MATHEMATICAL PROGRAMMING

Depth Exam: Answer 6 questions, with at most 2 questions from 1, 2, 3. Breadth Exam: Answer 3 questions, with at most 2 questions from 1, 2, 3.

1. Suppose we are solving the problem:

$$\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

and we arrive at the following tableau:

x_1	x_2	x_3	x_4	-Z	R.H.S.
5	1	0	a_1	0	b_1
-1	0	1	a_2	0	b_2
2	0	0	c	1	5

- **a.** Identify the current basic solution.
- **b.** Give conditions that ensure that the basic solution is a basic feasible solution.
- **c.** Give conditions that ensure that the basic solution is an optimal basic feasible solution.
- **d.** Give conditions that ensure that the basic solution is the unique optimal basic feasible solution.
- e. Give conditions that ensure that there exists a class of solutions with objective values that are unbounded below.
- f. Assuming that the conditions in part e hold, exhibit such a class of solutions.
- **g.** Assuming that the conditions in part **b** hold, give all conditions under which you would perform a pivot on the element a_1 .
- 2. Consider the LP:

$$\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Ax \ge b, \ x \ge 0 \end{array}$$
(1)

Suppose that a feasible solution \bar{y} is given for the system:

$$\left[y^T A \le c, \ y \ge 0\right]$$

(a) Show that \bar{y} may be used to determine a scalar M such that the following problem (where $e^T = (1, 1, ..., 1)$) is guaranteed to have an optimal solution:

$$\begin{array}{ll} \text{minimize} & c^T x + M e^T w \\ \text{subject to} & Ax + w \ge b, \quad x, w \ge 0 \end{array}$$
(2)

(Hint:Consider the dual of (2))

(b) Suppose that (x^*, w^*) is an optimal solution of the problem (2). Given the vectors x^* and w^* , what can be said about the original problem (1)?

(Discuss the two cases $w^* = 0$ and $w^* \neq 0$.)

3. Consider the convex quadratic program

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TQx + c^Tx \\ \text{subject to} & Ax \ge b \end{array}$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite. Suppose the problem is feasible. Show that the following statements are equivalent.

- (a) The objective function is bounded below on the feasible set.
- (b) The implication holds:

$$[Av \ge 0, Qv = 0] \Rightarrow c^T v \ge 0$$

(c) There exist vectors r, s such that

$$c = Qr + A^T s, s \ge 0$$

4. Suppose \bar{x} is a basic feasible solution for the network flow problem:

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad 0 \le x \le u \end{array}$$

If (i,j) corresponds to an arc in the basis, show:

(a)The removal of (i,j) splits the tree corresponding to the basis into two trees, T_i and T_j .

(b) The value of $\bar{x}_{i,j}$ is given by the expression:

$$\bar{x}_{i,j} = \sum_{v \in T_i} b_v - \sum_{k \in U_{i,j}} u_k + \sum_{k \in U_{j,i}} u_k,$$

where $U_{i,j}$ is the set of non-basic arcs (r,s) at upper bound with $r \in T_i$ and $s \in T_j$, and $U_{j,i}$ is defined analogously. (Hint:Consider summing a subset of the constraints.)

5. Consider the maximum weight matching problem:

maximize
$$\sum_{\substack{(i,j)\in E\\ j:(i,j)\in E\\ x_{ij} \in \{0,1\}}} c_{ij} x_{ij}$$
subject to
$$\sum_{\substack{j:(i,j)\in E\\ x_{ij} \in \{0,1\}}} \sum_{\substack{\forall (i,j)\in E\\ \forall (i,j)\in E}} c_{ij} x_{ij}$$

where N is a set of nodes and $E \subseteq N \times N$ is a set of edges. All edge weights are positive. Let $H \subseteq E$ be a matching constructed by the following greedy algorithm:

Choose edges of maximum weight such that each chosen edge does not meet any of the edges previously chosen.

Stop when no more edges can be chosen.

The point

$$x_{ij} = \begin{cases} 1 & \text{if } (i,j) \in H \\ 0 & \text{otherwise} \end{cases}$$

is clearly feasible. Let

$$z^H = \sum_{(i,j)\in H} c_{ij} x_{ij}.$$

(a) Show that

$$z^H \le z^{**} \le 2z^H$$

where z^{**} is the optimal solution of the maximum weight matching problem. *Hint:* Show that the point

$$u_i^H = \begin{cases} c_{ij} & if(i,j) \in H \\ 0 & otherwise \end{cases}$$

is feasible for the dual of the LP relaxation.

(b) Construct a simple example to show that $z^H = \frac{1}{2}z^{**}$ is possible.

6. Consider the problem

$$\min_{x \ge 0} f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and convex on \mathbb{R}^n .

- (a) Write necessary and sufficient conditions, for \bar{x} to be a solution of the problem, in terms of \bar{x} and $\nabla f(\bar{x})$ only.
- (b) Suppose in addition that f is strongly convex on \mathbb{R}^n , that is, for some k > 0

$$\left(\nabla f(y) - \nabla f(x)\right)(y - x) \ge k \|y - x\|^2 \qquad \forall x, y \in \mathbb{R}^n$$

Derive the following error bound for any x in \mathbb{R}^n :

$$||x - \bar{x}||^2 \le \alpha \cdot ||x \nabla f(x), \ (-\nabla f(x))_+, \ (-x)_+||$$

where \bar{x} is the solution, $\|\cdot\|$ is the 2-norm on R^{1+2n} , $(z_+)_i = \max \{z_i, 0\}, i = 1, \ldots, n$, and α is some positive constant that is independent of x.

Hint: α can depend on \bar{x} and $\nabla f(\bar{x})$.

7. In a trust region algorithm for unconstrained optimization, the subproblems are of the form T = T = T

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}s^T Bs + g^T s \\ \text{subject to} & \|s\| \le \delta \end{array} \tag{1}$$

where B is a symmetric positive definite matrix and $\delta > 0$. Let

$$s(\lambda) := -(B + \lambda I)^{-1}g$$

- (a) Show that $||s(\lambda)||$ is a decreasing function of λ for $\lambda \ge 0$, provided $g \ne 0$.
- (b) Show that (1) is solved by $s(\lambda)$ for the unique $\lambda > 0$ such that $||s(\lambda)|| = \delta$ unless $||s(0)|| \le \delta$ in which case s(0) solves (1).
- (c) Suggest a practical scheme for determining a solution of (1).
- 8. Let f be a closed convex function on \mathbb{R}^n , and let x_0 be a point in the relative interior of the effective domain of f. We know that in the special case in which f is differentiable at x_0 , either $f'(x_0) = 0$ or else $-f'(x_0)$ is a descent direction for f at x_0 .

In the present case, we do not assume f to be differentiable. We use the notation f'(x;h) for the directional derivative of f at x in the direction h.

1. Explain the relationship between the function (of h) $f'(x_0; h)$ and the subdifferential $\partial f(x_0)$.

2. Show by example that if x_0^* is a nonzero element of $\partial f(x_0)$, it is not necessarily true that $f'(x_0; -x_0^*) < 0$.

3. Show that if d_0 is the projection of the origin onto $\partial f(x_0)$, then $f'(x_0; -d_0) = -\|d_0\|^2$. (Therefore, if $0 \notin \partial f(x_0)$ then $-d_0$ is a descent direction for f at x_0 .)