
Programming Languages and Compilers
Qualifying Examination

Monday, January 31, 2011

This exam asked students to answer 4 out of 6 questions. This document contains the 5 questions
that were answered.

1

Question 1 (Automata).

A non-deterministic, bottom-up, finite-state tree automaton (which will be abbreviated as FSTA)
is a formalism for recognizing (or “accepting”) members of alanguage of trees. An FSTAA =
(Q, QF ,Σ, δ) has a set ofstatesQ, a set of final statesQF ⊆ Q, a ranked alphabetΣ, and a
transition relationδ.

A ranked alphabet means that each symbol has anarity, which indicates how many children it
has. We will denote, e.g., a binary (arity-2) symbolfoo by foo2. Thus, ifT1 andT2 are two trees,
foo2(T1, T2) is another tree; it has the symbolfoo2 at its root.

The transition relationδ consists of rules of the form

q(fn)← fn(q1, . . . , qn),

whereq, q1, . . . , qn ∈ Q andfn is ann-ary symbol. We allowA to be non-deterministic; that is,
one can have multiple result states (i.e., left-hand-side states) for a given combination of symbol
and child states:

q(fn) ← fn(q1, . . . , qn)
q′(fn) ← fn(q1, . . . , qn)

An FSTA A accepts a language of treesL(A). For a given treeT , T is accepted or rejected
depending on the outcome of the possibleruns of A overT . A run labels each leaf ofT with a
state, and then moves upwards to successively label each node ofT with a state, using the rules of
δ. That is, if we have the rule

q(fn)← fn(q1, . . . , qn)

in δ and there is a subtreeS whose root symbol isfn and whosen children are labeled with
q1, . . . , qn, respectively, then the root ofS can be labeled withq.

An accepting runis one that labels the root of the tree with a state inQF . Because we allowA
to be non-deterministic, onlyoneof the possible runs ofA overT needs to be an accepting run for
T to beaccepted(i.e., forT ∈ L(A) to hold).

An FSTA has no initial state, but the rules for 0-ary symbols cause certain states to act as initial
states at a tree’s various leaves. For instance, suppose that we have the rule

q17(a
0)← a0()

Then ifT has any instance ofa0 as a leaf, that leaf can be labeled withq17, and serves as one of the
“initial” states for runs ofA overT . Note that we are permitted to have multiple rules for a 0-ary
symbol and these can be used at different leaves in a given run:

q15(a
0) ← a0()

q17(a
0) ← a0()

2

Example. Consider the FSTAAexp defined as follows:

Aexp = ({qint, qfloat, qerror}, {qint, qfloat}, {plus2, a0, m0, x0},

qint(a
0) ← a0()

qint(m
0) ← m0()

qfloat(m
0) ← m0()

qfloat(x
0) ← x0()

qint(plus2) ← plus2(qint, qint)
qfloat(plus2) ← plus2(qfloat, qfloat)
qerror(plus2) ← plus2(qint, qfloat)

qerror(plus2) ← plus2(qfloat, qint)
qerror(plus2) ← plus2(qerror, qint)
qerror(plus2) ← plus2(qerror, qfloat)
qerror(plus2) ← plus2(qint, qerror)
qerror(plus2) ← plus2(qfloat, qerror)
qerror(plus2) ← plus2(qerror, qerror)

).

Let T1 andT2 be two trees defined as follows:

T1 = plus2(plus2(m0(), a0()), a0())
T2 = plus2(plus2(a0(), a0()), x0())

Note that there is both an accepting run forT1, namely,

plus2(plus2(m0(), a0()), a0())
⇒ plus2(plus2(qint(m

0), qint(a
0)), qint(a

0))
⇒ plus2(qint(plus2(m0(), a0())), qint(a

0))
⇒ qint(plus2(plus2(m0(), a0()), a0()))

and a non-accepting run forT1,

plus2(plus2(m0(), a0()), a0())
⇒ plus2(plus2(qfloat(m

0), qint(a
0)), qint(a

0))
⇒ plus2(qerror(plus2(m0(), a0())), qint(a

0))
⇒ qerror(plus2(plus2(m0(), a0()), a0()))

