
MATHEMATICAL PROGRAMMING

Spring 2000 Qualifying Exam
February 8, 2000

Instructions: Answer 5 of the following 8 questions.

1. Solve the following quadratic program:

max −1/2x2
1 + 6x1 + x2

subject to x1 + x2 ≤ 5
2x1 + x2 ≤ 6
x1, x2 ≥ 0

(1)

Use your solution to answer the following questions:

(a) Is the solution of (1) unique? Justify.

(b) What is the optimal solution if we add the single constraint 3x1 +
x2 ≤ 10 to (1)?

(c) What is the optimal solution if we add the single constraint x1 −
x2 ≥ 6 to (1)?

2. Consider the quadratic least 2-norm formulation of a linear program:

min
x

c′x +
ε

2
x′x s.t. Ax ≥ b,

where A is an m × n matrix, ε is a sufficiently small positive number
and ′ denotes the transpose.

(a) By using duality theory, reduce the problem to that of minimiz-
ing a positive semidefinite quadratic function in m nonnegative
variables and no other constraints.

(b) Suppose AA′ = I, where I is the identity matrix. What is the
solution x?

3. Consider the nonlinear program:

min
x

f(x) s.t. g(x) ≤ 0,
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and the associated exact penalty minimization problem:

min
x∈Rn

f(x) + α‖(g(x))+‖1.

Here, f : Rn −→ R, g : Rn −→ Rm, α is a nonnegative real number,
‖ · ‖1 is the 1-norm (sum of absolute values) and (·)+ when applied
to a vector of real numbers, replaces negative components by zeros.
Enumerate precisely the simplest conditions on f , g and α that are
needed to guarantee that a solution x̄ of the nonlinear program also
solves the exact penalty problem. Prove your claim.

4. A user named X (who has not had CS 730) is trying to find a global
minimizer of the function defined on R3 by

f(x) = 6x2
1 + 4x1x2 + 8x1x3 + x2

2 + 4x2x3 + 4x2
3 + 4x1 + 2x2 + 4x3 + 2.

X decides to proceed by taking the derivative J(x) of f , setting J(x)
equal to zero, and solving the resulting set of equations. However, use of
a solution package on the equations produces an error message. At this
point X begins to wonder whether this function has any minimizer, and
even if it does whether there might be problems with local minimizers
that are not global.

Answer the following questions about X’s troubles, justifying each of
your answers:

(a) Does f have a global minimizer? If so, is it unique? Are there
local minimizers that are not global minimizers?

(b) What property of the equations J(x) = 0 might lead to an error
message from a solution package?

(c) What do you think would have happened if the coefficient of x2
2

in f(x) had been 2 instead of 1?

In your answer, you may use the fact that



6 2 4
2 1 2
4 2 4



 =




1 1 2
0 0 1
0 0 2








1 0 0
1 0 0
2 1 2





if you find it to be of help.
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5. Let f be a closed proper convex function on Rn, and assume that
x0 ∈ Rn is a minimizer of f . Suppose you know that there is some
number µ such that for each x∗ in some neighborhood U of the origin
in Rn, if the function f(x) − 〈x∗, x〉 has a minimizer z then ‖z‖ ≤ µ.

Show that there is some ε > 0 such that for each x∗ in the ball of radius
ε around the origin, the function f(x) − 〈x∗, x〉 actually does have a
minimizer.

6. Consider a feature selection problem in which x represents an n-vector
of unknown feature weights to be used in a model of the form Ax (where
A is m× n) to approximate a data vector b. Let E(x) denote the error
‖Ax − b‖1 and k(x) denote the number of non-zero elements of x. We
also assume that a suitably large numerical vector U is given such that
weight values satisfying −U ≤ x ≤ U are expected to provide the best
fits to the data regardless of the number of features used.

(a) Model as a linear mixed integer programming problem the problem

min λ · k(x) + (1 − λ) · E(x) s.t. −U ≤ x ≤ U ,

where λ is a parameter chosen from the interval [0,1].

(b) As λ varies from 0 to 1, what values would you typically expect to
see for k(x∗(λ)), where x∗(λ) solves the problem in (a)? In particular,
discuss the form of the optimal solutions near λ = 0 and 1, and how
this leads to the expected values of k(x∗(λ)). (Your answer may involve
rank(A).)

7. Consider the following bipartite network flow problem:

There are two supply nodes, with node 1 constrained to send no more
than 120 units and with node 2 constrained to send no more than 90
units. The supply nodes send directly to two demand nodes 3 and 4,
where node 3 requires exactly 130 units and node 4 requires exactly 70
units. In order to balance flow as much as possible on the four arcs, a
target flow of 50 is imposed on each arc, so that the cost function on
each arc is of the form |f − 50|, where f is the flow on the arc.

(a) Model (as a standard network flow problem with linear arc costs)
the problem of minimizing total deviation from the target flows subject
to the supply and demand constraints.
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(b) Solve via network flow techniques the problem in (a) and provide
the optimal flows and optimal node multipliers (dual variables). (You
should use an advanced starting solution to speed up the solution pro-
cess, which otherwise will be time-consuming.)

8. A power company faces demands during both peak and off-peak times.
If a price of p1 dollars per kilowatt-hour is charged during the peak
time, customers will demand 60 − 0.5p1 kwh of power. If a price of
p2 dollars is charged during the off peak time, customers will demand
40−p2 kwh. The power company must have sufficient capacity to meet
demand during both peak and off-peak times. It costs $10 per day to
maintain each kilowatt-hour of capacity. Write down an AMPL or
GAMS model that determines how the power company can maximize
its daily profit.

Describe how you would update the model above if the power company
is allowed to buy power (kwh) from the grid during peak hours for $8
and during off-peak for $6.
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