MATHEMATICAL PROGRAMMING

Depth Exam: Answer 6 questions, with at most 2 questions from 1, 2, 3.
Breadth Exam: Answer 3 questions, with at most 2 questions from 1, 2, 3.

1. Consider the following parametric LP:

$$
\begin{aligned}
& \text { minimize } \quad 6 x_{1}+5 x_{2} \\
& x_{1}-x_{2}+x_{3} \quad=1-\theta, \\
& \text { subject to } 10 x_{1}+10 x_{2}-10 x_{4}=20, \\
& 2 x_{1}+3 x_{2}+x_{5}=18, \\
& x \geq 0 .
\end{aligned}
$$

For $\theta=0$, an optimal basis consists of x_{2}, x_{3}, x_{5}. State the optimal solution and optimal value as a function of θ for $\theta \geq 0$.
Note: An optimal solution may not exist for certain values of θ.
2. Suppose the linear program

$$
\begin{array}{lc}
\underset{x}{\operatorname{minimize}} & c^{T} x \\
\text { subject to } & A x=b, \tag{1}\\
& x \geq 0
\end{array}
$$

has a solution and suppose that you have a good guess at an optimal solution x^{0}, where $x^{0} \geq 0$ but $A x^{0} \neq b$. Using duality theory, show that for all sufficiently large positive γ,

$$
\begin{array}{lc}
\underset{x, \lambda}{\operatorname{minimize}} & c^{T} x+\gamma \lambda \\
\text { subject to } & A x+\left(b-A x^{0}\right) \lambda=b, \\
& x, \lambda \geq 0
\end{array}
$$

has a solution, and that for any solution $(\hat{x}, \hat{\lambda}), \hat{x}$ is a solution of (1) and $\hat{\lambda}=0$.
Hint: Write the dual of the two linear programs above.
3. Solve the linear program:

$$
\begin{aligned}
& \text { maximize } \quad x_{1} \\
& x_{1}-x_{2} \geq 0, \\
& \text { subject to }-x_{1}-x_{3} \geq-1 \text {, } \\
& -x_{2}-3 x_{3} \geq 0, \\
& \left(x_{1}, x_{2}, x_{3}\right) \geq 0 .
\end{aligned}
$$

Determine whether your solution is unique or not. Justify your answer. How about your dual optimal solution? Justify whether or not it is unique also.
4. Let $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be differentiable and convex on \mathbb{R}^{n}. Prove that the set

$$
S:=\{x: g(x) \leq 0\}
$$

is empty if and only if there exists $(x, u) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
u g(x)>0, \quad u \nabla g(x)=0, \quad 0 \leq u \leq e
$$

where e is a vectors of ones in \mathbb{R}^{m}.
Hint: Consider $\min _{x \in \mathbb{R}^{n}} e g(x)_{+}$where $\left(g(x)_{+}\right)_{i}=\max \left\{0, g_{i}(x)\right\}$.
5. In a modified Newton's method for solving $f(x)=0\left(f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}\right)$, we iterate according to

$$
\begin{equation*}
x^{n+1}=x^{n}-\left[f^{\prime}\left(x^{1}\right)\right]^{-1} f\left(x^{n}\right) \tag{2}
\end{equation*}
$$

Assume that f is differentiable in a convex region D and that for some $x^{1} \in D$, $\left[f^{\prime}\left(x^{1}\right)\right]^{-1}$ exists. Assume that x^{2} calculated according to (2) is in D, that

$$
\rho=\left\|\left[f^{\prime}\left(x^{1}\right)\right]^{-1}\right\| \sup _{x \in D}\left\|f^{\prime}\left(x^{1}\right)-f^{\prime}(x)\right\|<1
$$

and the ball

$$
S=\left\{x \left\lvert\,\left\|x-x^{2}\right\|<\frac{\rho}{1-\rho}\left\|x^{1}-x^{2}\right\|\right.\right\}
$$

is contained in D. Show that the modified method converges to a solution $x^{*} \in S$. Hint: You may wish to use contraction mappings and the mean value inequality

$$
\left\|f(y)-f(z)-f^{\prime}(x)(y-z)\right\| \leq \sup _{0 \leq t \leq 1}\left\|f^{\prime}(z+t(y-z))-f^{\prime}(x)\right\|\|y-z\|
$$

