MATHEMATICAL PROGRAMMING

Depth Exam: Answer 6 questions, with at most 2 questions from 1, 2, 3. Breadth Exam: Answer 3 questions, with at most 2 questions from 1, 2, 3.

1. Consider the following parametric LP:

minimize
$$6x_1 + 5x_2$$

 $x_1 - x_2 + x_3 = 1 - \theta$,
subject to $10x_1 + 10x_2 - 10x_4 = 20$,
 $2x_1 + 3x_2 + x_5 = 18$,
 $x \ge 0$.

For $\theta = 0$, an optimal basis consists of x_2, x_3, x_5 . State the optimal solution and optimal value as a function of θ for $\theta \ge 0$.

Note: An optimal solution may not exist for certain values of θ .

2. Suppose the linear program

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & c^{T}x\\ \text{subject to} & Ax = b,\\ & x \ge 0 \end{array} \tag{1}$$

has a solution and suppose that you have a good guess at an optimal solution x^0 , where $x^0 \ge 0$ but $Ax^0 \ne b$. Using duality theory, show that for all sufficiently large positive γ ,

$$\begin{array}{ll} \underset{x,\lambda}{\text{minimize}} & c^T x + \gamma \lambda \\ \text{subject to} & A x + (b - A x^0) \lambda = b, \\ & x, \lambda \geq 0 \end{array}$$

has a solution, and that for any solution $(\hat{x}, \hat{\lambda})$, \hat{x} is a solution of (1) and $\hat{\lambda} = 0$. Hint: Write the dual of the two linear programs above.

3. Solve the linear program:

Determine whether your solution is unique or not. Justify your answer. How about your dual optimal solution? Justify whether or not it is unique also. 4. Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable and convex on \mathbb{R}^n . Prove that the set

$$S := \{x : g(x) \le 0\}$$

is empty if and only if there exists $(x, u) \in \mathbb{R}^n \times \mathbb{R}^m$ such that

$$ug(x) > 0, \quad u\nabla g(x) = 0, \quad 0 \le u \le e$$

where e is a vectors of ones in \mathbb{R}^m .

Hint: Consider $\min_{x \in \mathbb{R}^n} eg(x)_+$ where $(g(x)_+)_i = \max\{0, g_i(x)\}.$

5. In a modified Newton's method for solving f(x) = 0 $(f : \mathbb{R}^n \to \mathbb{R}^n)$, we iterate according to

$$x^{n+1} = x^n - [f'(x^1)]^{-1} f(x^n)$$
(2)

Assume that f is differentiable in a convex region D and that for some $x^1 \in D$, $[f'(x^1)]^{-1}$ exists. Assume that x^2 calculated according to (2) is in D, that

$$\rho = \left\| [f'(x^1)]^{-1} \right\| \sup_{x \in D} \left\| f'(x^1) - f'(x) \right\| < 1$$

and the ball

$$S = \{x \mid \left\| x - x^2 \right\| < \frac{\rho}{1 - \rho} \left\| x^1 - x^2 \right\| \}$$

is contained in D. Show that the modified method converges to a solution $x^* \in S$. Hint: You may wish to use contraction mappings and the mean value inequality

$$||f(y) - f(z) - f'(x)(y - z)|| \le \sup_{0 \le t \le 1} ||f'(z + t(y - z)) - f'(x)|| ||y - z||$$

- 6. Let f be a closed convex function on \mathbb{R}^n . Suppose that there is a nonempty open subset Q of \mathbb{R}^n such that f is finite on Q.
 - (a) Show that f is proper.
 - (b) Show that for each $x_0 \in Q$, the function (of the variable x^*) $f^*(x^*) \langle x^*, x_0 \rangle$ has level sets that are all compact but not all empty.

Suggestion: First suppose that x_0 were the origin, and see if you could solve the problem in that case. Then take care of the general case with a translation.

7. Consider the network transportation problem

minimize
$$\sum_{i \in S} \sum_{j \in T} c_{ij} x_{ij}$$

subject to
$$\sum_{j \in T} x_{ij} \leq a_i \quad \text{for all } i \in S$$
$$\sum_{i \in S} x_{ij} \geq b_j \quad \text{for all } j \in T$$
$$x_{ij} \geq 0$$

where S is the set of supply nodes and T is the set of demand nodes. Consider the aggregated problem obtained by aggregating all source nodes in a single node (the supply at this single node will be equal to the sum of the original individual supplies and the demand nodes will remain unchanged). Let \hat{x} be an optimal solution for this aggregated problem.

- (a) Using \hat{x} , construct a feasible solution for the original problem.
- (b) Determine a lower bound on the optimal solution value for the original problem in terms of the optimal value (of the aggregated problem) and the reduced costs for the aggregated problem.

Note: You may assume $a_i > 0$, $b_j > 0$ and $c_{ij} \ge 0$ for all $i \in S$ and $j \in T$.

8. (a) Formulate the following as a **integer concave network flow** problem¹:

A $K \times L$ grid of cells is given, and each cell is to be assigned a processor index from the set $\{1, \ldots, P\}$; moreover, this assignment is to be **balanced** in the sense that each index in $\{1, \ldots, P\}$ is to be assigned to an equal number of cells (assume KL/P is an integer). Let $d_i(x)$ be the diversity measure for row *i* of an assignment *x* (the number of **distinct** processor indices in row *i* for the assignment *x*). We wish to minimize $\sum_{i=1}^{K} d_i(x)$ subject to the assignment and balancing constraints.

- (b) Prove that deletion of the integrality constraints (leaving only network constraints) has no effect on the optimal value.
- 9. Let

$$T := \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^{2n} : x \in \{0,1\}^n, \ y \in \mathbb{R}^n_+, \ \sum_{j=1}^n y_j \le b, \ y_j \le a_j x_j \ \forall j = 1, \dots, n \right\}$$

where b and a_j are nonnegative real numbers.

(a) Show that if C is a subset of $\{1, \ldots, n\}$ such that $\lambda = \sum_{j \in C} a_j - b > 0$ then

$$\sum_{j \in C} y_j \le b - \sum_{j \in C} \max\{0, a_j - \lambda\}(1 - x_j)$$
(3)

is a valid inequality for T.

(b) Let now

$$S := \left\{ x \in \{0, 1\}^n : \sum_{j=1}^n a_j x_j \le b \right\}$$

¹i.e., a problem with only network flow and integrality constraints, but with a concave objective function.

where, again, b and a_j are nonnegative real numbers and let C be a subset of $\{1, \ldots, n\}$ such that

$$\sum_{j \in C} a_j - b > 0 \text{ and } \sum_{\substack{j \in C \\ j \neq k}} a_j - b \le 0 \ \forall k \in C$$

Show that in this case, inequality (3) reduces to the well known valid constraint:

$$\sum_{j \in C} x_j \le |C| - 1$$

where |C| is the cardinality of C. Hint: In part (b) define $y_j = a_j x_j$.