In contrast, there is only a non-accepting run forT2, namely,

plus2(plus2(a0(), a0()), x0())
⇒ plus2(plus2(qint(a

0), qint(a
0)), qfloat(x

0))
⇒ plus2(qint(plus2(a0(), a0())), qfloat(x

0))
⇒ qerror(plus2(plus2(a0(), a0()), x0))

Consequently,T1 ∈ L(Aexp) butT2 6∈ L(Aexp). �

Abbreviations:
• You may drop superscripts on alphabet symbols.
• Although we wrote out all of the possible transitions involving qerror, it would have been

convenient to treatqerror as a “stuck” state—in which case, in the set of rules forAexp we
would have omitted the last two rules in the first column and all the rules in the second
column. Such rules would be implicit: an occurrence ofqerror in any child of an arity-k
symbol results in the symbol being labeled withqerror.

3

Part (a) (Relationship to String Automata):
Explain how ordinary non-deterministic finite-state (string) automata are a degenerate case of FS-
TAs.

FSTAs are useful in dataflow-analysis and model-checking problems because they can be used
to describe the matched call-and-return structure of pathsin multi-procedure programs. Parts
(b) and (c) concern how to define an FSTA to specify a tree-language that captures the matched
paths specific to a particular program, namely, the one shownbelow. (The “if(*)” denotes a non-
deterministic branch.)

void foo(){
n1: x1 = 0;
n2: x2 = 1;
n3: bar();
n4: ;

}

void bar(){
n5: if (*) {

x1 = x1 + x2;
n6: bar();
n7: x2 = x2+1;

}
n8: ;
}

n5

n7

n8

x1 = x1+x2
x1 = 0

n1

n2

n6

bar()

procedure barprocedure foo

n3

bar()

n4

x2 = 1

x2 = x2+1

The FSTA you will define should accept a language, each tree ofwhich represents a properly
matched path fromn1 to n4. For each properly matched pathρ from n1 to n4, the FSTA should
accept a tree that representsρ. The FSTA should reject trees that either (i) do not represent a path,
or (ii) represent a path that violates matched call-and-return structure in the graph given above.

The alphabetΣ consists of three kinds of symbols:
1. Nine 0-ary symbols for the nine edges in the graph given above:

{e0

n1→n2
, e0

n2→n3
, e0

n3→n5
, e0

n5→n8
, e0

n5→n6
, e0

n6→n5
, e0

n7→n8
, e0

n8→n7
, e0

n8→n4
}.

2. Sixty-four binary symbols for possible start/end positions in a sub-path:

{p2

ni→nj
| 1 ≤ i, j ≤ 8}.

3. Sixty-four ternary symbols for subtrees that represent possible matched call-and-return sub-
paths: {c3

ni→nj
| 1 ≤ i, j ≤ 8}. (The symbols are ternary so that the three children can

represent a call-edge from caller-to-callee, an edge or a matched path from the entry node to
the exit node of the callee, and a return-edge from callee-to-caller.)

4

Part (b) (Representing Paths with Trees):
The idea is that the frontier of each tree (i.e., its sequenceof leaves in left-to-right order) represents
a candidate path. Draw the three trees that represent the following paths:

1. [n1→ n2, n2→ n3, n3→ n5, n5→ n8, n8→ n4]
2. [n1 → n2, n2 → n3, n3 → n5, n5 → n6, n6 → n5, n5 → n6, n6 → n5, n5 → n8, n8 →

n7, n7→ n8, n8→ n7, n7→ n8, n8→ n4]
3. [n1→ n2, n2→ n3, n3→ n5, n5→ n8, n8→ n7]

(Note: the first two trees should be accepted by the FSTA that you will define in Part (c); the third
tree should be rejected by the FSTA from Part (c).)

Part (c) (Identifying Matched Call-and-Return Structure) :
The alphabetΣ of the FSTA has been defined above. The set of statesQ of the FSTA consists
of a stuck state,qerror, together with 64 states that are indexed by a pair of node names: Q =
{qerror} ∪ {qni→nj

| 1 ≤ i, j ≤ 8}. The set of final states is defined as follows:QF = {qn1→n4
}.