6. Let f be a closed convex function on \mathbb{R}^{n}. Suppose that there is a nonempty open subset Q of \mathbb{R}^{n} such that f is finite on Q.
(a) Show that f is proper.
(b) Show that for each $x_{0} \in Q$, the function (of the variable $\left.x^{*}\right) f^{*}\left(x^{*}\right)-\left\langle x^{*}, x_{0}\right\rangle$ has level sets that are all compact but not all empty.

Suggestion: First suppose that x_{0} were the origin, and see if you could solve the problem in that case. Then take care of the general case with a translation.
7. Consider the network transportation problem

$$
\begin{array}{cc}
\operatorname{minimize} & \sum_{i \in S} \sum_{j \in T} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j \in T} x_{i j} \leq a_{i} \quad \text { for all } i \in S \\
\sum_{i \in S} x_{i j} \geq b_{j} \quad \text { for all } j \in T \\
x_{i j} \geq 0
\end{array}
$$

where S is the set of supply nodes and T is the set of demand nodes. Consider the aggregated problem obtained by aggregating all source nodes in a single node (the supply at this single node will be equal to the sum of the original individual supplies and the demand nodes will remain unchanged). Let \hat{x} be an optimal solution for this aggregated problem.
(a) Using \hat{x}, construct a feasible solution for the original problem.
(b) Determine a lower bound on the optimal solution value for the original problem in terms of the optimal value (of the aggregated problem) and the reduced costs for the aggregated problem.

Note: You may assume $a_{i}>0, b_{j}>0$ and $c_{i j} \geq 0$ for all $i \in S$ and $j \in T$.
8. (a) Formulate the following as a integer concave network flow problem ${ }^{1}$:

A $K \mathrm{x} L$ grid of cells is given, and each cell is to be assigned a processor index from the set $\{1, \ldots, P\}$; moreover, this assignment is to be balanced in the sense that each index in $\{1, \ldots, P\}$ is to be assigned to an equal number of cells (assume $K L / P$ is an integer). Let $d_{i}(x)$ be the diversity measure for row i of an assignment x (the number of distinct processor indices in row i for the assignment x). We wish to minimize $\sum_{i=1}^{K} d_{i}(x)$ subject to the assignment and balancing constraints.
(b) Prove that deletion of the integrality constraints (leaving only network constraints) has no effect on the optimal value.
9. Let

$$
T:=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2 n}: x \in\{0,1\}^{n}, \quad y \in \mathbb{R}_{+}^{n}, \quad \sum_{j=1}^{n} y_{j} \leq b, \quad y_{j} \leq a_{j} x_{j} \forall j=1, \ldots, n\right\}
$$

where b and a_{j} are nonnegative real numbers.
(a) Show that if C is a subset of $\{1, \ldots, n\}$ such that $\lambda=\sum_{j \in C} a_{j}-b>0$ then

$$
\begin{equation*}
\sum_{j \in C} y_{j} \leq b-\sum_{j \in C} \max \left\{0, a_{j}-\lambda\right\}\left(1-x_{j}\right) \tag{3}
\end{equation*}
$$

is a valid inequality for T.
(b) Let now

$$
S:=\left\{x \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}
$$

[^0]where, again, b and a_{j} are nonnegative real numbers and let C be a subset of $\{1, \ldots, n\}$ such that
$$
\sum_{j \in C} a_{j}-b>0 \text { and } \sum_{\substack{j \in C \\ j \neq k}} a_{j}-b \leq 0 \quad \forall k \in C
$$

Show that in this case, inequality (3) reduces to the well known valid constraint:

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

where $|C|$ is the cardinality of C.
Hint: In part (b) define $y_{j}=a_{j} x_{j}$.

[^0]: ${ }^{1}$ i.e., a problem with only network flow and integrality constraints, but with a concave objective function.

