes of a control-flow graph.

5



Question 4 (Prolog).

Part (a): In Prolog, assume thatedge(X, Y) is true whenX andY are graph nodes for which
there is a directed edge fromX toY. Consider the following alternatives for defining apath(X, Z)
relation which is true when there is a path fromX to Z:

Alternative I:

path(X, X).
path(X, Z) :- edge(X, Y), X \= Y, path(Y, Z).

Alternative II:

path(X, X).
path(X, Z) :- path(X, Y), X \= Y, edge(Y, Z).

Alternative III:

path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), X \= Y, path(Y, Z).

Alternative IV:

path(X, X).
path(X, Y) :- edge(X, Y).
path(X, Z) :- path(X, Y), X \= Y, path(Y, Z), Y \= Z.

Are these alternatives equivalent in correctness and performance? If not, which alternative(s)
is/are preferable and why?

Part (b): Define a unarycycle relation in Prolog such thatcycle(X) is true if and only ifX
is part of a nontrivial graph cycle. You may useedge andpath in your definition. If you use
path, say which of the alternatives given above you are assuming.

Part (c): What is the worst-case asymptotic time complexity of your answer to part (b)? For
simplicity, assume that constant time is required for each Prolog fact look-up (includingedge),
unification operation, or backtracking step.

6



Question 5 (Threads).

For purposes of this question, assume that an entire Java program is statically available at compile
time. Reflection, native methods, and dynamic class loadingare not used.

Consider memory accesses (loads and stores) in a multi-threaded Java program. If an ac-
cess could coincide with an access of thesamelocation by adifferent thread, then we call this a
“potentially-shared access”; otherwise, we call this a “definitely-unshared access”.

We may be interested in determining whether a given access ispotentially shared or definitely
unshared. A trivial static shared-access analysis might simply report the following:

1. All loads or stores of local variables are definitely unshared.

2. All loads or stores of instance fields are potentially shared.

This analysis conservatively over-approximates the set ofpotentially-shared accesses.

Part (a): Propose two alternative static shared-access analyses. Like the trivial analysis given
above, your alternatives must conservatively over-approximate the set of potentially-shared ac-
cesses. However, your alternatives must be strictly more precise. Briefly describe your two anal-
yses. You need not present every tiny detail, but you should give enough information to clearly
demonstrate that your approaches are feasible. You may assume that your analysis is operating in
the context of an optimizing Java compiler: the full Java syntax has been reduced to some simpler
intermediate representation, other standard compiler analyses are available, etc.

Part (b): How do your two analyses compare in terms of precision? Are they equivalent? Is one
strictly more precise than the other? Or does each beat the other in different cases? If your analyses
are not equivalent, then give examples of code fragments where your analyses behave differently.
(However, examplesalonedo not constitute a complete answer.)

Part (c): Briefly describe three interesting ways in which the resultsof a static shared-access
analysis could be used. These might involve optimization, bug detection, interactive development
environments (IDEs), or any other aspect of software development.

Your answers may be suitable for use withanystatic shared-access analysis, or you may require
that the analyses have more specific qualities. If you do havespecial analysis requirements, clearly
identify those as part of your answer.

7



Question 6 (Fixed Points).

Let S be a finite set of sizen. LetF : 2S → 2S be a function.1 A setX ∈ 2S is called a fixed point
of a functionF iff F (X) = X. DefineµX.F (X) to be the least fixed point ofF andνX.F (X) to
be the greatest fixed point ofF .

Part (a): Under what conditions is a function guaranteed to have a least fixed point and how can
that fixed point be computed? Do those conditions hold for allfunctionsF of type2S → 2S as
defined above?

Part (b): Let G = (S,E) be a labeled directed graph whereS is the set of vertices andE ⊆ S×S

is the set of edges. Given a subsetS1 of S, let Reach(S1) be the set of verticess such that there
exists a path froms to vertexs′ ∈ S1. Describe a work-list algorithm for computingReach(S1).

Part (c): Define a functionF such thatF ’s least fixed point isReach(S1). (Don’t just makeF
ignore its argument and computeReach(S1).)

Give a small example graph, identify setS1, and show how to computeF ’s least fixed point for
your example using the fixed-point-finding technique that you described in Part (a).

DoesF also have a greatest fixed point? If yes, what is it? If no, why not?

Part (d): The duals of fixed-point formulas are defined as follows:

D(µX.F (X)) = νX.¬F (¬X)

D(νX.F (X)) = µX.¬F (¬X)

For a setS1 ∈ 2S, ¬S1 denotes the setS − S1. Let F be the function that you gave for Part (c).
What does the formulaD(µX.F (X))) represent?

1Recall that2S is the power-set ofS.

8