UsingQ, QF , andΣ as defined above, give the definition of an FSTA that accepts the language
of trees that represent all properly matched paths fromn1 to n4. The intention is that stateqni→nj

only arises in a run when there exists a matched path fromni to nj.
(There are 65 different states and 137 alphabet symbols. We do not expect you to write out the

full transition relation; however, it should be clear from your answer what the essential features are
and what the intended pattern is.)

Explain why your FSTA accepts the first two trees from your answer to Part (b), and why it
rejects the third tree from Part (b).

Part (d) (Checking Emptiness):
Given an FSTAA = (Q, Σ, δ, q0, QF), give an algorithm for determining whetherL(A) = ∅.

5

Question 2 (Lambda Calculus Evaluation Strategies).

Recall that lambda expressions can be reduced either using normal order reduction (NOR)—i.e.,
reduce the leftmost-outermost redex—or using applicative-order reduction (AOR)—i.e., reduce
the leftmost-innermost redex. Two reduction strategies,S1 andS2 are considered to be equivalent
iff for every lambda expressione, either bothS1 andS2 reducee to normal form, or neither does
(i.e., neither terminates).

Part (a):
What are the advantages of NOR over AOR and vice versa? Give examples to illustrate your
answers.

Part (b):
Is the strategy “reduce the rightmost-outermost redex” equivalent to NOR? If yes, briefly justify
your answer. If no, give an example of a lambda expression forwhich one strategy leads to a
normal form while the other strategy fails to terminate.

Part (c):
Is the strategy “reduce the rightmost-innermost redex” equivalent to AOR? If yes, briefly justify
your answer. If no, give an example of a lambda expression forwhich one strategy leads to a
normal form while the other strategy fails to terminate.

6

Question 4 (Security).

Part (a) (Provoking a Buffer Overrun):
Languages like C that do not guarantee array-bounds checking and that allow pointer arithmetic can
lead to programs that are vulnerable to certain kinds of malicious attacks. Consider the program
shown in Figure 1. How could a malicious user cause a buffer overrun?

Part (b) (Exploiting a Buffer Overrun):
Explain how a malicious user can exploit a buffer-overrun vulnerability in a program.

Part (c) (Buffer-Overrun Analysis):
We will sketch a static-analysis technique to detect bufferoverruns. Each bufferbuf (variable of
typechar *) is associated with two range-valued variablesRlen(buf) andRalloc(buf) (one for
the length and other for the allocated space). A program variable i (of typeint) is associated
with a single range-valued variableR(i) (representing the possible values ofi). Intuitively, if
Rlen(buf) = (n, m), then the minimum and maximum length of the bufferbuf are n and m,
respectively. Similarly,Ralloc(buf) = (n, m) indicates that the minimum and maximum allocated
space for the bufferbufaren andm, respectively. Zero or more subset constraints on range-valued
variables are generated for each statement in the program. For example, consider the following
statement:

strcpy(a,b)

Sinceb is copied intoa, the following constraint is generated:

Rlen(b) ⊆ Rlen(a)

Show the range constraints generated for the program given in Figure 1.

Note: You will have to use sets of constraints that model the library functionsfgets andstrcpy.
We are assuming you know the semantics ofstrcpy. Descriptions ofstrlen andfgets are
given below:

strlen()
// Returns the number of characters up to, but not including, the nearest ’\0’

char *fgets(char *s, int size, FILE *stream);
// Reads in at most size-1 characters from stream and stores them in the buffer pointed to by s.
// Reading stops after an EOF or a newline. If a newline is read, it is stored in the buffer.
// A ’\0’ is stored after the last character in the buffer.

Part (d) (Identifying Overruns using Range Constraints):
Solvinga systemS of range constraints means finding the “tightest” possible ranges that respect
all of the constraints inS. For example, consider the following systemS1 of range constraints:

(4, 4) ⊆ R(a)
(8, 8) ⊆ R(b)
R(b) ⊆ R(a)

7

(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024],

*cc1, *cc2, *ptr;
(3) int counter;
(4) FILE *fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) cc1 = copy_buffer(header);
(8) ptr = fgets (buf, 1024, fp);
(9) cc2 = copy_buffer(buf);

(10) }
(11)
(12) char *copy_buffer(char *buffer){
(13) char *copy;
(14) copy = (char *) malloc(strlen(buffer));
(15) strcpy(copy, buffer);
(16) return copy;
(17) }

Figure 1: Example program.

The following assignment of ranges is the “tightest” that respects constraints inS1:

R(a) = (4, 8)

R(b) = (8, 8)

Notice that the following assignment of ranges also respects the constraints inS1, but does not
assign the “tightest” possible ranges.

R(a) = (1, 9)

R(b) = (5, 8)

Suppose that there is procedureP for solving a system of range constraints, i.e., procedureP

returns the “tightest” possible ranges that respect the constraints in a systemS. How will you use
procedureP to discover buffer overruns?

Part (e) (Defining a Graph Algorithm for Solving Range Constraints):
Consider the range constraints from Part (c). Give a graph algorithm to solve the range constrains
generated in Part (c). You need only explain your algorithm with respect to the specific set of
constraints generated in Part (c).

8

Question 5 (Registers).

A C programmer can declare local variables to beregistervariables. This kind of declaration tells
the compiler to try to keep those variables in registers rather than in the function’s activation record
(on the stack).

Part (a):
Suppose that there are N register variables in a function butfewer than N registers available for
allocation. What can the compiler do to determine whether all N variables can be kept in registers?

Part (b):
Normally, if a variable is in a register, the value in that register must be saved before every function
call and restored after the call. If the number of variables in registers is large, this can make
function calls quite expensive. What can a compiler do to avoid unnecessary saving and restoring
of registers across calls?

Part (c):
Even if a register’s value must be saved and restored across afunction call, it may be possible to
improve the code (by reducing code size and/or execution time) by placing the save/restore code
somewhere other than immediately before/after the call. Give some examples of this and explain
how the compiler can determine where to place the save/restore code.

9

Question 6 (Array and Function Subtyping).

Let τ represent some type. For any typeτ , let τ [] represent the type of arrays whose elements all
have typeτ . For any pair of typesτ1, τ2, let τ1 → τ2 represent the type of functions fromτ1 to τ2.
Let int be the type of integers. Letunit , also known asvoid, be the empty type of statements that
compute no value.

Let ⊏ be a binary relation that represents strict subtyping, with⊑ as its reflexive closure.

Part (a)
Java and C# extend subtyping across array elements. That is,τ ′ ⊑ τ =⇒ τ ′[] ⊑ τ []. Write a
fragment of Java or C# code that type checks according to thisrule, but that will fail at runtime due
to an incorrectly-typed element appearing in an array.

Part (b) (Elimination of Runtime Checks):
Java and C# add runtime checks to every array-element assignment in order to trap this sort of
error and throw an exception instead. Propose a static program analysis and optimization that
could safely eliminate some of these runtime checks. Describe your analysis in detail, including
placing it in context with respect to well-known families ofanalysis techniques.

Part (c) (Function Subtyping):
What are the most flexible subtyping relations that can safely be permitted among function types?
That is, what are the weakest conditions onτ1, τ2, τ ′

1
, andτ ′

2
for which we can safely treatτ ′

1
→ τ ′

2

as a subtype ofτ1 → τ2?
Justify the correctness of your answer. It may be useful in your arguments to treat types as

mathematical sets with subtyping as subsetting.

Part (d) (Arrays as Functions):
Suppose we model array operations as a pair of functions: onefor getting the value of an array
element and one for setting the value of an array element. These functions must work for arrays
of all types, and therefore are actually a polymorphic family of functions parameterized by array
element type:

get : ∀τ . τ []→ int → τ

set : ∀τ . τ []→ int → τ → unit

Note thatsetis treated as imperative: it modifies the given array in placeand returns nothing (unit).
Any form of polymorphism means that a single value can simultaneously have multiple types.

In the case of parametric polymorphism, the types of a value include its polymorphic type as well
as all monomorphic instantiations of that type. In the case of subtyping, the types of a value include
some most-specific type as well as all supertypes of that specific type. Show how extending array
subtyping across elements allows deriving a type forsetthat violates runtime type safety of arrays.
You should expect to use the function subtyping relation developed in part (c) when formulating
your answer.

10

